第三章:中值定理与导数的应用3-4

合集下载

3.3第三章:中值定理及导数的应用

3.3第三章:中值定理及导数的应用

上连续;
2.按左、右导数的定义不难求出
f
/ 1
f
/ 1 1, 从而
f x 在 0,2 内
可导,且
f
/ x
x,0 x 1,
1 x2 ,1 x
2.
因此, f x 在 0,2上满足拉氏定理的条件.
(二)由拉氏定理的结论: 0,2 ,使
f
/
f
2
2
f 0
0
1 2
.不难算得:
1 或 2
2 0,2.
x 2x
lim x
x 1 21
2 x x
.
对于不直接表现为 0 型或 型的不定型,要首先合理转化,使其成为 0
四.洛必达法则 我们在第一章曾注意到,考试时考察得最多的求极限问题要么是 0 型,要么是 0
。对付这种问题,我们根据具体情形曾给出了因式分解约零因子、根式有理 化约零因子、等价无穷小替换、凑重要极限等方法。现在有一个著名的法则—
—洛必达法则,可用一招统一解决大部分的 0 或 的极限问题。 0
例 6.设 f x x 1x 2x 3x 4 ,证明方程 f x 0 有三个实根,并
且它们分别位于区间 1, 2, 2,3, 3, 4. (见书第 105 页)
例 7.证明方程 x5 x 1 0 只有一个正根.(反证).
拉氏定理有两个重要的的推论,也要会记会用.
推论 1:若对任意 x I , f / x 0 ,则 f x C,x I.
x
x.
.
( .
1,1
x
)
例 3.证明:对 x 0,ex 1 x. .
例 4.证明:对 x 0, ln 1 x x. .
大家自己证明,这两个结论要记住. 三.利用中值定理证明等式成立(或方程有无根)

中值定理

中值定理

第三章 中值定理与导数的应用从第二章第一节的前言中已经知道,导致微分学产生的第三类问题是“求最大值和最小值”. 此类问题在当时的生产实践中具有深刻的应用背景,例如,求炮弹从炮管里射出后运行的水平距离(即射程),其依赖于炮筒对地面的倾斜角(即发射角). 又如,在天文学中,求行星离开太阳的最远和最近距离等. 一直以来,导数作为函数的变化率,在研究函数变化的性态中有着十分重要的意义,因而在自然科学、工程技术以及社会科学等领域中得到广泛的应用.在第二章中,我们介绍了微分学的两个基本概念—导数与微分及其计算方法. 本章以微分学基本定理—微分中值定理为基础,进一步介绍利用导数研究函数的性态,例如判断函数的单调性和凹凸性,求函数的极限、极值、最大(小)值以及函数作图的方法,最后还讨论了导数在经济学中的应用.第一节 中值定理中值定理揭示了函数在某区间的整体性质与该区间内部某一点的导数之间的关系,因而称为中值定理. 中值定理既是用微分学知识解决应用问题的理论基础,又是解决微分学自身发展的一种理论性模型, 因而称为微分中值定理.内容分布图示★ 费马引理 ★ 罗尔定理★ 例1 ★ 例2★ 例3 ★ 例4 ★ 例5★ 例6 ★ 拉格朗日中值定理 ★ 例7★ 例8 ★ 例9★ 例10 ★ 柯西中值定理 ★ 例11★ 例12★ 内容小结 ★ 课堂练习★ 习题3-1★ 返回内容要点:一、罗尔定理:在闭区间[a , b ]上连续;在开区间(a , b )内可导;在区间端点的函数值相等, 即).()(b f a f = 结论:在(a , b )内至少存在一点),(b a <<ξξ使得 .0)(='ξf注:罗尔定理的三个条件是十分重要的,如果有一个不满足,定理的结论就可能不成立. 分别举例说明之.罗尔定理中)()(b f a f =这个条件是相当特殊的,它使罗尔定理的应用受到限制. 拉格朗日在罗尔定理的基础上作了进一步的研究,取消了罗尔定理中这个条件的限制,但仍保留了其余两个条件,得到了在微分学中具有重要地位的拉格朗日中值定理.二、拉格朗日中值定理:在闭区间[a , b ]上连续;在开区间(a , b )内可导. 结论:在(a , b )内至少存在一点),(b a <<ξξ 使得))(()()(a b f a f b f -'=-ξ拉格朗日中值公式反映了可导函数在],[b a 上整体平均变化率与在),(b a 内某点ξ处函数的局部变化率的关系. 若从力学角度看,公式表示整体上的平均速度等于某一内点处的瞬时速度. 因此,拉格朗日中值定理是联结局部与整体的纽带.拉格朗日终值定理可改写为).10()(0<<∆⋅∆+'=∆θθx x x f y 称为有限增量公式.拉格朗日中值定理在微分学中占有重要地位,有时也称这个定理为微分中值定理. 在某些问题中,当自变量x 取得有限增量x ∆而需要函数增量的准确表达式时,拉格朗日中值定理就突显出其重要价值.推论1 如果函数)(x f 在区间I 上的导数恒为零, 那末)(x f 在区间I 上是一个常数.三、柯西中值定理:在闭区间[a , b ]上连续;在开区间(a , b )内可导;在(a , b )内每一点处, 0)(≠'x g . 结论:在(a , b )内至少存在一点),(b a <<ξξ 使得)()()()()()(ξξg f b g a g b f a f ''=-- 显然, 若取,)(x x g =则,1)(,)()(='-=-x g a b a g b g 因而柯西中值定理就变成拉格朗日中值定理(微分中值定理)了. 所以柯西中值定理又称为广义中值定理.例题选讲:罗尔定理的应用例1 对函数x x f 2sin )(=在区间],0[π上验证罗尔定理的正确性.例2 (讲义例1) 不求导数, 判断函数)3)(2)(1()(---=x x x x f 的导数有几个零点及这些零点所在的范围..例3 (讲义例2) 证明方程0155=+-x x 有且仅有一个小于1的正实根.例 4 设 n a a a a ,,,,321Λ为满足012)1(3121=--++--n a a a n n Λ的实数, 试证明方程 ,0)12cos(3cos cos 21=-+++x n a x a x a n Λ在)2/,0(π内至少存在一个实根.例 5 设)(x f 在],[b a 上连续, 在),(b a 内可导, 且.0)()(==b f a f 证明: 存在),(b a ∈ξ, 使)()(ξξf f ='成立.拉格朗日中值定理的应用例6 (讲义例3) 证明 ).11(2arccos arcsin ≤≤-=+x x x π 例7 (讲义例4) 证明当0>x 时, .)1ln(1x x xx <+<+ 例8 设)(x f 是在],0[c 上可导的函数, 且)(x f '单调减少, .0)(=x f 试证: 对于,0c b a b a ≤+≤≤≤ 恒有 ).()()(b f a f b a f +≤+例9 验证柯西中值定理对函数23)(,1)(x x g x x f =+=在区间]2,1[上的正确性.柯西中值定理的应应用例10 (讲义例5) 设函数)(x f 在[0, 1]上连续, 在(0, 1)内可导. 试证明至少存在一点)1,0(∈ξ, 使)].0()1([2)(f f f -='ξξ课堂练习1. 试举例说明拉格朗日中值定理的条件缺一不可.2. 若)(x f 是[a , b ]上的正值可微函数, 则有点)1,0(∈ξ使().)()()()(lna b f f a f b f -'=ξξ罗尔(Rolle ,1652~1719)简介:罗尔是法国数学家。

中值定理与导数的应用

中值定理与导数的应用

中值定理是反映函数与导数之间联系的重要定理,也是微积分学的理论基础。

在实际应用中,中值定理与导数的应用非常广泛。

以下是一些具体的应用:
1.判断函数的单调性:通过导数可以判断函数的单调性,如果函数在某个区间内的导数大于0,则
该函数在这个区间内单调递增;如果函数在某个区间内的导数小于0,则该函数在这个区间内单调递减。

2.求函数的极值:导数可以用来求函数的极值。

如果函数在某一点的导数为0,则该点可能是函数
的极值点。

在判断出极值点后,可以通过求导数在该点的左右两侧的符号变化来确定该点是极大值点还是极小值点。

3.判断函数的凹凸性:通过二阶导数可以判断函数的凹凸性。

如果函数在某一点的二阶导数大于0,
则该函数在该点附近是凹函数;如果二阶导数小于0,则该函数在该点附近是凸函数。

4.求函数的拐点:在判断出函数的极值点和凹凸性后,可以进一步求出函数的拐点。

拐点的定义是
函数图像在该点处的切线发生弯曲的地方。

通过求一阶导数在该点的左右两侧的符号变化,可以判断出拐点的位置。

5.判断函数的不等式:通过导数还可以判断函数的不等式。

如果两个函数在某个区间内的导数符号
相反,则这两个函数在该区间内的函数值一定不相等。

6.最优化问题:在工程和经济学中,经常需要解决最优化问题。

使用微积分中的中值定理和导数可
以找到最优解。

例如,在经济学中,可以使用微积分来找到最大化收益或最小化成本的最佳策略。

总的来说,中值定理与导数的应用非常广泛,它们是微积分学的重要基石,可以用于解决各种实际问题。

中国人民大学出版社(第四版)高等数学一第3章课后习题详解

中国人民大学出版社(第四版)高等数学一第3章课后习题详解

第3章中值定理与导数的应用内容概要课后习题全解习题3-1★1.下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出满足定理的数值ξ。

