五年级奥数寒假班第一讲

合集下载

五年级奥数寒假讲义

五年级奥数寒假讲义

第一讲多边形的面积(一)知识概述在数学课上我们已经掌握了几种基本图形的面积计算公式:正方形的面积=();长方形的面积=();平行四边形的面积=();三角形的面积=();梯形的面积=();由两个或多个简单的基本几何图形可以组合成一个组合图形,要计算一个组合图形的面积,就要根据图形的基本关系,运用分解、组合、平移、旋转、割补、加辅助线等几种方法来思考。

例题精学:第一课时例1、已知一个平行四边形的面积是28平方厘米,求阴影部分的面积。

同步精练1、下图的梯形中,阴影部分的面积是150平方厘米,求梯形的面积。

2、已知平行四边形的面积是48平方厘米,求阴影部分的面积。

3、如果用铁丝围成如下一样的平行四边形,需要用铁丝多少厘米?(单位:厘米)| 12|例2、下图中甲和乙都是正方形,求阴影部分的面积。

(单位:厘米)5cm4cm 15厘米25厘米5厘米6厘米96 6 4甲乙同步精练1、求右图中阴影部分的面积。

(单位:厘米)2、求右图中的阴影部分的面积。

(单位:厘米)3、如图所示,四边形ABCD 是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求小路的面积。

例题精学 第二课时:例3、如图所示,甲三角形的面积比乙三角形的面积大6平方厘米,求CE 的长度。

同步精练1、四边形ABCD 是一个长为10厘米,宽为6厘米的长方形,三角形ADE 的面积比三角形CEF 的面积大10平方厘米。

求CF 的长是多少厘米?4厘米3厘米DCAB8厘米5厘米甲A 乙 CB EDF4 厘米 4厘米FEADC B2、平行四边形ABCD 的边长BC=10厘米,直角三角形BCE 的直角边EC 长为8厘米,已知阴影部分三角形ABG 和三角形CDF 的面积和比三角形EFG 的面积大10平方厘米。

求CF 的长。

3、正方形ABCD 的边长是12厘米,已知DE 是EC 长度的2倍,求: (1)三角形DEF 的面积; (2)CF 的长。

例4、两条对角线把梯形ABCD 分割成四个三角形。

(完整版)小学五年级奥数第一讲__定义新运算及作业

(完整版)小学五年级奥数第一讲__定义新运算及作业

第一讲定义新运算一、a、b是自然数,规定a※b=(a+b)÷2,求:3※(4※6)的值。

二、对于任意两个自然数a、b,定义一种新运算“*”:a*b=ab+a÷b,求75*5=?,12*4=?三、定义运算符“◎”:a◎b=3a+4b-5,求6◎9=?9◎6=?四、定义两种运算“○+”和“○×”,对于任意两个整数a、b规定:a○+b=a+b-1,a○×b=a×b-1,那么8○× [(6○+10)○+(5○×3)]等于多少?五、定义运算“○+”=(a+b)÷3,那么(3○+6)○+12与3○+(6○+12)哪一个大?大的比小的大多少?六、a、b是自然数,规定a⊙b= ab-a-b-10,求8⊙8=?七、如果1*2=1+2,2*3=2+3+4,3*4=3+4+5+6,……,请按照此规则计算3*7=?八、规定运算a@b=(a+b)÷2,且3@(x@2)=2,求x=?九、规定a△b=ab+2a, a▽b=2b-a,求(8△3)▽(9△5)的值。

第二讲定义新运算作业十、定义新运算“*”:a*b=3a+4b-2,求(1)10*11;(2)11*10。

十一、定义新运算“△”:a△b= a÷b×3,求(1)24△6;(2)36△9。

十二、规定a○+b,表示自然数a到b的各个数之和,例如:3 ○+10=3+4+5+6+7+8+9+10=52,求1○+200的值。

十三、定义新运算“○×”,a○×b=10a+20b,求(3○×7)+(4○×8)。

十四、定义新运算“△”:a△b=6a+3b+7,那么5△6和6△5哪个大?大的比小的大多少?十五、规定a*b=(a+b)÷2,求[(1*9)*9]*3的值。

十六、规定a☆b=3a-2b,如果x☆(4☆1)=7,求x的值。

十七、规定X○+Y=(X+Y)÷4求:(1)2○+(3○+5),(2)如果X○+16=10,求X的值。

五年级寒假奥数培训教程

五年级寒假奥数培训教程

五年级寒假奥数培训教程新世纪奥数五年级寒假奥数五年级寒假奥数培训教程目录第一讲数图形第二讲平均数第三讲等差数列第四讲巧算(一)第五讲巧算(二)第六讲平面图形面积(一) 第七讲平面图形面积(二) 第八讲平面图形面积(三) 第九讲流水问题第十讲周期问题第十一讲加法原理第十二讲乘法原理第十三讲尾数和余数1新世纪奥数五年级寒假奥数第一讲数图形专题简析:我们在数数的时候,遵循不重复、不遗漏的原则,能使数出的结果准确。

