2017年江苏省苏州市昆山市、太仓市八年级上学期期中数学试卷与解析答案

合集下载

苏州市2016-2017年八年级上《实数》期中复习试卷含答案解析

苏州市2016-2017年八年级上《实数》期中复习试卷含答案解析

2016-2017学年江苏省苏州市八年级(上)期中数学复习试卷(实数)一、选择题1.下列说法正确的是()A.0没有平方根B.﹣1的平方根是﹣1C.4的平方根是﹣2 D.(﹣3)2的算术平方根是32.下列运算中,错误的有()①;②;③;④.A.1个B.2个C.3个D.4个3.已知下列结论:①在数轴上的点只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有限个,其中正确的结论是()A.①② B.②③ C.③④ D.②③④4.如图,直径为1个单位长度的圆从原点沿数轴向右无滑动地滚动一周,原点滚到了点A,下列说法正确的()A.点A所表示的是πB.OA上只有一个无理数πC.数轴上无理数和有理数一样多D.数轴上的有理数比无理数要多一些5.近似数0.38万精确到()A.十分位B.百位 C.千位 D.万位6.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.﹣B.2﹣C.D.7.实数a,b,c在数轴上的对应点如图,化简a+|a+b|﹣的值是()A.﹣b﹣c B.c﹣b C.2(a﹣b+c)D.2a+b+c8.已知实数x,y,m满足,且y为负数,则m的取值范围是()A.m>6 B.m<6 C.m>﹣6 D.m<﹣6二、填空题9. 64的立方根为.10.a是9的算术平方根,而b的算术平方根是9,则a+b= .11.全国第六次人口普查登记的人口约是13.40亿人,你认为人口数是精确到位.12.比较大小:(填“>”“<”“=”).13.若x,y为实数,且满足|x﹣3|+=0,则()2016的值是.14.计算:﹣|2﹣π|= .15.如图,在数轴上有O,A,B,C,D五点,根据图中各点所表示的数,判断在数轴上的位置会落在线段上.16.若a与b互为相反数,则它们的立方根的和是.17.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为.18.如图所示是一条宽为1.5m的直角走廊,现有一辆转动灵活的手推车,其矩形平板面ABCD的宽AB为l m,若要想顺利推过(不可竖起来或侧翻)直角走廊,平板车的长AD不能超过m.(精确到0.1,参考数据:≈1.41,≈1.73)三、解答题(共56分)19.把下列各数填入相应的大括号里.π,2,﹣,|﹣|,2.3,30%,,.(1)整数集:{ …};(2)有理数集:{ …};(3)无理数集:{ …}.20.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫作格点,以格点为顶点分别按下列要求画三角形(涂上阴影).(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2、图3中,分别画两个不全等的直角三角形,使它的三边长都是无理数.21.计算下列各题.(1)+﹣;(2)﹣16﹣4;(3)|﹣|﹣+;(4)×﹣2(﹣π)0.22.已知与互为相反数,求(x﹣y)2的平方根;(2)已知|a|=6,b2=4,求.23.求下列各式中x的值.(1)16x2﹣81=0;(2)﹣(x﹣2)3﹣64=0.24.设2+的整数部分和小数部分分别是x、y,试求x、y的值与x﹣1的算术平方根.25.车工小王加工生产了两根轴,当它把轴交给质检员验收时,质检员说:“不合格,作废!”小王不服气地说:“图纸要求精确到2.60m,一根为2.56m,另一根为2.62m,怎么不合格?”(1)图纸要求精确到2.60m,原轴的范围是多少?(2)你认为是小王加工的轴不合格,还是质检员故意刁难?26.在一平直河岸l的同侧有A,B两个村庄,A,B到l的距离AM,BN分别是3km,2km,且MN为3km.现计划在河岸上建一抽水站P,用输水管向两个村庄A,B供水,求水管长度最少为多少.(精确到0.1km)27.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.2016-2017学年江苏省苏州市八年级(上)期中数学复习试卷(实数)参考答案与试题解析一、选择题1.下列说法正确的是()A.0没有平方根B.﹣1的平方根是﹣1C.4的平方根是﹣2 D.(﹣3)2的算术平方根是3【考点】平方根;算术平方根.【分析】根据正实数的算术平方根是正数,可得答案.【解答】解:(﹣3)2的算术平方根是3,故D正确,故选:D.【点评】本题考查了平方根,注意0的平方根是0,正实数的平方根有两个,负数不能开平方.2.下列运算中,错误的有()①;②;③;④.A.1个B.2个C.3个D.4个【考点】二次根式的性质与化简.【分析】利用二次根式的性质分别化简判断得出即可.【解答】解:① ==,故原式计算错误;②=2,故原式计算错误;③无意义,故此选项错误;④==,故原式计算错误.故错误的有4个.故选:D.【点评】此题主要考查了二次根式的性质与化简,正确根据二次根式的性质得出是解题关键.3.已知下列结论:①在数轴上的点只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有限个,其中正确的结论是()A.①② B.②③ C.③④ D.②③④【考点】实数.【分析】根据实数与数轴的关系,可判断①②③,根据有理数的定义,无理数的定义,可判断④.【解答】解:①数轴上的点既能表示无理数,又能表示有理数,故①错误;②任何一个无理数都能用数轴上的点表示,故②正确;③实数与数轴上的点一一对应,故③正确;④有理数有无限个,无理数无限个,故④错误;故选:B.【点评】本题考查了实数,利用了实数与数轴的关系,有理数、无理数的定义,注意数轴上的点与实数一一对应.4.如图,直径为1个单位长度的圆从原点沿数轴向右无滑动地滚动一周,原点滚到了点A,下列说法正确的()A.点A所表示的是πB.OA上只有一个无理数πC.数轴上无理数和有理数一样多D.数轴上的有理数比无理数要多一些【考点】实数与数轴.【分析】首先根据圆周长公式求出圆的周长,然后结合数轴的特点即可确定A表示的数.【解答】解:A、∵圆的周长为π,∴滚动一圈的路程即π,∴点A所表示的是π,故选项正确;B、数轴上不只有一个无理数π,故选项错误;C、数轴上既有无理数,也有有理数,故选项错误;D、数轴上的有理数与无理数多少无法比较,故选项错误;故选A.【点评】本题主要考查对数轴的理解掌握情况,任何一个实数,都可以用数轴上的点来表示.5.近似数0.38万精确到()A.十分位B.百位 C.千位 D.万位【考点】近似数和有效数字.【分析】由于0.38万=3800,而8在百位上,所以近似数0.38万精确到百位.【解答】解:近似数0.38万精确到百位.故选:B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.6.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.﹣B.2﹣C.D.【考点】实数与数轴.【分析】由于数轴上两点间的距离应让较大的数减去较小的数,所以根据数轴上两点间距离的公式便可解答.【解答】解:由勾股定理得:正方形的对角线为,设点A表示的数为x,则2﹣x=,解得x=2﹣.故选B.【点评】此题主要考查了实数与数轴之间的对应关系,解题时求数轴上两点间的距离应让较大的数减去较小的数即可.7.实数a,b,c在数轴上的对应点如图,化简a+|a+b|﹣的值是()A.﹣b﹣c B.c﹣b C.2(a﹣b+c)D.2a+b+c【考点】实数的运算;数轴;二次根式的性质与化简.【分析】此题考查了绝对值和二次根式的性质,|a|=,,由数轴可知b<c<0<a,|a|<|b|,所以|a+b|=﹣a﹣b, =﹣c.【解答】解:a+|a+b|﹣=a﹣a﹣b+c=c﹣b.故选B.【点评】根据数轴判断a+b,c的符号是一个难点,解题时要细心,能提高了学生的综合应用能力.8.已知实数x,y,m满足,且y为负数,则m的取值范围是()A.m>6 B.m<6 C.m>﹣6 D.m<﹣6【考点】非负数的性质:算术平方根;非负数的性质:绝对值;解二元一次方程组;解一元一次不等式.【分析】根据非负数的性质列出方程求出x、y的值,然后根据y是负数即可得到一个关于m的不等式,从而求得m的范围.【解答】解:根据题意得:,解得:,则6﹣m<0,解得:m>6.故选:A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.二、填空题9.64的立方根为 4 .【考点】立方根.【专题】计算题;实数.【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故答案为:4.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.a是9的算术平方根,而b的算术平方根是9,则a+b= 84 .【考点】算术平方根.【专题】计算题.【分析】先根据算术平方根的定义求出a、b的值,然后算出a+b即可.【解答】解:∵a是9的算术平方根,∴a=3,又∵b的算术平方根是9,∴b=81,∴a+b=3+81=84.故答案为:84.【点评】本题考查了算术平方根的概念,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.11.全国第六次人口普查登记的人口约是13.40亿人,你认为人口数是精确到百万位.【考点】近似数和有效数字.【分析】首先将原数还原,确定0所在的数位即为本题的答案.【解答】解:13.40亿=1340000000,因为第一个0所表示的数位为百万位,所以13.40亿精确到百万位,故答案为:百万.【点评】本题考查了近似数和有效数字的知识,解题的关键是能够将原数还原,难度不大.12.比较大小:>(填“>”“<”“=”).【考点】实数大小比较.【分析】首先确定﹣1与2的大小,通过作差法进行比较.【解答】解:∵4<5,∴2<,∴﹣2>0,∴﹣=>0,∴>.故答案是:>.【点评】此题主要考查了无理数的估算能力,此题也可以把它们的减数变成和被减数相同的形式,然后只需比较被减数的大小.分母相同时,分子大的大.13.