(1)]511[32)(2.,,x x x f ---=;(2)]30[3)(,,x x x f -=。

知识点:罗尔中值定理。

思路:根据罗尔定理的条件和结论,求解方程0)(/=ξf ,得到的根ξ便为所求。

解:(1)∵32)(2--=x x x f 在]511[.,-上连续,在)5.1,1(-内可导,且0)51()1(==-.f f ,∴32)(2--=x x x f 在]511[.,-上满足罗尔定理的条件。

令()410f ξξ'=-=得)511(41.,ξ-∈=即为所求。

(2)∵x x x f -=3)(在]30[,上连续,在)30(,内可导,且0)3()0(==f f , ∴x x x f -=3)(在]30[,上满足罗尔定理的条件。

令()0f ξ'==,得)30(2,ξ∈=即为所求。

★2.验证拉格朗日中值定理对函数25423-+-=x x x y 在区间]10[,上的正确性。

知识点:拉格朗日中值定理。

思路:根据拉格朗日中值定理的条件和结论,求解方程(1)(0)()10f f f ξ-'=-,若得到的根]10[,ξ∈则可验证定理的正确性。

解:∵32()452y f x x x x ==-+-在]10[,连续,在)10(,内可导,∴25423-+-=x x x y 在区间]10[,上满足拉格朗日中值定理的条件。

又2)0(2)1(-=-=,f f ,2()12101f x x x '=-+,∴要使(1)(0)()010f f f ξ-'==-,只要:5(01)12,ξ±=,∴5(01)12,ξ∃=∈,使(1)(0)()10f f f ξ-'=-,验证完毕。

★3.已知函数4)(x x f =在区间]21[,上满足拉格朗日中值定理的条件,试求满足定理的ξ。

第03章微分中值定理与导数的应用习题详解

第03章微分中值定理与导数的应用习题详解

M 12丿」I 2丿第三章 微分中值定理与导数的应用习题3-11.解:(1)虽然 f(x)在[—1,1]上连续,f(—1) = f(1),且 f(x)在(—1,1)内可导。

可见,f(x)在[_1,1]上满足罗尔中值定理的条件,因此,必存在一点 匕€(-1,1),使得f 牡)=0,即:f(X)=cosx, F(X)=1 — sin X 且对任一 x 乏0,—】,F'(X)H 0, ”■. f (x),F (x)满足柯西 I 2丿中值定理条件。

—12©宀2=0,满足、; (2)虽然f(x)在[—1,1]上连续,f(_1)= f (1),但 f (x)在(—1,1)内 x = 0点不可导。

可 见,f (x)在[ —1,1]上不满足罗尔中值定理的条件,因此未必存在一点 £ £ (_1,1),使得 f 徉)=0. 2.因为函数是一初等函数,易验证满足条件 3 3 .解:令 y = 3arccos x - arccos(3x - 4x 3), y ‘ = 一 23 —12x 2厂工®®3)2,化简得 y'=0,「. y =c ( C 为常数),又 y(0.5)=兀,故当-0.5<x<0.5,有 y(x)=兀。

「兀f f 兀、 4 .证明:显然f(x), F(x)都满足在'|0,二I 上连续,在10,二 内可导L 2」 I 2丿 c oxsn ——x、、2丿F Q-F(O)12丿兀--1 2F( x) -1 sixn_c O 弓-x厂(X )_F(x) ZL"2 /兀 X ,,即 tan I - -- U--1,此时l 4 2丿 2f JI「兀X = 2 I — -arctan l — -1L 4l 2显然萨〔0,-〕,即丿」 I 2丿5.解:因为f(0) = f (1)= f (2) = f (3) =0,又因为f(x)在任一区间内都连续而且可导, 所以f (X)在任一区间 0,1 ], 1,2], [2,3]内满足罗尔中值定理的条件, 所以由罗尔定理,得:3" -(0,1), "^(1,2), ©-(2,3),使得:f 徉1 )= 0 r =) &:◎(=), 30 因为6.证明:设f(x) =0的n+1个相异实根为X o V X 1 <X 2 <H( <X n则由罗尔中值定理知:存在J (i =1,2,川n):X0 <:勺1cj ■<X2 vill <-1^Xn ,使得再由罗尔中值定理至少存在So =1,2,川n-1):上11 C 巴21 V ©2 吒 W ©3 V i 11 < J n d W G n ,使得7.解:反证法,倘若 p(X)=0有两个实根,设为X^X 2,由于多项式函数 p(x)在[X 1,X 2]上连续且可导,故由罗尔中值定理存在一点E€(X I ,X 2),使得P 徉)=0,而这与所设p'(x)=0没有实根相矛盾,命题得证。

第三章 微分中值定理与导数的应用

第三章  微分中值定理与导数的应用

第三章微分中值定理与导数的应用
一、本章重难点分析
第一节微分中值定理
教学重点:罗尔定理、拉格朗日定理、柯西定理及其几何意义
教学难点:构造辅助函数
第二节洛必达法则
教学重点:洛必达法则
教学难点:洛必达法则的其应用
第三节泰勒公式
教学重点:泰勒中值定理
教学难点:麦克劳林展开式
第四节函数的单调性与曲线的凹凸性
教学重点:函数的单调区间,函数的凹凸区间
教学难点:极值点;拐点;渐近线
第五节函数的极值与最大值最小值
教学重点:函数极值的存在性:一个必要条件,两个充分条件;最大值最小值问题
教学难点:函数类的最值问题和应用类的最值问题
第六节函数图形的描绘
教学重点:利用导数作函数图形
教学难点:渐近线;图形的升降性、凹凸性,极值点、拐点
第七节曲率
教学重点:弧微分;曲率的定义;曲率圆
教学难点:曲率和曲率半径的计算
二、教与学的建议
理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理,掌握用洛必达法则求未定式极限的方法,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用,会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形,了解曲率和曲率半径的概念,会计算曲率和曲率半径。

本章应强化中值定理和洛必达法则的讲解练习,因为中值定理应用于证明的题型是学生的薄弱环节,尤其是在思路和书写逻辑上,而洛必达法则应用很容易出错。

(整理)第三章中值定理与导数的应用学习指导

(整理)第三章中值定理与导数的应用学习指导

第三章 中值定理与导数的应用一、知识脉络理定值中分微 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧)(21麦克劳林公式泰勒公式柯西定理推论推论拉格朗日定理罗尔定理⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩∞∞求方程的近似解渐屈与渐伸线曲率和曲率半径弧微分其它应用函数作图求凹凸区间与拐点凹凸性判别定义凹凸性与拐点求单调区间单调性判定定义单调性函数性态题最大值与最小值应用问极值的应用极值点的判定件函数取得极值的必要条定义概念函数极值型导数应用:二、重点与难点1.重点:拉格朗日中值定理,函数增调区间、函数的凹凸区间,求函数的极值,求具体问题的最大最小值。

2.难点:柯西定理、泰勒展式、不等式证明、函数作图。

三、问题与分析1.学习洛尔定理、拉格朗日定理与柯西定理应注意的问题:①洛尔定理是一个函数满足3条,拉格朗日定理一个函数满足2条,柯西定理是两个函数满足2条,才有相应结论; ②定理的条件是充分的,但不是必要的;③三个定理都是存在性定理,只肯定了有ξ存在,而未指出如何确定该点。

2.学习罗必塔法则应注意问题: ①罗必塔法则仅仅用于00型和∞∞型未定式; ②如果()()x g x f ''lim 不存在(不包括∞),不能断言()()x g x f lim 不存在,只能说明罗必塔法则在此失效,应采用其它方法求极限; ③∞⋅0,∞-∞,00,∞1,0∞也叫未定型,必须转化为00型或∞∞型之后,方可用罗必塔法则求极限;思路“:∞⋅0型转化为∞⋅∞1或010⋅型; ∞-∞可通分转化为00型或∞∞型;00型转化为0ln 00ln 0⋅=e e ,其中指数是∞⋅0型; ∞1型转化为1ln 1ln ⋅∞=∞e e ,其中数是0⋅∞; 0∞型转化为∞∞=ln 0ln 0e e ,其中指数是∞⋅0型。

④罗必塔法则求极限与其它方法求极限在同一题中可交替使用; ⑤有时要连续用几次洛必塔法则,每一次都要验证是否是00型或∞∞型。

微分中值定理与导数应用

微分中值定理与导数应用
F( x) 单调增.再由 F(0) 0 即知,x 0时 F( x) 0 , 从而 F ( x) 单调减; x 0时, F ( x) 单调增. F(0) 0 是
F ( x) 的最小值. F( x) 0 ,即得 f ( x) x .证毕.
例 5 设 lim f ( x) 1,且 f ( x) 0 .试证: f ( x) x . x0 x
4 (b a)2
|{ f (b) [ f (b)
f (b)( a b 2
b)
1 2
f
(1
)(
a
2
b
b)2 ]}
{ f (a) [ f (a)
f (a)( a b 2
a)
1 2
f
(
2
)(
a
2
b
a)2 ]} |
4 (b a)2
|
1 2
{
f
(1
)
f
(
2
)}(
b
2
a
)2
0 ,根据极限的保号性即知,
在 x a 的右邻近,有 f ( x) f (a) 0 ,故有 f ( x) f (a) . xa
f (a) 不可能是 f ( x) 在[a, b] 上的最小值. 同理,由 f(b)
0 可知, f (b) 也不可能是 f ( x) 在[a, b] 上的最小值.
F ( x) F( x) F(0) F( x)x (其中 (0,1) )
{F( x) F(0)}x {F(1 x) x}x (其中1 (0,1) ) F (1 x) x2 0 ,即得 f ( x) x .证毕.
例 6 设 f ( x) 在[a,b] 上存在, f (a) f (b) 0 .试证:

高等数学 微分中值定理与导数的应用

高等数学 微分中值定理与导数的应用
f (b) f (a) f ' ()(b a) 成立.
注意 : 与罗尔定理相比条件中去掉了 f (a) f (b). 结论亦可写成 f (b) f (a) f (). ba
f (b) f (a) f ( )
ba
y 几何解释:
在曲线弧 AB 上至少有
一点 C ,在该点处的切
A
C
y f (x)
有一点(a b),使等式
f (a) F (a)
f (b) F (b)
f F
' () 成立. ' ()
Cauchy定理又称为广义微分中值定理
结构图
特例
推广
Rolle定理
Lagrange定理
Cauchy定理
拉格朗日中值定理又称微分中值定理.
第二节 洛必达法则
一、0 型及 型未定式解法: 洛必达法则 0
且除去两个端点外处 o a 处有不垂直于横轴的
1
2 b x
切线,在曲线弧AB上至少有一点C ,在该点处的
切线是水平的.
注① Rolle定理有三个条件:闭区间连续;开区间可导
区间端点处的函数值相等; 这三个条件只是充分条件,而非必要条件
如:y=x2在[-1,2]上满足(1),(2),不满足(3) 却在(-1,2)内有一点 x=0 使
第三章 微分中值定理与导数的应用
§3. 1 微分中值定理
一、罗尔(Rolle)定理
定理(Rolle) 若函数f ( x ) 满足 (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 (3)在区间端点处的函数值相等f(a)=f(b)
则在(a,b)内至少存在一点 , (a,b)使得函数 f ( x)在该点的导数为零,即 f ( ) 0

高等数学-第三章微分中值定理与导数的应用

高等数学-第三章微分中值定理与导数的应用
(3) y f ( x x) x (0 1).
增量y的精确表达式. 注 由(3)式看出, 它表达了函数增量和某点的
导数之间的直接关系. 这里 ,未定, 但是增量、
导数是个等式关系. 这是十分方便的. 拉格朗日中值公式又称 有限增量公式.
拉格朗日中值定理又称 有限增量定理.
微分中值定理
f ( x)在[1,2]上连续, 在(1, 2)内可导,
f (1) 0 f (2) (2) 结论正确
方程f ( x) 0, 即3x2 8x 7 0有实根
1 x1 3 (4
1
37),
x2

(4 3
37)
其中 x2 (1,2), 符合要求.
罗尔定理肯定了 的存在性, 一般没必要知道
c0
c1 2

cn n1
0.
试证方程
证设
c0 c1 x cn xn 0在(0,1)内存在一个实根.
f
(x)
c0 x
c1 2
x2

cn n1
x n1 ,
f ( x)在[0,1]上连续,在(0,1)内可导,且
f (0) 0 f (1)
罗尔定理
在(0,1)内至少存在一个实根 , 使得f ( ) 0,
即 c0 c1 cn n 0 即x 为所求实根.
微分中值定理
拉格朗日 Lagrange (法) 1736-1813
二、拉格朗日(Lagrange)中值定理
拉格朗日中值定理 若函数f ( x)满足 : (1) 在闭区间[a, b]上连续; (2)在开区间(a, b)内可导;
g( ) f ( ) f (b) f (a) 0.