但是在数图形的个数的时候,往往就不容易了。

分类数图形的方法能够帮助我们找到图形的规律,从而有秩序、有条理并且正确地数出图形的个数。

【例题1】下面图形中有多少个长方形,多少个正方形,【思路导航】图中的正方形的个数可以分类数,如由一个小正方形组成的有6×3=18个,2×2的正方形有5×2=10个,3×3的正方形有4×1=4个。

因此图中共有18,10,4=32个正方形。

练习一1、下图中共有多少个正方形,2、下图中共有多少个正方形,多少个三角形,2新世纪奥数五年级寒假奥数【例题2】下图中共有多少个三角形,【思路导航】为了保证不漏数又不重复,我们可以分类来数三角形,然后再把数出的各类三角形的个数相加。

(1)图中共有6个小三角形;(2)由两个小三角形组合的三角形有3个;(3)由三个小三角形组合的三角形有4个;(4)由六个小三角形组合的三角形有1个。

所以共有6,3,4,1=14个三角形。

练习二1、下面图中共有多少个三角形,2、数一数,图中共有多少个三角形。

3、数一数,图中共有多少个三角形,【例题3】数出下图中所有三角形的个数。

3新世纪奥数五年级寒假奥数【思路导航】和三角形AFG一样形状的三角形有5个;和三角形ABF一样形状的三角形有10个;和三角形ABG一样形状的三角形有5个;和三角形ABE一样形的三角形有5个;和三角形AMD一样形状的三角形有5个,共35个三角形。

五年级奥数寒假讲义

五年级奥数寒假讲义

第一讲多边形的面积(一)知识概述在数学课上我们已经掌握了几种基本图形的面积计算公式:正方形的面积=();长方形的面积=();平行四边形的面积=();三角形的面积=();梯形的面积=();由两个或多个简单的基本几何图形可以组合成一个组合图形,要计算一个组合图形的面积,就要根据图形的基本关系,运用分解、组合、平移、旋转、割补、加辅助线等几种方法来思考。

例题精学:第一课时例1、已知一个平行四边形的面积是28平方厘米,求阴影部分的面积。

同步精练1、下图的梯形中,阴影部分的面积是150平方厘米,求梯形的面积。

2、已知平行四边形的面积是48平方厘米,求阴影部分的面积。

3、如果用铁丝围成如下一样的平行四边形,需要用铁丝多少厘米?(单位:厘米)| 12|例2、下图中甲和乙都是正方形,求阴影部分的面积。

(单位:厘米)5cm4cm 15厘米25厘米5厘米6厘米96 6 4甲乙同步精练1、求右图中阴影部分的面积。

(单位:厘米)2、求右图中的阴影部分的面积。

(单位:厘米)3、如图所示,四边形ABCD 是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求小路的面积。

例题精学 第二课时:例3、如图所示,甲三角形的面积比乙三角形的面积大6平方厘米,求CE 的长度。

同步精练1、四边形ABCD 是一个长为10厘米,宽为6厘米的长方形,三角形ADE 的面积比三角形CEF 的面积大10平方厘米。

求CF 的长是多少厘米?4厘米3厘米DCAB8厘米5厘米甲A 乙 CB EDF4 厘米 4厘米FEADC B2、平行四边形ABCD 的边长BC=10厘米,直角三角形BCE 的直角边EC 长为8厘米,已知阴影部分三角形ABG 和三角形CDF 的面积和比三角形EFG 的面积大10平方厘米。

求CF 的长。

3、正方形ABCD 的边长是12厘米,已知DE 是EC 长度的2倍,求: (1)三角形DEF 的面积; (2)CF 的长。

例4、两条对角线把梯形ABCD 分割成四个三角形。

五年级奥数专题第一讲 尾数和余数

五年级奥数专题第一讲 尾数和余数

五年级奥数专题第一讲 尾数和余数【一】 写出除85后余1的数有哪些?练习1、写出除98余2的数有哪些?2、写出除105后余3的数有哪些?【二】 2×2×2×2×2×2×2×2积的尾数是几?练习1、5×5×5×5×5×5×5积的尾数是几?2、16×16×16×16×16×16积的尾数是几?【三】 写出除214后余4的全部两位数。

