2017年安徽省滁州市中考数学一模试卷
2017年数学中考模拟试题(含答案)
AB2017年安徽省中考数学模拟试题一、选择题(本题共12小题,共36分.在每个小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记0分.) 1.下列运算正确的是( ).A .a b a b 11+-=+-B .()2222b ab a b a ++=-- C .12316+=+a a D .()222-=- 2.某地区水能资源丰富,理论蕴藏量达221.21万千瓦,己开发156万千瓦,把己开发水能资源用四舍五入法保留两个有效数字并且用科学计数法表示应记为( )千瓦.A.51016⨯ B.6106.1⨯ C.610160⨯ D.71016.0⨯ 3.如图在数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( ).A .0>b a + B .0>ab C .0>b a - D .0>b a -4.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( ). A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠55.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,她在灯光照射下的影长l 与行走的路程s 之间的变化关系用图象刻画出来,大致图象是( ).6.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的BC横坐标逐渐增大时,OAB △的面积将会( ). A .逐渐增大 B .不变C .逐渐减小D .先增大后减小7.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论一定正确的个数有①CE =DE ;②BE =OE ;③C B ⌒=BD ⌒;④∠CAB =∠DAB ;⑤AC =AD ( ).A .4个B .3个C .2个D .1个 8.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为( ). A .18%)201(400160=++x x B .18%)201(160400160=+-+x x C .18%20160400160=-+x x D .18%)201(160400400=+-+xx 9.2010年因干旱影响,凉山州政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是( ). A .中位数是6 B .平均数是5.8 C .众数是6 D .极差是410.如图,在△ABC 中,AB =AC =10,CB =16, 分别以AB 、AC 为直径作半圆,则图中阴影部 分面积是( ).A .4850-πB .4825-πC .2450-πD .24225-πCEBAFD 第11题图11.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④ 四边形CDFE 的面积保持不变;⑤△CDE 面积 的最大值为8.其中正确的结论是( ). A .①②③ B .①④⑤ C .①③④D .③④⑤12.已知二次函数2y ax bx c =++(a ≠0)的图象如图所 示,则下列结论:① ac >0; ② a –b +c <0; ③当 x <0时,y <0;④方程20ax bx c ++=(a ≠0)有两个大于-1的实数根.其中错误的结论有( ).A .②③B .②④C .①③D .①④二、填空题(本大题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.分解因式:x 2-2xy +y 2-9= . 14.若关于x 的分式方程311x a x x--=-无解,则a = . 15.如图,ABC △的顶点坐标分别为(36)(13)A B ,,,,(42)C ,.若将ABC △绕C 点顺时针旋转90,得到A B C '''△,则点A 的对应点A '的坐标为 .16.若关于x 、y 的二元一次方程组⎩⎨⎧=++=+3313y x ay x的解满足2<y x +,则a 的取值范围是 .17.函数()()1240y x x y x x==>≥0,的图象如图所示,则结论:①两函数图象的交点A 的坐标为()22,;②当2x >时,• •第12题x4 21y y >;③当1x =时,3BC =;④当x逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号 是 .三、解答题(本大题共7小题,共69分.解答应写出必要的文字说明、证明过程或演算步骤.)18.(本题满分8分)如图,一个被等分成4个扇形的圆形转盘,其中3个扇形分别标有数字2,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).(1)求当转动这个转盘,转盘自由停止后,指针指向没有标数字的扇形的概率; (2)请在4,7,8,9这4个数字中选出一个数字填写在没有标数字的扇形内,使得分别转动转盘2次,转盘自由停止后指针所指扇形的数字和分别为奇数与为偶数的概率相等,并说明理由.19.(本题满分9分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)20.(本题满分9分)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤11).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.21.(本题满分10分)如图,已知在梯形ABCD 中,AD ∥BC ,AB =CD ,E 、F 分别是AB 和BC 的边上的点.(1)如图①,以EF 为对称轴翻折梯形ABCD ,使点B 与点D 重合,且DF ⊥BC .若AD =4,BC =8,求梯形ABCD 的面积ABCD S 梯形的值.(2)如图②,连接EF 并延长与DC 的延长线交于点G ,如果EF k FG ∙=(k为正数),试猜想BE 与CG 有何数量关系?写出你的结论并证明之.22.(本题满分10分)某县响应“建设环保节约型社会”的号召,决定资助部分乡镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A 型、B 型沼气池共政府相关部门批给该村沼气池修建用地708m .设修建A 型沼气池x 个,修建两种型号沼气池共需费用y 万元. (1)求y 与x 之间的函数关系式;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.AB E DF C ① AB E DG C ②F23.(本题满分11分)如图,已知在Rt ABC △中,90C ∠= ,点O 在AB 上,以O为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠. (1)判断直线BD 与O 圆的位置关系,并证明你的结论; (2)若:8:5AD AO =,2BC =,求BD 的长.24.(本题满分12分)如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.xA2017年安徽省中考数学模拟试题参考答案一、选择题(本题共12小题,共36分.在每个小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记0分.)二、填空题(本大题共5小题,共15分.只要求填写最后结果,每小题填对得3分.)13.)3)(3(+---y x y x 14.21-==a a 或15.(8,3) 16. a <4 17.①③④ 三、解答题(本大题共7小题,共69分.解答应写出必要的文字说明、证明过程或演算步骤.)18. 解答:解:(1)∵没有标数字扇形的面积为整个圆盘面积的41,∴指针指向没有标数字扇形的概率为p=41.(3分)(2)填入的数字为9时,两数和分别为奇数与为偶数的概率相等.理由如下:设填入的数字为x ,则有下表: 和 x 2 5 6x 2x (偶) 2+x 5+x 6+x 2 2+x 偶 奇 偶 5 5+x 奇 偶 奇 6 6+x 偶 奇 偶从上表可看出,为使和分别为奇数与偶数的概率相等,则x 应满足2+x ,5+x ,6+x 三个数中有2个是奇数,一个是偶数.将所给的数字代入验算知,x=9满足条件.∴填入的数字为9.(8分) (注:本题答案不惟一,填入数字7也满足条件;只填数字不说理由的不给分.) 19.(1)如图,作AD ⊥BC 于点D …………………1分Rt △ABD 中,AD =AB sin 45°=22224=⨯……2分 在Rt △ACD 中,∵∠ACD =30°∴AC =2AD =24≈6.5…………………3分 即新传送带AC 的长度约为6.5米.……4分 (2)结论:货物MNQP 应挪走.……………5分 解:在Rt △ABD 中,BD =ABcos 45=22224=⨯……………………6分 在Rt △ACD 中,CD =AC cos30°=622324=⨯∴CB =CD —BD =)26(22262-=-≈2.1∵PC =PB —CB ≈4—2.1=1.9<2∴货物MNQP 应挪走. ……………………………9分 20.解⑴①10+7x ②12+6x ……………………………….2分 ⑵y =(12+6x )-(10+7x )y =2-x ………………………………………………….5分 ⑶∵w =2(1+x )(2-x )=-2x 2+2x +4 ∴w =-2(x -0.5)2+4.5 ∵-2<0,0<x ≤11, ∴w 有最大值,∴当x =0.5时,w 最大=4.5(万元).答:当x 为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.…..9分21. 解:(1)如图,连接AC 交BD 于点O ,作DP ∥AC 交BC 的延长线于点P.∵AD ∥BP ,AC ∥DP∴四边形ACPD 是平行四边形∴AC=DP ,∠BOC=∠BDP=90°,AD=CP=4 ∵AB=DC ∴AC=BD ∴BD=DP∴DF=21BP=21(BC+CP)=6 ∴DF BP S BPD ∙=21三角形=36………………5分(2)KCG BE 1=……………………………..6分 过点E 作EQ ∥DG ,交BC 于点Q , ∴△EQF ∽△GCF∴KFG EF CG EQ 1==…….8分 ∵AB=CD, ∴∠B=∠DCB ∵EQ ∥DG ∴∠EQB=∠DCB ∴∠EQB=∠B ∴EQ=BE ∴KCG BE 1=……………………10分 22. 解:(1)40)20(23+=-+=x x x y ………………………3分(2)由题意可得⎩⎨⎧≤-+≥-+②②②①①708)20(648264)20(320x x x x 解得:12≤x ≤14 ∵x 是正整数∴x 的取值为12、13、14即有3种修建方案:①A 型12个,B 型8个;②A 型13个,B 型7个;③A 型14个,B 型6个;……………………………………………………………7分(3)∵y=x+40,y 随x 的增加而增加,要使费用最少,则x=12 ∴最少费用为y=x+40=52(万元)村民每户集资700元与政府补助共计700×264+340000=524800>520000 ∴每户集资700元能满足所需要费用最少的修建方案………………………10分23.解 ⑴ 直线BD 与O 相切.1分证明:如图1,连结OD . OA OD = , A ADO ∴∠=∠.90C ∠= , 90CBD CDB ∴∠+∠= . 又CBD A ∠=∠ ,90ADO CDB ∴∠+∠= . 90ODB ∴∠= .∴直线BD 与O 相切.…………………….5分 ⑵ 如图,连结DE .AA BED FC①A B EDGC ②F P QOx (第24题)AE 是O 的直径, 90ADE ∴∠= .:8:5AD AO = , 4cos 5AD A AE ∴==.………………………7分 90C ∠= ,CBD A ∠=∠,4cos 5BC CBD BD ∴∠==.……………………..9分 2BC = , 52BD ∴=.………………11分 24.(1)解:设抛物线为2(4)1y a x =--. ∵抛物线经过点A (0,3),∴23(04)1a =--.∴14a =∴抛物线为2211(4)12344y x x x =--=-+. …3 (2) 答:l 与⊙C 相交. …………………………4分 证明:当21(4)104x --=时,12x =,26x =.∴B 为(2,0),C 为(6,0).∴AB =设⊙C 与BD 相切于点E ,连接CE ,则90BEC AOB ∠=︒=∠.∵90ABD ∠=︒,∴90CBE ABO ∠=︒-∠.又∵90BAO ABO ∠=︒-∠,∴BAO CBE ∠=∠.∴AOB ∆∽BEC ∆. ∴CE BC OB AB =.∴2CE =.∴2CE =>.…………………………7 ∵抛物线的对称轴l 为4x =,∴C 点到l 的距离为2.∴抛物线的对称轴l 与⊙C 相交. (8)(3) 解:如图,过点P 作平行于y 轴的直线交AC 于点Q .可求出AC 的解析式为132y x =-+ (10)设P 点的坐标为(m ,21234m m -+),则Q 点的坐标为(m ,132m -+). ∴2211133(23)2442PQ m m m m m =-+--+=-+. ∵22113327()6(3)24244PAC PAQ PCQ S S S m m m ∆∆∆=+=⨯-+⨯=--+, ∴当3m =时,PAC ∆的面积最大为274. 此时,P 点的坐标为(3,34-). (12)。
滁州市明光市2017年九年级中考一模数学卷
第4题图 滁州市明光市2017年九年级中考一模数学试卷(本试卷共8大题,计23小题,满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)B.3C.D.3-2.由若干个相同的小立方体搭成的几何体的三视图如图所示,则组成该几何体的小立方体有:A.3块B.4块C.5块D.6块3.合肥高铁南站已于2014年11月12日正式开通,它拥有22个站台、26条股道、站房建筑总面积达9.92万平方米,是上海铁路局下辖的特等车站.把9.92万用科学记数法表示为:A.99200B.299210⨯ C.69.9210⨯ D.49.9210⨯ 4.如图,已知直线AB ∥CD ,∠BEG 的平分线EF 交CD 于点F ,若∠1=42°,则∠2等于: A.159° B.148° C.142° D.138°5.下列计算中,正确的是: A.224235a a a += B.222()a b a b -=- C.336()a a =D.23(2)a -=68a -6.方程0)3(2=+x x 的根的情况是:A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根 7.数据3,5,1,7的平均数和方差分别是:A.5,2B. 3,5C.4,20D.4,58.化简221121a a a a a --÷++的结果是:A.12B.1a a + C.1a a + D.12a a ++ 9.如图,正方形O ABC 的一个顶点O 是平面直角坐标系的原点,顶点A ,C 在y 轴和x 轴上, P 为边O C 上的一个动点,且PQ ⊥BP , PQ=BP ,当点P C 运动到点O 时,可知点Q A.线段 B.圆弧 C.双曲线的一部分 D.抛物线的一部分第9题图第2题图 主视图 左视图俯视图10.如图,正方形ABCD 的对角线BD 长为22,若直线满足:(1)点D 到 直线的距离为1;(2)A 、C 两点到直线的距离相等,则符合题意 的直线的条数为:A.2B.3C.4D.6二、填空题(本大题共4小题,每小题5分,满分20分) 11.如图,直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于 点A 、B 、C 、D 、E 、F ,若AB=6,DE=3,EF=4,则BC= .12.有两个不透明的袋子,一个袋子中装有两个球(黑球、白球各一个),另一个袋子中装有3个球(白球,黑球,红球各一个),这些球除颜色外没有其它不同之处. 现从两个袋子中分别随机摸出1个球,则摸出的两个球颜色相同的概率是 .13.一次函数y kx b =+(k 、b 为常数,且k ≠0)的图象如图所示.根据图象信息可求得关于x的方程3kx b +=-的解为.14.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论:①240b ac ->;②42a c b +>;③22()a c b +>;④()x ax b a b +≤-.其中正确结论的是 . (请把正确结论的序号都填在横线上)三、(本大题共2小题,每小题8分,满分16分)15.解不等式 3(1)64x x +-≤,并把解集在数轴上表示出来.16.现有一组有规律排列的数:1、- 11、- 11、-1.问:(1)第50个数是什么数?(2)把从第1个数开始的前2015个数相加,结果是多少? (3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?第13题图第10题图 a bc A D B E CF m n第11题图 第14题图第15题图四、(本大题共2小题,每小题8分,满分16分) 17.如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A 1B 1C 1及△A 2B 2C 2;(1)若点A 、C 的坐标分别为(-3,0)、(-2,3),请画出平面直角坐标系并指出点B 的坐标;(2)画出△ABC 关于y 轴对称再向上平移1个单位后的图形△A 1B 1C 1;(3)以图中的点D 为位似中心,将△A 1B 1C 1作位似变换且把边长放大到原来的两倍,得到△A 2B 2C 2. 18.“大湖名城·创新高地·中国合肥”,为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动? 五、(本大题共2小题,每小题10分,满分20分)19.某中学为了了解本校八年级女生“一分钟跳绳”项目基础情况,从八年级随机抽取部分女生进行该项目测试,并将测试所得的数据,绘制成如图所示的部分频数分布直方图(从左到右依次分为第一小组,第二小组…第六小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图.(2)计算在扇形统计图中第一小组对应的扇形的圆心角度数. (3)这次测试成绩的中位数落在第 小组.(4)若测试八年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校八年级女生共有400人,请估算该校八年级女生“一分钟跳绳”成绩为优秀的人数.第17第19题图20.近年来,有私家车的业主越来越多,某小区为解决“停车难”问题,拟建造一个地下停车库,如图是该地下停车库坡道入口的设计示意图,其中水平线AB=10m ,BD ⊥AB ,∠BAD=20o,点C 在BD 上,BC=1m .根据规定,地下停车库坡道入口上方要张贴限高标志,以提醒驾驶员所驾车辆能否安全驶入.李建认为CD 的长度就是限制的高度,而孙杰认为应该以CE 的长度作为限制的高度.李建和孙杰谁说的对?请你判断并计算出限制高度.(结果精确到0.1m ,参考数据:o sin 20≈0.34,ocos 20≈0.94,otan 20≈0.36)六、(本题满分12分)21.已知,如图,直线MN 交⊙O 于A,B 两点,AC 是⊙O 的直径,DE 切⊙O 于点D ,且DE ⊥MN 于点E.(1)求证:AD 平分∠CAM.(2)若DE=6,AE=3,求⊙O 的半径.七、(本题满分12分) 22.如图,直线l 过点 A (a, 0)和点B (0, b )(其中a >0, b >0).反比例函数(0)y k x=> 的图象与直线l 交于C 、D 两点,连接OC 、OD . (1)若a +b =10,△AOB 的面积为S ,问:当b 为何值时,S 取最大值?并求出这个最大值; (2)当S 取最大值时,若C ,D 恰好是线段AB 的三等分点,求k 的值.八、(本题满分14分)23.四边形ABCD 为菱形,点P 为对角线BD 上的一个动点.(1)如图1,连接AP 并延长交BC 的延长线于点E ,连接 PC ,求证: ∠AEB=∠PCD. (2)如图1,当PA=PD 且PC⊥BE 时,求∠ABC 的度数. (3)连接AP 并延长交射线..BC 于点E ,连接 PC ,若∠ABC =90°且ΔPCE 是等腰三角形,求∠PEC 的度数.第22题图AAAy滁州市明光市2017年九年级中考一模数学试卷参考答案一、选择题(本大题共10小题,每小题4分,满分40分)二、填空题(本大题共4小题,每小题5分,满分20分)134x =-三、(本大题共2小题,每小题8分,满分16分)15.解:3364x x +-≤……………………………………2分 3x -≤……………………………………………4分3x≥-……………………………………………6分 不等式解集在数轴上表示为:……………………………8分16.解:(1)∵50682÷= ∴第50个数是-1. …………………………………2分(2)∵2015÷6=335 (5),(1(1)+-+= ∴从第1个数开始的前2015…………………………………5分 (3)∵((2222221(1)12+-++++=,……………………6分52012434÷= 且()222114+-+=∴ 43×6+3=261,即共有261个数的平方相加.…………………………8分四、(本大题共2小题,每小题8分,满分16分) 17.解:(1)坐标系如图所示,B (-4,2);…………………………………………2分 (2)、(3)的图形如图所示,每个图形3分. …………………………………………8分条形码粘贴处18.30人.………1分设九(1)班共有x 人去旅游,则人均费用为 [100﹣2(x ﹣30)]元,由题意得: x[100﹣2(x ﹣30)]=3150 ……………………4分整理得x 2﹣80x+1575=0,解得x 1=35,x 2=45……………………6分 当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.…7分 答:该班共有35名同学参加了研学旅游活动.…………8分 五、(本大题共2小题,每小题10分,满分20分) 19.(1)补全频数分布直方图;(没有标出数字12,扣1分) ………………………2分 (2)1020%50÷=00436028.850⨯=………………………4分(3) 三 ………………………6分(4)解:随机抽取的样本中不低于130次的有21人,………………………7分则总体400人中优秀的有2140050⨯=168(人)………………………………9分 答:有168人成绩优秀…………………………………………………………………10分 20.解:孙杰说的对. ………………………………1分在△ABD 中,∠ABD=90,∠BAD=20,AB=10∴tan ∠BAD =BDAB∴BD =10×tan 20≈10×0.36=3.6(m )……………………4分 ∴CD =BD ―BC ≈3.6-1=2.6(m )…………………………5分在△ABD 中,∠CDE=90―∠BAD =70.又∵CE ⊥ED ,∴∠DCE=90-70=20…………………………………6分 ∴cos ∠DCE =CDCE∴CE =CD ×cos ∠DCE ≈2.6×o cos 20≈2.6×0.94≈2.4(m )………9分 答:地下停车库坡道入口限制高度约为2.4m …………………………10分(用70o的三角函数求解,对照给分) 六、(本题满分12分) 21.解:(1)连接OD ,∵DE 与⊙O 相切于D ∴O D ⊥DE 又∵DE ⊥MN ∴O D ∥MN ……………………2分 ∴∠ODA=∠DAE.又∵OD=OA ∴∠ODA=∠OAD.∴∠OAD=∠DAE.………………4分 ∴AD 平分∠CAM.………………5分(2)∵DE=6,AE=3∴=7分∵AC 是⊙O 的直径 ∴∠ADC=90°∴∠ADC=∠DEA 又∵∠OAD=∠DAE.∴△ADE ∽△ACD …………10分∴AD AEAC AD=22153AD AC AE ===∴⊙O 的半径为7.5…………………12分 七、(本题满分12分)22.解:(1)根据题意,得:OA =a ,OB =b ,∴S =21ab , ……………………1分 又由a +b =10,得 a =10-b ,得:S =21b (10-b )=-21b 2+5b =-21(b -5)2+225 ………………4分 ∵ -021<, ∴ S 有最大值,当b =5时,S 取得最大值225.…………5分(2)设直线l 的解析式为y mx n =+,因为直线l 过点A(5,0),B (0,5)∴505m n n +=⎧⎨=⎩,解得:15m n =-⎧⎨=⎩∴直线l 的函数关系式为5y x =-+.…………………………7分 过点C 作x 轴的垂线,垂足为F ,当C ,D 是线段AB 的三等分点时,△AOC 、△COD 、△BOD 的面积都相等,有S △AOC =31S △AOB ,即21OA ×CF =31×21OA ×OB ,∴CF =53 即C 点的纵坐标为53……………………10分将y=53代入5y x =-+,得103x =.即点C 的坐标为105(,)33……………11分∵点C 在反比例函数ky x=的图象上∴10550×339k ==……………………12分八、(本题满分14分)23.(1)证明:∵四边形ABCD 是菱形,∴∠PDA=∠PDC , AD=CD AD ∥BC 又∵PD=PD,。