若x,y为实数,且满足|x﹣3|+=0,则()2016的值是﹣1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据绝对值与算术平方根的和为零,可得绝对值与算术平方根同时为零,可得x、y的值,再根据负数的奇数次幂是负数,可得答案.【解答】解:由|x﹣3|+=0,得x﹣3=0,y+3=0,解得x=3,y=﹣3.()2016=(﹣1)2015=﹣,故答案为:﹣1.【点评】本题考查了非负数的性质,利用绝对值与算术平方根的和为零得出绝对值与算术平方根同时为零是解题关键,注意负数的奇数次幂是负数.14.计算:﹣|2﹣π|= ﹣1.14 .【考点】实数的运算.【分析】先判断3.14﹣π和2﹣π的符号,然后再进行化简,计算即可.【解答】解:﹣|2﹣π|=π﹣3.14+2﹣π=﹣1.14.故答案为:﹣1.14.【点评】此题主要考查实数的运算,其中有二次根式的性质和化简,绝对值的性质,是一道基础题.15.如图,在数轴上有O,A,B,C,D五点,根据图中各点所表示的数,判断在数轴上的位置会落在线段BC 上.【考点】实数与数轴;估算无理数的大小.【分析】先估算的范围,再得出即可.【解答】解:∵4,∴在BC之间.故答案为:BC.【点评】本题考查了实数,数轴,估算无理数的大小的应用,能估算的范围是解此题的关键.16.若a与b互为相反数,则它们的立方根的和是0 .【考点】立方根.【专题】计算题.【分析】根据a与b互为相反数,得到a+b=0,即可确定出立方根之和.【解答】解:∵a与b互为相反数,即a=﹣b,∴它们的立方根之和+=﹣+=0,故答案为:0.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.17.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为﹣672 .【考点】代数式求值;数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.【点评】本题主要考查的是求代数式的值,依据绝对值的意义列出关于a、b的方程组是解题的关键.18.如图所示是一条宽为1.5m的直角走廊,现有一辆转动灵活的手推车,其矩形平板面ABCD的宽AB为l m,若要想顺利推过(不可竖起来或侧翻)直角走廊,平板车的长AD不能超过 2.2 m.(精确到0.1,参考数据:≈1.41,≈1.73)【考点】二次根式的应用.【分析】先设平板手推车的长度不能超过x米,则得出x为最大值时,平板手推车所形成的三角形CBE为等腰直角三角形.连接EF,与BC交于点G,利用△CBE为等腰直角三角形即可求得平板手推车的长度不能超过多少米.【解答】解:设平板手推车的长度不能超过x米,则x为最大值,且此时平板手推车所形成的三角形CBE 为等腰直角三角形.连接EF,与BC交于点G.∵直角走廊的宽为1.5m,∴EF=(m),∴GE=EF﹣FG=﹣1(m).又∵△CBE为等腰直角三角形,∴AD=BC=2CG=2GE=3﹣2≈2.2(m).故答案为:2.2【点评】本题主要考查了勾股定理的应用以及等腰三角形知识,解答的关键是由题意得出要想顺利通过直角走廊,此时平板手推车所形成的三角形为等腰直角三角形.三、解答题(共56分)19.把下列各数填入相应的大括号里.π,2,﹣,|﹣|,2.3,30%,,.(1)整数集:{ 2,,…};(2)有理数集:{ 2,﹣,2.3,30%,,…};(3)无理数集:{ π,|| …}.【考点】实数.【分析】先进行化简,再根据有理数的分类,即可解答.【解答】解:|﹣|=, =2, =﹣2,(1)整数集:{2,,,…};(2)有理数集:{2,﹣,2.3,30%,,,…};(3)无理数集:{π,||,…};故答案为:(1)2,,;(2)2,﹣,2.3,30%,,;(3)π,||.【点评】本题考查了有理数的分类,解决本题的关键是熟记有理数的分类.20.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫作格点,以格点为顶点分别按下列要求画三角形(涂上阴影).(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2、图3中,分别画两个不全等的直角三角形,使它的三边长都是无理数.【考点】勾股定理.【分析】(1)、(2)根据勾股定理画出三角形即可.【解答】解:(1)如图1,即为所求作的图形;(2)如图2,3即为所作图形.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.21.计算下列各题.(1)+﹣;(2)﹣16﹣4;(3)|﹣|﹣+;(4)×﹣2(﹣π)0.【考点】实数的运算.【分析】(1)、(2)根据数的开方法则分别计算出各数,再根据实数的加减法则进行计算即可;(3)先根据绝对值的性质及数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(4)先根据数的开方法则及0指数幂的运算法则分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:(1)原式=0.4+0.7﹣0.9=0.2;(2)原式=﹣16×0.5﹣4×(﹣4)=﹣8+16=8;(3)原式=﹣+=;(4)原式=0.3×10﹣2=3﹣2=1.【点评】本题考查的是实数的运算,熟知绝对值的性质及数的开方法则,0指数幂的运算法则是解答此题的关键.22.(1)已知与互为相反数,求(x﹣y)2的平方根;(2)已知|a|=6,b2=4,求.【考点】非负数的性质:算术平方根;平方根;算术平方根.【分析】(1)根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据平方根的定义求解;(2)分别根据|a|=6,b2=4,求出a,b的值,然后求a+2b的算术平方根即可.【解答】解:(1)∵与互为相反数,∴,解得:,∴(x﹣y)2的平方根是±3,(2)∵|a|=6,b2=4,∴a=±6,b=±2,∴a+2b=±10,或±2,∵a+2b >0,∴=,或=.【点评】本题考查了非负数的性质,本题考查了平方根的知识,解答本题的关键是掌握一个正数的平方根有两个,且互为相反数.23.求下列各式中x 的值.(1)16x 2﹣81=0;(2)﹣(x ﹣2)3﹣64=0.【考点】立方根;平方根.【专题】计算题.【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程整理后,利用立方根定义开立方即可求出x 的值.【解答】解:(1)方程整理得:x 2=,开方得:x=±,解得:x 1=,x 2=﹣;(2)方程整理得:(x ﹣2)3=﹣64,开立方得:x ﹣2=﹣4,解得:x=﹣2.【点评】此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键.24.设2+的整数部分和小数部分分别是x 、y ,试求x 、y 的值与x ﹣1的算术平方根. 【考点】估算无理数的大小;算术平方根.【分析】先找到介于哪两个整数之间,从而找到整数部分,小数部分让原数减去整数部分,然后代入求值即可.【解答】解:因为4<6<9,所以2<<3,即的整数部分是2,所以2+的整数部分是4,小数部分是2+﹣4=﹣2,即x=4,y=﹣2,所以==. 【点评】此题主要考查了无理数的估算能力,解题关键是估算出整数部分后,然后即可得到小数部分.25.车工小王加工生产了两根轴,当它把轴交给质检员验收时,质检员说:“不合格,作废!”小王不服气地说:“图纸要求精确到2.60m,一根为2.56m,另一根为2.62m,怎么不合格?”(1)图纸要求精确到2.60m,原轴的范围是多少?(2)你认为是小王加工的轴不合格,还是质检员故意刁难?【考点】近似数和有效数字.【分析】(1)根据近似数的精确度说明,近似数精确到哪一位,应当看末位数字实际在哪一位;(2)根据原轴的范围是2.595m≤x<2.605m,于是得到轴长为2.56m与2.62m的产品不合格.【解答】解:(1)车间工人把2.60m看成了2.6m,近似数2.6m的要求是精确到0.1m;而近似数2.60m的要求是精确到0.01m,所以轴长为2.60m的车间工人加工完原轴的范围是2.595m≤x<2.605m,(2)由(1)知原轴的范围是2.595m≤x<2.605m,故轴长为2.56m与2.62m的产品不合格.【点评】本题考查了近似数及有效数字,小数的位数不同,它们表示的计数单位就不相同,意义也不相同.26.在一平直河岸l的同侧有A,B两个村庄,A,B到l的距离AM,BN分别是3km,2km,且MN为3km.现计划在河岸上建一抽水站P,用输水管向两个村庄A,B供水,求水管长度最少为多少.(精确到0.1km)【考点】轴对称-最短路线问题.【分析】根据轴对称的性质:找出点A关于直线l的对称点A′,连接A′B交直线MN于点P,结合图形利用勾股定理即可得出答案.【解答】解:如图,延长AM到A′,使MA′=AM,连接A′B交l于P,过A′作A′C垂直于BN的延长线于点C,∵AM⊥l,∴PB=PA′,∵A′M⊥l,CN⊥l,A′C⊥BC,∴四边形MA′CN是矩形,∴CN=A′M=3km,A′C=MN=3km,∴BC=3+2=5km,∴AP+BP=A′P+PB=A′B=≈5.8km.答:水管长度最少为5.8km.【点评】此题考查轴对称﹣最短路线问题,掌握轴对称的性质,勾股定理,矩形的判定与性质是解决问题的关键.27.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.【考点】估算无理数的大小.【专题】计算题;阅读型.【分析】(1)先估计、的近似值,然后判断的小数部分a,的整数部分b,最后将a、b的值代入并求值;(2)先估计的近似值,然后判断的整数部分并求得x、y的值,最后求x﹣y的相反数.【解答】解:∵4<5<9,∴2<<3,∴的小数部分a=﹣2 ①∵9<13<16,∴3<<4,∴的整数部分为b=3 ②把①②代入,得﹣2+3=1,即.(2)∵1<3<9,∴1<<3,∴的整数部分是1、小数部分是,∴10+=10+1+(=11+(),又∵,∴11+()=x+y,又∵x是整数,且0<y<1,∴x=11,y=;∴x﹣y=11﹣()=12﹣,∴x﹣y的相反数y﹣x=﹣(x﹣y)=.【点评】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.。