练习1、写出除111后余6的全部两位数。

2、180除以一个两位数后余数是5,适合条件的两位数有哪些?【四】 ”个“125100125125125125⨯⨯⨯⨯积的尾数是几?练习1、)个()()262110026212621()2621(⨯⨯⨯⨯⨯⨯⨯积的尾数是几?2、”个“45044444⨯⨯⨯⨯的积的个位数字是几?【五】”个“41004444÷6当商是整数时,余数是几?练习1、”个“5200855555÷13当商是整数时,余数是几?2、当商是整数时,余数是几?(1) ”个“6506666÷4 (2)”个“8808888÷7(3) ”个“410004444÷74 (4)”个“110001111÷5【六】 有一列数,前两个数是3与4,从第3个数开始,每一个数都是前两个数的和。

这一串数中第2000个数除以4,余数是多少?练习1、有一串数排成一行,其中第一个数是3,第二个数是10,从第三个数起,每个数恰好是前两个数的和。

在这一串数中,第2006个数被3除,所得的余数是几?2、一列数1、2、4、7、11、16、22、29……这一列数的规律是第二个数比第一个数多1;第三个数比第二个数多2;第四个数比第三个数多3,依次类推。

这列数左起第1000个数被5除余数是几?【七】 甲数除以11余9,乙数除以11余7。

五年级寒假奥数培训班教案(优生堂14讲)

五年级寒假奥数培训班教案(优生堂14讲)

五年级寒假奥数培训目录第1讲行程问题(一)第2讲行程问题(二)第3讲行程问题(三)第4讲行程问题(四)能力测试(一)第5讲平均数问题(一)第6讲平均数问题(二)第7讲长方体和正方体(一)第8讲长方体和正方体(二)第9讲数的整除特征第10讲奇偶性问题第11讲最大公约数和最小公倍数第12讲分解质因数(一)第13讲分解质因数(二)第14讲牛顿问题能力测试(二)第1讲行程问题(一)讨论有关物体运动的速度、时间、路程三者关系的应用题叫做行程应用题。

行程问题的主要数量关系是:路程=速度×时间如果用字母s表示路程,t表示时间,v表示速度,那么,上面的数量关系可用字母公式样表示为:s=vt。

行程问题内容丰富多彩、千变万化。

主要有一个物体的运动和两个或几物体的运动两大类。

两个或几个物体的运动又可以分为相遇问题、追及问题两类。

这一讲我们学习一个物体运动的问题的一些简单的相遇问题。

例题与方法例1.小明上学时坐车,回家时步行,在路上一共用了90分。

如果他往返都坐车,全部行程需30分。

如果他往返都步行,需多少分?例2.甲、乙两城相距280千米,一辆汽车原定用8小时从甲城开到乙城。

汽车行驶了一半路程,在中途停留30分。

如果汽车要按原定时间到达乙城,那么,在行驶后半段路程时,应比原来的时速加快多少?例3.一列火车于下午1时30分从甲站开出,每小时行60千米。

1小时后,另一列火车以同样的速度从乙站开出,当天下午6时两车相员。

甲、乙两站相距多少千米?例4.苏步青教授是我国著名的数学家。

一次出国访问,他在电车上碰到了一位外国数学家,这位外国数学家出了一道题目让苏步青做,题目是:甲、乙两人同时从两地出发,相向而行,距离是100千米。

甲每小时行6千米,乙每小时行4千米。

甲带着一只狗,狗每小时行10千米。

这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。

这只狗一共走了多少千米?苏步青略加思索,就把正确答案告诉了这位外国数学家。

五年级奥数第一讲——质数、合数和分解质因数(学生用)

五年级奥数第一讲——质数、合数和分解质因数(学生用)

远辉教育奥数班第一讲——质数、合数和分解质因数主讲人:杨老师学生:五年级电话:62379828一、基本概念和知识:1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

一个数除了1和它本身,还有别的约数,这个数叫做合数。

要特别记住:1不是质数,也不是合数。

2.质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例:把30分解质因数。

解:30=2×3×5。

其中2、3、5叫做30的质因数。

又如12=2×2×3=22×3,2、3都叫做12的质因数。

二、典例剖析:例1 三个连续自然数的乘积是210,求这三个数.例2 两个质数的和是40,求这两个质数的乘积的最大值是多少?例3 自然数123456789是质数,还是合数?为什么?例4 连续九个自然数中至多有几个质数?为什么?例5 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。