安徽省2017届中考数学一模试卷(解析版)
2017年安徽省中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣D.2.二次函数y=x2﹣2x的顶点为()A.(1,1)B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)3.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.14.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A. B.C.D.5.从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝大于﹣2的概率是()A.B.C.D.6.某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米B.米C.2米D.米7.已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3 B.k<3 C.k≤3且k≠2 D.k<28.如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A.2 B.3 C.4 D.59.如图,在扇形AOB 中,∠AOB=90°,=,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,则阴影部分的面积为( )A .2π﹣4B .4π﹣8C .2π﹣8D .4π﹣410.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是( )A .abc <0B .a ﹣b +c <0C .b 2﹣4ac >0D .3a +c >0二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)二次函数y=x 2+1的最小值是 .12.(5分)如图,点A 、B 、C 在⊙O 上,∠A=36°,则∠O= .13.(5分)如图,△ABC 与△A ′B ′C ′都是等腰三角形,且AB=AC=5,A ′B ′=A ′C ′=3,若∠B +∠B ′=90°,则△ABC 与△A ′B ′C ′的面积比为 .14.(5分)如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后,折痕DE 分别交AB ,AC 于点E 、G ,连接GF ,有下列结论:①∠AGD=112.5°;②tan ∠AED=+1;③四边形AEFG 是菱形;④S △ACD =S △OCD .其中正确结论的序号是 .(把所有正确结论的序号都填在横线上)三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:2cos60°﹣|﹣4sin45°|16.(8分)如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.18.(8分)某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)20.(10分)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.六、解答题(本题满分12分)21.(12分)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.七、解答题(本题满分12分)22.(12分)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.八、解答题(本题满分14分)23.(14分)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B 的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.2017年安徽省滁州市全椒县中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣D.【考点】反比例函数图象上点的坐标特征.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(2,﹣1)代入解析式得﹣1=,解得k=﹣2.故选A.【点评】此题主要考查了反比例函数图象上点的坐标特征.把已知点的坐标代入可求出k值,即得到反比例函数的解析式.2.二次函数y=x2﹣2x的顶点为()A.(1,1)B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)【考点】二次函数的性质.【分析】把二次函数化成顶点式,可得出二次函数的顶点坐标.【解答】解:∵y=x2﹣2x=(x﹣1)2﹣1,∴其顶点坐标为(1,﹣1),故选D.【点评】本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式y=a(x﹣h)2+k的顶点坐标为(h,k)是解题的关键.3.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.1【考点】特殊角的三角函数值.【分析】根据AB=2BC直接求sinB的值即可.【解答】解:∵Rt△ABC中,∠C=90°,AB=2BC,∴sinA===;∴∠A=30°∴∠B=60°∴sinB=故选C.【点评】本题考查了锐角三角函数的定义,解决本题时,直接利用正弦的定义求解即可.4.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看是一个实线的同心圆,故选:C.【点评】本题考查了简单组合体的三视图,俯视图是从上边看得到的图形.5.从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝大于﹣2的概率是()A.B.C.D.【考点】概率公式.【分析】根据概率公式可得答案.【解答】解:∵﹣3,﹣2,﹣1,1,2,3的六张卡片中,大于﹣2的有﹣1,1,2,3这4张,∴所抽卡片上的数大于﹣2的概率是=,故选:D.【点评】本题主要考查概率公式,掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数是解题的关键.6.某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米B.米C.2米D.米【考点】解直角三角形的应用﹣坡度坡角问题.【分析】由坡度定义可得位置升高的高度即为坡角所对的直角边.根据题意可得tan∠A=,AB=10m,可解出直角边BC,即得到位置升高的高度.【解答】解:由题意得,BC:AC=1:2.∴BC:AB=1:.∵AB=6m,∴BC=m.故选B.【点评】本题主要考查坡度的定义和解直角三角形的应用,注意画出示意图会使问题具体化.7.已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3 B.k<3 C.k≤3且k≠2 D.k<2【考点】抛物线与x轴的交点.【分析】根据二次函数图象与x轴有交点可得出关于x的一元二次方程有解,根据根的判别式结合二次项系数非零即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,∴一元二次方程(k﹣2)x2+2x+1=0有解,∴,解得:k≤3且k≠2.故选:C.【点评】本题考查了抛物线与x轴的交点、根的判别式以及解一元一次不等式组,根据根的判别式△≥0结合二次项系数非零找出关于k的一元一次不等式组是解题的关键.8.如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A.2 B.3 C.4 D.5【考点】相似三角形的判定与性质;矩形的性质.【分析】根据勾股定理求出BD,得到DE的长,根据相似三角形的性质得到比例式,代入计算即可求出DF的长,求出CF的长度.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,又AB=CD=6,BC=AD=8,∴BD==10,∵BE=6,∴DE=10﹣6=4,∵AB∥CD,∴=,即=,解得,DF=4,则CF=CD﹣DF=6﹣4=2,故选:A.【点评】本题考查的是矩形的性质、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.9.如图,在扇形AOB中,∠AOB=90°,=,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣4【考点】扇形面积的计算;正方形的性质.【分析】连接OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣△ODC的面积,依此列式计算即可求解.【解答】解:连接OC,如图所示:∵在扇形AOB中∠AOB=90°,=,∴∠COD=45°,∴OD=CD,∴OC==4,∴阴影部分的面积=扇形BOC的面积﹣△ODC的面积=﹣×(2)2=2π﹣4.故选:A.【点评】此题考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是()A.abc<0 B.a﹣b+c<0 C.b2﹣4ac>0 D.3a+c>0【考点】二次函数图象与系数的关系.【分析】A.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,由a与0的关系并结合抛物线的对称轴判断b与0的关系,即可得出abc与0的关系;B.由二次函数的图象可知当x=﹣1时y<0,据此分析即可;C.利用抛物线与x轴的交点的个数进行分析即可;D.由对称轴x=﹣=1,可得b=﹣2a,又由B知a﹣b+c<0,可得3a+c<0,可判断.【解答】解:A、由抛物线开口向下,可得a<0,由抛物线与y轴的交点在x轴的上方,可得c>0,由抛物线的对称轴为x=1,可得﹣>0,则b>0,∴abc<0,故A正确,不符合题意;B.当x=﹣1时,y<0,则a﹣b+c<0,故B正确,不符合题意;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故C正确,不符合题意;D.∵对称轴x=﹣=1,∴b=﹣2a,∵a﹣b+c<0,∴3a+c<0,故D错误,符合题意;故选D.【点评】本题考查了二次函数图象与系数的关系.关键是熟记二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.二、填空题(本大题共4小题,每小题5分,满分20分)11.二次函数y=x2+1的最小值是1.【考点】二次函数的最值.【分析】根据二次函数解析式得特点可知,当x=0时取得最小值1.【解答】解:由二次函数y=x2+1得到:该抛物线的开口方向向上,且顶点坐标是(0,1).所以二次函数y=x2+1的最小值是1.故答案是:1.【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.12.如图,点A、B、C在⊙O上,∠A=36°,则∠O=72°.【考点】圆周角定理.【分析】根据同弧所对的圆心角是圆周角的2倍得出结论.【解答】解:由图形得:∠O=2∠A=2×36°=72°;故答案为:72°,【点评】本题考查了圆周角与圆心角的关系,属于基础题,比较简单,明确在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.13.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为25:9.【考点】解直角三角形;等腰三角形的性质.【分析】先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,然后根据三角形面积公式即可得到结论.【解答】解:过A作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,∵∠B+∠B′=90°,∴sinB=cosB′,sinB′=cosB,∵S△BAC=AD•BC=AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC :S△A′B′C′=25:9,故答案为:25:9.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和三角形面积公式.14.如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD 落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论:①∠AGD=112.5°;②tan∠AED=+1;③四边形AEFG是菱形;④S△ACD=S△OCD.其中正确结论的序号是①②③.(把所有正确结论的序号都填在横线上)【考点】翻折变换(折叠问题);菱形的性质;解直角三角形.【分析】根据翻转变换的性质、正方形的性质进行计算,判断即可.【解答】解:∵四边形ABCD是正方形,∴∠ADB=45°,由折叠的性质可知,∠ADE=∠BDE=22.5°,∴∠AGD=180°﹣90°﹣22.5°=112.5°,①正确;设AE=x,∵△BEF是等腰直角三角形,∴BE=EF=AE=x,∴x+x=1,解得,x=﹣1,∴tan∠AED==+1,②正确;由同位角相等可知,GF∥AB,EF∥AC,∴四边形AEFG是平行四边形,由折叠的性质可知,EA=EF,∴四边形AEFG是菱形,③正确;=2S△OCD,④错误,由正方形的性质可知,S△ACD故答案为:①②③.【点评】本题考查的是翻转变换的性质、菱形的性质、解直角三角形的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15.计算:2cos60°﹣|﹣4sin45°|【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简即可得到结果.【解答】解:原式=2×﹣=1﹣.【点评】此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A 按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.【考点】轨迹;等腰三角形的性质;旋转的性质.【分析】由△ABD绕点A按逆时针方向旋转,AB与AC重合知旋转角为45°,根据弧长公式可得答案.【解答】解:∵△ABD绕点A按逆时针方向旋转,AB与AC重合,∴旋转角为45°,∴的长为=π.【点评】本题主要考查旋转的性质、弧长公式,熟练掌握旋转的性质得出旋转角度数是解题的关键.四、解答题(本大题共2小题,每小题8分,满分16分)17.如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.【考点】垂径定理;勾股定理.【分析】作OH⊥AB于H,根据垂径定理得AH=BH=AB=,再在Rt△BOH中,根据勾股定理得OH=1,由AC=AB得AC=,则CH=AH﹣AC=,然后根据勾股定理可计算出OC的长.【解答】解:作OH⊥AB于H,如图,∵OH⊥AB,∴AH=BH,∴AH=BH=AB=×2=,在Rt△BOH中,OB=2,BH=,∴OH==1,∵AC=AB=×2=,∴CH=AH﹣AC=﹣=,在Rt△OHC中,OC==.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.18.某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.【考点】列表法与树状图法.【分析】(1)由已确定A打第一场,再从其余三队中随机选取一队,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中B、C两队进行比赛的情况,再利用概率公式即可求得答案.【解答】解:(1)∵已确定A打第一场,再从其余三队中随机选取一队,∴恰好选中D队的概率;(2)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴P(B、C两队进行比赛)==.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)(2017•全椒县一模)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)【考点】解直角三角形的应用.【分析】延长BA,CD交于点P,解直角三角形得到AP=PD•cos30°和BC的长,通过△PAD∽△PCB,得出=,代入数据即可得到结论.【解答】解:如图,延长BA,CD交于点P,∵∠PAD=∠PCB=90°,∠ADC=120°,∴∠P=30°,∵AD=3,∴PD=6,AP=PD•cos30°=3,BC=(18﹣2)÷2+2=10.∵∠P=∠P,∠PAD=∠PCB=90°,∴△PAD∽△PCB,∴=,∴PC==10m,∴CD=PC﹣PD=10﹣6≈11.32m.则应设计11.32m高的灯柱,才能取得最理想的照明效果.【点评】本题考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念,正确的作出辅助线构造相似三角形是解题的关键.20.(10分)(2017•全椒县一模)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.【考点】待定系数法求反比例函数解析式;菱形的性质;坐标与图形变化﹣平移;解直角三角形.【分析】(1)根据菱形性质得出AC⊥OB,OD=BD,AD=CD,解直角三角形即可得出答案;(2)设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),得出k=2(6﹣x)=6(4﹣x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.【解答】解:(1)连接AC,交y轴于D,∵四边形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD,∵OB=4,tan∠BOC=.∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2);(2)B、C落在反比例函数的图象上,设菱形平移后B的坐标是(x,4),C的坐标是(1+x,2),∵B、C落在反比例函数的图象上,∴k=4x=2(1+x),解得x=1,即菱形平移后B的坐标是(1,4),代入反比例函数的解析式得:k=1×4=4,即B、C落在反比例函数的图象上,菱形的平移距离是1,反比例函数的解析式是y=.【点评】本题考查了矩形性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.六、解答题(本题满分12分)21.(12分)(2017•全椒县一模)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M 于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.【考点】切线的判定;坐标与图形性质.【分析】(1)由点A的坐标可知OA的长度,根据∠ABO的度数可知,AB的长度为4,利用勾股定理即可求出OB的长度,从而求出B的坐标.(2)连接OC、MC、证明∠OCB为直角,根据D为OB的中点,可知∠DCO=∠DOC,易知∠OCM=∠COM,所以∠MCO+∠DCO=∠MCD=90°,即可求证MC⊥CD.【解答】解:(1)∵A的坐标为(0,2)∴OA=2,∵∠ABO=30°,∠AOB=90°,∴AB=2OA=4,∴由勾股定理可知:OB=2,∴B(2,0)(2)连接OC,MC∵OA是⊙M的直径,∴∠ACO=90°,∴∠OCB=90°,在Rt△OCB中,D为OB的中点,∴CD=OB=OD,∴∠DCO=∠DOC,∵MC=MO,∴∠OCM=∠COM∵∠MOC+∠DOC=∠AOB=90°,∴∠MCO+∠DCO=∠MCD=90°即MC⊥CD∴直线CD是⊙M的切线.【点评】本题考查切线的判定,解题的关键是连接MC、OC、根据直角三角形斜边上中线的性质,圆周角定理,等腰三角形的性质求出MC⊥CD,本题属于中等题型.七、解答题(本题满分12分)22.(12分)(2017•全椒县一模)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.【考点】二次函数综合题.【分析】(1)由条件可先求得抛物线解析式,则可求得B点坐标,再利用待定系数法可求得直线AB解析式;(2)由条件可知P、E的横坐标相同,又点E在抛物线上,则可表示出E点坐标;(3)由(2)可用x表示出PE的长,则可用x表示出△ABE的面积,再利用二次函数的性质可求得其最大值.【解答】解:(1)∵抛物线顶点坐标为(1,﹣2),∴可设抛物线解析式为y=a(x﹣1)2﹣2,∵OA=3,且点A在x轴的正半轴上,∴A(3,0),∴0=a(3﹣1)2﹣2,解得a=,∴抛物线解析式为y=(x﹣1)2﹣2=x2﹣x﹣,当x=0时可得y=﹣,∴B(0,﹣),设直线AB解析式为y=kx+b,把A、B坐标代入可得,解得,∴y=x﹣;(2)∵点P为线段AB上的一个动点,且PE⊥x轴,∴点E的横坐标为x,∵点E在抛物线上,∴E点的坐标为(x, x2﹣x﹣);(3)∵点P为线段AB上的一点,∴P(x, x﹣),则E(x, x2﹣x﹣),∴PE=x﹣﹣(x2﹣x﹣)=﹣x2+x,由(2)可知点B到PE的距离x,点A以PE的距离为3﹣x,=PE•x+PE•(3﹣x)=PE•(x+3﹣x)=PE=(﹣x2+x)=﹣x2+x=﹣(x﹣∴S△ABE)2+,∵﹣<0,∴当x=时,S有最大值,最大值为,△ABE∴△ABE面积的最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积及方程思想等知识.在(1)中求得B点坐标是解题的关键,在(2)中注意E点横坐标与P点横坐标相同是解题的关键,在(3)中用P点坐标表示出△ABE的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.八、解答题(本题满分14分)23.(14分)(2017•全椒县一模)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC 绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是矩形,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)根据有一个角是直角的平行四边形进行判断当α=90°时,就是长与宽的比;(2)①利用相似三角形求得CP的比,就可求得BP,PQ的值;②根据勾股定理求得PB′的长,再根据三角形的面积公式进行计算.(3)构造全等三角形和直角三角形,运用勾股定理求得PC的长,进一步求得坐标【解答】解:(1)图1,四边形OA′B′C′的形状是矩形;∵点A的坐标为(﹣8,0),点B(﹣8,6),∴AB∥OC,∵BC∥x轴,∴四边形OABC是平行四边形.又OC⊥OA,∴平行四边形OABC的形状是矩形;当α=90°时,P与C重合,如图1,BP=8,BQ=BP+OC=8+6=14,∴,即是矩形的长与宽的比,则.故答案为矩形,;(2)①图2,∵∠POC=∠B′OA′,∠PCO=∠OA′B′=90°,∴△COP∽△A′OB′.∴,即,∴CP=,BP=BC﹣CP=.同理△B′CQ∽△B′C′O,∴,∴∴CQ=3,BQ=BC+CQ=11.∴,∴;②图3,在△OCP和△B′A′P中,,∴△OCP≌△B′A′P(AAS).∴OP=B′P.设B′P=x,在Rt△OCP中,(8﹣x)2+62=x2,解得x=.=××6=.∴S△OPB′(3)存在这样的点P和点Q,使BP=BQ.点P的坐标是P1(﹣9﹣,6),P2(﹣,6).理由:过点Q作QH⊥OA′于H,连接OQ,则QH=OC′=OC,∵S △POQ =PQ •OC ,S △POQ =OP •QH ,∴PQ=OP .设BP=x ,∵BP=BQ ,∴BQ=2x ,如图4,当点P 在点B 左侧时,OP=PQ=BQ +BP=3x ,在Rt △PCO 中,(8+x )2+62=(3x )2,解得x 1=1+,x 2=1﹣(不符实际,舍去). ∴PC=BC +BP=9+,∴P (﹣9﹣,6).如图5,当点P 在点B 右侧时,∴OP=PQ=BQ ﹣BP=x ,PC=8﹣x .在Rt △PCO 中,(8﹣x )2+62=x 2,解得x=.∴PC=BC ﹣BP=8﹣=, ∴P (﹣,6),综上可知,存在点P (﹣9﹣,6)或(﹣,6),使BP=BQ .。
安徽省2017年初中数学中考模拟试卷及答案