3山东专升本高等数学第三章微分中值定理与导数的应用

3山东专升本高等数学第三章微分中值定理与导数的应用

第三章 微分中值定理与导数的应用【考试要求】1.掌握罗尔中值定理、拉格朗日中值定理并了解它们的几何意义.2.熟练掌握洛必达法则求“0/0”、“/∞∞”、“0⋅∞”、“∞-∞”、“1∞”、“00”和“0∞”型未定式极限的方法.3.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式.4.理解函数极值的概念,掌握求函数的极值和最值(最大值和最小值)的方法,并且会解简单的应用问题.5.会判定曲线的凹凸性,会求曲线的拐点. 6.会求曲线的水平渐近线与垂直渐近线.【考试内容】一、微分中值定理1.罗尔定理如果函数()yf x =满足下述的三个条件:(1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)在区间端点处的函数值相等,即()()f a f b =,那么在(,)a b 内至少有一点ξ(ab ξ<<),使得()0f ξ'=.说明:通常称导数等于零的点为函数的驻点(或稳定点,临界点),即若0()0f x '=,则称点0x 为函数()f x 的驻点.2.拉格朗日中值定理如果函数()y f x =满足下述的两个条件:(1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导, 那么在(,)a b 内至少有一点ξ(ab ξ<<),使得下式(拉格朗日中值公式)成立:()()()()f b f a f b a ξ'-=-.说明:当()()f b f a =时,上式的左端为零,右端式()b a -不为零,则只能()0f ξ'=,这就说明罗尔定理是拉格朗日中值定理的特殊情形.此外,由于拉格朗日中值定理在微分学中占有重要的地位,因此有时也称这定理为微分中值定理.3.两个重要推论(1)如果函数()f x 在区间I 上的导数恒为零,那么()f x 在区间I 上是一个常数.证:在区间I 上任取两点1x 、2x (假定12x x <,12x x >同样可证),应用拉格朗日中值公式可得 2121()()()()f x f x f x x ξ'-=- (12x x ξ<<). 由假定,()0f ξ'=,所以 21()()0f x f x -=,即 21()()f x f x =.因为1x 、2x 是I 上任意两点,所以上式表明()f x 在区间I 上的函数值总是相等的,即()f x 在区间I 上是一个常数.(2)如果函数()f x 与()g x 在区间(,)a b 内的导数恒有()()f x g x ''=,则这两个函数在(,)a b 内至多相差一个常数,即()()f x g x C -=(C 为常数).证:设()()()F x f x g x =-,则()[()()]()()0F x f x g x f x g x ''''=-=-=,根据上面的推论(1)可得,()F x C =,即()()f x g x C -=,故()()f x g x C -=.二、洛必达法则1.x a →时“”型未定式的洛必达法则如果函数()f x 及()F x 满足下述的三个条件:(1)当x a →时,函数()f x 及()F x 都趋于零;(2)在点a 的某个去心邻域内()f x '及()F x '都存在且()0F x '≠;(3)()lim ()x a f x F x →''存在(或为无穷大),那么 ()()lim lim()()x a x a f x f x F x F x →→'='. 说明:这就是说,当()lim ()x a f x F x →''存在时,()lim ()x a f x F x →也存在且等于()lim ()x a f x F x →'';当()lim()x a f x F x →''为无穷大时,()lim ()x a f x F x →也是无穷大. 2.x →∞时“”型未定式的洛必达法则 如果函数()f x 及()F x 满足下述的三个条件:(1)当x →∞时,函数()f x 及()F x 都趋于零;(2)当x X >时()f x '及()F x '都存在且()0F x '≠;(3)()lim ()x f x F x →∞''存在(或为无穷大),那么 ()()lim lim ()()x x f x f x F x F x →∞→∞'='.说明:我们指出,对于x a →或x →∞时的未定式“∞∞”,也有相应的洛必达法则. 3.使用洛必达法则求“00”型或“∞∞”型极限时的注意事项(1)使用洛必达法则之前要先判断所求极限是不是“00”型或“∞∞”型,如果不是则不能使用洛必达法则.例如:2sin lim x xx π→就不能运用洛必达法则,直接代入求极限即可,故2sin sin 22lim 2x x x ππππ→==. (2)洛必达法则可多次连续使用,也就是说,如果使用一次洛必达法则后算式仍然是“0”型或“∞∞”型,则可再次使用洛必达法则,依此类推. (3)洛必达法则是求“00”型或“∞∞”型未定式极限的一种有效方法,但最好能与其他求极限的方法结合使用,例如能化简时应尽可能先化简,可以应用等价无穷小替代或重要极限时,应尽可能应用,这样可以使运算简便.例如:求2tan limtan x x xx x→-时,可先用~tan x x 进行无穷小的等价替换,然后再用洛必达法则,故2223220000tan tan sec 1tan 1lim lim lim lim tan 333x x x x x x x x x x x x x x x →→→→---====. (4)如果求极限的式子中含有非零因子,则可以对该非零因子单独求极限(即可以先求出这部分的极限),然后再利用洛必达法则,以便简化运算.例如:求0lnsin 2limlnsin3x xx+→时,0000lnsin 2sin3cos222sin323lim lim lim lim 1lnsin3sin 2cos333sin 232x x x x x x x x x x x x x x++++→→→→⋅⋅⋅====⋅⋅⋅,从第二步到第三步的过程中,分子上的因子cos2x 和分母上的因子cos3x 当0x +→时极限均为1,故可先求出这两部分的极限以便化简运算.(5)当洛必达法则的条件不满足时,所求极限不一定不存在,也即是说,当()lim ()f x F x ''不存在时(等于无穷大的情况除外),()lim ()f x F x 仍可能存在.例如:极限sin lim x x xx→∞+,(sin )1cos lim lim lim(1cos )1x x x x x x x x →∞→∞→∞'++==+' 极限是不存在的,但是原极限是存在的,sin sin sin lim lim(1)1lim 101x x x x x x x x x x→∞→∞→∞+=+=+=+=.4.其他类型的未定式除了“00”型或“∞∞”型未定式之外,还有其他类型的未定式,如“0⋅∞”、“∞-∞”、“1∞”、“00”及“0∞”型等.对于“0⋅∞”和“∞-∞”型的未定式,处理方法为将它们直接转化成“00”或“∞∞”型;对于“1∞”、“00”及“0∞”型的未定式,处理方法为先取对数将它们转化成“0⋅∞”型,然后再转化成“00”型或“∞∞”型未定式.三、函数单调性的判定法1.单调性判定法设函数()yf x =在[,]a b 上连续,在(,)a b 内可导,(1)如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; (2)如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少.说明:① 如果把这个判定法中的闭区间改为其他各种区间(包括无穷区间),结论也成立; ② 若判定法中()f x '在(,)a b 内只有有限个点上()0f x '=,而在其余点上恒有()0f x '>(或()0f x '<),则函数()f x 在区间[,]a b 上仍然是单调增加(或单调减少)的.2.单调区间的求法设函数()f x 在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,则求函数()f x 的单调性的步骤如下:(1)求出函数()f x 的定义域;(2)求出函数()f x 的导数()f x ',并令()0f x '=求出函数的驻点;此外,再找出导数不存在的点(一般是使得()f x '分母为零的点);(3)用函数()f x 的所有驻点和导数不存在的点来划分函数的定义区间,然后用单调性判定定理逐个判定各个部分区间的单调性.3.用单调性证明不等式函数()f x 的单调性还可以用来证明不等式,步骤如下:(1)将不等式的一边变为零,不等于零的一边设为()f x ,根据要证明的式子找出不等式成立的x 的范围I ; (2)求()f x 的导数()f x ',判断()f x '在上述I 范围内的符号(即正负);(3)根据范围I 的边界值与()f x '的情况,导出所需要证明的不等式即可.例如:试证明当1x>时,13x>-.证明:原不等式即为 13x -+ ,故令1()3f x x=-+,0x >,则2211()(1)f x xx '=-=- ,()f x 在[1,)+∞上连续,在(1,)+∞内()0f x '>,因此在[1,)+∞上()f x 单调增加,从而当1x >时,()(1)f x f >,又由于(1)0f =,故()0f x >,即 130x -+>,亦即 13x>-. 四、函数的凹凸性与拐点1.函数凹凸性的定义设函数()f x 在区间I 上连续,如果对I 上任意两点1x 、2x ,恒有1212()()22x x f x f x f ++⎛⎫<⎪⎝⎭,那么称()f x 在I 上的图形是(向上)凹的(或凹弧);如果恒有1212()()22x xf x f x f ++⎛⎫>⎪⎝⎭,那么称()f x 在I 上的图形是(向上)凸的(或凸弧).如果函数()f x 在I 内具有二阶导数,那么可以利用二阶导数的符号来判定曲线的凹凸性,如下所示.2.函数凹凸性的判定法设函数()f x 在区间[,]a b 上连续,在(,)a b 内具有一阶和二阶导数,那么(1)若在(,)a b 内()0f x ''>,则()f x 在[,]a b 上的图形是凹的; (2)若在(,)a b 内()0f x ''<,则()f x 在[,]a b 上的图形是凸的.说明:若在(,)a b 内除有限个点上()0f x ''=外,其它点上均有()0f x ''>(或()0f x ''<),则同样可以判定曲线()y f x =在[,]a b 上为凹曲线(或凸曲线).3.曲线的拐点的求法一般地,设()y f x =在区间I 上连续,0x 是I 的内点(除端点外I 内的点).如果曲线()y f x =在经过点00(,())x f x 时,曲线的凹凸性改变了,那么就称点00(,())x f x 为这曲线的拐点.我们可以按照下述步骤求区间I 上的连续函数()y f x =的拐点:(1)求()f x '';(2)令()0f x ''=,解出这方程在区间I 内的实根,并求出在区间I 内()f x ''不存在的点;(3)对于(2)中求出的每一个实根或二阶导数不存在的点0x ,检查()f x ''在0x 左、右两侧邻近的符号,当两侧的符号相反时,点00(,())x f x 是拐点,当两侧的符号相同时,点00(,())x f x 不是拐点.在[,]a b 上单3.基本初等函数的微分公式说明:若要求函数()yf x =的凹凸区间,则用(2)中求出的每一个实根或二阶导数不存在的点把区间I 分成若干部分区间,然后在这些部分区间上判定()f x ''的符号,若()0f x ''>,则该部分区间为凹区间,若()0f x ''<,则该部分区间为凸区间.五、函数的极值与最值1.函数极值的定义设函数()f x 在点0x 的某邻域0()U x 内有定义,如果对于去心邻域0()U x 内任一x ,有0()()f x f x <(或0()()f x f x >),那么就称0()f x 是函数()f x 的一个极大值(或极小值).函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点. 说明:函数的极大值与极小值概念是局部性的,如果0()f x 是函数()f x 的一个极大值,那只是就0x 附近的一个局部范围来说,0()f x 是()f x 的一个最大值,如果就()f x 的整个定义域来说,0()f x 不见得是最大值.关于极小值也类似.2.函数取得极值的必要条件设函数()f x 在0x 处可导,且在0x 处取得极值,那么0()0f x '=.说明:这也就是说,可导函数()f x 的极值点必定是它的驻点.但反过来,函数的驻点却不一定是极值点.例如,3()f x x =的导数2()3f x x '=,(0)0f '=,因此0x =是这函数的驻点,但0x=却不是这函数的极值点,所以,函数的驻点只是可能的极值点.此外,函数在它的导数不存在的点处也可能取得极值.例如,函数()f x x =在点0x =处不可导,但函数在该点取得极小值.3.判定极值的第一充分条件设函数()f x 在0x 处连续,且在0x 的某去心邻域0()U x 内可导.