例6 有三个自然数,最大的比最小的大6,另一个是它们的平均数,且三数的乘积是42560.求这三个自然数。

例7 有3个自然数a、b、c.已知a×b=6,b×c=15,a×c=10.求a×b×c是多少?在例7中有a2=22,b2=32,c2=52,其中22=4,32=9,52=25,像4、9、25这样的数,推及一般情况,我们把一个自然数平方所得到的数叫做完全平方数或叫做平方数。

如.12=1,22=4,32=9,42=16,...,112=121,122=144,...其中1,4,9,16, (121)144,…都叫做完全平方数.下面让我们观察一下,把一个完全平方数分解质因数后,各质因数的指数有什么特征。

例如:把下列各完全平方数分解质因数:9,36,144,1600,275625。

五年级奥数第一讲:因数与倍数

五年级奥数第一讲:因数与倍数

五年级奥数第一讲:因数与倍数知识点拨1、因数和倍数:如果a×b=c(a,b,c都是不为零的整数),那么a,b就是c的因数,c就是a,b的倍数。

例如6×2=12,所以6和2是12的因数,12是6和2的倍数。

如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。

例如10能被5整除,那么10就是5的倍数,5就是10的因数。

2、一个数的因数的求法:(1)列乘法算式找(2)列除法算式找一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。

例如:15的因数有哪些?方法一:1×15=15,3×5=15(一般从自然数1开始,一对一对的找)方法二:15÷1=15,15÷3=5(计算时从除数1开始找,直到重复为止)所以15的因数就是1,3, 5, 15。

最大的因数就是15,也就是它本身!最小的是1。

3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法是依次乘以自然数。

例如:3的倍数 3 6 9 12 15 。

...。

.。

3是3最小的倍数,也就是它本身倍数特征:最小的倍数是本身,没有最大的倍数如果两个数都是一个数的倍数,那么这两个数的和、差、积也是这个数的倍数.4、2、5、3的倍数的特征:①个位上是0、2、4、6、8的数,都是2的倍数。

②个位上是0或5的数,是5的倍数.③一个数各个数位上的数字之和是3的倍数,这个数就是3的倍数。

5、常见数字的整除判定方法:(1)2:个位是偶数的自然数(2)5:个位是0或5的自然数注:若一个数同时是2和5的倍数,则此数的个位一定为0(3)4、25:末两位能被4、25整除(4)8、125:末三位能被8、125整除(5)3、9:各个数位上的数之和能被3、9整除(6)7、11、13通用性质:①一个数如果是1001的倍数,即能被7、11、13整除。

如201201=201×1001,则其必能被7、11、13整除②从末三位开始三位一段,奇数段之和与偶数段之和的差如果是7、11、13的倍数,则其为7、11、13的倍数③末三位一段,前后均为一段,用较大的减去较小的,如果差为7、11、13的倍数,则其为7、11、13的倍数(7)11:奇数位数字之和与偶数位数字之和的差能被11整除(8)99:两位一段(从右往左),各段的和能被99整除(9)999:三位一段(从右往左),各段的和能被999整除6、在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

五年级奥数教程 第一讲 定义新运算

五年级奥数教程 第一讲  定义新运算

第一讲 定义新运算在加.减.乘.除四则运算之外,还有其它许多种法则的运算。

在这一讲里,我们学习的新运算就是用“ #”“*”“Δ”等多种符号按照一定的关系“临时”规定的一种运算法则进行的运算。

例1:如果A*B=3A+2B ,那么7*5的值是多少?例2:如果A#B 表示3B A + 照这样的规定,6#(8#5)的结果是多少?例3:规定Y X XY Y X +=∆ 求2Δ10Δ10的值。