2017年安徽省初中毕业学业考试模拟试卷数 学一、选择题(本大题共10小题,每小题4分,满分40分)1.下列各数中,最小的数是 ( ) A.0.5B.0C.12- D.-1 2.下列各式计算正确的是( ) A.235325a a a += B.22(2)4a a -=- C.22(3)9a a =D.33a a a ÷=3.如图,直线c 与直线a ,b 相交,且a ∥b ,有下列结论:(1)12∠=∠;(2)13∠=∠;(3)32∠=∠.其中正确的个数为 ( )A.0B.1C.2D.34.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为 ( ) A.0.83510⨯B.3.7510⨯C.3.6510⨯D.3.9510⨯5.下图是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是 ( )6.一个不等式组的解集在数轴上表示如图,则这个不等式组可能是 ( )A.12x x ≥-⎧⎨<⎩B.12x x ≤-⎧⎨>⎩C.12x x <-⎧⎨≥⎩D.12x x >-⎧⎨≤⎩7.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).随机在大正方形及其内部区域投针,若针扎到小正方形(阴影部分)的概率是19,则大、小两个正方形的边长之比是 ( )∶∶1 ∶1D.22∶18.A ,B 两地相距10千米,甲、乙二人同时从A 地出发去B 地,甲的速度是乙的速度的2倍,结果甲比乙早到13x 千米/时,则可列方程为 ( ) A.1010123x x -= B. 1010123x x -= C. 101123x x += D. 1011032x x+=9.如图,EF 是圆O 的直径,OE =5 cm,弦MN =8 cm,则E ,F 两点到直线MN 的距离之和等于 ( )A.12 cmB.6 cmC.8 cmD.3 cm10.如图,点P 是等边△ABC 的边上的一个做匀速运动的动点,其由点A 开始沿AB 边运动到点B ,再沿BC 边运动到点C 为止,设运动时间为t ,△ACP 的面积为S ,则S 与t 的大致图象是 ( )二、填空题(本大题共4小题,每小题5分,满分20分) 11.分解因式:210m m -= .y =kx +2中,若y 随x 的增大而增大,则它的图象不经过第 象限. OABC 有两边在坐标轴的正半轴上,如图所示,双曲线6y x=与边AB ,BC 分别交于D ,E 两点,OE 交双曲线2y x=于点G ,若DG ∥OA ,OA =3,则CE 的长为 .第13题图 第14题图14.如图,正方形纸片ABCD 的边长为3,点E ,F 分别在边BC ,CD 上,将AB ,AD 分别沿AE ,AF 折叠,点B ,D 恰好都落在点GBE =1,则EF 的长为 .三、(本大题共2小题,每小题8分,满分16分)15.计算:2019(34)2cos 452-⎛⎫-+-- ⎪⎝⎭.16.先化简后求值:当21x =-时,求代数式221121111x x x x x -+-•+-+的值.四、(本大题共2小题,每小题8分,满分16分)17.如图,在97⨯的小正方形网格中,△ABC 的顶点A ,B ,C △ABC 向左平移3个单位、再向上平移3个单位得到△A ′B ′C ′.将△ABC 按一定规律顺次旋转,第1次,将△ABC 绕点B 顺时针旋转90得到△11A BC ;第2次,将△11A BC 绕点1A 顺时针旋转90得到△112A B C ;第3次,将△112A B C 绕点2C 顺时针旋转90得到△222A B C ;第4次,将△222A B C 绕点2B 顺时针旋转90得到△323A B C ,依次旋转下去.(1)在网格中画出△A ′B ′C ′和△222A B C ;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A ′B ′C ′.18.同学们,我们曾经研究过n n ⨯的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+...+n 2.但n 为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道: 011223⨯+⨯+⨯+ (1)(1)(1)(1)3n n n n n +-⨯=+-时,我们可以这样做: (1)观察并猜想:2212(10)1(11)2101212(12)(0112)+=+⨯++⨯=+⨯++⨯=++⨯+⨯; 222123++(10)1(11)2(12)3=+⨯++⨯++⨯=101212323+⨯++⨯++⨯ =(123)(011223)+++⨯+⨯+⨯;22221234+++(10)1(11)2(12)3=+⨯++⨯++⨯+=101212323+⨯++⨯++⨯+ =(1234)++++( ); …(2)归纳结论:222123+++…2n +(10)1(11)2(12)3=+⨯++⨯++⨯+…[1(1)]n n ++-⨯=101212323+⨯++⨯++⨯+…(1)n n n ++-⨯ =( )+[ ] = + =16⨯ .(3)实践应用:通过以上探究过程,我们就可以算出当n 为100时,正方形网格中正方形的总个数是 .五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系xOy 中,一次函数y =kx -2的图象与x ,y 轴分别交于点A ,B ,与反比例函数3(0)2y x x =-<的图象交于点32M n ⎛⎫-, ⎪⎝⎭. (1)求A 、B 两点的坐标;(2)设点P 是一次函数y =kx -2图象上的一点,且满足△APO 的面积是△ABO 的面积的2倍,直接写出点P 的坐标.20.如图,一艘核潜艇在海面下500米的A 点处测得俯角为30正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B 点处测得俯角为60正前方的海底有黑匣子信号发出,求海底黑匣子C 点处距离海面的深度.(保留根号)六、(本题满分12分)21.2013年3月28是第18个全国中小学生安全教育日.某校为增强学生的安全意识,组织全校学生参加安全知识测试,并对测试成绩做了详细统计,将测试成绩(成绩都是整数,试卷满分30分)绘制成了如下“频数分布直方图”.请回答:(1)参加全校安全知识测试的学生有名;(2)中位数落在分数段内;(3)若用各分数段的中间值(如5.5~10.5的中间值为8)来代替本段均分,请你估算本次测试成绩全校平均分约是多少.七、(本题满分12分)22.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?八、(本题满分14分)23.在面积为24的△ABC中,矩形DEFG的边DE在AB上运动,点F,G分别在边BC,AC上.(1)若AB =8,DE =2EF ,求GF 的长;(2)若90ACB ∠=,如图2,线段DM ,EN 分别为△ADG 和△BEF 的角平分线,求证:MG =NF ; (3)求出矩形DEFG 的面积的最大值.2017年安徽省初中毕业学业考试模拟试卷1.D 【解析】本题考查了有理数大小的比较.因为正数都大于0,负数都小于0,所以正数大于一切负数.又因为两个负数比较大小时,绝对值大的其值反而小,所以最小值为-1.2.C 【解析】本题考查合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则.23a 与32a 不是同类项,不能合并,故A 错误;22(2)44a a a -=-+,故B 错误;22(3)9a a =,故C 正确;3a ÷2a a =,故D 错误.12∠=∠;因为a ∥b ,所以3213∠=∠,∠=∠,故正确的个数为3.10n a ⨯,其中1≤|a |<10,n 为整数.故350万=3500000=3.6510⨯.5.B 【解析】本题考查了三视图的知识.俯视图是从物体的上面看得到的,观察选项可知B 项确.6.D 【解析】本题考查了在数轴上表示不等式解集的知识.由数轴上表示的不等式组的解集为-1<x ≤2,观察选项可知D 项正确.7.A 【解析】本题考查了概率的应用,相似多边形面积之比等于相似比的平方.根据针扎到小正方形(阴影部分)的概率是 19,可得19SS =,大小故大、小正方形的边长之比为3∶1.8.A 【解析】本题考查了由实际问题抽象出分式方程.根据时间找出等量关系是解决本题的关键.由题可知,甲的速度是2x 千米/时,根据题意可得1010123x x ,-=.O,E,F 点分别作OK ,EG ,FH 垂直于MN ,垂足为点K ,G ,H ,连接OM .则OK ∥EG ∥FH ,因为O 是EF 的中点,因此OK 是梯形EGHF 的中位线,欲求EG +FH 的值,需求出OK 的长.在Rt △OMK 中,OM =5,MK =4,所以223OK OM MK =-=,故EG +FH =6.P 点在边AB 上运动时,S 随着t 的增大而增大;当P 在BC 运动时,S 随着t 的增大而减小,又由等边三角形的性质可知两者增加和减小的速度相等,故C 项正确.11.m (m -10) 【解析】本题主要考查了提公因式法分解因式.210m m -=m (m -10).12.四 【解析】本题考查了一次函数的图象与系数的关系.∵在一次函数y =kx +2中,y 随x 的增大而增大,∴k >0.又∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.3=3得,直线AB 的解析式为x =3,把x =3代入反比例函数y =6x 可得D 点坐标为(3,2),由DG ∥OA 可得,直线DG 的解析式为y =2,把y =2代入2x y =可得G 点坐标为(1,2).设直线OE 的解析式为y =kx ,因为G 点在OE 上,所以2=k ,故直线OE 的解析式为y =2x .由 62xy x y =,⎧⎪⎨=⎪⎩ 可得,E 点坐标为33),.故3CE =14.52 【解析】本题考查了正方形的性质、翻折变换以及勾股定理.∵正方形纸片ABCD 的边长为3,∴90C ∠=,BC =CD =3,根据折叠的性质得EG =BE =1,GF =DF ,设DF =x ,则EF =EG +GF =1+x ,FC =CD -DF =3-x ,EC =BC -BE =3-1=2.在Rt △EFC 中222EF EC FC ,=+,即222(1)2(3)x x +=+-,解得32x =,∴32DF =,35122EF =+=.15.解:()20129(34)2cos 45--+--224312=-+-⨯6分=1. 8分16.解:原式222(1)111(1)(1)(1)(1)121(1)x x x x x x x x x --+-+++++=-=-=, 6分 当21x =-时,原式=1. 8分17.解:(1)△A ′B′C ′和△222A B C 的图象如图所示:4分(2)通过画图可知,△ABC 至少在第8次旋转后得到△A ′B ′C ′. 8分 18.解:(1)(13)4+⨯ 434+⨯ 01122334⨯+⨯+⨯+⨯ 3分 (2)1+2+3+…+n 011223⨯+⨯+⨯+…(1)n n +-⨯12(1)n n +()13(1)1n n n +- n (n +1)(2n +1)6分 (3)338350 8分19.解:(1)∵点()32M n -,在反比例函数32(0)x y x =-<的图象上. ∴n =1,∴()321M -,. 2分 ∵一次函数y =kx -2的图象经过点()321M -,,∴3212k =--,解得k =-2, ∴一次函数的解析式为y =-2x -2. 5分 ∴A (-1,0),B (0,-2). 6分12(2)(34)(14)P P -,,,-. 10分20.解:如图,过点C 作CE DE ⊥,交A B 的延长线于F ,交DE 于E .∵60FBC ∠=30BAC ,∠=,∴BAC BCA ∠=∠, ∴BC =AB =3000. 3分在Rt △BCF 中,BC =3000,60FBC ∠=, ∴sin 6015003CF BC =⋅=, 7分∴15003500CE =+. 9分答:海底黑匣子C 点处距离海面的深度为(15003500)+米. 10分21.解:(1)由频数分布直方图可知,学生总人数为(0.1+0.7+1.3+2.8+3.1+4.0)1001200⨯=. 3分 (2)由频数分布直方图可知,在分数段0.5 15.5的人数为450,在分数段15.5 20.5的人数为400,6分 故所求中位数落在15.5 20.5分数段内.7分(3)x 112(0=⨯.131⨯+.383⨯+.1134⨯+.0182⨯+.8⨯23+0.728)⨯2071217.25==, 11分 所以本次测试成绩全校平均分约为17.25分. 12分 22.解:(1)设今年三月份甲种电脑每台售价x 元. 由题意可得方程100000800001000x x +=,解得x =4000. 2分 经检验,x =4000是原方程的根,所以甲种电脑今年每台售价4000元. 4分 (2)设购进甲种电脑x 台,则购进乙种电脑(15-x )台.由题意可得不等式4800035003000(15)50000x x ≤+-≤, 解得610x ≤≤. 6分因为x 是正整数,所以x 的可能取值有6,7,8,9,10,所以共有5种进货方案. 8分 (3)设总获利为W 元,W =(4000-3500)x +(3800-3000-a )(15-x ) =(a -300)x +12000-15a , 10分 当a =300时,(2)中所有方案获利相同.所以购买甲种电脑6台、乙种电脑9台时对公司更有利(利润相同,成本最低). 12分WORD 完整版----可编辑----教育资料分享----完整版学习资料分享---- 23.解:(1)∵△ABC 的面积为24,AB =8,∴△ABC 边AB 上的高h =6. 1分设EF =x ,则GF =DE =2x .∵GF ∥A B,∴△CGF ∽△CAB ,∴GF h EF AB h -=,即2686x x -=,解得x =2.4. 3分∴GF =4.8. 4分(2)过点G 作GP ∥BC ,过点D 作DP ∥EN ,GP ,DP 交于点P ,在DM 的延长线上截取DQ =DP ,连接QG . ∵DP ∥EN ,∴PDE NEB ∠=∠,又∵90GDB FEB ∠=∠=,∴GDP FEN ∠=∠.同理可得DGP EFN ∠=∠.又∵GD =FE ,∴△GPD ≌△FNE ,∴45PG NF GDP FEN =,∠=∠=. 6分∵45GDQ GDP ∠=∠=,∴△GQD ≌△GPD ,∴QG PG GQD GPD =,∠=∠. 7分∵90MGP MDP ∠=∠=,∴180GMD GPD ∠+∠=.又∵180GMQ GMD ∠+∠=,∴GMQ GPD GQM ∠=∠=∠. 9分∴MG =QG .∴MG =NF . 10分(3)作CH AB ⊥于点H ,交GF 于点I .设AB =a ,AB 边上的高为h ,DG =y ,GF =x ,则CH =h ,CI =h -y ,ah =48.由(1)知,△CGF ∽△CAB ,∴GF CI AB CH =,即h y x a h -=,则xh 48xh a ah ay y -=-,=,12分则矩形DEFG 的面积248x x h a S xy -==,即()222448576h h h a a a ahS x x x =-+=--+. 由二次函数的有关性质知,当24h x =时,S 取得最大值为5765764812ah==. ∴矩形DEFG 的面积的最大值为12. 14分。
月考、期中、中考模拟卷2017年安徽省滁州市全椒县中考数学一模试卷
2017年安徽省滁州市全椒县中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.(4分)若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣ D.2.(4分)二次函数y=x2﹣2x的顶点为()A.(1,1) B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)3.(4分)如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.14.(4分)如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B.C.D.5.(4分)从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数均大于﹣2的概率是()A.B.C.D.6.(4分)某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米 B.米C.2米D.米7.(4分)已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3 B.k<3 C.k≤3且k≠2 D.k<28.(4分)如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A.2 B.3 C.4 D.59.(4分)如图,在扇形AOB中,∠AOB=90°,=,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣410.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是()A.abc<0 B.a﹣b+c<0 C.b2﹣4ac>0 D.3a+c>0二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)二次函数y=x2+1的最小值是.12.(5分)如图,点A、B、C在⊙O上,∠A=36°,则∠O=.13.(5分)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为.14.(5分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论:=S△OCD.①∠AGD=112.5°;②tan∠AED=+1;③四边形AEFG是菱形;④S△ACD其中正确结论的序号是.(把所有正确结论的序号都填在横线上)三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:2cos60°﹣|﹣4sin45°|16.(8分)如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.18.(8分)某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)20.(10分)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.六、解答题(本题满分12分)21.(12分)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.七、解答题(本题满分12分)22.(12分)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.八、解答题(本题满分14分)23.(14分)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC 绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.2017年安徽省滁州市全椒县中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.(4分)(2017•全椒县一模)若反比例函数y=的图象经过点(2,﹣1),则k 的值为()A.﹣2 B.2 C.﹣ D.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(2,﹣1)代入解析式得﹣1=,解得k=﹣2.故选A.【点评】此题主要考查了反比例函数图象上点的坐标特征.把已知点的坐标代入可求出k值,即得到反比例函数的解析式.2.(4分)(2017•徐水县模拟)二次函数y=x2﹣2x的顶点为()A.(1,1) B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)【分析】把二次函数化成顶点式,可得出二次函数的顶点坐标.【解答】解:∵y=x2﹣2x=(x﹣1)2﹣1,∴其顶点坐标为(1,﹣1),故选D.【点评】本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式y=a(x﹣h)2+k的顶点坐标为(h,k)是解题的关键.3.(4分)(2012•乐山)如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.1【分析】根据AB=2BC直接求sinB的值即可.【解答】解:∵Rt△ABC中,∠C=90°,AB=2BC,∴sinA===;∴∠A=30°∴∠B=60°∴sinB=故选C.【点评】本题考查了锐角三角函数的定义,解决本题时,直接利用正弦的定义求解即可.4.(4分)(2017•安徽二模)如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B.C.D.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看是一个实线的同心圆,故选:C.【点评】本题考查了简单组合体的三视图,俯视图是从上边看得到的图形.5.(4分)(2017•广东模拟)从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数均大于﹣2的概率是()A.B.C.D.【分析】根据概率公式可得答案.【解答】解:∵﹣3,﹣2,﹣1,1,2,3的六张卡片中,大于﹣2的有﹣1,1,2,3这4张,∴所抽卡片上的数大于﹣2的概率是=,故选:D.【点评】本题主要考查概率公式,掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数是解题的关键.6.(4分)(2017•安徽二模)某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米 B.米C.2米D.米【分析】由坡度定义可得位置升高的高度即为坡角所对的直角边.根据题意可得tan∠A=,AB=10m,可解出直角边BC,即得到位置升高的高度.【解答】解:由题意得,BC:AC=1:2.∴BC:AB=1:.∵AB=6m,∴BC=m.故选B.【点评】本题主要考查坡度的定义和解直角三角形的应用,注意画出示意图会使问题具体化.7.(4分)(2017•全椒县一模)已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3 B.k<3 C.k≤3且k≠2 D.k<2【分析】根据二次函数图象与x轴有交点可得出关于x的一元二次方程有解,根据根的判别式结合二次项系数非零即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,∴一元二次方程(k﹣2)x2+2x+1=0有解,∴,解得:k≤3且k≠2.故选:C.【点评】本题考查了抛物线与x轴的交点、根的判别式以及解一元一次不等式组,根据根的判别式△≥0结合二次项系数非零找出关于k的一元一次不等式组是解题的关键.8.(4分)(2017•徐水县模拟)如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A.2 B.3 C.4 D.5【分析】根据勾股定理求出BD,得到DE的长,根据相似三角形的性质得到比例式,代入计算即可求出DF的长,求出CF的长度.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,又AB=CD=6,BC=AD=8,∴BD==10,∵BE=6,∴DE=10﹣6=4,∵AB∥CD,∴=,即=,解得,DF=4,则CF=CD﹣DF=6﹣4=2,故选:A.【点评】本题考查的是矩形的性质、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.9.(4分)(2017•青山区一模)如图,在扇形AOB中,∠AOB=90°,=,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣4【分析】连接OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣△ODC的面积,依此列式计算即可求解.【解答】解:连接OC,如图所示:∵在扇形AOB中∠AOB=90°,=,∴∠COD=45°,∴OD=CD,∴OC==4,∴阴影部分的面积=扇形BOC的面积﹣△ODC的面积=﹣×(2)2=2π﹣4.故选:A.【点评】此题考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.10.(4分)(2017•徐水县模拟)二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是()A.abc<0 B.a﹣b+c<0 C.b2﹣4ac>0 D.3a+c>0【分析】A.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,由a与0的关系并结合抛物线的对称轴判断b与0的关系,即可得出abc与0的关系;B.由二次函数的图象可知当x=﹣1时y<0,据此分析即可;C.利用抛物线与x轴的交点的个数进行分析即可;D.由对称轴x=﹣=1,可得b=﹣2a,又由B知a﹣b+c<0,可得3a+c<0,可判断.