2017年八年级(上)数学期中考试试卷与答案

2017年八年级(上)数学期中考试试卷与答案

2017 年八年级(上)数学期中考试试卷(考试时间 100 分钟,试卷总分 100 分)一、选择题 (每小题 2 分,计 16 分.将正确答案的序号填写在下面的表格中 ) 1.以下轴对称图形中,对称轴条数最少的是(▲)AB C D2. 9 的平方根是( ▲ )A . 3B .± 3C .- 3D . 813.下列各数中,有理数是( ▲ )A . 8B .223D .7C . 424.下列各组线段能构成直角三角形的一组是( ▲ )A .3,4,5B .2,3,4C .1, 2, 3D .4, 5,65.根据下列已知条件,能够画出唯一△ABC 的是( ▲ )A .AB =5,BC =6,∠ A =70°B .AB =5,BC =6,AC =13C .∠ A = 50°,∠ B = 80°, AB = 8,D .∠ A = 40°,∠ B = 50°,∠ C =90°AABDE CBDC第 7 题第 6 题6.如图,△ ABD ≌△ ACE ,∠ AEC = 110°,则∠ DAE 的度数为( ▲ )A .40°B .30°C . 50°D . 60°7.如图,△ ABC 中, AB =AC , AD 是∠ BAC 的平分线,已知 AB =5, AD =3,则 BC 的长为( ▲ )A . 5B . 4C . 10D . 88. 规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:① AB=A 1B 1, AD=A 1D 1,∠ A= ∠A 1,∠ B= ∠ B 1,∠ C=∠ C 1;② AB=A 1B 1, AD=A 1D 1,∠ A= ∠A 1,∠ B= ∠ B 1,∠ D=∠ D 1 ;③AB=A 1B 1, AD=A 1D 1,∠ B= ∠B 1,∠ C=∠ C1,∠ D=∠ D1;④ AB=A 1B 1, CD=C1D 1,∠ A= ∠A 1,∠ B= ∠ B1,∠ C=∠ C1.其中能判定四边形ABCD 和四边形 A 1B1C1D 1全等有(▲)个A . 1B. 2C. 3D. 4A A1D D1第 8 题B CB1C1二、填空题(每小题2分,共 20分)9.化简:16=▲,8▲.3=2711+ 3 10.比较大小:2▲.(用“>”、“=”或“<”填空).411.太阳的半径约是696000 千米,用科学计数法表示(精确到万位)约是 _____▲ ____千米.12.如图, PD⊥ AB, PE⊥ AC,垂足分别为 D 、 E,要使△ APD ≌△ APE,可添加的条件是▲. ( 写出一个即可 )BDC AAP DM O N(第 12题)E C A B B C第 13题第14题13.如图 ,在△ ABC 中,∠ C= 90°, AD 平分∠ BAC 交 BC 于点 D ,若 AD= 13, AC= 12,则点D 到 AB 的距离为 ______▲ _______14.如图,在△ ABC 中,∠ ABC、∠ ACB 的角平分线交于点O,MN 过点 O,且 MN∥ BC,分别交 AB、 AC 于点 M、N. 若 MN = 5cm, CN= 2cm,则 BM =▲cm15.如图,△ ABC 为等边三角形, BD 为中线,延长BC 至 E,使 CE=CD =1,连接 DE,则 DE=▲.AAA BDDP EC DB C-1O12B E C(第 15 题)第 16题第18题16.如图,正方形OABC 的边 OC 落在数轴上,点 C 表示的数为 1,点 P 表示的数为- 1,以 P 点为圆心, PB 长为半径作圆弧与数轴交于点D,则点 D 表示的数为▲.17.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程 .已知:直线 l 和 l外一点 P.P求作:直线 l 的垂线,使它经过点Pl作法:如图,( 1)在直线 l 上任意两点 A、B;P( 2)分别以点 A, B 为圆心, AP, BP 长为l半径作弧,两弧相交于点Q;A B( 3)作直线 PQ,Q所以直线 PQ 就是所求作的垂线。

【苏科版】江苏省苏州市姑苏区2017年度八年级上期中考试数学试卷及答案

【苏科版】江苏省苏州市姑苏区2017年度八年级上期中考试数学试卷及答案

苏州市区学校2017-2018学年第一学期期中考试试卷初二数学一、选择(本大题共10小题,每小题3分,共30分)1.下列图形中,不是..轴对称图形的是 ( )A .B .C .D . 二、填空题(本大题共8小题,每小题2分,共16分)11. 化简4的结果是 .12.已知2-a +3+b =0,那么2007()a b +的值为 .N M B D C A13.若点()3,1M m m -+在平面直角坐标系的x 轴上,则点M 的坐标是 .14.如图,AB//CD ,AD//BC ,图中全等三角形共有 对.15. 如图,在△ABC 中,DE 是AC 的垂直平分线,AE=4 cm ,△ABD 的周长为13cm ,则△ABC 的周长为 cm.16.如图,AB =AE ,∠1=∠2,要使△ABC ≌△AED ,还需添加的条件是(只需填一个) .(第15题) (第16题) (第18题)17. 在平面直角坐标系中,定义两种新的变换:对于平面内任一点P (m ,n ),规定:①f (m ,n )=(-m ,n ),例如,f (2,1)=(-2,1);②g (m ,n )=(m ,-n ),例如,g (2,1)=(2,-1),已知点P (a,b )满足f (a ,b )= g (a ,b ),则点P 坐标为 .18. 如图,在等边△ABC 中,AB =4,N 为线段AB 上的任意一点,∠BAC 的平分线交BC 于点D ,M 是AD 上的动点, 连结BM 、MN ,则BM +MN 的最小值是 .三、解答题19.(本小题6分)计算或化简:(1)22234834-+ (2)()232130---+-20、(本小题6分)求下列各式中x 的值.(1)4(x -1)2-36=0 (2) (x + 5)3=-12521.(本小题4分)已知5a + 2的立方根是3,3a + b -1的算术平方根是4,c 13数部分,求3a -b + c 的平方根D C B A 22.(本小题4分)若实数a 、b 、c 在数轴上的位置如图所示,且a =b ,化简a +a b +-2()c a -一22c .23.(本小题4分)如图,每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,分别按下列要求画三角形:(1)在图①中,画一个三角形,使它的三边长都是有理数;(2)在图②中,画一个三边长分别为3,22,5的三角形,一共可画这样的三角形 个.24、(本小题5分)如图,点E 、C 、D 、A 在同一条直线上,AB ∥DF ,ED=AB ,∠E=∠CPD 求证:△ABC ≅△DEF25. (本小题7分)如图,在△ABC 中,CD 是AB 边的中线,∠CDB =60°,将△BCD 沿CD 折叠,使点B 落在点E 的位置.(1)证明AE ∥CD(2)若AB =4,求△ADE 的面积.26. (本小题8分)已知:如图,在四边形ABCD 中,AB=BC ,2222+=AD CD AB ,CD ⊥AD .(1)求证: AB ⊥BC(2)若AB=5CD ,AD=21,求四边形ABCD 的周长27、(本小题10分)如图,直角坐标系中,已知点A(0,1)B(-1,0),点P是线段AB上的一个动点,(1)若OP平分△AOB的面积,求点P的坐标;(2)在OB上取一点Q,使得∠OPQ=45°,①若△OPQ是一个不以OQ为底边的等腰三角形,则点Q的坐标是:;②若△OPQ是一个以OQ。