(1)若00(,)x x x δ∈-时,()0f x '>,而00(,)x x x δ∈+时,()0f x '<,则()f x 在0x 处取得极大值;(2)若00(,)x x x δ∈-时,()0f x '<,而00(,)x x x δ∈+时,()0f x '>,则()f x 在0x 处取得极小值;(3)若0(,)x U x δ∈时,()f x '的符号保持不变,则()f x 在0x 处没有极值.4.用第一充分条件求极值点和极值的步骤设函数()f x 在所讨论的区间内连续,除个别点外处处可导,则用第一充分条件求极值点和相应的极值的步骤如下: (1)求出导数()f x ';(2)求出()f x 的全部驻点与不可导点;(3)考查()f x '的符号在每个驻点或不可导点的左右邻近的情形,以确定该点是否为极值点;如果是极值点,进一步确定是极大值点还是极小值点; (4)求出各极值点的函数值,就得函数()f x 的全部极值.5.判定极值的第二充分条件设函数()f x 在0x 处具有二阶导数且0()0f x '=,0()0f x ''≠,那么(1)当0()0f x ''<时,函数()f x 在0x 处取得极大值; (2)当0()0f x ''>时,函数()f x 在0x 处取得极小值.说明:该极值判定条件表明,如果函数()f x 在驻点0x 处的二阶导数0()0f x ''≠,那么该驻点0x 一定是极值点,并且可按二阶导数0()f x ''的符号来判定0()f x 是极大值还是极小值.但如果0()0f x ''=,则该判定条件失效.事实上,当0()0f x '=,0()0f x ''=时,()fx 在0x 处可能有极大值,可能有极小值,也可能没有极值.例如,41()f x x =-,42()f x x =,33()f x x =这三个函数在0x =处就分别属于上述三种情况.因此,如果函数在驻点处的二阶导数为零,那么还得用一阶导数在驻点左右邻近的符号来判定.6.求()f x 在区间[,]a b 上的最值的步骤设函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内除有限个点外可导,且至多有有限个驻点,则求()f x 在闭区间[,]a b 上的最值的步骤如下:(1)求出()f x 在(,)a b 内的驻点1x ,2x ,,m x 及不可导点1x ',2x ',,n x ';(2)计算()i f x (1,2,,i m =),()j f x '(1,2,,j n =)及 ()f a ,()f b ;(3)比较(2)中诸值的大小,其中最大的便是()f x 在[,]a b 上的最大值,最小的便是()f x 在[,]a b 上的最小值.说明:在实际问题中,往往根据问题的性质就可以断定可导函数()f x 确有最大值或最小值,而且一定在定义区间内部取得.这时如果()f x 在定义区间内部只有一个驻点0x ,那么不必讨论0()f x 是不是极值,就可以断定0()f x 是最大值或最小值.六、函数的渐近线的求法1.水平渐近线若lim()x f x a →∞=(包括lim ()x f x a →-∞=或lim ()x f x a →+∞=),则直线y a =就是函数()f x 的水平渐近线.2.垂直渐近线(或称铅直渐近线)若0lim()x x f x →=∞(包括0lim ()x x f x -→=∞或0lim ()x x f x +→=∞),则直线0x x =就是函数()f x 的垂直(铅直)渐近线.【典型例题】【例3-1】验证罗尔定理对函数()ln sin f x x =在区间5[,]66ππ上的正确性.解:显然函数()ln sin f x x =在闭区间5[,]66ππ上连续,在开区间5(,)66ππ上可导,1()(lnsin )cos cot sin f x x x x x ''==⋅=,且5()()ln 266f f ππ==-,故满足罗尔定理的条件,由定理可得至少存在一点5(,)66ππξ∈,使得()0f ξ'=,即cot 0ξ=,2πξ=即为满足条件的点.【例3-2】验证拉格朗日中值定理对函数2()482f x x x =--在区间[0,1]上的正确性.解:显然函数2()482f x x x =--在闭区间[0,1]上连续,在开区间(0,1)内可导,()88f x x '=-,根据拉格朗日中值定理可得至少存在一点(0,1)ξ∈,使得(1)(0)()(10)f f f ξ'-=-,即6(2)88ξ---=-,可得1(0,1)2ξ=∈,12ξ=即为满足条件的点.【例3-3】不求导数,判断函数()(1)(2)(3)(4)f x x x x x =----的导数有几个零点,这些零点分别在什么范围. 解:显然()f x 是连续可导的函数,且(1)(2)(3)(4)0f f f f ====,故()f x 在区间[1,2],[2,3],[3,4]上满足罗尔定理的条件,所以在区间(1,2)内至少存在一点1ξ,使得1()0f ξ'=,即1ξ是()f x '的一个零点;在区间(2,3)内至少存在一点2ξ,使得2()0f ξ'=,即2ξ是()f x '的一个零点;又在区间(3,4)内至少存在一点3ξ,使得3()0f ξ'=,即3ξ也是()f x '的一个零点.又因为()f x '是三次多项式,最多只能有三个零点,故()f x '恰好有三个零点,分别在区间(1,2),(2,3)和(3,4)内.【例3-4】证明arcsin arccos 2x x π+=,其中11x -≤≤.证明:设()arcsin arccos f x x x =+,[1,1]x ∈-,因为()(0f x '=+=,所以()f x C =,[1,1]x ∈-.又因为(0)arcsin 0arccos0022f ππ=+=+=,即2C π=,故arcsin arccos 2x x π+=.说明:同理可证,arctan arccot 2x x π+=,(,)x ∈-∞+∞.【例3-5】求下列函数的极限.1.求 332132lim 1x x x x x x →-+--+.解:该极限为1x →时的“00”型未定式,由洛必达法则可得原式22113363lim lim 321622x x x x x x x →→-===---. 2.求arctan 2lim 1x x xπ→+∞-.解:本题为x →+∞时的“00”型未定式,由洛必达法则可得原式222211limlim 111x x x x x x→+∞→+∞-+===+-. 3.求0lnsin 2limlnsin3x xx+→. 解:该极限为0x+→时的“∞∞”型未定式,由洛必达法则可得原式0001cos 222sin 323sin 2lim lim lim 113sin 232cos33sin 3x x x x x x x x xx x+++→→→⋅⋅⋅====⋅⋅⋅. 4.求 2tan lim tan3x xx π→.解:本题为2x π→时的“∞∞”型未定式,由洛必达法则可得原式2222222sec cos 32cos3(sin3)3lim lim lim 3sec 33cos 6cos (sin )x x x x x x x x x x x πππ→→→⋅-⋅===⋅- 22cos33sin3lim lim 3cos sin x x x x x x ππ→→-===-.5.求2tan limtan x x xx x→-. 解:该极限为0x →时的“00”型未定式,结合等价无穷小的替换,运用洛必达法则可得原式22320000tan sec 12sec tan 21lim lim lim lim 3663x x x x x x x x x x x x x x →→→→--⋅=====. 说明:此题也可这样求解(运用公式22sec1tan x x =+和等价无穷小替换来简化运算):原式22232220000tan sec 1tan 1lim lim lim lim 3333x x x x x x x x x x x x x →→→→--=====. 6.求11lim()sin x x x→-. 解:该极限为0x →时的“∞-∞”型未定式,解决方法为先化为“1100-”型,然后通分化为“”型,故 原式20000sin sin 1cos sin lim lim lim lim 0sin 22x x x x x x x x x xx x x x →→→→---=====.7.求lim x x x +→. 解:该极限为0x +→时的“00”型未定式,解决方法为取对数化为“0ln 0⋅”型,进而化为“”型,故 原式020001lim ln 1lim ln limlim ()ln 00lim 1x x x x xx x xx x x xx x e ee e e e +→+++→→→+--→=======.8.求cos limx x xx→∞+.解:原式1sin lim lim(1sin )1x x x x →∞→∞-==-,最后的极限不存在,不满足洛必达法则的条件,实际上,原式cos cos lim(1)1lim 101x x x xx x→∞→∞=+=+=+=.【例3-6】求下列函数的单调区间. 1.32()29123f x x x x =-+-.解:因2()618126(1)(2)f x x x x x '=-+=--, 令()0f x '=,得11x =,22x =.用1x ,2x 将函数的定义域(,)-∞+∞分成三个区间(,1)-∞,(1,2),(2,)+∞,其讨论结果如下表所示:由上表可得,函数的单调递增区间为(,1]-∞和[2,)+∞,单调递减区间为[1,2].2.()f x = .解:函数的定义域为(,)-∞+∞,()f x '=(0x ≠),当0x =时导数不存在.将函数定义域分成两个区间(,0)-∞和(0,)+∞,讨论结果如下表所示:所以函数的单调递增区间为[0,)+∞,单调递减区间为(,0]-∞. 【例3-7】利用函数的单调性证明不等式. 1.试证当0x>时,ln(1)x x >+成立.证明:设()ln(1)f x x x =-+,则1()111x f x x x'=-=++, 因()f x 在区间[0,)+∞上连续,在(0,)+∞内可导,且 ()0f x '>, 故()f x 在区间[0,)+∞上单调增加,又因为(0)0f =,所以当0x >时,()0f x >,即ln(1)0x x -+>,也即 ln(1)x x >+成立.2.试证当1x >时,13x>-.证明:令1()(3)f x x =--,则2211()(1)f x xx '=-=-, 因()f x 在区间[1,)+∞上连续,在(1,)+∞内可导且()0f x '>, 故()f x 在区间[1,)+∞上单调增加,又因为(1)0f =,所以当1x >时,()0f x >,即1(3)0x -->,也即13x>- 成立.【例3-8】证明方程510x x ++=在区间(1,0)-内有且仅有一个实根.证明:令5()1f x x x =++,因为()f x 在闭区间[1,0]-上连续,且(1)10f -=-<,(0)10f =>,根据零点定理,()f x 在区间(0,1)内至少有一个零点.另一方面,对于任意实数x ,有4()510f x x '=+>,所以()f x 在(,)-∞+∞内单调增加,因此曲线5()1f x x x =++与x 轴至多有一个交点.综上所述,方程510xx ++=在区间(1,0)-内有且仅有一个实根.【例3-9】求下列函数的极值. 1.32()395f x x x x =--+.解:函数的定义域为(,)-∞+∞,且有2()3693(1)(3)f x x x x x '=--=+-,令()0f x '=,得驻点11x =-,23x =,列表讨论如下:由上表可得,函数的极大值为(1)10f -=,极小值为(3)22f =-.2.233()2f x x x =-.解:函数的定义域为(,)-∞+∞,且有13()1f x x-'=-=,令()0f x '=,得驻点1x =,当0x =时()f x '不存在,驻点1x =以及不可导点0x =将定义域分成三个区间,列表讨论如下:由上表可得,函数的极大值为(0)0f =,极小值为1(1)2f =-. 【例3-10】求函数32()231214f x x x x =+-+在区间[3,4]-上的最值.解:因为2()66126(2)(1)f x x x x x '=+-=+-,令()0f x '=,得 12x =-,21x =,计算(3)23f -=,(2)34f -=,(1)7f =,(4)142f =,比较上述结果可知,最大值为(4)142f =,最小值为(1)7f =.【例3-11】求下列曲线的凹凸区间和拐点. 1.43()341f x x x =-+.解:函数的定义域为(,)-∞+∞,且有32()1212f x x x '=-,2()36()3f x x x ''=-,令()0f x ''=,得10x =,223x =, 列表讨论如下:由上表可得,曲线()f x 的凹区间为(,0]-∞和2[,)3+∞,凸区间为2[0,]3,拐点为(0,1)和211(,)327.2.