例4:设M*N 表示M 的3倍减去N 的2倍,即M*N=3M-2N(1) 计算(14 *10)*6(2) 计算 (58*43) *(1 *21)例5:如果任何数A 和B 有A ¤B=A ×B-(A+B )求(1)10¤7(2)(5¤3)¤4(3)假设2¤X=1求X例6:设P ∞Q=5P+4Q ,当X ∞9=91时,1/5∞(X ∞ 1/4)的值是多少?例7:规定X*Y=XY Y AX +,且5*6=6*5则(3*2)*(1*10)的值是多少?例8:▽表示一种运算符号,它的意义是))((A Y A X XY Y X +++=∇11 已知3211212112=+++=∇))((A 那么20088▽2009=?巩固练习1、已知2▽3=2+22+222=246; 3▽4=3+33+333+3333=3702;按此规则类推(1) 3▽2 (2)5▽3(3)1▽X=123,求X 的值2、已知1△4=1×2×3×4;5△3=5×6×7计算(1)(4△2)+(5△3) (2)(3△5)÷(4△4)3、如果A*B=3A+2B,那么(1)7*5的值是多少?(2)(4*5)*6 (3)(1*5)*(2*4)4、如果A>B,那么{A,B}=A;如果A<B,那么{A,B}=B;试求(1){8,0.8}(2){{1.9,1.901}1.19}5、N为自然数,规定F(N)=3N-2 例如F(4)=3×4-2=10试求:F(1)+F(2)+F(3)+F(4)+F(5)+……+F(100)的值6、如果1=1!1×2=2!1×2×3=3!……1×2×3×4×……×100=100!那么1!+2!+3!+……+100!的个位数字是几?(第四届小学生“迎春杯”数学决赛试题)7、若“+、-、×、÷、=、()”的意义是通常情况,而式子中的“5”却相当于“4”。

五年级奥数专题第一讲组合图形面积(一)

五年级奥数专题第一讲组合图形面积(一)

五年级奥数专题第一讲组合图形面积(一)【一】用一块长8分米,宽4分米的长方形纸板与两块边长为4分米的正方形纸板拼成一个正方形。

拼成的正方形的面积是多少?练习1、把一个长10厘米、宽5厘米的长方形,分成两个大小一样的正方形。

每个正方形的面积是多少?2、用一个长8厘米,宽4厘米的长方形与7个边长为4厘米的正方形,拼成一个大正方形。

拼成的大正方形的面积是多少?【二】一个等腰直角三角线,最长的边20厘米,这个三角形的面积是多少平方厘米?练习1、求四边形ABCD的面积。

(单位:厘米)2、已知正方形ABCD的边长是8厘米,求正方形EFGH的面积。

【三】下图正方形中套着一个长方形,正方形的边长是15厘米,长方形边长的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的一段的2倍。

求中间长方形的面积。

练习:1、如下图,已知大正方形的边长是14厘米, 2、下图长方形ABCD的面积是20平方厘米,求中间最小正方形的面积。

E、F都是所在边的中点。

求AEF 的面积。

【四】图中的甲和乙都是正方形,求阴影部分的面积。

(单位:厘米)练习:1、计算下面图形的面积。

(单位:厘米)2、求图中阴影部分的面积。

(单位:厘米)【五】下图中正方形的边长为10厘米,CE为25厘米,梯形BCDF的面积是多少平方厘米?练习1、如图,正方形ABCD中AB=6厘米,EC=15厘米,求阴影部分的面积。

2、在一个直角三角线铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(提示:连接DB)单位:厘米。

【六】图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。

练习1、如图,平行四边形BCEF中,BC=10厘米,直角三角形中,AC=8厘米,阴影部分面积比三角形ADH的面积大8平方厘米。

求AH长多少厘米?2、下图中三个正方形的边长分别是2厘米、4厘米和6厘米。

求图中阴影部分的面积。

五年级寒假班第一课

五年级寒假班第一课

专题一:小数乘除法的计算(一)小数乘法旧知识回顾:①多位数乘法:②积的变化规律:新知识衔接:1.小数×整数:先不看小数点,看做整数×整数的计算,计算得结果后,是几位小数就从右数出几位点上小数点。

小数部分末尾有0时,如果没有特殊要求,要将小数部分末尾的0去掉。

例1:列竖式计算3.24×65=210.63 . 2 4× 6 51 62 01 9 4 42 1 0 . 6 0 练习:6.35×13= 7.92×34= 76×5.2=2.小数×小数:先将两个因数都看做整数进行计算,得到结果后,数一数两因数的小数位数和,再从结果右侧数出相应位数,点上小数点。

例2:有一块长方形的草地,它的长是3.6米,宽是2.8米,请问它的面积是多少?求这块地的面积,就按照公式S=ab列式计算,计算中要按照因数与积的变化规律进行。

解释:3.6×2.8=10.08(平方米)3. 6× 2. 82 8 87 21 0 . 0 8答:这块草地的面积是10.08平方米。

练习: 3.54×6.23= 2.9×0.92= 7.25×8.4小结:小数乘法中,无论是整数乘小数还是小数乘小数,在计算时,通通看作整数乘法去计算,得到结果后,再根据原因数的小数位数和,确定结果的小数点位置。