【苏科版】2016-2017学年八年级数学上期中试题(含答案)

【苏科版】2016-2017学年八年级数学上期中试题(含答案)

2016/2017学年度第一学期期中考试试卷八年级数学试题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分)1.下列大学的校徽图案是轴对称图形的是(▲ )A.清华大学 B.北京大学 C.中国人民大学 D.浙江大学2.如图,已知AB=AD,添加下列一个条件后,仍无法判定△ABC≌△ADC的是(▲ )A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°3.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是(▲ )A.SSS B.SAS C.SSA D.ASA4.根据下列已知条件,能唯一画出△ABC的是(▲ )A.AB=3,BC=4,CA=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6(第2题)(第3题)(第5题)5.等腰三角形的周长为13 cm,其中一边长为3 cm.则该等腰三角形的底长为(▲ )A.3 cm或5 cm B.3 cm或7 cm C.3 cm D.5 cm6.如果a、b、c是一个直角三角形的三边,则a:b:c可以等于(▲ )A.1:2:4 B.2:3:4 C.3:4:7 D.5:12:13 7.如图,在△ABC中,∠ABC=45°,F是高AD和高BE的交点,若FD=4,AF=2.则线段BC的长度为(▲ )A.6 B.8 C.10 D.128.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=3,则CE2+CF2的值为(▲ )A.36 B.9 C.6 D.18(第7题)(第8题)二、填空题(本大题共10小题,每小题3分,共30分)9.如图,△OAD≌△OBC,且OA=2,OC=6,则BD= ▲ .10.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=25°,则∠2的度数为▲ .(第9题)(第10题)(第11题)(第12题)11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=▲ .12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是▲ .(填上一个条件即可)13.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是▲ .14.如图,点D在边BC上,DE⊥AB,DF⊥BC,垂足分别为点E、D,BD=CF,BE=CD.若∠AFD=140°,则∠EDF=▲ .15.如图,∠BAC =100°,若MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ = ▲ .(第13题) (第14题) (第15题) (第16题)16.如图,AB //CD ,O 为∠BAC 、∠ACD 的平分线的交点,OE ⊥AC 于E ,且OE =1,则AB 与CD之间的距离等于 ▲ .17.一个直角三角形的两边长分别为3、4,则它的第三条边的平方是 ▲ .18.把两个三角板如图甲放置,其中90ACB DEC ∠=∠=︒,45A ∠=︒,30D ∠=︒,斜边12AB =,14CD =,把三角板DCE 绕着点C 顺时针旋转15︒得到△11D CE (如图乙),此时AB 与1CD 交于点O ,则线段1AD 的长度为 ▲ .乙甲D 1ACB ABE DE 1CO(第18题)三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、推理过程或演算步骤) 19.(8分)如图,△ABC 与△C B A '''关于直线l 对称,若∠A =76°,∠C '=48°.求∠B 的度数.20.(8分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内再涂黑4个小正方形,使它们成为轴对称图形.21.(8分)如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =36°.求∠BAC ,∠C 的度数.22.(8分)如图,△ABC 中,AB =AC ,两条角平分线BD 、CE 相交于点O .(1)证明:△ABD ≌△ACE ; (2)证明:OB =OC .23.(10分)如图,AD ∥ BC ,∠ A =90°,以点B 为圆心、BC 长为半径作弧,交射线AD 于点E ,连接BE ,过点C 作CF ⊥BE ,垂足为F .求证:AB =FC .FEDCBADEOCBA24.(10分)如图,在△ABC中,∠BAC=90°,AB=20,AC=15,AD⊥BC,垂足为D.求AD,BD的长25.(10分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长为14 cm,AC=6 cm,求DC长.26.(10分)如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时,△PQB是以BP为底的等腰三角形?27.(12分)如图,△ABC和△CDE都是等边三角形,且点B、C、D在同一条直线上,BE交AC于F,AD交CE于H,连接FH.(1)求证:△ACD≌△BCE;(2)求证:AH=BF;(3)求证:△CFH为等边三角形.28.(12分)(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在DC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:<Ⅰ>如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.<Ⅱ>如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,<Ⅰ>中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.2016/2017学年度第一学期期中考试试卷八年级数学答题纸二、填空题(共10小题,每题3分,共30分)三、解答题19.(8分)20.(8分)21.(8分)22.(8分)DEOCBA23.(10分)FE DCBA24.(10分)25.(10分)26.(10分)2016/2017学年度第一学期期中考试八年级数学答案一、选择题B C D C C D C A二、填空题9.4 10.70°11.50°12.BE=CE(或∠BAE=∠CAE,或∠ABE=∠ACE)13.914.50°15.20°16.2 17.25或7 18.10 三、解答题19.56°20.略 21.72°;54° 22.略23.略24.12,16 25.35°,4 26.5,6 27.略28.(1)AF=BD.证明如下:∵△ABC是等边三角形(已知),∴BC=AC,∠BCA=60°(等边三角形的性质).同理知,DC=CF,∠DCF=60°.∴∠BCA﹣∠DCA=∠DCF﹣DCA,即∠BCD=∠ACF.在△BCD和△ACF中,∵BC=AC,∠BCD=∠ACF,DC=CF,∴△BCD≌△ACF(SAS).∴BD=AF(全等三角形的对应边相等).(2)AF=BD仍然成立.通过证明△BCD≌△ACF,即可证明AF=BD.(3)<Ⅰ>AF+BF′=AB.证明如下:由(1)知,△BCD≌△ACF(SAS),则BD=AF.同理△BCF′≌△ACD(SAS),则BF′=AD.∴AF+BF′=BD+AD=AB.<Ⅱ> <Ⅰ>中的结论不成立,新的结论是AF=AB+BF′.证明如下:在△BCF′和△ACD中,∵BC=AC,∠BC F′=∠ACD,F′C=DC,∴△BCF′≌△ACD(SAS).∴BF′=AD(全等三角形的对应边相等).又由(2)知,AF=BD,∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.。