()f x =解:函数的定义域为(,)-∞+∞,当0x ≠时有231()3f x x -'=,532()9f x x -''=-,当0x =时,()f x '和()f x ''均不存在,但在区间(,0)-∞内,()0f x ''>,故曲线在(,0]-∞上是凹的;在区间(0,)+∞内,()0fx ''<,故曲线在[0,)+∞上是凸的.所以曲线的凹区间为(,0]-∞,凸区间为[0,)+∞,拐点为(0,0).【历年真题】一、选择题1.(2009年,1分)若函数()y f x =满足0()0f x '=,则0x x =必为()f x 的( )(A )极大值点 (B )极小值点 (C )驻点 (D )拐点 解:若0()0f x '=,则0x x =必为()f x 的驻点,选(C ). 23 x()f x2(,)3+∞ 0 (,0)-∞2(0,)3+-+对应拐点对应拐点凹凸凹()f x ''2.(2009年,1分)当0x >时,曲线1siny x x=( ) (A )没有水平渐近线 (B )仅有水平渐近线(C )仅有铅直渐近线 (D )既有水平渐近线,又有铅直渐近线解:由1sin1lim sinlim 11x x x x x x→∞→∞==可知,1y =为曲线的水平渐近线; 01lim sin 0x x x+→=,故曲线无铅直渐近线.选项(B )正确.3.(2008年,3分)函数()ln f x x =在区间[1,2]上满足拉格朗日公式中的ξ等于( )(A )ln 2 (B )ln1 (C )ln e (D )1ln 2解:对函数()ln f x x =在区间[1,2]上应用拉格朗日中值定理,(2)(1)()(21)f f f ξ'-=-,即 1ln 20ξ-=,故 1ln 2ξ=.选(D ). 4.(2007年,3分)曲线33yx x =-上切线平行于x 轴的点为( )(A )(1,4)-- (B )(2,2) (C )(0,0) (D )(1,2)- 解:切线平行于x 轴的点即为一阶导数等于零的点.由2330y x'=-=可得,1x =±;1x =时,2y =-,1x =-时,2y =,故曲线33y x x =-上切线平行于x 轴的点为(1,2)-和(1,2)-.选项(D )正确. 5.(2007年,3分)若在区间(,)a b 内,导数()0f x '>,二阶导数()0f x ''<,则函数()f x 在该区间内( )(A )单调增加,曲线为凸的 (B )单调增加,曲线为凹的 (C )单调减少,曲线为凸的 (D )单调减少,曲线为凹的 解:()0f x '>可得()f x 单调增加,()0f x ''<可得曲线为凸的,故选(A ).二、填空题1.(2010年,2分)函数32()2912f x x x x =-+的单调减区间是 .解:令2()618126(1)(2)0f x x x x x '=-+=--=,得驻点1x =和2x =;当1x<时,()0f x '>,当12x <<时,()0f x '<,当2x >时,()0f x '>,故函数的单调递减区间为[1,2].2.(2009年,2分)当62x ππ≤≤时,sin ()x f x x =是 函数(填“单调递增”、“单调递减”).解:当6x π=时,sin36()66f ππππ==;当2x π=时,sin22()22f ππππ==;故当62x ππ≤≤时,sin ()xf x x=是单调递减函数. 3.(2009年,2分)函数32()29121f x x x x =-++在区间[0,2]上的最大值点是 . 解:令2()618126(1)(2)0f x x x x x '=-+=--=,得驻点1x =和2x =.比较函数值(1)6f =,(2)5f =,(0)1f =,可知,函数的最大值为(1)6f =,故函数的最大值点为1x =.4.(2007年,4分)曲线24x t y t ⎧=⎨=⎩在1t =处的切线方程为 .解:将1t =代入参数方程可得切点为(1,4),切线斜率11422t t t t y k tx =='===',故切线方程为42(1)y x -=-,即 22y x =+.5.(2005年,3分)x y xe -=的凸区间是 .解: ()(1)x x x x y xe e xe x e ----''==-=-,(1)(2)x x x y e x e x e ---''=---=-. 令 (2)0x y x e -''=-=可得,2x =,且当2x >时,0y ''>,当2x <时,0y ''<,故函数x y xe -=的凸区间是(,2]-∞.6.(2005年,3分)曲线x yx =通过(1,1)点的切线方程为 . 解:因 ln ln ()()(ln 1)(ln 1)x x x x x x y x e e x x x '''===⋅+=+,故切线斜率 1[(ln 1)]1x x k x x ==+=,所以切线方程为 11(1)y x -=⋅-,即 y x =.三、应用题或综合题1.(2010年,10分)现有边长为96厘米的正方形纸板,将其四角各剪去一个大小相同的小正方形,折做成无盖纸箱,问剪区的小正方形边长为多少时做成的无盖纸箱容积最大? 解:设剪区的小正方形边长为x ,则纸盒的容积2(962)y x x =-,048x <<. 2(962)2(962)(2)(962)(966)y x x x x x '=-+⋅--=--,令 0y '=,可得 16x =(48x =舍去).因只有唯一的驻点,且原题中容积最大的无盖纸箱一定存在,故当剪区的小正方形边长为16厘米时,做成的无盖纸箱容积最大.2.(2010年,10分)设函数()f x 在[0,1]上连续,并且对于[0,1]上的任意x 所对应的函数值()f x 均为0()1f x ≤≤,证明:在[0,1]上至少存在一点ξ,使得()f ξξ=. 解:令()()F x f x x =-,由于()f x 在[0,1]上连续,故()F x 在[0,1]上也连续. (0)(0)0(0)F f f =-=,(1)(1)1F f =-.而对[0,1]x ∀∈,0()1f x ≤≤,故(0)0F ≥,(1)0F ≤. 若(0)0F =,即(0)00f -=,(0)0f =,则0ξ=; 若(1)0F =,即(1)10f -=,(1)1f =,则1ξ=;当(0)0F ≠,(1)0F ≠时,(0)(1)0F F ⋅<,而()F x 在[0,1]上连续,故根据零点定理可得,至少存在一点(0,1)ξ∈,使得()0F ξ=,即()0f ξξ-=,()f ξξ=.综上,在[0,1]上至少存在一点ξ,使得()f ξξ=.3.(2009年,10分)某工厂需要围建一个面积为2512m 的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁.问堆料场的长和宽各为多少时,才能使砌墙所用的材 料最省?解:设堆料场的宽为x m ,则长为512xm ,设砌墙周长为y ,则5122y x x =+, 令251220y x'=-=,得 2256x =,16x =(16x =-舍去).因只有一个驻点,且原题中最值一定存在,故当16x=时,函数有最小值.即当宽为16m ,长为32m 时,才能使砌墙所用的材料最省.4.(2009年,10分)当0x>,01a <<时,1a x ax a -≤-. 解:原不等式即为10a x ax a -+-≤.设()1a f x x ax a =-+-,则 (1)当1x =时,()110f x a a =-+-=,即10a x ax a -+-=成立;(2)当01x <<时,111()(1)0a a f x ax a a x--'=-=->,故()f x 单调增加,可得()(1)0f x f <=,即10a x ax a -+-<成立;(3)当1x >时,111()(1)0a a f x ax a a x--'=-=-<,故()f x 单调减少,可得()(1)0f x f <=,即10a x ax a -+-<成立.综上,当0x >,01a <<时,不等式10a x ax a -+-≤成立,即1a x ax a -≤-.5.(2008年,8分)求函数233y x x =-的单调区间、极值、凹凸区间与拐点. 解:函数的定义域为(,)-∞+∞.先求单调区间和极值.令2633(2)0y x x x x '=-=-=,得驻点0x =,2x =,用驻点将整个定义域分为三个区间(,0)-∞,(0,2),(2,)+∞.当(,0)x ∈-∞时,0y '<,函数单调减少;当(0,2)x ∈时,0y '>,函数单调增加;当(2,)x ∈+∞时,0y '<,函数单调减少.故函数的单调增加区间为[0,2],单调减少区间为(,0]-∞和[2,)+∞;极小值(0)0f =,极大值(2)4f =.再求凹凸区间和拐点.令660y x ''=-=,得1x =.当(,1)x ∈-∞时,0y ''>,函数为凹的;当(1,)x ∈+∞时,0y ''<,函数为凸的,且当1x =时,2y =,故函数的凹区间为(,1]-∞,凸区间为[1,)+∞,拐点为(1,2).6.(2007年,8分)求函数11y x x =++的单调区间、极值、凹凸区间和拐点. 解:函数的定义域为(,1)(1,)-∞--+∞. 先求单调区间和极值.令221(2)10(1)(1)x x y x x +'=-==++,得驻点2x =-,0x =,用驻点将整个定义域分为三个区间(,2)-∞-,(2,1)--,(1,0)-,(0,)+∞.当(,2)x ∈-∞-时,0y '>,函数单调增加;当(2,1)x ∈--时,0y '<,函数单调减少;当(1,0)x ∈-时,0y '<,函数单调减少;当(0,)x ∈+∞时,0y '>,函数单调增加.故函数的单调增加区间为(,2]-∞-和[0,)+∞,单调减少区间为[2,1)--和(1,0]-;极大值(2)3f -=-,极小值(0)1f =. 再求凹凸区间和拐点.因432(1)2(1)(1)x y x x -+''=-=++,故当(,1)x ∈-∞-时,0y ''<,函数为凸的;当(1,)x ∈-+∞时,0y ''>,函数为凹的,故函数的凸区间为(,1)-∞-,凹区间为(1,)-+∞.凹凸性改变的点为1x =-,不在定义域内,故函数没有拐点.7.(2007年,8分)在周长为定值l 的所有扇形中,当扇形的半径取何值时所得扇形的面积最大?解:设扇形的半径为x ,则弧长为2l x -,设扇形的面积为y ,则由题意211(2)22y l x x x lx =-=-+.令202l y x '=-+=得,4l x =. 唯一的极值点即为最大值点.故当扇形的半径为4l 时,扇形的面积最大. 8.(2006年,10分)求函数321y x x x =--+的单调区间、极值及凹凸区间、拐点. 解:函数的定义域为(,)-∞+∞.先求单调区间和极值.令2321(31)(1)0y x x x x '=--=+-=,得驻点13x =-,1x =,用驻点将整个定义域分为三个区间1(,)3-∞-,1(,1)3-,(1,)+∞.当1(,)3x ∈-∞-时,0y '>,函数单调增加;当1(,1)3x ∈-时,0y '<,函数单调减少;当(1,)x ∈+∞时,0y '>,函数单调增加.故函数的单调增加区间为1(,]3-∞-和[1,)+∞,单调减少区间为1[,1]3-;极大值132()327f -=,极小值(1)0f =. 再求凹凸区间和拐点.令620y x ''=-=,得13x =.当1(,)3x ∈-∞时,0y ''<,函数为凸的;当1(,)3x ∈+∞时,0y ''>,函数为凹的,且当13x =时,1627y =,故函数的凸区间为1(,]3-∞,凹区间为1[,)3+∞,拐点为116(,)327. 9.(2006年,10分)设函数()f x 在[0,1]上连续,且()0f x >.证明方程011()0()xx f t dt dt f t +=⎰⎰在(0,1)内有且仅有一个根.证明:先证存在性.设011()()()x x F x f t dt dt f t =+⎰⎰,[0,1]x ∈.因()f x 在[0,1]上连续,故()F x 在[0,1]上也连续,且011011(0)00()()F dt dt f t f t =+=-<⎰⎰,1100(1)()0()0F f t dt f t dt =+=>⎰⎰,故由零点定理可得,至少存在一点(0,1)ξ∈使得()0F ξ=,即在(0,1)内方程至少存在一个根.再证唯一性,即证()F x 的单调性.1()()0()F x f x f x '=+>,故()F x 单调增加,所以结合上面根的存在性可知,方程011()0()x x f t dt dt f t +=⎰⎰在(0,1)内有且仅有一个根.10.(2005年,8分)已知()y f x =与2arctan 0x t y e dt -=⎰在(0,0)处切线相同,写出该切线方程并求2lim ()n nf n→∞. 解:切线斜率()22arctan arctan 002011x xt x x e k e dt x --==⎛⎫'=== ⎪ ⎪+⎝⎭⎰,故切线方程为01(0)y x -=⋅-,即 y x =.因()y f x =过点(0,0),故(0)0f =,且(0)1f '=,故 222()()()2lim ()lim lim 2(0)211()n n n f f n n n nf f n n n →∞→∞→∞'''===='.。