【解答】解:A、由抛物线开口向下,可得a<0,由抛物线与y轴的交点在x轴的上方,可得c>0,由抛物线的对称轴为x=1,可得﹣>0,则b>0,∴abc<0,故A正确,不符合题意;B.当x=﹣1时,y<0,则a﹣b+c<0,故B正确,不符合题意;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故C正确,不符合题意;D.∵对称轴x=﹣=1,∴b=﹣2a,∵a﹣b+c<0,∴3a+c<0,故D错误,符合题意;故选D.【点评】本题考查了二次函数图象与系数的关系.关键是熟记二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2017•全椒县一模)二次函数y=x2+1的最小值是1.【分析】根据二次函数解析式得特点可知,当x=0时取得最小值1.【解答】解:由二次函数y=x2+1得到:该抛物线的开口方向向上,且顶点坐标是(0,1).所以二次函数y=x2+1的最小值是1.故答案是:1.【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.12.(5分)(2017•徐水县模拟)如图,点A、B、C在⊙O上,∠A=36°,则∠O= 72°.【分析】根据同弧所对的圆心角是圆周角的2倍得出结论.【解答】解:由图形得:∠O=2∠A=2×36°=72°;故答案为:72°,【点评】本题考查了圆周角与圆心角的关系,属于基础题,比较简单,明确在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.13.(5分)(2017•全椒县一模)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为25:9.【分析】先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,然后根据三角形面积公式即可得到结论.【解答】解:过A作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,∵∠B+∠B′=90°,∴sinB=cosB′,sinB′=cosB,∵S△BAC=AD•BC=AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC :S△A′B′C′=25:9,故答案为:25:9.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和三角形面积公式.14.(5分)(2017•徐水县模拟)如图,在正方形纸片ABCD中,对角线AC、BD 交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F 重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论:①∠AGD=112.5°;②tan∠AED=+1;③四边形AEFG是菱形;④S=S△OCD.△ACD其中正确结论的序号是①②③.(把所有正确结论的序号都填在横线上)【分析】根据翻转变换的性质、正方形的性质进行计算,判断即可.【解答】解:∵四边形ABCD是正方形,∴∠ADB=45°,由折叠的性质可知,∠ADE=∠BDE=22.5°,∴∠AGD=180°﹣90°﹣22.5°=112.5°,①正确;设AE=x,∵△BEF是等腰直角三角形,∴BE=EF=AE=x,∴x+x=1,解得,x=﹣1,∴tan∠AED==+1,②正确;由同位角相等可知,GF∥AB,EF∥AC,∴四边形AEFG是平行四边形,由折叠的性质可知,EA=EF,∴四边形AEFG是菱形,③正确;=2S△OCD,④错误,由正方形的性质可知,S△ACD故答案为:①②③.【点评】本题考查的是翻转变换的性质、菱形的性质、解直角三角形的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)(2017•全椒县一模)计算:2cos60°﹣|﹣4sin45°|【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简即可得到结果.【解答】解:原式=2×﹣=1﹣.【点评】此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.(8分)(2017•全椒县一模)如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.【分析】由△ABD绕点A按逆时针方向旋转,AB与AC重合知旋转角为45°,根据弧长公式可得答案.【解答】解:∵△ABD绕点A按逆时针方向旋转,AB与AC重合,∴旋转角为45°,∴的长为=π.【点评】本题主要考查旋转的性质、弧长公式,熟练掌握旋转的性质得出旋转角度数是解题的关键.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)(2017•全椒县一模)如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.【分析】作OH⊥AB于H,根据垂径定理得AH=BH=AB=,再在Rt△BOH中,根据勾股定理得OH=1,由AC=AB得AC=,则CH=AH﹣AC=,然后根据勾股定理可计算出OC的长.【解答】解:作OH⊥AB于H,如图,∵OH⊥AB,∴AH=BH,∴AH=BH=AB=×2=,在Rt△BOH中,OB=2,BH=,∴OH==1,∵AC=AB=×2=,∴CH=AH﹣AC=﹣=,在Rt△OHC中,OC==.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.18.(8分)(2017•句容市二模)某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.【分析】(1)由已确定A打第一场,再从其余三队中随机选取一队,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中B、C两队进行比赛的情况,再利用概率公式即可求得答案.【解答】解:(1)∵已确定A打第一场,再从其余三队中随机选取一队,∴恰好选中D队的概率;(2)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴P(B、C两队进行比赛)==.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)(2017•全椒县一模)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)【分析】延长BA,CD交于点P,解直角三角形得到AP=PD•cos30°和BC的长,通过△PAD∽△PCB,得出=,代入数据即可得到结论.【解答】解:如图,延长BA,CD交于点P,∵∠PAD=∠PCB=90°,∠ADC=120°,∴∠P=30°,∵AD=3,∴PD=6,AP=PD•cos30°=3,BC=(18﹣2)÷2+2=10.∵∠P=∠P,∠PAD=∠PCB=90°,∴△PAD∽△PCB,∴=,∴PC==10m,∴CD=PC﹣PD=10﹣6≈11.32m.则应设计11.32m高的灯柱,才能取得最理想的照明效果.【点评】本题考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念,正确的作出辅助线构造相似三角形是解题的关键.20.(10分)(2017•全椒县一模)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.【分析】(1)根据菱形性质得出AC⊥OB,OD=BD,AD=CD,解直角三角形即可得出答案;(2)设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),得出k=2(6﹣x)=6(4﹣x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.【解答】解:(1)连接AC,交y轴于D,∵四边形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD,∵OB=4,tan∠BOC=.∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2);(2)B、C落在反比例函数的图象上,设菱形平移后B的坐标是(x,4),C的坐标是(1+x,2),∵B、C落在反比例函数的图象上,∴k=4x=2(1+x),解得x=1,即菱形平移后B的坐标是(1,4),代入反比例函数的解析式得:k=1×4=4,即B、C落在反比例函数的图象上,菱形的平移距离是1,反比例函数的解析式是y=.【点评】本题考查了矩形性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.六、解答题(本题满分12分)21.(12分)(2017•全椒县一模)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.【分析】(1)由点A的坐标可知OA的长度,根据∠ABO的度数可知,AB的长度为4,利用勾股定理即可求出OB的长度,从而求出B的坐标.(2)连接OC、MC、证明∠OCB为直角,根据D为OB的中点,可知∠DCO=∠DOC,易知∠OCM=∠COM,所以∠MCO+∠DCO=∠MCD=90°,即可求证MC⊥CD.【解答】解:(1)∵A的坐标为(0,2)∴OA=2,∵∠ABO=30°,∠AOB=90°,∴AB=2OA=4,∴由勾股定理可知:OB=2,∴B(2,0)(2)连接OC,MC∵OA是⊙M的直径,∴∠ACO=90°,∴∠OCB=90°,在Rt△OCB中,D为OB的中点,∴CD=OB=OD,∴∠DCO=∠DOC,∵MC=MO,∴∠OCM=∠COM∵∠MOC+∠DOC=∠AOB=90°,∴∠MCO+∠DCO=∠MCD=90°即MC⊥CD∴直线CD是⊙M的切线.【点评】本题考查切线的判定,解题的关键是连接MC、OC、根据直角三角形斜边上中线的性质,圆周角定理,等腰三角形的性质求出MC⊥CD,本题属于中等题型.七、解答题(本题满分12分)22.(12分)(2017•徐水县模拟)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m 与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x 轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.【分析】(1)由条件可先求得抛物线解析式,则可求得B点坐标,再利用待定系数法可求得直线AB解析式;(2)由条件可知P、E的横坐标相同,又点E在抛物线上,则可表示出E点坐标;(3)由(2)可用x表示出PE的长,则可用x表示出△ABE的面积,再利用二次函数的性质可求得其最大值.【解答】解:(1)∵抛物线顶点坐标为(1,﹣2),∴可设抛物线解析式为y=a(x﹣1)2﹣2,∵OA=3,且点A在x轴的正半轴上,∴A(3,0),∴0=a(3﹣1)2﹣2,解得a=,∴抛物线解析式为y=(x﹣1)2﹣2=x2﹣x﹣,当x=0时可得y=﹣,∴B(0,﹣),设直线AB解析式为y=kx+b,把A、B坐标代入可得,解得,∴y=x﹣;(2)∵点P为线段AB上的一个动点,且PE⊥x轴,∴点E的横坐标为x,∵点E在抛物线上,∴E点的坐标为(x,x2﹣x﹣);(3)∵点P为线段AB上的一点,∴P(x,x﹣),则E(x,x2﹣x﹣),∴PE=x﹣﹣(x2﹣x﹣)=﹣x2+x,由(2)可知点B到PE的距离x,点A以PE的距离为3﹣x,=PE•x+PE•(3﹣x)=PE•(x+3﹣x)=PE=(﹣x2+x)=﹣x2+x=∴S△ABE﹣(x﹣)2+,∵﹣<0,有最大值,最大值为,∴当x=时,S△ABE∴△ABE面积的最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积及方程思想等知识.在(1)中求得B点坐标是解题的关键,在(2)中注意E点横坐标与P点横坐标相同是解题的关键,在(3)中用P点坐标表示出△ABE的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.八、解答题(本题满分14分)23.(14分)(2017•全椒县一模)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是矩形,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)根据有一个角是直角的平行四边形进行判断当α=90°时,就是长与宽的比;(2)①利用相似三角形求得CP的比,就可求得BP,PQ的值;②根据勾股定理求得PB′的长,再根据三角形的面积公式进行计算.(3)构造全等三角形和直角三角形,运用勾股定理求得PC的长,进一步求得坐标【解答】解:(1)图1,四边形OA′B′C′的形状是矩形;∵点A的坐标为(﹣8,0),点B(﹣8,6),∴AB∥OC,∵BC∥x轴,∴四边形OABC是平行四边形.又OC⊥OA,∴平行四边形OABC的形状是矩形;当α=90°时,P与C重合,如图1,BP=8,BQ=BP+OC=8+6=14,∴,即是矩形的长与宽的比,则.故答案为矩形,;(2)①图2,∵∠POC=∠B′OA′,∠PCO=∠OA′B′=90°,∴△COP∽△A′OB′.∴,即,∴CP=,BP=BC﹣CP=.同理△B′CQ∽△B′C′O,∴,∴∴CQ=3,BQ=BC+CQ=11.∴,∴;②图3,在△OCP和△B′A′P中,,∴△OCP≌△B′A′P(AAS).∴OP=B′P.设B′P=x,在Rt△OCP中,(8﹣x)2+62=x2,解得x=.=××6=.∴S△OPB′(3)存在这样的点P和点Q,使BP=BQ.点P的坐标是P1(﹣9﹣,6),P2(﹣,6).理由:过点Q作QH⊥OA′于H,连接OQ,则QH=OC′=OC,∵S=PQ•OC,S△POQ=OP•QH,△POQ∴PQ=OP.设BP=x,∵BP=BQ,∴BQ=2x,如图4,当点P在点B左侧时,OP=PQ=BQ+BP=3x,在Rt△PCO中,(8+x)2+62=(3x)2,解得x1=1+,x2=1﹣(不符实际,舍去).∴PC=BC+BP=9+,∴P(﹣9﹣,6).如图5,当点P在点B右侧时,∴OP=PQ=BQ﹣BP=x,PC=8﹣x.在Rt△PCO中,(8﹣x)2+62=x2,解得x=.∴PC=BC﹣BP=8﹣=,∴P(﹣,6),综上可知,存在点P(﹣9﹣,6)或(﹣,6),使BP=BQ.【点评】本题考查了旋转的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理.特别注意在旋转的过程中的对应线段相等,能够用一个未知数表示同一个直角三角形的未知边,解本题的关键是根据勾股定理列方程求解.。
安徽省滁州市数学中考一模试卷
安徽省滁州市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·湘潭) 2017的倒数是()A .B . ﹣C . 2017D . ﹣20172. (2分)(2018·柳州) 世界人口约7000000000人,用科学记数法可表示为()A .B .C .D .3. (2分) (2020七下·椒江期末) 下列命题中,是假命题的为()A . 两直线平行,同旁内角相等B . 两直线平行,内错角相等C . 同位角相等,两直线平行D . 同旁内角互补,两直线平行4. (2分)(2019·无锡模拟) 在下列运算中,计算正确的是()A . m2+m2=m4B . (m+1)2=m2+1C . (3mn2)2=6m2n4D . 2m2n÷(﹣mn)=﹣2m5. (2分)(2017·双桥模拟) 一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()A .B .C .D .6. (2分)(2019·营口) 若关于x的方程kx2﹣x﹣=0有实数根,则实数k的取值范围是()A . k=0B . k≥﹣且k≠0C . k≥﹣D . k>﹣7. (2分) 2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()A . 32,31B . 31,32C . 31,31D . 32,358. (2分) (2019九上·庆阳月考) 如图,在一幅长,宽的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使矩形树叶画面积占到整个矩形挂图的90%,设金边的宽为,则满足的方程是()A .B .C .D .9. (2分)(2019·宜宾) 如图,四边形是边长为5的正方形,E是上一点,,将绕着点A顺时针旋转到与重合,则()A .B .C .D .10. (2分)已知点A(3-p,2+p)先向x轴负方向平移2个单位,再向y轴负方向平移3个单位得点B(p,-q),则点B的具体坐标为()A .B .C .D .二、填空题 (共5题;共6分)11. (1分)计算:﹣2﹣1+﹣|﹣2|+(﹣)0=________ .12. (1分)(2018·攀枝花) 关于x的不等式﹣1<x≤a有3个正整数解,则a的取值范围是________.13. (1分) (2019九上·孝昌期末) 在一个不透明袋中装有五个除数字外其它完全相同的小球,球面上分别写有0,1,2,3,4这5个数字,玲玲从袋中任意摸出一个小球,球面数字的平方根是有理数的概率是________.14. (2分) (2017九上·召陵期末) 如图,P是⊙O外一点,PA和PB分别切⊙O于A、B两点,已知⊙O的半径为6cm,∠PAB=60°,若用图中阴影部分以扇形围成一个圆锥的侧面,则这个圆锥的高为________.15. (1分)(2020·河南模拟) 如图所示,矩形ABCD中,AB=5,BC=8,点P为BC上一动点(不与端点重合),连接AP,将△ABP沿着AP折叠.点B落到M处,连接BM、CM,若△BMC为等腰三角形,则BP的长度为________.三、解答题 (共8题;共66分)16. (5分)先化简,再求值:,其中a=﹣2.17. (6分)(2017·邹城模拟) 已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.(1)求证:AC•AD=AB•AE;(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.18. (2分)(2019·莲湖模拟) 为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为________,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.19. (5分)(2017·新野模拟) 如图,AB为一斜坡,其坡角为19.5°,紧挨着斜坡AB底部A处有一高楼,一数学活动小组量得斜坡长AB=15m,在坡顶B处测得楼顶D处的仰角为45°,其中测量员小刚的身高BC=1.7米,求楼高AD.(参考数据:sin19.5°≈ ,tan19.5°≈ ,最终结果精确到0.1m).20. (10分) (2016七下·大连期中) 一种蜂王精有大小两种包装,3大盒4小盒共装108瓶,2大盒3小盒共装76瓶,大盒与小盒各装多少瓶?21. (12分) (2019八上·江阴月考) 已知甲、乙两地相距3200 m,小王、小李分别从甲、乙两地同时出发,相向而行,相遇后两人立即返回到各自出发地并停止行进.已知小李的速度始终是60 m/min,小王在相遇后以匀速返回,但比小李晚回到原地。
中考数学第一次模拟试卷滁州市带答案
适用精选文件资料分享2017 年中考数学第一次模拟试卷(滁州市带答案)2017 年中考数学第一次模拟试卷(滁州市带答案)滁州市2017年第一次中考 ( 数学 ) 模拟试卷(含答案)数学本试题卷分第一部分(选择题)和第二部分(非选择题),共8页.考生作答时,须将答案答在答题卡上,在本试题卷、稿本纸上答题无效.满分 150 分.考试时间 120 分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不可以使用任何型号的计算器.第一部分(选择题共 30 分)注意事项:1.选择题一定使用2B 铅笔将答案标号填涂在答题卡对应题目标号的地点上.2.本部分共 10 小题,每题 3 分,共 30 分.一、选择题:本大题共10 小题,每题 3分,共 30 分.在每题给出的四个选项中,只有一个选项吻合题目要求. 1. 的倒数是 2 .跟着经济发展,人民的生活水平不停提升,旅行业快速增加, 2016 年公民出境旅行超出120 000 000 人次,将120 000 000 用科学记数法表示为 3.以下图形中,既是轴对称图形又是中心对称图形的是 4. 含角的直角三角板与直线、的地点关系如图 1 所示,已知,,则 = 5. 以下说法正确的选项是打开电视,它正在播广告是必然事件要观察一个班级中的学生对建立生物角的看法适适用抽样检查在抽样检查过程中,样本容量越大,对整体的估计就越正确甲、乙两人射中环数的方差分别为,,说明乙的射击成绩比甲稳固 6. 若,则或或 7.图 2 是“明清影视城”的一扇圆弧形门,小红到影视城游乐,他认识到这扇门的相关数据:这扇圆弧形门所在的圆与水平川面是相切的,米,米,且、与水平川面都是垂直的 . 依据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是米米米米 8.已知,则以下三个等式:① ,②,③ 中,正确的个数有个个个个 9.已知二次函数(为常数),当时,函数值的最小值为,则的值是或或 10. 如图 3,平面直角坐标系中,矩形的边、分别落在、轴上,点坐标为,反比率函数的图象与边交于点,与边交于点,连结,将沿翻折至处,点恰好落在正比率函数图象上,则的值是第二部分(非选择题共 120 分)注意事项 1.考生使用 0.5mm 黑色墨汁署名笔在答题卡上题目所指示的答题地域内作答,答在试题卷上无效. 2.作,可先用笔划,确后再用 0.5mm黑色墨汁字笔描清楚. 3 .解答写出文字明、明程或推演步. 4 .本部分共 16 小,共120 分.二、填空:本大共 6 小,每小 3 分,共 18 分. 11 .算: ____.12 .二元一次方程的解是 ____. 13 .如 4,直垂直订交于点,曲关于点成中心称,点的称点是点,于点,于点 . 若 , ,暗影部分的面之和____. 14. 点、、在格点中的地点如 5 所示,格点小正方形的1,点到段所在直的距离是_____.15.庄子:“一尺之椎,日取其半,万世不停” . 句(文字言)表达了祖先将事物无穷切割的思想,用形言表示 6.1 ,按此切割的方法,可获得一个等式(符号言): . 6.2 也是一种无穷切割:在中,,,点作于点,再点作于点,又点作于点 , 这样无穷下去,可将利切割成、、、、⋯、、⋯ . 假,些三角形的面和可以获得一个等式是_________. 16 .于函数,我定(常数) . 比方, . 已知: . (1)若方程有两个相等数根,的___________;(2)若方程有两个正数根,的取范__________. 三、本大共 3 小,每小 9 分,共 27 分. 17.算: . 18.求不等式的全部整数解. 19.如7,延□ 的到点,使,延到点,使,分点、和点、.求:.四、本大共 3 小,每小 10 分,共 30 分. 20.化: .21.了认识我市中学生参加“科普知” 成的状况,随机抽了部分参学生的成,整理并制作出以下的表和,如8 所示 . 依据表信息解答以下:(1)在表中:,;(2)全数分布直方;(3)小明的成是全部被抽学生成的中位数,据此推测他的成在;(4)个小每介绍人, 而后从人中随机抽取人参加典礼,恰好抽中、两学生的概率是多少?并列表或画状明 .22.如 9,在水平川面上有一幢房屋与一棵,在地面点得屋与梢的仰角分是与,,在屋得 . 若房屋的高米. 求高的度 .五、本大题共 2 小题,每题 10 分,共 20 分. 23 、某公司从 2014 年开始投入技术改进资本,经技术改进后,其产品的成本不停降低,详尽数据以下表:年度 2013 2014 2015 2016 投入技改资本(万元)2.5 3 4 4.5 产品成本(万元 / 件) 7.2 6 4.5 4 (1)请你仔细分析表中数据,从一次函数和反比率函数中确立哪一个函数能表示其变化规律,给出原由,并求出其分析式;(2)依据这类变化规律,若 2017 年已投入资本 5 万元 . ①估计生产成本每件比 2016 年降低多少万元?②若打算在 2017 年把每件产品成本降低到 3.2 万元,则还需要投入技改资本多少万元?(结果精确到 0.01 万元) .24.如图10,以边为直径的⊙ 经过点, 是⊙ 上一点,连结交于点,且, . (1)试判断与⊙ 的地点关系,并说明原由;(2)若点是弧的中点,已知,求的值 .六、本大题共 2 小题,第 25 题 12 分,第 26 题 13 分,共 25 分. 25.在四边形中,,对角线均分 . (1)如图11.1 ,若,且,尝试究边、与对角线的数目关系并说明原由 . (2)如图11.2 ,若将(1)中的条件“”去掉,(1)中的结论能否建立?请说明原由 . (3)如图 11.3 ,若,研究边、与对角线的数目关系并说明原由 .26.如图 12.1 ,抛物线 : 与 : 订交于点、,与分别交轴于点、,且为线段的中点 . (1)求的值;(2)若 , 求的面积;(3)抛物线的对称轴为,极点为,在(2)的条件下:①点为抛物线对称轴上一动点,当的周长最小时,求点的坐标;②如图 12.2,点在抛物线上点与点之间运动,四边形的面积能否存在最大值?