苏科版2016-2017学年八年级上册期中数学测试卷含答案

苏科版2016-2017学年八年级上册期中数学测试卷含答案

2016-2017学年八年级(上)期中数学试卷一.选择题(本大题共10小题,每题3分,共30分.)1.下列美丽的车标中是轴对称图形的个数有()A.1个B.2个C.3个D.4个2.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.253.一个等腰三角形的两边长分别是4和9,则它的周长为()A.17 B.20 C.22 D.17或224.下列结论错误的是()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等5.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS6.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( )A .∠A :∠B :∠C=3:4:5B .a :b :c=5:12:13C .a 2=b 2﹣c 2D .∠A=∠C ﹣∠B7.在联合会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC 的( )A .三边中线的交点B .三条角平分线的交点C .三边中垂线的交点D .三边上高的交点8.如图,BD 是∠ABC 平分线,DE ⊥AB 于E ,AB=36cm ,BC=24cm ,S △ABC =144cm 2,则DE 的长是( )A .4.8cmB .4.5cmC .4cmD .2.4cm9.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A .2条B .3条C .4条D .5条10.如图所示,已知∠AOB=α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2=B 1A 2,连结A 2B 2…按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n+1B n B n+1=θn ,则θ2016﹣θ2015的值为( )A.B.C.D.二.填空题(本大题共8小题,每空3分,共24分.)11.正方形是轴对称图形,它共有条对称轴.12.△ABC是等腰三角形,若∠A=80°,则∠B= .13.直角三角形的两直角边的长分别为6cm、8cm,则斜边上高的长是cm.14.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).15.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.16.如图,△OAD≌△OBC,且∠O=70°,∠AEB=100°,则∠C= °.17.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是.18.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=8,BF=5,则AC的长等于.三.解答题(本大题共7小题,共46分.解答需写出必要的文字说明或演算步骤)19.作图题:(1)如图,在图1所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图2中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(分割线画成实线)(2)如图3,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.①在图中画出与△ABC关于直线L成轴对称的△A′B′C′;②请直线L上找到一点P,使得PC+PB的距离之和最小.20.如图,四边形ABCD中,AB∥CD,AB=CD,A、F、E、C在同一直线上,∠ABE=∠CDF.(1)试说明:△ABE≌△CDF;(2)试说明:AF=CE.21.中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA⊥OB,OA=36海里,OB=12海里,黄岩岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向黄岩岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.22.如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)试说明:∠EAC=∠B;(2)若AD=10,BD=24,求DE的长.23.如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,且DC=BF,DE⊥CF于E,问E是CF 的中点吗?试说明理由.24.探索研究.请解决下列问题:(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,并把所有不同的分割方法都画出来,图不够可以自己画.只需画图,不必说明理由,但要在图中标出相等两角的度数).(2)已知等腰△ABC中,AB=AC,D为BC上一点,连接AD,若△ABD和△ACD都是等腰三角形,则∠B的度数为(请画出示意图,并标明必要的角度).25.如图,在四边形ABCD中,AD=BC=12,AB=CD,BD=15,点E从D点出发,以每秒4个单位的速度沿D→A→D匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试说明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.2016-2017学年八年级(上)期中数学试卷参考答案与试题解析一.选择题(本大题共10小题,每题3分,共30分.)1.下列美丽的车标中是轴对称图形的个数有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:第1,2,3个图形是轴对称图形,共3个.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.25【考点】勾股定理.【专题】网格型.【分析】建立格点三角形,利用勾股定理求解AB的长度即可.【解答】解:如图所示:AB==5.故选:A.【点评】本题考查了勾股定理的知识,解答本题的关键是掌握格点三角形中勾股定理的应用.3.一个等腰三角形的两边长分别是4和9,则它的周长为()A.17 B.20 C.22 D.17或22【考点】等腰三角形的性质;三角形三边关系.【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.下列结论错误的是()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等【考点】全等三角形的判定与性质.【分析】画出图形,根据全等三角形的性质和判定(全等三角形的判定定理有SAS,ASA,AAS,SSS)判断即可.【解答】解:A、∵△ABC≌△DEF,∴AB=DE,∠B=∠E,BC=EF,∵AM是△ABC的中线,DN是△DEF中线,∴BC=2BM,EF=2EN,∴BM=EN,在△ABM和△DEN中∴△ABM≌△DEN(SAS),∴AM=DN,正确,故本选项错误;B、如教师用得含30度的三角板和学生用的含30度的三角板就不全等,错误,故本选项正确;C、∵△ABC≌△DEF,∴AB=DE,∠B=∠E,∵AM是△ABC的高,DN是△DEF的高,∴∠AMB=∠DNE=90°,在△ABM和△DEN中∴△ABM≌△DEN,∴AM=DN,正确,故本选项错误;D、根据AAS即可推出两直角三角形全等,正确,故本选项错误;故选B.【点评】本题考查了全等三角形的性质和判定的应用,全等三角形的判定定理有SAS,ASA,AAS,SSS,直角三角形全等的判定定理除具有定理SAS,ASA,AAS,SSS外,还有HL定理..5.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【考点】作图—基本作图;全等三角形的判定与性质.【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,得到三角形全等,由全等得到角相等,是用的全等的性质,全等三角形的对应角相等.【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D'(SSS),则△COD≌△C'O'D',即∠A'O'B'=∠AOB(全等三角形的对应角相等).故选D.【点评】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.6.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.a:b:c=5:12:13C.a2=b2﹣c2D.∠A=∠C﹣∠B【考点】勾股定理的逆定理;三角形内角和定理.【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【解答】解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC不是直角三角形;B、不妨设a=5,b=12,c=13,此时a2+b2=132=c2,即a2+b2=c2,故△ABC是直角三角形;C、由条件可得到a2+c2=b2,满足勾股定理的逆定理,故△ABC是直角三角形;D、由条件∠A=∠C﹣∠B,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC是直角三角形;故选A.【点评】本题主要考查直角三角形的判定方法,掌握判定直角三角形的方法是解题的关键,可以利用定义也可以利用勾股定理的逆定理.7.在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边中垂线的交点 D.三边上高的交点【考点】线段垂直平分线的性质.【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选:C.【点评】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.8.如图,BD是∠ABC平分线,DE⊥AB于E,AB=36cm,BC=24cm,S△ABC=144cm2,则DE的长是()A.4.8cm B.4.5cm C.4cm D.2.4cm【考点】角平分线的性质.【分析】过点D作DF⊥BC交BC的延长线于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC =S△ABD+S△BCD列方程求解即可.【解答】解:如图,过点D作DF⊥BC交BC的延长线于F,∵BD是∠ABC平分线,DE⊥AB于E,∴DE=DF ,∵S △ABC =S △ABD +S △BCD ,AB=36cm ,BC=24cm ,∴×36×DE+×24×DF=144,即18DE+12DE=144,解得DE=4.8cm .故选A .【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并根据三角形的面积列出方程是解题的关键.9.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A .2条B .3条C .4条D .5条【考点】利用轴对称设计图案.【分析】直接利用轴对称图形的性质分别得出符合题意的答案.【解答】解:如图所示:能满足条件的线段有4条.故选:C .【点评】此题主要考查了利用轴对称设计图案,正确利用轴对称图形的性质得出是解题关键.10.如图所示,已知∠AOB=α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2=B 1A 2,连结A 2B 2…按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n+1B n B n+1=θn ,则θ2016﹣θ2015的值为( )A .B .C .D .【考点】等腰三角形的性质.【专题】规律型.【分析】根据等腰三角形两底角相等用α表示出∠A 1B 1O ,再根据平角等于180°列式用α表示出θ1,再用θ1表示出θ2,并求出θ2﹣θ1,依此类推求出θ3﹣θ2,…,θ2013﹣θ2012,即可得解.【解答】解:∵OA 1=OB 1,∠AOB=α,∴∠A 1B 1O=(180°﹣α),∴(180°﹣α)+θ1=180,整理得,θ1=,∵B 1B 2=B 1A 2,∠A 2B 1B 2=θ1,∴∠A 2B 2B 1=(180°﹣θ1),∴(180°﹣θ1)+θ2=180°,整理得θ2==,∴θ2﹣θ1=﹣==,同理可求θ3==,∴θ3﹣θ2=﹣==,依此类推,θ2016﹣θ2015=.故选D .【点评】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.二.填空题(本大题共8小题,每空3分,共24分.)11.正方形是轴对称图形,它共有 4 条对称轴.【考点】轴对称图形.【分析】根据对称轴的定义,直接作出图形的对称轴即可.【解答】解:∵如图所示,正方形是轴对称图形,它共有4条对称轴.