第三章 中值定理与导数的应用

第三章 中值定理与导数的应用
第3章 中值定理与导数的应用
第一节第三节 函数单调性的判别法
第四节
函数的极值及其求法
2019/10/10
第五节 函数的最大值与最小值
第六节 曲线的凹凸性与拐点
第七节
函数图形的描绘
第一节 中值定理
微分学中有三个中值定理应用非常广泛,它们 分别是罗尔定理、拉格朗日中值定理和柯西中值定 理.
从上述拉格朗日中值定理与罗尔定理的关系,自 然想到利用罗尔定理来证明拉格朗日中值定理.但在拉 格朗日中值定理中,函数f(x)不一定具备f(a)=f(b)这个 条件,为此我们设想构造一个与f(x)有密切联系的函数 φ(x)(称为辅助函数),使φ(x)满足条件φ(a)=φ(b).然后对 φ(x)应用罗尔定理,再把对φ(x)所得的结论转化到f(x) 上,证得所要的结果.
一、0/0型未定式
第三节 函数单调性的判定法
如图3-4所示,如果函数y=f(x)在区间[a,b]上 单调增加,那么它的图像是一条沿x轴正向上升的曲线 ,这时,曲线上各点切线的倾斜角都是锐角,它们的 切线斜率f′(x)都是正的,即f′(x)>0.同样地,如图3-5所 示,如果函数y=f(x)在[a,b]上单调减少,那么它的 图像是一条沿x轴正向下降的曲线,这时曲线上各点切 线的倾斜角都是钝角, 它们的斜率f′(x)都是负的,即 f′(x)<0.由此可见,函数的单调性与导数的符号有着密 切的联系.下面,我们给出利用导数判定函数单调性的 定理.
根据上面三个定理,如果函数f(x)在所讨论的区间内各点处 都具有导数,我们就以下列步骤来求函数f(x)的极值点和 极值:
(1) 求出函数f(x)的定义域;
(2) 求出函数f(x)的导数f′(x);
(3) 求出f(x)的全部驻点(即求出方程f′(x)=0在所讨论的区 间内的全部实根)以及一阶导数不存在的点;

第三章中值定理与导数的应用

第三章中值定理与导数的应用

第三章中值定理与导数的应用教学目的:1、理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。

2、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。

3、会用二阶导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

4、掌握用洛必达法则求未定式极限的方法。

5、知道曲率和曲率半径的概念,会计算曲率和曲率半径。

6、知道方程近似解的二分法及切线性。

教学重点:1、罗尔定理、拉格朗日中值定理;2、函数的极值,判断函数的单调性和求函数极值的方法;3、函数图形的凹凸性;4、洛必达法则。

教学难点:1、罗尔定理、拉格朗日中值定理的应用;2、极值的判断方法;3、图形的凹凸性及函数的图形描绘;4、洛必达法则的灵活运用。

§3 , 1 中值定理一、罗尔定理费马引理设函数f(x)在点X。

的某邻域U(x o)内有定义.并且在X。

处可导.如果对任意x U(x o).有f(x)兰f(x o)(或f(x)可(X o)).那么 f (x。

) =o ,罗尔定理如果函数y#(x)在闭区间[a, b]上连续.在开区间(a, b)内可导.且有f(a)=f(b).那么在(a, b)内至少在一点「使得f ( ) =0 .简要证明:(1)如果f(x)是常函数.则「(x)P .定理的结论显然成立,(2)如果f(x)不是常函数.则f(x)在(a . b)内至少有一个最大值点或最小值点.不妨设有一最大值点工(a .b),于是f()=口)= im f(x)—f()_0IJ x_.仁)“()訓空严_0 所以 f (x)=0.罗尔定理的几何意义:二、拉格朗日中值定理拉格朗日中值定理如果函数f(x)在闭区间[a b]上连续.在开区间(a b)内可导.那么在(a b)内至少有一点(a< <b).使得等式f(b)-f(a)f(々b-a)成立.拉格朗日中值定理的几何意义:f(b)—f(a)f ()二 b -a定理的证明:引进辅函数f(b)-f (a)令(x)孑(x) _f(a) — b —a (x^),容易验证函数f(x)适合罗尔定理的条件::(a)V (b)d O . :(x)在闭区间[a.b ]上连续在开区间(a b)内可导.且f(b)-f (a)申(x)=f "(x) — b~a ,根据罗尔定理.可知在开区间(a b)内至少有一点•.使「()=0 .即f (b) - f ⑻ f ()_ b-a =0f(b)-f(a) 由此得b —a 二f ()即 f(b)_f(a)=f ( )(bv). 定理证毕,f(b)-f(a)f ( )(b-a)叫做拉格朗日中值公式 .这个公式对于b<a 也成立 拉格朗日中值公式的其它形式 :设x 为区间[a . b ]内一点.x : =x 为这区间内的另一点 (.:x>0或.:x<0).则在[x. x7x ] C x>0)或[x i x x ] (. x<0)应用拉格朗日中值公式 .得f(x+心x) -f(x)甘 lx 说x) ‘ Z (0< 日<1), 如果记f(x)为y .则上式又可写为L y f (x n :x) L X (0< T <1),试与微分dyf (x)x 比较:dy=f(x) 是函数增量冷的近似表达式.而 f(x-,x) 是函数增量:y 的精确表达式.作为拉格朗日中值定理的应用 .我们证明如下定理:定理 如果函数f(x)在区间I 上的导数恒为零.那么f(x)在区间I 上是一个常数. 证 在区间I 上任取两点X 1.X 2(X 1<X 2).应用拉格朗日中值定理.就得f(X 2)斗(X 1)斗"(9(X 2 — x i ) (x i < -< X 2). 由假定 f ( ) =0 .所以 f(X 2) _f(X i )=0 .即f(X 2)=f(X l ),因为X i X 2是I 上任意两点.所以上面的等式表明:f(x)在I 上的函数值总是相等的.这就是说 f(x)在区间I 上是- -个常数,证 设f(x)=ln(1 x).显然f(x)在区间[0 . x ]上满足拉格朗日中值定理的条件 就有f(x)—f(0)=f (勺(x-0) . 0<®x 。

高数)第3章:微分中值定理与导数的应用共91页

高数)第3章:微分中值定理与导数的应用共91页
的一个零点。
在(2, 3)内至少存在一点 2,使f (2)0,2也是f (x)
的一个零点。 f (x) 是二次多项式,只能有两个零点,分别在区间
(1, 2)及(2, 3)内。
可导函数的两个零点之间必有其导数的零点。
9
3.将拉罗 格尔 朗日定(L理ag条 ran件 gfe(中 )a中)去 值f(定b掉 )理,得到
第一节 微分中值定理
微分中值定理的核心是拉格朗日(Lagrange) 中值定理,费马定理是它的预备定理,罗尔定理 是它的特例,柯西定理是它的推广。
1. 预备定理——费马(Fermat)定理
若函f数 (x)在(a,b)内一x0取 点得 最值 且f(x)在x点 0可 导 , f(x则 0)0.
费马(Fermat,1601-1665),法国人,与笛卡尔共 同创立解析几何。因提出费马大、小定理而著名于世。
1
2
y
几何解释:
曲线在最高点和最低点 显然有水平切线,其斜
率为 0,当切线沿曲线连 o
续滑动时,就必然经过 位于水平位置的那一点 .
yf(x)
1
2
x
3
证明: 只就f (x)在x0达到最大值证明。
由f于 (x)在 x0达到最大值x, 0所 x在 (以 a,b)内 只 , 要
就f有 (x0x)f(x0), 即 f(x 0 x ) f(x 0 ) 0 ,
从f(而 x 0 x )f(x 0)0 ,当 x0 时 ; x
f(x0 x)f(x0)0,当 x0时 ; x
这 f(x 样 0 0 ) lx 0 im f(x 0 x x ) f(x 0 ) 0 f(x 0 0 ) lx i0 m f(x 0 x x )f(x 0) 0 .