若存在,求出头积的最大值和点的坐标;若不存在,请说明原由 .滁州市 2017 年第一次中考 ( 数学 ) 模拟试卷数学参照答案及评分建议第一部分(选择题共 30 分)一、选择题:本大题共 10 小题,每小题 3分,共 30分. 1. 2. 3. 4. 5. 6.7. 8.9.10.第二部分(非选择题共 120 分)二、填空题:本大题共 6 小题,每题 3 分,共 18 分. 11.;12.;13. ;14.;15.; 16. (1);(2)且 . 注:(1)第 14 题,若给出的是化简后正确的等式,也视为正确;(2)第 16 题,第(1)问 1 分,第(2)问 2 分. 三、本大题共 3 小题,每题 9 分,共 27 分. 17 .解:原式⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(8 分)=. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 9 分) 18 .解:解不等式①得:⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 3 分)解不等式②得:⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 6 分)因此,不等式的解集⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 8 分)不等式的整数解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(9 分)19. 明:□ 中,,,,∴ . ,∴ ⋯⋯⋯⋯⋯⋯ (6 分) 又∥,∴四形是平行四形. ⋯⋯⋯⋯⋯⋯ (8 分) ∴⋯⋯⋯⋯⋯⋯⋯⋯⋯ (9 分) 四、本大共 3 小,每小 10 分,共 30 分. 20. 解:原式 = ⋯⋯⋯⋯⋯⋯( 2分) = ⋯⋯⋯⋯⋯⋯(4 分) = ⋯⋯⋯⋯⋯⋯(6 分) = ⋯⋯⋯⋯⋯⋯(8 分) = ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 10 分) 21 .解:(1),⋯⋯⋯⋯⋯⋯( 2 分)(2);如 2 ⋯⋯⋯⋯⋯⋯( 4 分)(3);⋯⋯⋯⋯⋯⋯( 6 分)(4)⋯⋯⋯⋯⋯⋯( 9 分)∴抽中 ? p 两同学的概率 = ⋯⋯⋯⋯( 10 分) 22 .解:如3,在中,,,∴;⋯⋯⋯⋯⋯⋯⋯( 3 分)在中,,∴;⋯⋯⋯⋯⋯⋯⋯( 6 分)在中,,⋯⋯⋯⋯⋯⋯⋯( 9 分)答:的高米. ⋯⋯⋯⋯⋯⋯⋯( 10 分)五、本大共小,每小分,共分 23 .解 :(1) ,( 常数 , ) ∴,解个方程得,∴ . 当 , . ∴一次函数不可以表示其化律. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (2 分) ,( 常数 , ) ,∴ ,∴,∴ . 当,;当,;当,;∴所求函数反比率函数⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (5 分) (2)①当,;(万元)∴比年降低万元 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (7 分) ②当,;(万元)∴ 需要投入技改金万元. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (9 分) 答:要把每件品的成本降低到万元,需投入技改金万元 . ⋯⋯⋯⋯⋯⋯⋯ (10 分) 24. 解:(1)如 4,是⊙ 的切 . 明如下:⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (1 分),,∴ ,,∴ ,,∴,∴,∴是⊙ 的切 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (4分) (2),是⊙ 的直径,∴,又弧的中点,∴,,. ,∴ ∽,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (8 分) ∴,∴ . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (10 分)六、本大共小,第 25 12 分,第 26 13 分,共 25 分 25. 解:(1). 明以下:在四形中,,,∴. ,均分 , ∴ , ,∴, 同理 . ∴ . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (4 分) (2)(1)中的建立,原由以下:以点,一作,的另一交延于点 ,, ∴等三角形,∴, ,, ∴, ∴,∴ , ∴ . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(8分)(3).原由以下:点作交的延于点,,,∴,,∴,又均分,∴,∴.∴. 又,, ∴,∴,∴. 在中, ,∴,∴. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (12 分) 26 .解: (1) ,当,,,,∴,当,,,,∴∵的中点,∴.∴. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (2 分) (2)解得:,,,,当,,∴ . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (3 分)作于点,∴. ∵,∴∽,∴,∴,即,∴(舍去),(舍去),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5 分) ∴ , ,∴ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (6 分) (3)① ,称,点关于的称点 , ,直与的交点,的分析式,∴,得,的分析式,当,,∴ . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (8 分) ② ,,而 , , 直的分析式,由,解得,直的分析式. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (9 分) 点作的平行交直于点, ,即,∴,。
2017安徽省中考数学试题及解答0001
2017年安徽省初中学业水平考试(试题卷)注意事项:1•你拿到的试卷满分为150分,考试时间为2. 本试卷包括“试题卷”和“答题卷”两部分,3. 请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
4. 考试结束后,请将“试题卷”和“答题卷”一并交回。
一、选择题(本大题共每小题都给出A、11 .丄的相反数是(21A .23 22 .计算a3的结果是120分钟。
“试题卷”共4页,“答题卷”共6页。
10小题,每小题4分,共40分)C、D四个选项,其中只有一个是正确的B、C. 2; D . -2C.a5;3•如图,一个放置在水平试验台上的锥形瓶,它的俯视图为(54.截止2016年底,国家开发银行对“一带一路”其中1600亿用科学计数法表示为()沿线国家累计发放贷款超过1600亿美元,A . 16 1010;B . 1.6 1010;111.6 10 ;12D. 0.16 10 ;5•不等式4 2x 0的解集在数轴上表示为(B.0 1 c.i I ■・J- 匚-2 -1 0 1 16.直角三角板和直尺如图放置,若A. 60 ;B. 50 ;1 20,则2的度数为()C. 40 ;D. 3010.如图,在矩形ABCD中,AB=5 , AD=3,动点P满足S V PAB13 S矩形ABCD,则点P到B两点距离之和PA+PB的最小值为(7•为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A . 280;B . 240;C . 300;D . 2608 一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为X,则X 满足()2 2A. 16 1 2x 25 ;B. 25 1 2x 16 ;C. 16 1 x 25 ;D. 25 1 x 162b9.已知抛物线y ax bx c与反比例函数y 的图像在第一象限有一个公共点,其横x坐标为1,则一次函数y bx ac的图像可能是()A . B.);C.二、填空题(本大题共4小题,每小题5分,满分20分)11. _________________________ 27的立方根是.212. 因式分解:a b 4ab 4b =____________________ .13. 如图,已知等边VABC的边长为6,以AB为直径的e O与边AC,BC分别交于D,E两点,则劣弧DE的长为 _____________ .14. 在三角形纸片ABC中,A 90,C 30,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD (如图1 ),剪去VCDE后得到双层VBDE (如图2),再沿着过VBDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为__________ cm。
滁州市中考数学一模试卷
滁州市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、填空题 (共10题;共10分)1. (1分)(2017·永州) 2017年端午小长假的第一天,永州市共接待旅客约275 000人次,请将275 000用科学记数法表示为________.2. (1分)(2018·安顺模拟) 在函数y= + 中,自变量x的取值范围是________.3. (1分) (2018八下·乐清期末) 如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.5. (1分)(2019·上海模拟) 不等式3x≤x+4的非负整数解是________.6. (1分) (2016九上·东营期中) 如图,∠A是⊙O的圆周角,∠OBC=55°,则∠A=________.7. (1分)已知关于x的方程的解是负数,则m的取值范围为________8. (1分)在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则BC=________.9. (1分)32×3.14+3×(﹣9.42)=________.10. (1分)如图,菱形ABCD中,AC=8,BD=6,则该菱形ABCD的周长为________.二、选择题 (共10题;共20分)11. (2分)若 =1,则()A . x≠0B . x≠2C . x≠D . x为任意有理数12. (2分)(2020·福州模拟) 下列图形中,是轴对称图形但不是中心对称图形的是()A . 矩形B . 平行四边形C . 圆D . 等边三角形13. (2分)已知反比例函数的图象在第二、第四象限内,函数图象上有两点A(,y1)、B(5,y2),则y1与y2的大小关系为()。
滁州市中考数学模拟试卷
滁州市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七上·太原期中) 下列运算正确的是()A . ﹣2﹣3=﹣1B . (﹣2)3=﹣6C . ﹣2+3=1D . (﹣21)÷7=32. (2分)(2019·凤山模拟) 下列运算正确的是()A . a5﹣a3=a2B . a6÷a2=a3C . (﹣2a)3=﹣8a3D . 2a﹣2=3. (2分) 2011年8月12日,第26届世界大学生夏季运动会将在深圳开幕。
本届大运会的开幕式举办场地和主要分会场深圳湾体育中心总建筑面积达256520m2。
数据256520m2用科学记数法(保留三个有效数字)表示为()A . 2.565×105m2B . 0.257×106m2C . 2.57×105m2D . 25.7×104m24. (2分)(2017·天门模拟) 如图是一个几何体的三视图,则该几何体的展开图可以是()A .B .C .D .5. (2分)下列运算,正确的是()A . a•2a=2aB . (a3)2=a6C . 3a﹣2a=1D . =﹣a26. (2分) (2017七上·黄冈期中) 下列说法正确的是()A . 若|a|=﹣a,则a<0B . 若a=b,m是有理数,则 =C . 式子3xy2﹣4x3y+12是七次三项式D . 若a<0,ab<0,则b>07. (2分)周末商场搞促销活动,其中一顾客想购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示:如果你购买这三件物品,最少花钱为()A . 500元B . 600元C . 700元D . 800元8. (2分)如图,在矩形ABCD中,E,F分别是CD,BC上的点,若∠AEF=90°,则一定有()A . △ADE∽△AEFB . △ADE∽△ECFC . △ECF∽△AEFD . △AEF∽△ABF9. (2分)(2017·凉州模拟) 如图是二次函数y=ax2+bx+c图象的一部分,过点(x1 , 0),﹣3<x1<﹣2,对称轴为直线x=﹣1.给出四个结论:①abc>0;②2a+b=0;③b2>4ac;④3b+2c>0,其中正确的结论有()A . 1个B . 2个C . 3个D . 4个10. (2分)如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A .B .C .D .二、填空题 (共4题;共4分)11. (1分) (2016九上·衢江月考) 关于x的不等式组的解集为,那么的值等于________。
安徽省滁州市中考数学一模考试试卷
安徽省滁州市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在-6,0,3,8 这四个数中,最小的数是()A . -6B . 0C . 3D . 82. (2分)(2018·东莞模拟) 下列图形既是轴对称图形,又是中心对称图形的是()A .B .C .D .3. (2分) (2017八上·无锡开学考) 下列计算中,结果正确的是()A . 2x2+3x3=5x5B . 2x3•3x2=6x6C . 2x3÷x2=2xD . (2x2)3=2x64. (2分)如图,由几个小正方体组成的立体图形的左视图是()A .B .C .D .5. (2分)(2018·阜新) 某中学篮球队12名队员的年龄情况如下表:年龄/岁1213141516人数13422关于这12名队员的年龄,下列说法中正确的是()A . 众数为14B . 极差为3C . 中位数为13D . 平均数为146. (2分) (2019九上·湖州月考) 下列说法正确的是()A . 任意抛掷一枚质地均匀的硬币10次,则“有5次正面朝上”是必然事件B . 明天的降水概率为40%,则“明天下雨”是确定事件C . 篮球队员在罚球线上投篮一次,则“投中”是随机事件D . a是实数,则“|a|≥0”是不可能事件7. (2分)一次函数y=﹣x+1的图象不经过的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分)周末,某团体组织公益活动,16名成员分甲、乙、丙三组到48个单位做宣传,若甲组a人每人负责4个单位,乙组b人每人负责3个单位,丙组每人负责1个单位,则分组方案有()A . 5种B . 6种C . 7种D . 8种9. (2分)(2017·北仑模拟) 如图,等腰三角形ABC的底边BC在x轴正半轴上,点A在第一象限,延长AB 交y轴负半轴于点D,延长CA到点E,使AE=AC,双曲线y= (x>0)的图象过点E.若△BCD的面积为2 ,则k的值为()A . 4B . 4C . 2D . 210. (2分)(2019·颍泉模拟) 如图1,矩形ABCD中,AB=4,AD=2,E、F是边AB、DC的中点,连接EF、AF,动点P从A向F运动,AP=x,y=PE+PB.图2所示的是y关于x的函数图象,点(a,b)是函数图象的最低点,则a的值为()A .B .C .D . 2二、填空题 (共7题;共7分)11. (1分) (2019七上·澄海期末) 今年“十一”假期,我市某主题公园共接待游客77600人次,将77600用科学计数法表示为________.12. (1分)(2017·槐荫模拟) 分解因式:mn2﹣4m=________.13. (1分)如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为________ .14. (1分) (2019八下·灌云月考) 一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加上述同种型号的1个球,使得从中随机抽取1个球,白颜色的球被抽到的可能性是,那么添加的球是________.15. (1分) (2017七下·安顺期末) 在平面直角坐标系中,点P(m,m﹣3)在第四象限内,则m的取值范围是________.16. (1分)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为________.17. (1分) (2017八下·海安期中) 如图,在矩形ABCD中,AD= AB,∠BAD的平分线交BC于点E,DH⊥AE 于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②AB=HF,③BH=HF;④BC ﹣CF=2HE;⑤OE=OD;其中正确结论的序号是________三、解答题 (共9题;共87分)18. (5分) (2016九上·独山期中) 已知x=1是一元二次方程ax2+bx﹣40=0的一个解,且a≠b,求的值.19. (5分)(2017·葫芦岛) 先化简,再求值:( +x﹣1)÷ ,其中x=()﹣1+(﹣3)0 .20. (12分)(2018·北京) 某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息..A课程成绩的频数分布直方图如下(数据分成6组:,,,,,);.A课程成绩在这一组是:70 71 71 71 76 76 77 78 79 79 79.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数AB7083根据以上信息,回答下列问题:(1)写出表中的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是________;(3)假设该年级学生都参加此次测试,估计A课程成绩超过分的人数.21. (10分)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC为对角线,BD=8,①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F到AB的距离.22. (5分)(2017·靖远模拟) 如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).23. (10分) (2016九上·永泰期中) 某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.(1)若每个房间定价增加40元,则这个宾馆这一天的利润为多少元?(2)若宾馆某一天获利10640元,则房价定为多少元?(3)房价定为多少时,宾馆的利润最大?25. (15分)(2019·方正模拟) 如图,把矩形ABCD沿AC折叠,使点D与点E重合,AE交BC于点F,过点E作EG∥CD交AC于点G,交CF于点H,连接DG.(1)求证:四边形ECDG是菱形;(2)若DG=6,AG=,求EH的值.26. (15分)(2016·呼和浩特模拟) 如图,在平面直角坐标系中,开口向下的抛物线y=ax2+bx+c交y轴于A点,交x轴于B、C两点(点B在点C的左侧).已知A点坐标为(0,﹣5),BC=4,抛物线过点(2,3).(1)求此抛物线的解析式;(2)记抛物线的顶点为M,求△ACM的面积;(3)在抛物线上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共87分)18-1、19-1、20-1、20-2、20-3、21-1、22-1、23-1、23-2、23-3、25-1、25-2、26-1、26-2、。
滁州市中考数学模拟试卷
滁州市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·瑞安模拟) 给出四个数0,,- ,0.3,其中属于无理数的是()A . 0B .C . -D . 0.32. (2分) (2019七下·南海期中) 下列计算中,正确是()A . (a2)3=a5B . ;C . ;D . .3. (2分) (2017八下·路北期末) 在函数y= 中,x的取值范围是()A . x≥1B . x≤1C . x≠1D . x<04. (2分)如图是一个立方体图形的展开图,则这个立体图形是()A . 四棱柱B . 四棱锥C . 三棱柱D . 三棱锥5. (2分) (2020七上·自贡期末) 一双没有洗过的手,带有各种细菌约75 000万个,75 000万用科学记数法表示为()A . 7.5×104B . 7.5×105C . 7.5×108D . 7.5×1096. (2分)在△ABC中,如图,CD平分∠ACB,BE平分∠ABC,CD与BE交于点F,若∠DFE=120°,则∠A=()A . 30°B . 45°C . 60°D . 90°7. (2分)(2020·南山模拟) 2019年“周恩来读书节”活动主题是“阅读,遇见更美好的自己”.为了解同学们课外阅读情况,王老师对某学习小组10名同学5月份的读书量进行了统计,结果如下(单位:本):5,5,3,6,3,6,6,5,4,5,则这组数据的众数和中位数是()A . 3,5B . 4,4C . 5,5D . 6,58. (2分)若直线y=x-2与直线y=-x+a相交于x轴上,则直线y=-x+a不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分) (2019八上·合肥月考) 平面直角坐标系中的点P(2﹣m , m)在第一象限,则m的取值范围在数轴上可表示为()A .B .C .D .10. (2分)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A . 45°B . 50°C . 60°D . 75°11. (2分)二次函数y=﹣3x2﹣2的图象经过哪几个象限()A . 一、三象限B . 二、四象限C . 一、二象限D . 三、四象限12. (2分) (2019八下·长春月考) 如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF 相交于点O,下列结论:⑴AE=BF;(2)AE⊥BF;(3)AO=OE;(4)中正确的有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共4题;共4分)13. (1分)(2018·安徽模拟) 分解因式:2x2-8=________.14. (1分)(2019·苏州模拟) 一个n边形的内角和是720°,那么n= ________ .15. (1分)(2020·仙桃) 如图,已知直线,直线和点,过点作y轴的平行线交直线a于点,过点作x轴的平行线交直线b于点,过点作y轴的平行线交直线a于点,过点作x轴的平行线交直线b于点,…,按此作法进行下去,则点的横坐标为________.16. (1分) (2018九上·太仓期末) 二次函数 y=x2﹣4x﹣3 的最小值是________.三、解答题 (共5题;共48分)17. (5分)(2020·连云模拟) 计算(1- )÷18. (10分)(2017·兰州模拟) 如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1(1)在网格中画出△A1B1C1;(2)计算线段AC在变换到A1C1的过程中扫过区域的面积(重叠部分不重复计算).19. (13分)(2016·晋江模拟) 某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如下所示的两个不完整统计图表.校本课程选修意向统计表选修课程所占百分比A a%B25%C b%D20%请根据图表信息,解答下列问题:(1)参与调查的学生有________名;(2)在统计表中,a=________,b=________;(3)请你补全条形统计图;(4)若该校共有2000名学生,请你估算该校有多少名学生选修A课程?20. (10分)(2019·宝鸡模拟) “绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划把68吨有机化肥运送到果园,为节省时间需要在一天之内运完.货运站有甲、乙两种货车,果农决定租用甲、乙两种货车共18辆,两种型号的货车的运输量和租金如下表(所租用货车都按一整天收费):型号甲乙每辆每天运输量(吨)53每辆每天租金(元)400300(1)求所付的货车租金总费用y(元)与租用甲型货车数量x(辆)的函数关系式;(2)请你帮该果农设计一种使租金总费用最少的方案,并求出所付的最少租金.21. (10分)(2019·徽县模拟) 如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线上的一点,AC平分∠FAB交⊙O于点C.过点C作CE⊥DF,垂足为E.(1)求证:CE是⊙O的切线;(2)若AE=2,CE=4,求⊙O的半径.四、填空题 (共7题;共49分)22. (1分) (2017九上·巫溪期末) 将一根长为6cm的木棍分成两段,每段长分别为a,b(单位:cm)且a,b都为正整数.在直角坐标系中以a,b的值,构成点A(a,b).那么点A落在抛物线y=﹣x2+6x﹣5与x轴所围成的封闭图形内部(如图,不含边界)的概率为________.23. (1分)(2016·广安) 若反比例函数y= (k≠0)的图象经过点(1,﹣3),则一次函数y=kx﹣k(k≠0)的图象经过________象限.24. (1分) (2016八下·微山期末) 将2017个边长为2的正方形,按照如图所示方式摆放,O1 , O2 , O3 ,O4 , O5 ,…是正方形对角线的交点,那么阴影部分面积之和等于________.25. (1分) (2019七上·双台子月考) 一组按一定规律排列的式子:,,,,,…(,为正整数),则第个式子是________.26. (15分) (2017·宁波模拟) 如图的抛物线是把抛物线y= x2平移后经过(0,﹣1)和(4,﹣1)两点得到的.(1)求平移后抛物线的表达式.(2)求平移后方向和距离.(3)在平移后的抛物线上取一点P,以P为圆心作半径为2的⊙P,当⊙P与y轴相切时,求点P的坐标.27. (15分)如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM,射线AE于点F,D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD= ,其他条件不变,求线段AM的长.28. (15分) (2017九下·万盛开学考) 如图,抛物线与直线 : 交于点,点的横坐标为,直线与轴的交点为,将直线向上平移后得到直线,直线刚好经过抛物线与轴正半轴的交点和与轴的交点.(1)直接写出点和点的坐标,并求出点的坐标;(2)若点是抛物线第一象限内的一个动点,连接,交直线于点,连接和.设的面积为,当取得最大值时,求出此时点的坐标及的最大值;(3)如图2,动点以每秒个单位长度的速度从点出发,沿射线运动;同时,动点以每秒个单位长度的速度从点出发,沿射线运动,设运动时间为().过点作轴,交抛物线于点,当点、、所组成的三角形是直角三角形时,直接写出的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共5题;共48分)17-1、18-1、18-2、19-1、19-2、19-3、19-4、20-1、20-2、21-1、21-2、四、填空题 (共7题;共49分) 22-1、23-1、24-1、25-1、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、28-3、。