3. 乘法运算律及应用①乘法交换律:a·b=b·a 例:7.5×2.5=2.5×7.5②乘法结合律:(a·b)·c=a·(b·c)例:2.5×79×4=79×(2.5×4)③乘法分配率:a·(b+c)=a·b+a·c例:7.5×(10+100)=7.5×10+7.5×100=75+750=825例:4.2×7.3+4.2×2.7=4.2×(7.3+2.7)=4.2×10=424.小数连乘、乘加、乘减:普通方法:根据四则运算法则,进行分步脱式计算。

五年级奥数培训第一讲

五年级奥数培训第一讲

五年级奥数培训第一讲:消去问题(一)在有些应用题里,给出了两个或者两个以上的未知数量间的关系,要求出这些未知数的数量。

我们在解题时,可以通过比较条件,分析对应的未知数量变化的情况,想办法消去其中的一个未知量,从而把一道数量关系较复杂的题目变成比较简单的题目解答出来。

这样的解题方法,我们通常把它叫做“消去法”。

一、典型例题与方法例1 学校第一次买了3个水瓶和20个茶杯,共用去134元;第二次又买了同样的3个水瓶和16个差杯,共用去118元。

水瓶和茶杯的单价各是多少元?例2 买3个篮球和5个足球共、用去480元,买同样的6个篮球和3个足球共用去519元。

篮球和足球的单价各是多少元?举一反三1、 1袋黄豆和1袋绿豆共重50千克,同样的7袋黄豆和7袋绿豆共重()千克。

2、买5条毛巾和5条枕巾共用去90元,买1条毛巾和1条枕巾要()元。

3、买4本字典和4本笔记本共、用去了68元,买同样的9本字典和9本笔记本一共要()元。

4、9筐苹果和9筐梨共重495千克,找这样计算,2筐苹果和2筐梨共重()千克。

5、妈妈买了5米画布和3米白布,一共用去102元。

花布每米15元,白布每米多少元?6、果园里有14行桃树和20行梨树,桃树和梨树一共有440棵。

每行梨树15棵,每行桃树多少棵?8、食堂第一次运来6袋大米和4袋面粉,一共重400千克;第二次又运来9袋大米和4袋面粉,一共重550千克。

每袋大米和每袋面粉各重多少千克?9、3豹味精和7包糖共重3800克,同样的3包味精和14包糖共重7300克。

每包味精和每包糖各重多少克?10、育新小学买了8个足球和12个篮球,一共用去了984元;青山小学买了同样的16个足球和10个篮球,一共用去1240元。

每个足球和每个篮球各多少元?11、买15张桌子和25把椅子共用去3050元;买同样的 5张桌子和20张椅子,需要1600元。

买一张桌子和一把椅子需要多少元?12、3头牛和6只羊一天共吃草93千克,6头牛和5只羊一天共吃草130千克。

五年级奥数第一讲讲义和答案

五年级奥数第一讲讲义和答案

第一讲一、复习巩固二、例题讲解例1、某学校原来参加室外活动的人数比室内活动的人数多480人,现在把室内活动的50人改为室外活动,这样室外活动的人数正好是室内活动人数的5倍,参加室内、室外活动的一共有多少人?例2、用144分米长的铁丝围成一个长方体框架(如图:11-2).一只蚂蚁从顶点A出发,沿棱爬行,经顶点B、C,到达D.已知蚂蚁每分钟爬行6分米,经BC比AB多用1分钟,经CD比BC少用2分钟。

这个长方体框架的长、宽、高各是多少分米?例3、我国古代有许多有趣的数学问题,著名的鸡兔同笼问题就是其中的一个.“鸡兔同笼,共有头100个,足316只,求鸡兔各有多少只?”例4、实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?例5、有一个牧场,草量匀速生长,已知养牛27头,6天把草吃净,养牛23头,9天把草吃净。

如果养牛21头,那么几天能把草吃净呢?例6、由于天气变冷,牧场上的草每天以均匀的速度减少,经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天,那么,可供11头牛吃几天?三、自我总结四、课后作业练习1、王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍.桔子每人分3个,多4个;苹果每人分7个,少5个.问有多少个小朋友?多少个苹果和桔子?练习2、已知祖孙三人,祖父和父亲年龄的差与父亲和孙子年龄的差相同,祖父和孙子年龄之和为82岁,明年祖父年龄恰好等于孙子年龄的5倍,求祖孙三人各多少岁。