最新中值定理与导数的应用20728

最新中值定理与导数的应用20728

中值定理与导数的应用20728第三章中值定理与导数的应用§3. 1 中值定理一、罗尔定理费马引理设函数f(x)在点x0的某邻域U(x0)内有定义,并且在x0处可导,如果对任意x∈U(x0),有f(x)≤f(x0) (或f(x)≥f(x0)),那么f'(x0)=0.罗尔定理如果函数«Skip Record If...»满足:(1)在闭区间«Skip Record If...»上连续,(2)在开区间«Skip Record If...»内可导,(3)在区间端点处的函数值相等,即«Skip Record If...»,那么在«Skip Record If...»内至少在一点«Skip Record If...»,使得函数«Skip Record If...»在该点的导数等于零,即«Skip Record If...».例:设函数«Skip Record If...»在[0,1]上连续,在(0,1)上可导,«Skip Record If...»,证明:在(0,1)内存在«Skip Record If...»,使得«Skip RecordIf...».【分析】本题的难点是构造辅助函数,可如下分析:«Skip Record If...»【证明】令«Skip Record If...»,则«Skip Record If...»在[0,1]上连续,在(0,1)上可导,且«Skip Record If...»,«Skip Record If...»由罗尔中值定理知,存在«Skip Record If...»,使得«Skip Record If...».即«Skip Record If...»仅供学习与交流,如有侵权请联系网站删除谢谢17例:设函数f(x), g(x)在[a, b]上连续,在(a, b)内具有二阶导数且存在相等的最大值,f(a)=g(a), f(b)=g(b), 证明:存在«Skip Record If...»,使得«Skip Record If...»【分析】需要证明的结论与导数有关,自然联想到用微分中值定理,事实上,若令«Skip Record If...»,则问题转化为证明«Skip Record If...», 只需对«Skip Record If...»用罗尔定理,关键是找到«Skip Record If...»的端点函数值相等的区间(特别是两个一阶导数同时为零的点),而利用F(a)=F(b)=0, 若能再找一点«Skip Record If...»,使得«Skip Record If...»,则在区间«Skip Record If...»上两次利用罗尔定理有一阶导函数相等的两点,再对«Skip Record If...»用罗尔定理即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、凹凸的判定
y
y f (x )
A
B
y
y f ( x)
B
A
o
a
f ( x ) 递增
x b y 0
o
a
f ( x ) 递减
b x y 0
定理2 设 f ( x ) C I ,在 I 内部二阶可导,则 (1) 若 f ( x ) 0 , 则 f ( x ) 在 I 上是凹的; ( 2) 若 f ( x ) 0 , 则 f ( x ) 在 I 上是凸的 .
0.075 0.05 0.025
f ( x ) 1
4 1 ( 2 k ) 2
Hale Waihona Puke 0-0.1-0.05 -0.025 -0.05 -0.075
0.05
0
1 当 x 时, f ( x ) 1 0 2 k
21/21
o
o
13/21
易证
定理4(拐点的第一充分条件)
设 f ( x )在 x0 连续,在x0 的左右邻近内二阶可导 。
(1) 若在 x0 两近旁 f ( x ) 异号, 则 x0 为 f ( x ) 拐点 ;
( 2) 若在 x0 两近旁 f ( x ) 同号,则x0 不是 f ( x ) 拐点。
4.
二、三两步可借助于表格方式完成。
4/21
例1
确定 f ( x ) ( x 1) 3 x 2 的单调区间 .
解 D f ( ,).
5x 2 2 f ( x ) 的零点为 ,不存在的点为 。 0 3 5 3 x 将 f 的符号与 f 的单调性列表如下:
x f f
f ( x ) f ( x0 ) o(1 ) x x0 f ( x ) 在 x0 邻近 与 f ( x0 ) 同号 x x0 在 x0 的左右邻近 f ( x ) 异号
x0 为 f ( x ) 的拐点。证毕。
15/21
f ( x0 ) ( x x0 ) o( x x0 )
改变弯曲方向的点——拐点;
凹凸性及拐点可以由二阶导数的符号确定;
利用函数的凹凸性可以证明不等式.
19/21

• 习题3-4 3-(3) 4-(2)(3)

6 9-(3) 14
思考题
若 f (0) 0 ,是否能断定 f ( x ) 在原点的充分 小的邻域内单调递增?
20/21
解答:不能断定.
7/21
注 利用导数符号与单调性之间的关系可证明 一些不等式。 例4 当 x 0 时, 试证 x ln(1 x ) 成立 .
证 设 f ( x ) x ln(1 x ) ,
f ( x ) 在 [0, ) 上连续、 (0, ) 上可导且 在 x f ( x ) 0, 1 x 又 f ( x ) 在 [0, ) 上单调增; f (0) 0 , 当 x 0 时, f ( x ) x ln(1 x ) 0,
拐点只能是 f 的零点或 f 不存在的点。
12/21
*证: (用反证法)若f ( x0 ) 0, 则由
1 f ( x0 )( x x0 )2 o(( x x0 )2 ), 2 f ( x ) [ f ( x0 ) f ( x0 )( x x0 )] 1 f ( x0 ) o(1), 2 ( x x0 ) 2 f ( x ) f ( x0 ) f ( x0 )( x x0 )
f ( x )


5
5
5
0
拐点

不存在


f ( x)

非拐点
此函数在( , 1 / 5] 上是凸的、在 1 / 5, 0] 及 [ [0, ) 上是凹的,拐点为 1 / 5。曲线 y y( x )) (
问:此函数在 1 / 5, ) 上是凹的? [
17/21
( x ) 3 x 2 的零点为0 , 其余点处 f ( x ) 0 , f
f ( x )在 (, ) 上单调增。
6/21
例3

D f ( , 1) (1, ).
局部性
x 2 ( x 1) 确定 f ( x ) 的单调区间 . x 1
在 D 上 f ( x )
注:利用凹凸性也可以证明一些不等式。
例6 试证: x 0 、y 0 ,x y 及 1 , 对 有
1 x y (x y ) ( ) . 2 2 解 令 f ( t ) t , 则 f ( t ) ( 1)t 2 , 在 t 0 时有 f ( t ) 0 , 在 t 0 时 f 是凹的。
(-, 0) +
0 不存在 连续
(0, 2/5) -
2/5 0 连续
(2/5, +) +
2 2 f 在 ( , 0] 上单调增;在 [0, ]上单调减;在 , ) [ 5 5 上单调增。
5/21
例2
确定 f ( x ) x 3 的单调性 .
解 D f ( ,),
11/21
证明与第三节的例类似(略)。 3
注 若 f C I 、在 I 内部二 阶可导, 且除有 限个点处 f ( x ) 0 之外 ,恒有 f ( x ) 0 ,则 f 在 I 上?
f 在 I 上仍是凹的。
2、拐点的判定
定理 3 (拐点的必要条件) 如果 f ( x ) 在 x0 二阶可 导,则 x0 是拐点的必要条件是 f ( x0 ) 0 .
内部 可导. 那么 定理1 设 f 在区间 I 上连续,在 I 的 (1) 如果在 I 内部恒有 f 0 ,则 f 在 I 上单调增; ( 2) 如果在I 内部恒有 f 0 ,则 f 在 I 上单调减 .
2/21
证 x1、x2 I, 且 x1 x2, 在 [x1, x2] 上应用拉氏中值定理,得
即 x ln(1 x ). 证毕.
8/21
三、凹凸与拐点的定义
定义: 若曲线段向上(下)弯曲, 则称之为凹(凸)的。
y
C
B
A
o
x
y f ( x)
问题: 如何用准确的数学语言描述曲线的凹凸性?
y
y f ( x)
y
o
x1
x2 x
o
x1
x2
x
图形上任意弧段(的中点) 位于所张弦的下方。
图形上任意弧段(的中点) 位于所张弦的上方。
在某个U ( x0 )上,恒有 f ( x ) [ f ( x0 ) f ( x0 )( x x0 )] 0 (或 0),
即在某个 U ( x0 ) 上,恒有曲线y f ( x ) 在切线 y f ( x0 ) f ( x0 )( x x0 ) 的一侧,从而x0 不会是拐点。矛盾。证 毕。
对 x、y (0, ) 且 x y , 有 1 x y ( f ( x ) f ( y )) f ( ), 2 2 即所证不等式成立。 证毕。
18/21
六、小结
函数的单调性的可以由导数的符号确定;
利用函数的单调性可以确定某些方程实根的个数
和证明不等式;
曲线的弯曲方向——凹凸性;
9/21
x 定义 设 f ( x ) C I 。若 对 x1、 2 I , x1 x2 , x1 x2 f ( x1 ) f ( x2 ) 恒有 f( ) , 2 2 那 么 称 函 数 f ( x ) 在 I 上 是凹 的,同 时 称 曲 线 f ( x ) y 在 I 上 是凹 的 或凹 弧 ; ( )
个点处 f(x)=0之外,其余点处恒有f(x)>0”,会有什么结果?
3/21
二、单调性的判定步骤
1.
2.
在 f 的定义域上求 f 的零点及 f 不存在的点;
用 f 的零点及 f 不存在的点将 f 的定义区间划
分为子区间;
3.
根据 f 在各子区间内的符号及 f 在各子区间端
点处的连续性确定 f 的单调性。
1 2 x 2 x sin , x 0 x 例 f ( x) 0, x0 1 f (0) lim (1 2 x sin ) 1 0 x 0 x 1 1 但 f ( x ) 1 4 x sin 2 cos , x 0 x x 1 当 x 1 时, ( 2 k ) 2

*定理5(拐点的第二充分条件)
设f ( x0 ) 0 且f ( x0 ) 0 x0 为 f ( x ) 的拐点。
14/21
*定理5(拐点的第二充分条件)
设f ( x0 ) 0 且f ( x0 ) 0 x0 为 f ( x ) 的拐点。
*证 f ( x ) f ( x0 ) f ( x0 ) ( x x0 ) o( x x0 )
同样方式定义 凸函数 凸曲线 与 。
若 f ( x ) 在 x0连 续 , 在 x0的 两 侧 其 凹 凸 性 发 生 转 换 , 则 称x0为函 数 f ( x ) 的 拐 点, (x0 , f ( x0 ))为 曲 线 y f ( x )的 拐 点 。
拐点是函数的局部性质。
10/21
四、二阶导数符号与凹凸性
( x 2 ) 2 x ,
零点为0 。
将 f 的符号与 f 的单调性列表如下: x 0 (0, 1) (1, +) (-, 0)
f f
上单调增。
-
0 连续
+
+
f 在 ( , 0] 上单调减;在 1)上单调增;在 1, ) [0, (
问: 在 [0, )上单调增? f
相关文档
最新文档