安徽省滁州市数学中考一模试卷
安徽省滁州市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七上·黄陂期中) 的倒数是()A .B . 5C .D .2. (2分)若(x-3) 2=x2+kx+9,那么k的值是()A . -6B . -3C . 6D . -93. (2分) (2017九上·云南期中) 2017年毕节市参加中考的学生约为115000人,将115000用科学记数法表示为()A . 1.15×106B . 0.115×106C . 11.5×104D . 1.15×1054. (2分)如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是【】A .B .C .D .5. (2分)(2017·淮安) 点P(1,﹣2)关于y轴对称的点的坐标是()A . (1,2)B . (﹣1,2)C . (﹣1,﹣2)D . (﹣2,1)6. (2分)(2018·遵义模拟) 如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A . 25°B . 50°C . 60°D . 30°7. (2分)若式子 +(k-1)0有意义,则一次函数y=(k-1)x+1-k的图象可能是()A .B .C .D .8. (2分)己知圆锥的底面半径为2cm,母线长为3cm,则该圆锥的侧面展开图的圆心角为()A . 60°B . 120°C . 90°D . 240°9. (2分)(2018·拱墅模拟) 方程的解的个数为()A . 0个B . 1个C . 2个D . 3个10. (2分) (2015七上·龙岗期末) 为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10立方米的,按每立方米m元水费收费;用水超过10立方米的,超过部分双倍收费.某职工某月缴水费16m元,则该职工这个月实际用水为()A . 13立方米B . 14立方米C . 18立方米D . 26立方米二、填空题 (共6题;共6分)11. (1分) (2017九上·恩阳期中) 若 = = =0.5,则=________.12. (1分)(2017·嘉兴模拟) 因式分解: =________.13. (1分)(2019·达州) 如图,抛物线(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线与直线有且只有一个交点;②若点、点、点在该函数图象上,则;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为;④点A关于直线的对称点为C,点D、E分别在x轴和y轴上,当时,四边形BCDE周长的最小值为.其中正确判断的序号是________14. (1分) (2019八下·岑溪期末) 如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为________cm.15. (1分)(2016·十堰) (2016•十堰)已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2 ,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有x2+x≥﹣;④在﹣2<x<﹣1中存在一个实数x0 ,使得x0=﹣,其中结论错误的是________ (只填写序号).16. (1分)(2018·无锡模拟) 如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE=________.三、解答题 (共8题;共92分)17. (10分)计算。
安徽省滁州市全椒县2017届中考数学一模试卷含答案解析
2017年安徽省滁州市全椒县中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣ D.2.二次函数y=x2﹣2x的顶点为()A.(1,1)B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)3.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.14.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B.C.D.5.从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝大于﹣2的概率是()A.B.C.D.6.某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米 B.米C.2米D.米7.已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3 B.k<3 C.k≤3且k≠2 D.k<28.如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC 于点F,则CF等于()A.2 B.3 C.4 D.59.如图,在扇形AOB中,∠AOB=90°,=,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣410.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是()A.abc<0 B.a﹣b+c<0 C.b2﹣4ac>0 D.3a+c>0二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)二次函数y=x2+1的最小值是.12.(5分)如图,点A、B、C在⊙O上,∠A=36°,则∠O=.13.(5分)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为.14.(5分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论:=S△OCD.①∠AGD=112.5°;②tan∠AED=+1;③四边形AEFG是菱形;④S△ACD其中正确结论的序号是.(把所有正确结论的序号都填在横线上)三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:2cos60°﹣|﹣4sin45°|16.(8分)如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD 绕点A按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.18.(8分)某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD 的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)20.(10分)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.六、解答题(本题满分12分)21.(12分)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.七、解答题(本题满分12分)22.(12分)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.八、解答题(本题满分14分)23.(14分)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B 的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.2017年安徽省滁州市全椒县中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣ D.【考点】反比例函数图象上点的坐标特征.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(2,﹣1)代入解析式得﹣1=,解得k=﹣2.故选A.【点评】此题主要考查了反比例函数图象上点的坐标特征.把已知点的坐标代入可求出k值,即得到反比例函数的解析式.2.二次函数y=x2﹣2x的顶点为()A.(1,1)B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)【考点】二次函数的性质.【分析】把二次函数化成顶点式,可得出二次函数的顶点坐标.【解答】解:∵y=x2﹣2x=(x﹣1)2﹣1,∴其顶点坐标为(1,﹣1),故选D.【点评】本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式y=a(x﹣h)2+k的顶点坐标为(h,k)是解题的关键.3.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.1【考点】特殊角的三角函数值.【分析】根据AB=2BC直接求sinB的值即可.【解答】解:∵Rt△ABC中,∠C=90°,AB=2BC,∴sinA===;∴∠A=30°∴∠B=60°∴sinB=故选C.【点评】本题考查了锐角三角函数的定义,解决本题时,直接利用正弦的定义求解即可.4.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看是一个实线的同心圆,故选:C.【点评】本题考查了简单组合体的三视图,俯视图是从上边看得到的图形.5.从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝大于﹣2的概率是()A.B.C.D.【考点】概率公式.【分析】根据概率公式可得答案.【解答】解:∵﹣3,﹣2,﹣1,1,2,3的六张卡片中,大于﹣2的有﹣1,1,2,3这4张,∴所抽卡片上的数大于﹣2的概率是=,故选:D.【点评】本题主要考查概率公式,掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数是解题的关键.6.某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米 B.米C.2米D.米【考点】解直角三角形的应用﹣坡度坡角问题.【分析】由坡度定义可得位置升高的高度即为坡角所对的直角边.根据题意可得tan∠A=,AB=10m,可解出直角边BC,即得到位置升高的高度.【解答】解:由题意得,BC:AC=1:2.∴BC:AB=1:.∵AB=6m,∴BC=m.故选B.【点评】本题主要考查坡度的定义和解直角三角形的应用,注意画出示意图会使问题具体化.7.已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3 B.k<3 C.k≤3且k≠2 D.k<2【考点】抛物线与x轴的交点.【分析】根据二次函数图象与x轴有交点可得出关于x的一元二次方程有解,根据根的判别式结合二次项系数非零即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,∴一元二次方程(k﹣2)x2+2x+1=0有解,∴,解得:k≤3且k≠2.故选:C.【点评】本题考查了抛物线与x轴的交点、根的判别式以及解一元一次不等式组,根据根的判别式△≥0结合二次项系数非零找出关于k的一元一次不等式组是解题的关键.8.如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC 于点F,则CF等于()A.2 B.3 C.4 D.5【考点】相似三角形的判定与性质;矩形的性质.【分析】根据勾股定理求出BD,得到DE的长,根据相似三角形的性质得到比例式,代入计算即可求出DF的长,求出CF的长度.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,又AB=CD=6,BC=AD=8,∴BD==10,∵BE=6,∴DE=10﹣6=4,∵AB∥CD,∴=,即=,解得,DF=4,则CF=CD﹣DF=6﹣4=2,故选:A.【点评】本题考查的是矩形的性质、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.9.如图,在扇形AOB中,∠AOB=90°,=,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣4【考点】扇形面积的计算;正方形的性质.【分析】连接OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣△ODC的面积,依此列式计算即可求解.【解答】解:连接OC,如图所示:∵在扇形AOB中∠AOB=90°,=,∴∠COD=45°,∴OD=CD,∴OC==4,∴阴影部分的面积=扇形BOC的面积﹣△ODC的面积=﹣×(2)2=2π﹣4.故选:A.【点评】此题考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是()A.abc<0 B.a﹣b+c<0 C.b2﹣4ac>0 D.3a+c>0【考点】二次函数图象与系数的关系.【分析】A.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,由a与0的关系并结合抛物线的对称轴判断b与0的关系,即可得出abc与0的关系;B.由二次函数的图象可知当x=﹣1时y<0,据此分析即可;C.利用抛物线与x轴的交点的个数进行分析即可;D.由对称轴x=﹣=1,可得b=﹣2a,又由B知a﹣b+c<0,可得3a+c<0,可判断.【解答】解:A、由抛物线开口向下,可得a<0,由抛物线与y轴的交点在x轴的上方,可得c>0,由抛物线的对称轴为x=1,可得﹣>0,则b>0,∴abc<0,故A正确,不符合题意;B.当x=﹣1时,y<0,则a﹣b+c<0,故B正确,不符合题意;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故C正确,不符合题意;D.∵对称轴x=﹣=1,∴b=﹣2a,∵a﹣b+c<0,∴3a+c<0,故D错误,符合题意;故选D.【点评】本题考查了二次函数图象与系数的关系.关键是熟记二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.二、填空题(本大题共4小题,每小题5分,满分20分)11.二次函数y=x2+1的最小值是1.【考点】二次函数的最值.【分析】根据二次函数解析式得特点可知,当x=0时取得最小值1.【解答】解:由二次函数y=x2+1得到:该抛物线的开口方向向上,且顶点坐标是(0,1).所以二次函数y=x2+1的最小值是1.故答案是:1.【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.12.如图,点A、B、C在⊙O上,∠A=36°,则∠O=72°.【考点】圆周角定理.【分析】根据同弧所对的圆心角是圆周角的2倍得出结论.【解答】解:由图形得:∠O=2∠A=2×36°=72°;故答案为:72°,【点评】本题考查了圆周角与圆心角的关系,属于基础题,比较简单,明确在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.13.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为25:9.【考点】解直角三角形;等腰三角形的性质.【分析】先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,然后根据三角形面积公式即可得到结论.【解答】解:过A作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,∵∠B+∠B′=90°,∴sinB=cosB′,sinB′=cosB,∵S△BAC=AD•BC=AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC :S△A′B′C′=25:9,故答案为:25:9.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和三角形面积公式.14.如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD 落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论:①∠AGD=112.5°;②tan∠AED=+1;③四边形AEFG是菱形;④S△ACD=S△OCD.其中正确结论的序号是①②③.(把所有正确结论的序号都填在横线上)【考点】翻折变换(折叠问题);菱形的性质;解直角三角形.【分析】根据翻转变换的性质、正方形的性质进行计算,判断即可.【解答】解:∵四边形ABCD是正方形,∴∠ADB=45°,由折叠的性质可知,∠ADE=∠BDE=22.5°,∴∠AGD=180°﹣90°﹣22.5°=112.5°,①正确;设AE=x,∵△BEF是等腰直角三角形,∴BE=EF=AE=x,∴x+x=1,解得,x=﹣1,∴tan∠AED==+1,②正确;由同位角相等可知,GF∥AB,EF∥AC,∴四边形AEFG是平行四边形,由折叠的性质可知,EA=EF,∴四边形AEFG是菱形,③正确;=2S△OCD,④错误,由正方形的性质可知,S△ACD故答案为:①②③.【点评】本题考查的是翻转变换的性质、菱形的性质、解直角三角形的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15.计算:2cos60°﹣|﹣4sin45°|【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简即可得到结果.【解答】解:原式=2×﹣=1﹣.【点评】此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A 按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.【考点】轨迹;等腰三角形的性质;旋转的性质.【分析】由△ABD绕点A按逆时针方向旋转,AB与AC重合知旋转角为45°,根据弧长公式可得答案.【解答】解:∵△ABD绕点A按逆时针方向旋转,AB与AC重合,∴旋转角为45°,∴的长为=π.【点评】本题主要考查旋转的性质、弧长公式,熟练掌握旋转的性质得出旋转角度数是解题的关键.四、解答题(本大题共2小题,每小题8分,满分16分)17.如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.【考点】垂径定理;勾股定理.【分析】作OH⊥AB于H,根据垂径定理得AH=BH=AB=,再在Rt△BOH中,根据勾股定理得OH=1,由AC=AB得AC=,则CH=AH﹣AC=,然后根据勾股定理可计算出OC的长.【解答】解:作OH⊥AB于H,如图,∵OH⊥AB,∴AH=BH,∴AH=BH=AB=×2=,在Rt△BOH中,OB=2,BH=,∴OH==1,∵AC=AB=×2=,∴CH=AH﹣AC=﹣=,在Rt△OHC中,OC==.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.18.某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.【考点】列表法与树状图法.【分析】(1)由已确定A打第一场,再从其余三队中随机选取一队,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中B、C两队进行比赛的情况,再利用概率公式即可求得答案.【解答】解:(1)∵已确定A打第一场,再从其余三队中随机选取一队,∴恰好选中D队的概率;(2)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴P(B、C两队进行比赛)==.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)(2017•全椒县一模)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)【考点】解直角三角形的应用.【分析】延长BA,CD交于点P,解直角三角形得到AP=PD•cos30°和BC的长,通过△PAD∽△PCB,得出=,代入数据即可得到结论.【解答】解:如图,延长BA,CD交于点P,∵∠PAD=∠PCB=90°,∠ADC=120°,∴∠P=30°,∵AD=3,∴PD=6,AP=PD•cos30°=3,BC=(18﹣2)÷2+2=10.∵∠P=∠P,∠PAD=∠PCB=90°,∴△PAD∽△PCB,∴=,∴PC==10m,∴CD=PC﹣PD=10﹣6≈11.32m.则应设计11.32m高的灯柱,才能取得最理想的照明效果.【点评】本题考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念,正确的作出辅助线构造相似三角形是解题的关键.20.(10分)(2017•全椒县一模)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.【考点】待定系数法求反比例函数解析式;菱形的性质;坐标与图形变化﹣平移;解直角三角形.【分析】(1)根据菱形性质得出AC⊥OB,OD=BD,AD=CD,解直角三角形即可得出答案;(2)设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),得出k=2(6﹣x)=6(4﹣x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.【解答】解:(1)连接AC,交y轴于D,∵四边形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD,∵OB=4,tan∠BOC=.∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2);(2)B、C落在反比例函数的图象上,设菱形平移后B的坐标是(x,4),C的坐标是(1+x,2),∵B、C落在反比例函数的图象上,∴k=4x=2(1+x),解得x=1,即菱形平移后B的坐标是(1,4),代入反比例函数的解析式得:k=1×4=4,即B、C落在反比例函数的图象上,菱形的平移距离是1,反比例函数的解析式是y=.