练习3、现准备将一池塘水全部抽干,但同时有水匀速流入池塘,若用8台抽水机10天可以抽干,用6台抽水机20天能抽干。

问若要5天抽干水,需要多少台同样的抽水机来抽水?练习4、一片草地每天长得草一样多,现有牛、羊、鹅各一只,且羊和鹅吃草的总量正好是牛吃草的总量,如果草地放牛和羊,可以吃45天;如果放牛和鹅,可以吃60天;如果放羊和鹅,可以吃90天,这片草地放牛、羊、鹅,可以供它们吃多少天?练习5、一河流北面有一块牧场2000平方米,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者27头牛吃8天,在该河流南面有一块牧场6000平方米,可供多少头牛吃6天?练习6、甲对乙说:当我的岁数是你现在的岁数的时候,你才5岁。

五年级奥数能力提升寒假讲义

五年级奥数能力提升寒假讲义

第一节定义新运算【知识要点】说起运算,同学们马上就会想到我们课堂上学过的加、减、乘、除四则运算,并且还能熟练地说出这些运算的一些运算性质和运算定律。

当然,对于什么样的问题该用加法或减法、乘法还是除法计算更是烂熟于胸。

其实,在加、减、乘、除四则运算之外,还有其他多种法则的运算。

我们这一讲里将要学习的“新运算”,就是用*、△、☆、⊙等多种符号,按照一定的关系,临时规定的一种新的运算程序(新运算)。

学习“定义新运算”,关键是要深刻理解运算符号的新规定,严格按照规定的法则运算,最后达到解决问题的目的。

【典型例题】例1 设a,b都表示数,规定是a△b表示a的3倍减去b的2倍,a△b=a×3-b×2。

试计算:5△6;(7△6)△4的值。

例2 有两个数是A 、B ,A △B 表A 与B 的平均数。

、(1)已知A △6=17,求A 。

(2)如果已知4△B=2,求B 。

例3 规定△=x+,那么3△4= 。

例4 如果2*3=2+3+4,5*4=5+6+7+8,按此规律计算:3*5;5*3x y 32y x yx ⨯+【小试锋芒】1.设a,b都表示数,规定a△b=6×a-2×b。

试计算3△42.设a,b都表示数,规定a△b=3×a+2×b 试计算:(5△6)△7;5△(6△7)3. 规定:6*2=6+66=72,2*3=2+22+222=246,1*4=1+11+111+1111=1234。

求:7*54.如果2*4=24÷(2+4),按此规律计算3*6;6*3;历届竞赛中的定义新运算:1.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是?(第一届小学“希望杯”全国数学邀请赛五年级 第1试)2.规定:A*B=3A+2B,如4*5=3×4+2×5,那么,B*A=________。

(第四届小学“希望杯”全国数学邀请赛五年级 第1试)3.“△”是一种新运算,规定:a△b=a×c+b×d(其中c,d为常数),如5△7=5×c+7×d。

五年级奥数寒假班.docx

五年级奥数寒假班.docx

致同学们亲爱的同学们,为了激发大家拓展思维的兴趣,探索自然世界之谜,我们爱因斯培训学校的老师们愿意艰辛工作,努力钻研,与同学们一起总金思维拓展,开始我们预约的探究之旅。

思维拓展旨在开启你的智力,培养你对学习的情感,教会你更多解决为题的技巧,拓展你的思路,锻炼你的思维能力。

本册思维训练我们会逐步接触到统筹规划、质数与合数、长方体和正方体、整数的拆分等生活中常见的问题,也许许多为升入新的新的学年提前接触的只是,使同学们真正体味“纸上读来终觉浅,心中悟出方知深”的真谛,是每位同学从“学会”转化为“会学”,爱想象、爱思考、爱神奇奥妙的自然世界。

思维训练就是帮助同学们锁定差距、缩小差距、消灭差距,实现我们的无差距,逐步走向奇妙的新顶点。

在探究的旅途中标有★的问题在难度上略有延伸和提高,供学习有余力的同学选用。

由于我们的时间紧、任务重,书中难免存在不足之处,敬请同学和家长批评指正。

爱因斯培训学校小本教材编导组2013年春五年级寒假班目录第一讲组合图形的面积 (03)第二讲分数的意义和性质 (08)第三讲分数比较大小 (11)第四讲分数加减 (14)第五讲相遇问题 (17)第六讲鸡兔同笼问题 (20)第七讲解方程 (23)第八讲列方程解应用题 (26)第九讲加法原理和乘法原理 (29)第十讲年龄问题 (32)第十一讲期末试卷第十二讲评讲试卷第一讲组合图形的面积【专题解析】我们已经学过长方形、止方形、三角形、平行四边形、梯形的面积计算方法,对于一些变化了的图形或组合图形就要总和运用各种面积计算公式了。