故答案为:4.【点评】此题主要考查了轴对称图形的定义,根据定义得出个正多边形的对称轴条数是解决问题的关键.12.△ABC 是等腰三角形,若∠A=80°,则∠B= 80°或50°或20° .【考点】等腰三角形的性质.【专题】分类讨论.【分析】此题要分三种情况进行讨论:①∠C为顶角;②∠A为顶角,∠B为底角;③∠B为顶角,∠A为底角.【解答】解:∵∠A=80°,△ABC是等腰三角形,∴分三种情况;①当∠C为顶角时,∠B=∠A=80°;②当∠A为顶角时,∠B=(180°﹣80°)÷2=50°;③当∠B为顶角时,∠B=180°﹣80°×2=20°;综上所述:∠B的度数为80°、50°、20°.故答案为:80°或50°或20°.【点评】此题主要考查了等腰三角形的性质、三角形内角和定理;熟练掌握等腰三角形的性质,关键是分三种情况讨论,不要漏解.13.直角三角形的两直角边的长分别为6cm、8cm,则斜边上高的长是 4.8 cm.【考点】勾股定理.【专题】计算题.【分析】先根据勾股定理求出直角三角形的斜边,然后从直角三角形面积的两种求法入手,代入公式后计算即可.【解答】解:∵直角三角形两直角边分别为6cm,8cm,∴斜边长为=10cm.∵直角三角形面积=×一直角边长×另一直角边长=×斜边长×斜边的高,代入题中条件,即可得:斜边高=4.8cm.故答案为:4.8.【点评】本题考查勾股定理及直角三角形面积公式的应用,看清条件即可.14.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是∠B=∠C (填上你认为适当的一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】根据题意,易得∠AEB=∠AEC,又AE公共,所以根据全等三角形的判定方法容易寻找添加条件.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).【点评】此题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要10 cm.【考点】平面展开-最短路径问题.【专题】计算题;压轴题.【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故答案为:10.【点评】考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.16.如图,△OAD≌△OBC,且∠O=70°,∠AEB=100°,则∠C= 15 °.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠C=∠D,根据三角形的外角性质求出∠CAE=∠O+∠D=∠O+∠C,推出∠AEB=∠C+∠CAE=∠C+∠O+∠C,代入求出即可.【解答】解:∵△OAD≌△OBC,∴∠C=∠D,∵∠CAE=∠O+∠D=∠O+∠C,∴∠AEB=∠C+∠CAE=∠C+∠O+∠C,∵∠O=70°,∠AEB=100°,∴100°=70°+2∠C,∴∠C=15°,故答案为:15.【点评】本题考查了全等三角形的性质,三角形的外角性质的应用,解此题的关键是求出∠C=∠D和推出∠AEB=∠O+2∠C.17.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是50 .【考点】全等三角形的判定与性质;勾股定理.【专题】计算题.【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG,故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠FED=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故答案为50.【点评】本题考查的是全等三角形的判定的相关知识.作辅助线是本题的关键.18.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=8,BF=5,则AC的长等于13 .【考点】全等三角形的判定与性质;勾股定理.【分析】根据ASA证得△AFB≌△DFB,得出AB=BD,AF=FD=AD=4,根据勾股定理求得BD,根据三角形面积公式求得AG,然后根据勾股定理即可求得.【解答】解:∵AD⊥BE,∴∠AFB=∠DFB=90°,在△AFB 和△DFB 中∴△AFB ≌△DFB ,∴AB=BD ,AF=FD=AD=4,∴AB=BD===,∵BD=DC ,∴BC=2, 作AG ⊥BC 于G ,∵S △ABD =BD •AG=AD •BF ,∴AG===,∴DG===,∴CG=+=∴AC===13;故答案为:13. 【点评】本题考查了三角形全等的判定和性质,勾股定理的应用,作出辅助线构建直角三角形是解题的关键.三.解答题(本大题共7小题,共46分.解答需写出必要的文字说明或演算步骤)19.作图题:(1)如图,在图1所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图2中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(分割线画成实线)(2)如图3,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.①在图中画出与△ABC关于直线L成轴对称的△A′B′C′;②请直线L上找到一点P,使得PC+PB的距离之和最小.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)根据图1中三角形的边长将图2中的图形分割即可;(2)①作出各点关于直线l的对称点,再顺次连接各点即可;②连接CB′交直线l于点P,则点P即为所求点.【解答】解:(1)如图2所示;(2)①如图3所示;②如图3,点P即为所求点.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.20.如图,四边形ABCD中,AB∥CD,AB=CD,A、F、E、C在同一直线上,∠ABE=∠CDF.(1)试说明:△ABE≌△CDF;(2)试说明:AF=CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由平行线的性质得到∠BAE=∠DAF,又由AB=CD,∠ABE=∠CDF,即可证明△ABC≌△DEF;(2)由△ABC≌△DEF,得到AE=CF,所以AE﹣EF=CF﹣EF,即AF=CE.【解答】解:(1)∵AB∥CD,∴∠BAE=∠DAF,在△ABC和△DEF中,∴△ABC≌△DEF.(2)∵△ABC≌△DEF,∴AE=CF,∴AE﹣EF=CF﹣EF,∴AF=CE.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA⊥OB,OA=36海里,OB=12海里,黄岩岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向黄岩岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.【考点】勾股定理的应用.【分析】(1)由题意得,我海监船与不明渔船行驶距离相等,即在OA上找到一点,使其到A点与B点的距离相等,所以连接AB,作AB的垂直平分线即可.(2)连接BC,利用第(1)题中作图,可得BC=AC.在直角三角形BOC中,利用勾股定理列出方程122+(36﹣BC)2=BC2,解方程即可.【解答】解:(1)作AB的垂直平分线与OA交于点C;(2)连接BC,由作图可得:CD为AB的中垂线,则CB=CA.由题意可得:OC=36﹣CA=36﹣CB.∵OA⊥OB,∴在Rt△BOC中,BO2+OC2=BC2,即:122+(36﹣BC)2=BC2,解得BC=20.答:我国海监船行驶的航程BC的长为20海里.【点评】本题考查了勾股定理的应用以及线段垂直平分线的性质,利用勾股定理不仅仅能求直角三角形的边长,而且它也是直角三角形中一个重要的等量关系.22.如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)试说明:∠EAC=∠B;(2)若AD=10,BD=24,求DE的长.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)由于△ACB与△ECD都是等腰直角三角形,CD=CE,CB=CA,∠B=∠CAB=45°,∠ACB=∠ECD=90°,于是∠ACE+∠ACD=∠ACD+∠BCD,根据等式性质可得∠ACE=∠BCD,利用SAS可证△ACE ≌△BCD,利用全等三角形的对应角相等即可解答;(2)根据△ACE≌△BCD,于是∠EAC=∠B=45°,AE=BD=24,易求∠EAD=90°,再利用勾股定理可求DE=26.【解答】解:(1)∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠ECD﹣∠ACD,∴∠ECA=∠DCB,∵△ACB和△ECD都是等腰三角形,∴EC=DC,AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠EAC=∠B.(2)∵△ACE≌△BCD,∴AE=BD=24,∵∠EAC=∠B=45°∴∠EAD=∠EAC+∠CAD=90°,∴在Rt△ADE中,DE2=EA2+AD2,∴DE2=102+242,∴DE=26.【点评】本题考查了全等三角形的判定和性质、勾股定理,解题的关键是先证明△ACE≌△BCD,从而求出AE,以及∠EAD=90°.23.如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,且DC=BF,DE⊥CF于E,问E是CF 的中点吗?试说明理由.【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【分析】连接DF,根据直角三角形斜边上的中线等于斜边的一半可得DF=BF=AB,然后求出CD=DF,再根据等腰三角形三线合一的性质证明即可.【解答】解:E是CF的中点,理由如下:如图,连接DF,∵AD是边BC上的高,CF是边AB上的中线,∴DF=BF=AB,∵DC=BF,∴CD=DF,∵DE⊥CF,∴E是CF的中点.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记各性质是解题的关键.24.探索研究.请解决下列问题:(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,并把所有不同的分割方法都画出来,图不够可以自己画.只需画图,不必说明理由,但要在图中标出相等两角的度数).(2)已知等腰△ABC中,AB=AC,D为BC上一点,连接AD,若△ABD和△ACD都是等腰三角形,则∠B的度数为45°或36°(请画出示意图,并标明必要的角度).【考点】作图—应用与设计作图;等腰三角形的判定与性质.【分析】(1)由∠A=90°,∠B=67.5°,则∠C=22.5°,要使分割成的两个三角形为等腰三角形,必须要得出一个角为22.5°,或另一个角为67.5,因此需要把90°的角或67.5°的角得出22.5,从这两个角入手分出22.5°的角解决问题;(2)要使分成的△ABD和△ACD都是等腰三角形,首先想到等腰直角三角形,再次想到“黄金三角形”,由此得出答案即可.【解答】解:(1)如图,(2)如图,【点评】此题考查作图﹣应用与设计作图,掌握等腰三角形的性质和特殊三角形的性质是解决问题的关键.25.如图,在四边形ABCD中,AD=BC=12,AB=CD,BD=15,点E从D点出发,以每秒4个单位的速度沿D→A→D匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试说明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.【考点】四边形综合题.【分析】(1)由AD=BC=12,AB=CD,BD为公共边,所以可证得△ABD≌△CDB,所以可知∠ADB=∠CBD,所以AD∥BC;(2)设运动时间为t,设G点的移动距离为y,根据全等三角形的性质进行解答即可.【解答】(1)证明:在△ABD和△CDB中,,∴△ABD≌△CDB,∴∠ADB=∠CBD,∴AD∥BC,(2)解:设G点的移动距离为y,∵AD∥BC,∴∠EDG=∠FBG,若△DEG与△BFG全等,则有△DEG≌△BFG或△DGE≌△BFG,可得:DE=BF,DG=BG;或DE=BG,DG=BF,①当E由D到A,即0<t≤3时,有4t=12﹣t,解得:t=2.4,∵y=15﹣y,∴y=7.5,或4t=y,解得:t=1,∵12﹣t=15﹣y,∴y=4,②当F由A返回到D,即3<t≤6时,有24﹣4t=12﹣t,解得:t=4,∵y=15﹣y,∴y=7.5,或24﹣4t=y,解得:t=4.2∵12﹣t=15﹣y,y=7.2,综上可知共有三次,移动的时间分别为1秒、2.4秒、4秒、4.2秒,移动的距离分别为4、7.5、7.5、7.2.【点评】本题主要考查三角形全等的判定和性质,平行线的判定,根据全等三角形的性质列方程求解,第(2)题解题的关键是利用好三角形全等解得.。