【点评】本题考查了矩形性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.六、解答题(本题满分12分)21.(12分)(2017•全椒县一模)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M 于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.【考点】切线的判定;坐标与图形性质.【分析】(1)由点A的坐标可知OA的长度,根据∠ABO的度数可知,AB的长度为4,利用勾股定理即可求出OB的长度,从而求出B的坐标.(2)连接OC、MC、证明∠OCB为直角,根据D为OB的中点,可知∠DCO=∠DOC,易知∠OCM=∠COM,所以∠MCO+∠DCO=∠MCD=90°,即可求证MC⊥CD.【解答】解:(1)∵A的坐标为(0,2)∴OA=2,∵∠ABO=30°,∠AOB=90°,∴AB=2OA=4,∴由勾股定理可知:OB=2,∴B(2,0)(2)连接OC,MC∵OA是⊙M的直径,∴∠ACO=90°,∴∠OCB=90°,在Rt△OCB中,D为OB的中点,∴CD=OB=OD,∴∠DCO=∠DOC,∵MC=MO,∴∠OCM=∠COM∵∠MOC+∠DOC=∠AOB=90°,∴∠MCO+∠DCO=∠MCD=90°即MC⊥CD∴直线CD是⊙M的切线.【点评】本题考查切线的判定,解题的关键是连接MC、OC、根据直角三角形斜边上中线的性质,圆周角定理,等腰三角形的性质求出MC⊥CD,本题属于中等题型.七、解答题(本题满分12分)22.(12分)(2017•全椒县一模)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB 上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.【考点】二次函数综合题.【分析】(1)由条件可先求得抛物线解析式,则可求得B点坐标,再利用待定系数法可求得直线AB解析式;(2)由条件可知P、E的横坐标相同,又点E在抛物线上,则可表示出E点坐标;(3)由(2)可用x表示出PE的长,则可用x表示出△ABE的面积,再利用二次函数的性质可求得其最大值.【解答】解:(1)∵抛物线顶点坐标为(1,﹣2),∴可设抛物线解析式为y=a(x﹣1)2﹣2,∵OA=3,且点A在x轴的正半轴上,∴A(3,0),∴0=a(3﹣1)2﹣2,解得a=,∴抛物线解析式为y=(x﹣1)2﹣2=x2﹣x﹣,当x=0时可得y=﹣,∴B(0,﹣),设直线AB解析式为y=kx+b,把A、B坐标代入可得,解得,∴y=x﹣;(2)∵点P为线段AB上的一个动点,且PE⊥x轴,∴点E的横坐标为x,∵点E在抛物线上,∴E点的坐标为(x,x2﹣x﹣);(3)∵点P为线段AB上的一点,∴P(x,x﹣),则E(x,x2﹣x﹣),∴PE=x﹣﹣(x2﹣x﹣)=﹣x2+x,由(2)可知点B到PE的距离x,点A以PE的距离为3﹣x,=PE•x+PE•(3﹣x)=PE•(x+3﹣x)=PE=(﹣x2+x)=﹣x2+x=﹣(x﹣)∴S△ABE2+,∵﹣<0,有最大值,最大值为,∴当x=时,S△ABE∴△ABE面积的最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积及方程思想等知识.在(1)中求得B点坐标是解题的关键,在(2)中注意E点横坐标与P点横坐标相同是解题的关键,在(3)中用P点坐标表示出△ABE的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.八、解答题(本题满分14分)23.(14分)(2017•全椒县一模)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是矩形,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)根据有一个角是直角的平行四边形进行判断当α=90°时,就是长与宽的比;(2)①利用相似三角形求得CP的比,就可求得BP,PQ的值;②根据勾股定理求得PB′的长,再根据三角形的面积公式进行计算.(3)构造全等三角形和直角三角形,运用勾股定理求得PC的长,进一步求得坐标【解答】解:(1)图1,四边形OA′B′C′的形状是矩形;∵点A的坐标为(﹣8,0),点B(﹣8,6),∴AB∥OC,∵BC∥x轴,∴四边形OABC是平行四边形.又OC⊥OA,∴平行四边形OABC的形状是矩形;当α=90°时,P与C重合,如图1,BP=8,BQ=BP+OC=8+6=14,∴,即是矩形的长与宽的比,则.故答案为矩形,;(2)①图2,∵∠POC=∠B′OA′,∠PCO=∠OA′B′=90°,∴△COP∽△A′OB′.∴,即,∴CP=,BP=BC﹣CP=.同理△B′CQ∽△B′C′O,∴,∴∴CQ=3,BQ=BC+CQ=11.∴,∴;②图3,在△OCP和△B′A′P中,,∴△OCP≌△B′A′P(AAS).∴OP=B′P.设B′P=x,在Rt△OCP中,(8﹣x)2+62=x2,解得x=.=××6=.∴S△OPB′(3)存在这样的点P和点Q,使BP=BQ.点P的坐标是P1(﹣9﹣,6),P2(﹣,6).理由:过点Q作QH⊥OA′于H,连接OQ,则QH=OC′=OC,=PQ•OC,S△POQ=OP•QH,∵S△POQ∴PQ=OP.设BP=x,∵BP=BQ,∴BQ=2x,如图4,当点P在点B左侧时,OP=PQ=BQ+BP=3x,在Rt△PCO中,(8+x)2+62=(3x)2,解得x1=1+,x2=1﹣(不符实际,舍去).∴PC=BC+BP=9+,∴P(﹣9﹣,6).如图5,当点P在点B右侧时,∴OP=PQ=BQ﹣BP=x,PC=8﹣x.在Rt△PCO中,(8﹣x)2+62=x2,解得x=.∴PC=BC﹣BP=8﹣=,∴P(﹣,6),综上可知,存在点P(﹣9﹣,6)或(﹣,6),使BP=BQ.【点评】本题考查了旋转的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理.特别注意在旋转的过程中的对应线段相等,能够用一个未知数表示同一个直角三角形的未知边,解本题的关键是根据勾股定理列方程求解.。
2017年安徽省滁州市全椒县中考一模数学试卷(解析版)
2017年安徽省滁州市全椒县中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.(4分)若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2B.2C.﹣D.2.(4分)二次函数y=x2﹣2x的顶点为()A.(1,1)B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)3.(4分)如图,在Rt△ABC中,∠C=90°,AB=2BC,则sin B的值为()A.B.C.D.14.(4分)如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B.C.D.5.(4分)从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数均大于﹣2的概率是()A.B.C.D.6.(4分)某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米B.米C.2米D.米7.(4分)已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3B.k<3C.k≤3且k≠2D.k<28.(4分)如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A.2B.3C.4D.59.(4分)如图,在扇形AOB中,∠AOB=90°,=,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4B.4π﹣8C.2π﹣8D.4π﹣4 10.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是()A.abc<0B.a﹣b+c<0C.b2﹣4ac>0D.3a+c>0二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)二次函数y=x2+1的最小值是.12.(5分)如图,点A、B、C在⊙O上,∠A=36°,则∠O=.13.(5分)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为.14.(5分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论:①∠AGD=112.5°;②tan∠AED=+1;③四边形AEFG是菱形;④S △ACD.=S△OCD其中正确结论的序号是.(把所有正确结论的序号都填在横线上)三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:2cos60°﹣|﹣4sin45°|16.(8分)如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A按逆时针方向旋转,使AB与AC重合,求点D 运动的路径长.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.18.(8分)某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)20.(10分)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.六、解答题(本题满分12分)21.(12分)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.七、解答题(本题满分12分)22.(12分)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.八、解答题(本题满分14分)23.(14分)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC 绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.2017年安徽省滁州市全椒县中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.(4分)若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2B.2C.﹣D.【解答】解:把点(2,﹣1)代入解析式得﹣1=,解得k=﹣2.故选:A.2.(4分)二次函数y=x2﹣2x的顶点为()A.(1,1)B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)【解答】解:∵y=x2﹣2x=(x﹣1)2﹣1,∴其顶点坐标为(1,﹣1),故选:D.3.(4分)如图,在Rt△ABC中,∠C=90°,AB=2BC,则sin B的值为()A.B.C.D.1【解答】解:∵Rt△ABC中,∠C=90°,AB=2BC,∴sin A===;∴∠A=30°∴∠B=60°∴sin B=故选:C.4.(4分)如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B.C.D.【解答】解:从上边看是一个实线的同心圆,故选:C.5.(4分)从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数均大于﹣2的概率是()A.B.C.D.【解答】解:∵﹣3,﹣2,﹣1,1,2,3的六张卡片中,大于﹣2的有﹣1,1,2,3这4张,∴所抽卡片上的数大于﹣2的概率是=,故选:D.6.(4分)某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米B.米C.2米D.米【解答】解:由题意得,BC:AC=1:2.∴BC:AB=1:.∵AB=6m,∴BC=m.故选:B.7.(4分)已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3B.k<3C.k≤3且k≠2D.k<2【解答】解:∵二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,∴一元二次方程(k﹣2)x2+2x+1=0有解,∴,解得:k≤3且k≠2.故选:C.8.(4分)如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A.2B.3C.4D.5【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,又AB=CD=6,BC=AD=8,∴BD==10,∵BE=6,∴DE=10﹣6=4,∵AB∥CD,∴=,即=,解得,DF=4,则CF=CD﹣DF=6﹣4=2,故选:A.9.(4分)如图,在扇形AOB中,∠AOB=90°,=,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4B.4π﹣8C.2π﹣8D.4π﹣4【解答】解:连接OC,如图所示:∵在扇形AOB中∠AOB=90°,=,∴∠COD=45°,∴OD=CD,∴OC==4,∴阴影部分的面积=扇形BOC的面积﹣△ODC的面积=﹣×(2)2=2π﹣4.故选:A.10.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是()A.abc<0B.a﹣b+c<0C.b2﹣4ac>0D.3a+c>0【解答】解:A、由抛物线开口向下,可得a<0,由抛物线与y轴的交点在x轴的上方,可得c>0,由抛物线的对称轴为x=1,可得﹣>0,则b>0,∴abc<0,故A正确,不符合题意;B.当x=﹣1时,y<0,则a﹣b+c<0,故B正确,不符合题意;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故C正确,不符合题意;D.∵对称轴x=﹣=1,∴b=﹣2a,∵a﹣b+c<0,∴3a+c<0,故D错误,符合题意;故选:D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)二次函数y=x2+1的最小值是1.【解答】解:由二次函数y=x2+1得到:该抛物线的开口方向向上,且顶点坐标是(0,1).所以二次函数y=x2+1的最小值是1.故答案是:1.12.(5分)如图,点A、B、C在⊙O上,∠A=36°,则∠O=72°.【解答】解:由图形得:∠O=2∠A=2×36°=72°;故答案为:72°,13.(5分)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为25:9.【解答】解:过A作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sin B,A′D′=A′B′•sin B′,BC=2BD=2AB•cos B,B′C′=2B′D′=2A′B′•cos B′,∵∠B+∠B′=90°,∴sin B=cos B′,sin B′=cos B,∵S△BAC=AD•BC=AB•sin B•2AB•cos B=25sin B•cos B,S△A′B′C′=A′D′•B′C′=A′B′•cos B′•2A′B′•sin B′=9sin B′•cos B′,∴S△BAC :S△A′B′C′=25:9,故答案为:25:9.14.(5分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论:①∠AGD=112.5°;②tan∠AED=+1;③四边形AEFG是菱形;④S △ACD=S△OCD.其中正确结论的序号是①②③.(把所有正确结论的序号都填在横线上)【解答】解:∵四边形ABCD 是正方形,∴∠ADB =45°,由折叠的性质可知,∠ADE =∠BDE =22.5°,∴∠AGD =180°﹣90°﹣22.5°=112.5°,①正确;设AE =x ,∵△BEF 是等腰直角三角形,∴BE =EF =AE =x ,∴x +x =1,解得,x =﹣1,∴tan ∠AED ==+1,②正确; 由同位角相等可知,GF ∥AB ,EF ∥AC ,∴四边形AEFG 是平行四边形,由折叠的性质可知,EA =EF ,∴四边形AEFG 是菱形,③正确;由正方形的性质可知,S △ACD =2S △OCD ,④错误,故答案为:①②③.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:2cos60°﹣|﹣4sin45°| 【解答】解:原式=2×﹣=1﹣.16.(8分)如图,在△ABC 中,∠BAC =45°,AB =AC ,D 为△ABC 内一点,AD =4,如果把△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,求点D 运动的路径长.【解答】解:∵△ABD绕点A按逆时针方向旋转,AB与AC重合,∴旋转角为45°,∴的长为=π.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.【解答】解:作OH⊥AB于H,如图,∵OH⊥AB,∴AH=BH,∴AH=BH=AB=×2=,在Rt△BOH中,OB=2,BH=,∴OH==1,∵AC=AB=×2=,∴CH=AH﹣AC=﹣=,在Rt△OHC中,OC==.18.(8分)某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.【解答】解:(1)∵已确定A打第一场,再从其余三队中随机选取一队,∴恰好选中D队的概率;(2)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴P(B、C两队进行比赛)==.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)【解答】解:如图,延长BA,CD交于点P,∵∠P AD=∠PCB=90°,∠ADC=120°,∴∠P=30°,∵AD=3,∴PD=6,AP=PD•cos30°=3,BC=(18﹣2)÷2+2=10.∵∠P=∠P,∠P AD=∠PCB=90°,∴△P AD∽△PCB,∴=,∴PC==10m,∴CD=PC﹣PD=10﹣6≈11.32m.则应设计11.32m高的灯柱,才能取得最理想的照明效果.20.(10分)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.【解答】解:(1)连接AC,交y轴于D,∵四边形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD,∵OB=4,tan∠BOC=.∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2);(2)B、C落在反比例函数的图象上,设菱形平移后B的坐标是(x,4),C的坐标是(1+x,2),∵B、C落在反比例函数的图象上,∴k=4x=2(1+x),解得x=1,即菱形平移后B的坐标是(1,4),代入反比例函数的解析式得:k=1×4=4,即B、C落在反比例函数的图象上,菱形的平移距离是1,反比例函数的解析式是y=.六、解答题(本题满分12分)21.(12分)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.【解答】解:(1)∵A的坐标为(0,2)∴OA=2,∵∠ABO=30°,∠AOB=90°,∴AB=2OA=4,∴由勾股定理可知:OB=2,∴B(2,0)(2)连接OC,MC∵OA是⊙M的直径,∴∠ACO=90°,∴∠OCB=90°,在Rt△OCB中,D为OB的中点,∴CD=OB=OD,∴∠DCO=∠DOC,∵MC=MO,∴∠OCM=∠COM∵∠MOC+∠DOC=∠AOB=90°,∴∠MCO+∠DCO=∠MCD=90°即MC⊥CD∴直线CD是⊙M的切线.七、解答题(本题满分12分)22.(12分)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.【解答】解:(1)∵抛物线顶点坐标为(1,﹣2),∴可设抛物线解析式为y=a(x﹣1)2﹣2,∵OA=3,且点A在x轴的正半轴上,∴A(3,0),∴0=a(3﹣1)2﹣2,解得a=,∴抛物线解析式为y=(x﹣1)2﹣2=x2﹣x﹣,当x=0时可得y=﹣,∴B(0,﹣),设直线AB解析式为y=kx+b,把A、B坐标代入可得,解得,∴y=x﹣;(2)∵点P为线段AB上的一个动点,且PE⊥x轴,∴点E的横坐标为x,∵点E在抛物线上,∴E点的坐标为(x,x2﹣x﹣);(3)∵点P为线段AB上的一点,∴P(x,x﹣),则E(x,x2﹣x﹣),∴PE=x﹣﹣(x2﹣x﹣)=﹣x2+x,由(2)可知点B到PE的距离x,点A以PE的距离为3﹣x,∴S=PE•x+PE•(3﹣x)=PE•(x+3﹣x)=PE=(﹣x2+x)=﹣△ABEx2+x=﹣(x﹣)2+,∵﹣<0,∴当x=时,S有最大值,最大值为,△ABE∴△ABE面积的最大值为.八、解答题(本题满分14分)23.(14分)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC 绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是矩形,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)图1,四边形OA′B′C′的形状是矩形;∵点A的坐标为(﹣8,0),点B(﹣8,6),∴AB∥OC,∵BC∥x轴,∴四边形OABC是平行四边形.又OC⊥OA,∴平行四边形OABC的形状是矩形;当α=90°时,P与C重合,如图1,BP=8,BQ=BP+OC=8+6=14,∴,即是矩形的长与宽的比,则.故答案为矩形,;(2)①图2,∵∠POC=∠B′OA′,∠PCO=∠OA′B′=90°,∴△COP∽△A′OB′.∴,即,∴CP=,BP=BC﹣CP=.同理△B′CQ∽△B′C′O,∴, ∴ ∴CQ =3,BQ =BC +CQ =11. ∴, ∴;②图3,在△OCP 和△B ′A ′P 中,, ∴△OCP ≌△B ′A ′P (AAS ).∴OP =B ′P .设B ′P =x ,在Rt △OCP 中,(8﹣x )2+62=x 2,解得x =.∴S △OPB ′=××6=.(3)存在这样的点P 和点Q ,使BP =BQ .点P 的坐标是P 1(﹣9﹣,6),P 2(﹣,6).理由:过点Q 作QH ⊥OA ′于H ,连接OQ ,则QH =OC ′=OC ,∵S △POQ =PQ •OC ,S △POQ =OP •QH ,∴PQ =OP .设BP =x ,∵BP =BQ ,∴BQ =2x ,如图4,当点P在点B左侧时,OP=PQ=BQ+BP=3x,在Rt△PCO中,(8+x)2+62=(3x)2,解得x1=1+,x2=1﹣(不符实际,舍去).∴PC=BC+BP=9+,∴P(﹣9﹣,6).如图5,当点P在点B右侧时,∴OP=PQ=BQ﹣BP=x,PC=8﹣x.在Rt△PCO中,(8﹣x)2+62=x2,解得x=.∴PC=BC﹣BP=8﹣=,∴P(﹣,6),综上可知,存在点P(﹣9﹣,6)或(﹣,6),使BP=BQ.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年安徽省滁州市中考数学一模试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣22.(3分)随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016年国民出境旅游超过120 000 000人次,将120 000 000用科学记数法表示为()A.1.2×109B.12×107C.0.12×109D.1.2×108 3.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)含30°角的直角三角板与直线l1、l2的位置关系如图所示,已知l1∥l2,∠ACD=∠A,则∠1=()A.70°B.60°C.40°D.30°5.(3分)下列说法正确的是()A.打开电视,它正在播广告是必然事件B.要考察一个班级中的学生对建立生物角的看法适合用抽样调查C.在抽样调查过程中,样本容量越大,对总体的估计就越准确D.甲、乙两人射中环数的方差分别为S甲2=2,S乙2=4,说明乙的射击成绩比甲稳定6.(3分)若a2﹣ab=0(b≠0),则=()A.0B.C.0或D.1或2 7.(3分)如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A.2米B.2.5米C.2.4米D.2.1米8.(3分)已知x+=3,则下列三个等式:①x2+=7,②x﹣,③2x2﹣6x=﹣2中,正确的个数有()A.0个B.1个C.2个D.3个9.(3分)已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.B.C.