要正确计算组合图形的面积,必须做到:1、灵活运用各种图形面积的计算公式;2、仔细观察,认真思考;3、合理运用分解法、割补法、大面积减小面积等方法。

同学们要注意在学习时不断总结解题的方法哦!【探索发现】1、下图是一个平行四边形和一个长方形组成的图形,求阴影部分的面积。

AB =8cm, BC = 4cm, DG = 3cm。

小学奥数五年级经典讲义之第一讲直线型面积的计算

小学奥数五年级经典讲义之第一讲直线型面积的计算

第一讲 直线型面积的计算内容概述前三讲我们将针对几何部分进一步学习提高!首先,让我们一起来回顾一些基本知识!我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。

我们的面积及周长都有相应的公式直接计算。

如下表:对于不规则图形的面积及周长计算,我们大都是由规则图形转化而来的!在实际问题的研究中,我们还会常常用到以下结论:① 等底等高的两个三角形面积相等.②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;③夹在一组平行线之间的等积变形,如下图,ACD ∆和BCD ∆夹在一组平行线之间,且有公共底边CD 那么BCD ACD S S ∆∆=;反之,如果BCD ACD S S ∆∆=则可知直线AB 平行于CD 。

这节课我们将通过例题学习到几个很重要的定理结论!同学们注意做好笔记啊!例题精讲【例1】你有多少种方法将任意一个三角形分成(1)2个面积相等的三角形;(2)3个面积相等的三角形;(3)4个面积相等的三角形。

分析:(1)如右图,D、E、F分别是对应边上的中点,这样就将三角形分成了2个面积相等的三角形;(2)如右图,D、E是BC的三等分点,F、G分别是对应线段的中点;答案不唯一;(3)如下图,答案不唯一,以下仅供参考;前四种答案学生都容易得到,在这里我们需要特别说明的是第五个答案,请看例2 。

【例2】在学习三角形时,很多同学都听说过中位线,所谓中位线就是三角形两边中点的连线。

如右图所示,D、E、F分别是AB、AC、BC边的中点,根据定义可知DE、DF、EF就是三角形ABC的中线。

那么请你说明:(1)DE与BC平行(2)DE= 1/2 BC(3)S△ADE= 1/4 S△ABC分析:(1)在解答一些几何问题时,我们常常需要添加一些辅助线帮助我们分析解决。

如右图(1),连接DC、BE。

因为D、E分别是AB、AC的中点,所以S△BDC=1/2 S△ABC= S△BEC,又因为△BDC与△BEC同用BC做底,根据“内容概述”部分常用结论③可得:DE与BC平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 分数的意义和性质
【分数】
分数实属在证书基础上的扩展,是在实际生产和生活中产生的。

例如:把一个蛋糕平均分给3个小朋友,每个人分得的蛋糕数不能用整数来表示,这是就需要一种新的数-----分数来表示,这就产生了分数。

【分数的意义】 把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。

【分数单位】 把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。

【分数各部分的名称】在分数里,中间的横线叫做分数线;分数线下面的数叫做分母,表示把单位“1”分成多少份;分数线上面的数叫做分子,表示有这样的多少份。

例如: 1 ······分子 (表示有这样的多少份) ···分数线 3 ······分母 (表示把单位“1”分成多少份)
【单位“1”】在这部分知识里,单位“1”是非常重要的概念,正确理解单位“1”是正确理解分数的前提。

一个物体或是有许多无题组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

【分数的分类】真分数:分子小于分母的分数 如:31
真分数小于1
假分数:分子大于分母的分数 如:23
假分数大于1
带分数:一个整数加一个分数 如:411=1+41
例1:分数和小数互化
(1)=21 (2)=41 (3)=101
(4)=501
(5)=2
11 (6)522= (7)=1012 (8)=420
例2:分数加减法 (1)=+2121 (2)=+4241 (3)
=+21101 (4)=+2
3511
(5)=41
-43 (6)=151-1510 (7)=32-311 (8)=31-21
例3:分数的比较
(1)75 72 (2)31 21 (3)23 10099
(4)62 53
例4:做同一种零件,王师傅1小时做10个,李师傅1小时做15个。

谁做得快一些?
例5:做同一种零件,小明两小时做15个,小花3小时做20个。

谁做得快一些?
例6:小红和小明读一本故事书,小红3天读了19页,小明5天读了36页。

小红和小明谁读得快些?
例7:一个带分数,它的分数部分的分子是3,把它化成假分数后分子是28,这个带分数可能是多少?
例8:用1、2、3、4、5、6、7、8、9九个数字,写出三个大小相等的数。

(每个数只能使用一次)。

相关文档
最新文档