【最新】2016-2017学年苏科版第一学期八年级(上)期中数学试卷及答案

【最新】2016-2017学年苏科版第一学期八年级(上)期中数学试卷及答案

18.如图,正方形 ABCD 的边长为 4,∠ DAC 的平分线交 DC 于点 E,若点 P、 Q 分别是 AD 和 AE 上的动点,则 DQ+PQ 的最小值是 __________ .
三、解答题(ቤተ መጻሕፍቲ ባይዱ 96 分) 19.( 16 分)计算
(1)
a3b2c÷
2
ab
(2)(﹣ x3)2?(﹣ x 2) 3
F). (2)求四边形 ABED 的面积.
24.如图,已知 AE ∥ BC, AE 平分∠ DAC . 求证: AB=AC .
25.已知:如图,∠ BAC= ∠ ABD ,AC=BD ,点 O 是 AD 、BC 的交点,点 E 是 AB 的中点. 证明: OE⊥ AB .
26.如图,已知点 B 、 C、 D 在同一条直线上, △ABC 和△ CDE 都是等边三角形. BE 交 AC 于 F, AD 交 CE 于 H, (1)求证: △ BCE ≌△ ACD ; (2)求证: △ CHF 为等边三角形.
(
)
2
2
2
2
A . x +1 B . x +2x﹣ 1 C. x +x+1 D. x +4x+4
7.如图,边长为( m+3)的正方形纸片剪出一个边长为 m 的正方形之后,剩余部分又剪拼
成一个矩形(不重叠无缝隙) ,若拼成的矩形一边长为 3,则另一边长是 (
)
A . 2m+3 B .2m+6 C. m+3 D. m+6
二、填空题(每题 3 分,共 24 分)
11.计算:(﹣
a2)
3
=__________