或D.或10.(3分)如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)3﹣2=.12.(3分)二元一次方程组==x+2的解是.13.(3分)如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为.14.(3分)点A、B、C在格点图中的位置如图所示,格点小正方形的边长为1,则点C到线段AB所在直线的距离是.15.(3分)庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=+++…++….图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作CC1⊥AB于点C1,再过点C1作C1C2⊥BC于点C2,又过点C2作C2C3⊥AB于点C3,如此无限继续下去,则可将利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、C n﹣1C n、….假设AC=2,这些三角形的面积和可以得到一个等式是.△C n﹣216.(3分)对于函数y=x n+x m,我们定义y'=nx n﹣1+mx m﹣1(m、n为常数).例如y=x4+x2,则y'=4x3+2x.已知:y=x3+(m﹣1)x2+m2x.(1)若方程y′=0有两个相等实数根,则m的值为;(2)若方程y′=m﹣有两个正数根,则m的取值范围为.三、本大题共3小题,每小题9分,共27分.17.(9分)计算:2sin60°+|1﹣|+20170﹣.18.(9分)求不等式组的所有整数解.19.(9分)如图,延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.四、本大题共3小题,每小题10分,共30分.20.(10分)化简:(﹣)÷.21.(10分)为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:(1)在表中:m=,n=;(2)补全频数分布直方图;(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在组;(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明.22.(10分)如图,在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A 处测得屋顶C与树梢D的仰角分别是45°与60°,∠CAD=60°,在屋顶C处测得∠DCA=90°.若房屋的高BC=6米,求树高DE的长度.五、本大题共2小题,每小题10分,共20分.23.(10分)某公司从2013年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其解析式;(2)按照这种变化规律,若2017年已投入资金5万元.①预计生产成本每件比2016年降低多少万元?②若打算在2017年把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).24.(10分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC 交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE•CP的值.六、本大题共2小题,第25题12分,第26题13分,共25分.25.(12分)在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.26.(13分)如图1,抛物线C1:y=x2+ax与C2:y=﹣x2+bx相交于点O、C,C1与C2分别交x轴于点B、A,且B为线段AO的中点.(1)求的值;(2)若OC⊥AC,求△OAC的面积;(3)抛物线C2的对称轴为l,顶点为M,在(2)的条件下:①点P为抛物线C2对称轴l上一动点,当△PAC的周长最小时,求点P的坐标;②如图2,点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.2017年安徽省滁州市中考数学一模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣2【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.(3分)随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016年国民出境旅游超过120 000 000人次,将120 000 000用科学记数法表示为()A.1.2×109B.12×107C.0.12×109D.1.2×108【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:120 000 000=1.2×108.故选:D.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、不是轴对称图形,不是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)含30°角的直角三角板与直线l1、l2的位置关系如图所示,已知l1∥l2,∠ACD=∠A,则∠1=()A.70°B.60°C.40°D.30°【分析】先根据三角形外角性质得到∠CDB的度数,再根据平行线的性质,即可得到∠1的度数.【解答】解:∵∠ACD=∠A=30°,∴∠CDB=∠A+∠ACD=60°,∵l1∥l2,∴∠1=∠CDB=60°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.5.(3分)下列说法正确的是()A.打开电视,它正在播广告是必然事件B.要考察一个班级中的学生对建立生物角的看法适合用抽样调查C.在抽样调查过程中,样本容量越大,对总体的估计就越准确D.甲、乙两人射中环数的方差分别为S甲2=2,S乙2=4,说明乙的射击成绩比甲稳定【分析】根据随机事件的概念、全面调查和抽样调查的关系、方差的性质判断即可.【解答】解:A、打开电视,它正在播广告是随机事件,A错误;B、要考察一个班级中的学生对建立生物角的看法适合用全面调查,B错误;C、在抽样调查过程中,样本容量越大,对总体的估计就越准确,C正确;D、甲、乙两人射中环数的方差分别为S甲2=2,S乙2=4,说明甲的射击成绩比乙稳定,D错误;故选:C.【点评】本题考查的是随机事件、全面调查和抽样调查、方差,掌握随机事件的概念、全面调查和抽样调查的关系、方差的性质是解题的关键.6.(3分)若a2﹣ab=0(b≠0),则=()A.0B.C.0或D.1或2【分析】首先求出a=0或a=b,进而求出分式的值.【解答】解:∵a2﹣ab=0(b≠0),∴a=0或a=b,当a=0时,=0.当a=b时,=,故选:C.【点评】本题主要考查了分式的值,解题的关键是要注意题目有两个答案,容易漏掉值为0的情况.7.(3分)如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A.2米B.2.5米C.2.4米D.2.1米【分析】连接OF,交AC于点E,设圆O的半径为R米,根据勾股定理列出方程,解方程即可.【解答】解:连接OF,交AC于点E,∵BD是⊙O的切线,∴OF⊥BD,∵四边形ABDC是矩形,∴AC∥BD,∴OE⊥AC,EF=AB,设圆O的半径为R,在Rt△AOE中,AE===0.75米,OE=R﹣AB=R﹣0.25,∵AE2+OE2=OA2,∴0.752+(R﹣0.25)2=R2,解得R=1.25.1.25×2=2.5(米).答:这扇圆弧形门的最高点离地面的距离是2.5米.故选:B.【点评】本题考查的是垂径定理的应用,掌握平分弦(不是直径)的直径垂直于弦是解题的关键,注意勾股定理的灵活运用.8.(3分)已知x+=3,则下列三个等式:①x2+=7,②x﹣,③2x2﹣6x=﹣2中,正确的个数有()A.0个B.1个C.2个D.3个【分析】将x+=3两边同时平方,然后通过恒等变形可对①作出判断,由x﹣=±可对②作出判断,方程2x2﹣6x=﹣2两边同时除以2x,然后再通过恒等变形可对③作出判断.【解答】解:∵x+=3,∴(x+)2=9,整理得:x2+=7,故①正确.x﹣=±=±,故②错误.∵2x2﹣6x=﹣2∴x≠0∴2x≠0.方程2x2﹣6x=﹣2两边同时除以2x得:x﹣3=﹣,整理得:x+=3,故③正确.故选:C.【点评】本题主要考查的是完全平方公式的应用,熟练掌握完全平方公式是解题的关键.9.(3分)已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.B.C.或D.或【分析】将二次函数配方成顶点式,分m<﹣1、m>2和﹣1≤m≤2三种情况,根据y的最小值为﹣2,结合二次函数的性质求解可得.【解答】解:y=x2﹣2mx=(x﹣m)2﹣m2,①若m<﹣1,当x=﹣1时,y=1+2m=﹣2,解得:m=﹣;②若m>2,当x=2时,y=4﹣4m=﹣2,解得:m=<2(舍);③若﹣1≤m≤2,当x=m时,y=﹣m2=﹣2,解得:m=或m=﹣<﹣1(舍),∴m的值为﹣或,故选:D.【点评】本题主要考查二次函数的最值,根据二次函数的增减性分类讨论是解题的关键.10.(3分)如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A.B.C.D.【分析】根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D(6,1),E(,4),根据勾股定理得到ED==,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′=,设EG=x,则BG=﹣x根据勾股定理即可得到结论.【解答】解:∵四边形OABC是矩形,∴CB∥x轴,AB∥y轴,∵点B坐标为(6,4),∴D的横坐标为6,E的纵坐标为4,∵D,E在反比例函数y=的图象上,∴D(6,1),E(,4),∴BE=6﹣=,BD=4﹣1=3,∴ED==,连接BB′,交ED于F,过B′作B′G⊥BC于G,∵B,B′关于ED对称,∴BF=B′F,BB′⊥ED,∴BF•ED=BE•BD,即BF=3×,∴BF=,∴BB′=,设EG=x,则BG=﹣x,∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴()2﹣(﹣x)2=()2﹣x2,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=﹣.或过点B′作x轴的平行线l,再过E、D作直线l的垂线段,垂足分别为M、N,利用△EMB′与△B′ND相似,得到关于B′的横坐标和纵坐标的二元一次方程组,解方程组,用纵坐标除以横坐标即可.故选:B.【点评】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)3﹣2=.【分析】根据幂的负整数指数运算法则计算.【解答】解:原式==.故答案为:.【点评】本题考查的是幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.12.(3分)二元一次方程组==x+2的解是.【分析】根据二元一次方程组的解法即可求出答案.【解答】解:原方程可化为:,化简为,解得:.故答案为:;【点评】本题考查二元一次方程的解法,解题的关键是将原方程化为方程组,本题属于基础题型.13.(3分)如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为6.【分析】根据中心对称图形的概念,以及长方形的面积公式即可解答.【解答】解:∵直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A 的对称点是点A',AB⊥a于点B,A'D⊥b于点D,OB=3,OD=2,∴AB=2,∴阴影部分的面积之和为3×2=6.故答案为:6.【点评】此题主要考查了长方形的面积及中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.14.(3分)点A、B、C在格点图中的位置如图所示,格点小正方形的边长为1,则点C到线段AB所在直线的距离是.【分析】连接AC,BC,设点C到线段AB所在直线的距离是h,利用勾股定理求出AB的长,利用三角形的面积公式即可得出结论.【解答】解:连接AC,BC,设点C到线段AB所在直线的距离是h,=3×3﹣×2×1﹣×2×1﹣×3×3﹣1=9﹣1﹣1﹣﹣1=,AB=∵S△ABC=,∴×h=,∴h=.故答案为:.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.(3分)庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=+++…++….图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作CC1⊥AB于点C1,再过点C1作C1C2⊥BC于点C2,又过点C2作C2C3⊥AB于点C3,如此无限继续下去,则可将利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、C n﹣1C n、….假设AC=2,这些三角形的面积和可以得到一个等式是2△C n﹣2=.=;进而得到【分析】先根据AC=2,∠B=30°,CC 1⊥AB,求得S△ACC1=×,=×()2,=×()3,根据规律可=AC×BC=×2×2=2,知=×()n﹣1,再根据S即可得到等式.【解答】解:如图2,∵AC=2,∠B=30°,CC1⊥AB,∴Rt△ACC1中,∠ACC1=30°,且BC=2,∴AC1=AC=1,CC1=AC1=,=•AC1•CC1=×1×=;∴S△ACC1∵C1C2⊥BC,∴∠CC1C2=∠ACC1=30°,∴CC2=CC1=,C1C2=CC2=,∴=•CC 2•C1C2=××=×,同理可得,=×()2,=×()3,…∴=×()n﹣1,=AC×BC=×2×2=2,又∵S△ABC∴2=+×+×()2+×()3+…+×()n﹣1+…∴2=.故答案为:2=.【点评】本题主要考查了图形的变化类问题,解决问题的关键是找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.16.(3分)对于函数y=x n+x m,我们定义y'=nx n﹣1+mx m﹣1(m、n为常数).例如y=x4+x2,则y'=4x3+2x.已知:y=x3+(m﹣1)x2+m2x.(1)若方程y′=0有两个相等实数根,则m的值为;(2)若方程y′=m﹣有两个正数根,则m的取值范围为且.【分析】根据新定义得到y′=x3+(m﹣1)x2+m2=x2+2(m﹣1)x+m2,(1)由判别式等于0,解方程即可;(2)根据根与系数的关系列不等式组即可得到结论.【解答】解:根据题意得y′=x2+2(m﹣1)x+m2,(1)∵方程x2﹣2(m﹣1)x+m2=0有两个相等实数根,∴△=[﹣2(m﹣1)]2﹣4m2=0,解得:m=,故答案为:;(2)y′=m﹣,即x2+2(m﹣1)x+m2=m﹣,化简得:x2+2(m﹣1)x+m2﹣m+=0,∵方程有两个正数根,∴,解得:且.故答案为:且.【点评】本题考查了抛物线与x轴的交点,根的判别式,根与系数的关系,正确的理解题意是解题的关键.三、本大题共3小题,每小题9分,共27分.17.(9分)计算:2sin60°+|1﹣|+20170﹣.【分析】首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:2sin60°+|1﹣|+20170﹣=2×+﹣1+1﹣3=﹣【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(9分)求不等式组的所有整数解.【分析】先求出不等式组的解集,再求出不等式组的整数解即可.【解答】解:解不等式①得:x>1,解不等式②得:x≤4,所以,不等式组的解集为1<x≤4,故不等式组的整数解为2,3,4.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键.19.(9分)如图,延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.【分析】根据平行四边形的性质可得AD=BC,AD∥BC,再证出BE=DF,得出AF=EC,进而可得四边形AECF是平行四边形,从而可得AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF∥EC,∵DF=DC,BE=BA,∴BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对边平行且相等,一组对边平行且相等的四边形是平行四边形.四、本大题共3小题,每小题10分,共30分.20.(10分)化简:(﹣)÷.【分析】根据分式的减法和除法可以解答本题.【解答】解:(﹣)÷=====.【点评】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.21.(10分)为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:(1)在表中:m=120,n=0.3;(2)补全频数分布直方图;(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在C组;(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明.【分析】(1)先根据A组频数及其频率求得总人数,再根据频率=频数÷总人数可得m、n的值;(2)根据(1)中所求结果即可补全频数分布直方图;(3)根据中位数的定义即可求解;(4)画树状图列出所有等可能结果,再找到抽中A、C的结果,根据概率公式求解可得.【解答】解:(1)∵本次调查的总人数为30÷0.1=300(人),∴m=300×0.4=120,n=90÷300=0.3,故答案为:120,0.3;(2)补全频数分布直方图如下:(3)由于共有300个数据,则其中位数为第150、151个数据的平均数,而第150、151个数据的平均数均落在C组,∴据此推断他的成绩在C组,故答案为:C;(4)画树状图如下:由树状图可知,共有12种等可能结果,其中抽中A﹑C两组同学的有2种结果,∴抽中A﹑C两组同学的概率为=.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.22.(10分)如图,在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A 处测得屋顶C与树梢D的仰角分别是45°与60°,∠CAD=60°,在屋顶C处测得∠DCA=90°.若房屋的高BC=6米,求树高DE的长度.【分析】首先解直角三角形求得表示出AC,AD的长,进而利用直角三角函数,求出答案.【解答】解:如图,在Rt△ABC中,∠CAB=45°,BC=6m,∴(m);在Rt△ACD中,∠CAD=60°,∴(m);在Rt△DEA中,∠EAD=60°,,答:树DE的高为米.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.五、本大题共2小题,每小题10分,共20分.23.(10分)某公司从2013年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其解析式;(2)按照这种变化规律,若2017年已投入资金5万元.①预计生产成本每件比2016年降低多少万元?②若打算在2017年把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).【分析】(1)从题很容易看出x与y的乘积为定值,应为反比例关系,由此即可解决问题;(2)①直接把x=5万元代入函数解析式即可求解;②直接把y=3.2万元代入函数解析式即可求解;【解答】解:(1):∵2.5×7.2=18,3×6=18,4×4.5=18,4.5×4=18,∴x与y的乘积为定值18,∴反比例函数能表示其变化规律,其解析式为y=.(2)①当x=5万元时,y=3.6.4﹣3.6=0.4(万元),∴生产成本每件比2016年降低0.4万元.②当y=3.2万元时,3.2=,∴x=5.625≈5.63,5.63﹣5=0.63万元∴还需投入0.63万元.【点评】本题主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.要注意用排除法确定函数的类型.24.(10分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC 交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE•CP的值.【分析】(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.【解答】解:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=(2)2=8.【点评】此题主要考查了切线的判定和相似三角形的性质和判定,关键是掌握切线的判定定理和相似三角形的判定与性质定理.六、本大题共2小题,第25题12分,第26题13分,共25分.25.(12分)在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.【分析】(1)结论:AC=AD+AB,只要证明AD=AC,AB=AC即可解决问题;(2)(1)中的结论成立.以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,只要证明△DAC≌△BEC即可解决问题;(3)结论:.过点C作CE⊥AC交AB的延长线于点E,只要证明△ACE是等腰直角三角形,△DAC≌△BEC即可解决问题;【解答】解:(1)AC=AD+AB.理由如下:如图1中,在四边形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∵∠B=90°,∴,同理.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴,∴.【点评】本题考查四边形综合题、等边三角形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.(13分)如图1,抛物线C1:y=x2+ax与C2:y=﹣x2+bx相交于点O、C,C1与C2分别交x轴于点B、A,且B为线段AO的中点.(1)求的值;(2)若OC⊥AC,求△OAC的面积;(3)抛物线C2的对称轴为l,顶点为M,在(2)的条件下:①点P为抛物线C2对称轴l上一动点,当△PAC的周长最小时,求点P的坐标;②如图2,点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.【分析】(1)由两抛物线解析式可分别用a和b表示出A、B两点的坐标,利用B为OA的中点可得到a和b之间的关系式;(2)由抛物线解析式可先求得C点坐标,过C作CD⊥x轴于点D,可证得△OCD ∽△CAD,由相似三角形的性质可得到关于a的方程,可求得OA和CD的长,可求得△OAC的面积;(3)①连接OC与l的交点即为满足条件的点P,可求得OC的解析式,则可求得P点坐标;②设出E点坐标,则可表示出△EOB的面积,过点E作x轴的平行线交直线BC于点N,可先求得BC的解析式,则可表示出EN的长,进一步可表示出△EBC 的面积,则可表示出四边形OBCE的面积,利用二次函数的性质可求得其最大值,及E点的坐标.【解答】解:(1)在y=x2+ax中,当y=0时,x2+ax=0,x1=0,x2=﹣a,∴B(﹣a,0),在y=﹣x2+bx中,当y=0时,﹣x2+bx=0,x1=0,x2=b,∴A(b,0),∵B为OA的中点,∴b=﹣2a,∴;(2)联立两抛物线解析式可得,消去y整理可得2x2+3ax=0,解得x1=0,,当时,,∴,过C作CD⊥x轴于点D,如图1,∴,∵∠OCA=90°,∴△OCD∽△CAD,∴,∴CD2=AD•OD,即,∴a1=0(舍去),(舍去),,∴,,∴;(3)①抛物线,∴其对称轴,点A关于l2的对称点为O(0,0),,则P为直线OC与l2的交点,设OC的解析式为y=kx,∴,得,∴OC的解析式为,当时,,∴;②设,E(m,﹣m2+m)(0≤m≤),=×(﹣m2+m)=﹣m2+m,则S△OBE而,,设直线BC的解析式为y=kx+b,由,解得,∴直线BC的解析式为,过点E作x轴的平行线交直线BC于点N,如图2,则,即x=,∴EN=,∴∴S=S△OBE+S△EBC==四边形OBCE,∵,∴当时,,当时,,∴,.【点评】本题为二次函数的综合应用,涉及待定系数法、相似三角形的判定和性质、轴对称的性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)中分别表示出A、B的坐标是解题的关键,在(2)中求得C点坐标,利用相似三角形的性质求得a的值是解题的关键,在(3)①中确定出P点的位置是解题的关键,在(3)②中用E点坐标分别表示出△OBE和△EBC的面积是解题的关键.本题考查知识点较多,综合性较强,计算量较大,难度较大.。