20

江苏省苏州市2016_2017学年八年级数学上学期期中试卷(精品解析)苏科版

江苏省苏州市2016_2017学年八年级数学上学期期中试卷(精品解析)苏科版

江苏省苏州市2016-2017学年八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个2.16的平方根是()A.4 B.±4 C.D.±3.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点 D.三边的垂直平分线的交点4.在,﹣,0.,,,(﹣1)0,﹣,0.1010010001…等数中,无理数的个数为()A.1 B.2 C.3 D.45.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,126.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或187.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④ B.②③ C.①②④D.①③④8.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()A.21 B.18 C.13 D.159.如图,长方形ABCD中,AB=9,BC=6,将长方形折叠,使A点与BC的中点F重合,折痕为EH,则线段BE的长为()A.B.4 C.D.510.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°二、填空题(本大题共8小题,每小题3分,共24分)11.的平方根是.12.由四舍五入法得到的近似数2.30×104,它是精确到位.13.已知等腰三角形的一个内角等于50°,则它的底角是°.14.若一正数的两个平方根分别是2a﹣1与2a+5,则这个正数等于.15.已知△ABC的三边长a、b、c满足,则△ABC一定是三角形.16.如图,DE是△ABC中AC边上的垂直平分线,若BC=9,AB=11,则△EBC的周长为.17.如图,E为正方形ABCD边AB上一点,BE=3AE=3,P为对角线BD上一个动点,则PA+PE 的最小值是.18.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有个.三、解答题19.(8分)计算或化简:(1)()2﹣﹣(2)+(1﹣)0﹣(﹣)﹣1.20.(8分)求下列各式中x的值:(1)(x﹣1)3+27=0;(2)9(x﹣1)2=16.21.(5分)已知5x﹣1的平方根是±3,4x+2y+1的立方根是1,求4x﹣2y的平方根.22.(5分)作图题:如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用直尺和圆规画出灯柱的位置点P.(保留作图痕迹)23.(5分)如图网格图中,每个小正方形的边长均为1,每个小格的顶点叫做格点.(1)请在图1中,画一个格点三角形,使它的三边长都是有理数;(2)请在图2中,画一个格点三角形,使它的三边长都是无理数;(3)图3中的△ABC的面积为.24.(5分)已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?25.(6分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.26.(6分)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来.于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为在的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)如果的小数部分为a,的整数部分为b,求a+b﹣的值.(2)已知10+=2x+y,其中x是整数,且0<y<1,求3x﹣y的值.27.(8分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒4cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.2016-2017学年江苏省苏州市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【解答】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点评】本题考查了轴对称与轴对称图形的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.16的平方根是()A.4 B.±4 C.D.±【考点】平方根.【分析】直接利用平方根的定义计算即可.【解答】解:∵±4的平方是16,∴16的平方根是±4.故选B【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.3.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点 D.三边的垂直平分线的交点【考点】线段垂直平分线的性质.【分析】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【解答】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.【点评】此题考查了线段垂直平分线的性质;题目比较简单,只要熟知线段垂直平分线的性质即可.分别思考,两两满足条件是解答本题的关键.4.在,﹣,0.,,,(﹣1)0,﹣,0.1010010001…等数中,无理数的个数为()A.1 B.2 C.3 D.4【考点】无理数;零指数幂.【分析】由于无理数就是无限不循环小数,利用无理数的概念即可判定选择项.【解答】解:无理数为:,﹣,,0.1010010001…;故选D【点评】此题要熟记无理数的概念及形式.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,12【考点】勾股数.【分析】根据勾股定理的逆定理对四个答案进行逐一判断即可.【解答】解:A、∵62+82=102=100,∴能构成直角三角形;B、52+122=132=169,∴能构成直角三角形;C、92+402=412=1681,∴能构成直角三角形;D、∵72+92≠122,∴不能构成直角三角形.故选D.【点评】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.6.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或18【考点】等腰三角形的性质;三角形三边关系.【分析】由于等腰三角形的两边长分别是3和6,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的周长的定义计算即可求解.【解答】解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选C.【点评】此题主要考查了三角形的周长的计算,也利用了等腰三角形的性质,同时也利用了分类讨论的思想.7.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④ B.②③ C.①②④D.①③④【考点】估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.【分析】先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.【解答】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.【点评】本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性.8.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()A.21 B.18 C.13 D.15【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半求出DF、EF,再根据三角形的周长的定义解答.【解答】解:∵CD⊥AB,F为BC的中点,∴DF=BC=×8=4,∵BE⊥AC,F为BC的中点,∴EF=BC=×8=4,∴△DEF的周长=DE+EF+DF=5+4+4=13.故选C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,是基础题,熟记性质并准确识图是解题的关键.9.如图,长方形ABCD中,AB=9,BC=6,将长方形折叠,使A点与BC的中点F重合,折痕为EH,则线段BE的长为()A.B.4 C.D.5【考点】翻折变换(折叠问题).【分析】根据折叠的性质得到EF=AE=9﹣BE,由线段中点的性质得到BF=BC=3,根据勾股定理列方程即可得到结论.【解答】解:∵将长方形折叠,使A点与BC的中点F重合,∴EF=AE=9﹣BE,∵BF=BC=3,在Rt△BEF中,EF2=BE2+BF2,即(9﹣BE)2=BE2+32,解得:BE=4.故选B.【点评】本题考查了翻折变换﹣折叠问题,勾股定理,熟记折叠的性质是解题的关键.10.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°【考点】轴对称-最短路线问题.【分析】据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=50°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.【点评】本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E,F的位置是解题关键.二、填空题(本大题共8小题,每小题3分,共24分)11.的平方根是±.【考点】平方根.【分析】由=3,再根据平方根定义求解即可.【解答】解:∵ =3,∴的平方根是±.故答案为:±.【点评】本题主要考查平方根与算术平方根,掌握平方根定义是关键.12.由四舍五入法得到的近似数2.30×104,它是精确到百位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数2.30×104精确到百位.故答案为百.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.13.已知等腰三角形的一个内角等于50°,则它的底角是50°或65°°.【考点】等腰三角形的性质.【分析】等腰三角形的两个底角相等,已知一个内角是50°,则这个角可能是底角也可能是顶角.要分两种情况讨论.【解答】解:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故答案是:50°或65°.【点评】本题考查了等腰三角形的性质,分类讨论是正确解答本题的关键.14.若一正数的两个平方根分别是2a﹣1与2a+5,则这个正数等于9 .【考点】平方根.【分析】根据正数的两个平方根互为相反数列方程求出a,再求出一个平方根,然后平方即可.【解答】解:∵一正数的两个平方根分别是2a﹣1与2a+5,∴2a﹣1+2a+5=0,解得a=﹣1,∴2a﹣1=﹣2﹣1=﹣3,∴这个正数等于(﹣3)2=9.故答案为:9.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15.已知△ABC的三边长a、b、c满足,则△ABC一定是等腰直角三角形.【考点】等腰直角三角形;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根;勾股定理的逆定理.【分析】先根据非负数的性质求出a、b、c的值,再根据三角形的三边关系进行判断即可.【解答】解:∵△ABC的三边长a、b、c满足,∴a﹣1=0,b﹣1=0,c﹣=0,∴a=1,b=1,c=.∵a2+b2=c2,∴△ABC一定是等腰直角三角形.【点评】本题考查的知识点是:一个数的算术平方根与某个数的绝对值以及另一数的平方的和等于0,那么算术平方根的被开方数为0,绝对值里面的代数式的值为0,平方数的底数为0及勾股定理的逆定理.16.如图,DE是△ABC中AC边上的垂直平分线,若BC=9,AB=11,则△EBC的周长为20 .【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到EA=EC,根据三角形的周长公式计算即可.【解答】解:∵DE是AC边上的垂直平分线,∴EA=EC,∴△EBC的周长=BC+BE+EC=BC+BE+EA=BC+AB=20.故答案为:20.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.如图,E为正方形ABCD边AB上一点,BE=3AE=3,P为对角线BD上一个动点,则PA+PE 的最小值是 5 .【考点】轴对称-最短路线问题.【分析】连接EC,则EC的长就是PA+PE的最小值.【解答】解:连接EC.∵BE=3AE=3,∴AB=4,则BC=AB=4,在直角△BCE中,CE===5.故答案是:5.【点评】本题考查了轴对称,理解EC的长是PA+PE的最小值是关键.18.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有 4 个.【考点】利用轴对称设计图案.【分析】因为顶点都在小正方形上,故可分别以大正方形的两条对角线AB、EF及MN、CH为对称轴进行寻找.【解答】解:分别以大正方形的两条对角线AB、EF及MN、CH为对称轴,作轴对称图形:则△ABM、△ANB、△EHF、△EFC都是符合题意的三角形,故答案为:4.【点评】此题考查了利用轴对称涉及图案的知识,关键是根据要求顶点在格点上寻找对称轴,有一定难度,注意不要漏解三、解答题19.计算或化简:(1)()2﹣﹣(2)+(1﹣)0﹣(﹣)﹣1.【考点】实数的运算;零指数幂;负整数指数幂.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用零指数幂、负整数指数幂法则,以及二次根式性质计算即可得到结果.【解答】解:(1)原式=4+3﹣10=﹣3;(2)原式=2+1+2=2+3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.求下列各式中x的值:(1)(x﹣1)3+27=0;(2)9(x﹣1)2=16.【考点】立方根;平方根.【分析】根据平方根和立方根的定义解答.【解答】解:(1)(x﹣1)3+27=0,解得:x=﹣2;(2)9(x﹣1)2=16,解得:或x=﹣.【点评】本题主要考查了平方根和立方根的概念,关键是根据平方根和立方根的定义计算.21.已知5x﹣1的平方根是±3,4x+2y+1的立方根是1,求4x﹣2y的平方根.【考点】立方根;平方根.【分析】根据平方根的定义可得5x﹣1=9,计算出x的值;再根据立方根定义可得4x+2y+1=1,进而计算出y的值,然后可得4x﹣2y的值,再算平方根即可.【解答】解:∵5x﹣1的算术平方根为3,∴5x﹣1=9,∴x=2,∵4x+2y+1的立方根是1,∴4x+2y+1=1,∴y=﹣4,∴4x﹣2y=4×2﹣2×(﹣4)=16,∴4x﹣2y的平方根是±4.【点评】此题主要考查了立方根和平方根,关键是掌握如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.22.作图题:如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用直尺和圆规画出灯柱的位置点P.(保留作图痕迹)【考点】作图—应用与设计作图.【分析】直接作出线段DC的垂直平分线,再作出∠AOB的平分线,进而得出其交点即可.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.23.如图网格图中,每个小正方形的边长均为1,每个小格的顶点叫做格点.(1)请在图1中,画一个格点三角形,使它的三边长都是有理数;(2)请在图2中,画一个格点三角形,使它的三边长都是无理数;(3)图3中的△ABC的面积为.【考点】勾股定理.【分析】由于正方形的边长为1,连接铬点的线段,可通过勾股定理计算出其边长.根据题目要求,3、4、5符合(1)要求的三角形,例如、3、2符合(2)要求的三角形.(3)三角形的面积=矩形的面积﹣3个小直角三角形的面积.【解答】解:(1)(2)如右图所示.(3)三角形的面积=22﹣2×﹣﹣=故答案为:【点评】本题考查了铬点三角形、勾股定理及三角形的面积公式.知道3、4、5能组成三角形,会把不规则的图形转化成规则图形求面积是解决本题的关键.24.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?【考点】勾股定理的应用.【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD 中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.【解答】解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=,==36.所以需费用36×200=7200(元).【点评】通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.25.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE=AF,BE=CF,即可求出答案.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.26.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来.于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为在的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)如果的小数部分为a,的整数部分为b,求a+b﹣的值.(2)已知10+=2x+y,其中x是整数,且0<y<1,求3x﹣y的值.【考点】估算无理数的大小;算术平方根.【分析】(1)根据题意得出a=﹣2,b=5,代入可得;(2)由2=且3<<4知13<10+<14,从而得出x=、y=﹣3,再代入计算即可.【解答】解:(1)根据题意得:a=﹣2,b=5,则原式=﹣2+5﹣=3;(2)∵2=,且3<<4,∴13<10+<14,∴2x=13,y=10+﹣13=﹣3,即x=,则3x﹣y=3×﹣(﹣3)=﹣2.【点评】此题主要考查了无理数的估算能力,解题关键是估算无理数的整数部分和小数部分,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.27.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒4cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.【考点】三角形综合题;角平分线的性质;等腰三角形的判定与性质;勾股定理的应用;三角形中位线定理.【分析】(1)设存在点P,使得PA=PB,此时PA=PB=4t,PC=8﹣4t,根据勾股定理列方程即可得到t的值;(2)过P作PE⊥AB,设CP=x,根据角平分线的性质和勾股定理列方程式进行解答即可;(3)分类讨论:当CP=CB时,△BCP为等腰三角形,若点P在AC上,根据AP的长即可得到t的值,若点P在AB上,根据P移动的路程易得t的值;当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,根据等腰三角形的性质得BD=CD,则可判断PD为△ABC的中位线,则AP=AB=5,易得t的值;当BP=BC=6时,△BCP为等腰三角形,易得t的值.【解答】解:(1)∵△ABC中,∠ACB=90°,AB=10cm,BC=6cm,∴由勾股定理得AC==8,如图,连接BP,当PA=PB时,PA=PB=4t,PC=8﹣4t,在Rt△PCB中,PC2+CB2=PB2,即(8﹣4t)2+62=(4t)2,解得:t=,∴当t=时,PA=PB;(2)解:如图1,过P作PE⊥AB,又∵点P 恰好在∠BAC 的角平分线上,且∠C=90°,AB=10cm ,BC=6cm ,∴CP=EP ,∴△ACP ≌△AEP (HL ),∴AC=8cm=AE ,BE=2,设CP=x ,则BP=6﹣x ,PE=x ,∴Rt △BEP 中,BE 2+PE 2=BP 2,即22+x 2=(6﹣x )2解得x=,∴CP=,∴CA+CP=8+=,∴t=÷4=(s );(3)①如图2,当CP=CB 时,△BCP 为等腰三角形,若点P 在CA 上,则4t=8﹣6,解得t=(s );②如图3,当BP=BC=6时,△BCP 为等腰三角形,∴AC+CB+BP=8+6+6=20,∴t=20÷4=5(s );③如图4,若点P 在AB 上,CP=CB=6,作CD ⊥AB 于D ,则根据面积法求得CD=4.8, 在Rt △BCD 中,由勾股定理得,BD=3.6,∴PB=2BD=7.2,∴CA+CB+BP=8+6+7.2=21.2,此时t=21.2÷4=5.3(s );④如图5,当PC=PB 时,△BCP 为等腰三角形,作PD ⊥BC 于D ,则D 为BC 的中点, ∴PD 为△ABC 的中位线,∴AP=BP=AB=5,∴AC+CB+BP=8+6+5=19,∴t=19÷4=(s );综上所述,t 为s 或5.3s 或5s 或s 时,△BCP 为等腰三角形.【点评】本题以动点问题为背景,考查了等腰三角形的判定与性质、角平分线的性质、勾股定理、三角形面积的计算以及全等三角形的判定与性质等知识的综合应用,熟练掌握等腰三角形的判定与性质,进行分类讨论是解决问题的关键.解题时需要作辅助线构造直角三角形以及等腰三角形.。

2017-2018学年苏州市太仓市八年级上期中数学试卷(有答案)

2017-2018学年苏州市太仓市八年级上期中数学试卷(有答案)

2017-2018学年江苏省苏州市太仓市八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.(3分)下列四个数中,是负数的是()A.(﹣2)2B.|﹣2| C. D.﹣2.(3分)4的算术平方根等于()A.2 B.±2 C.﹣2 D.3.(3分)使有意义的的取值范围为()A.≥2B.>2 C.≤2 D.<24.(3分)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°5.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.6.(3分)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥7.(3分)化简(2016×(2+)2017的结果是()A.﹣1B.﹣2 C.+2 D.2﹣8.(3分)如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△DEB的周长是()A.6cm B.8cm C.10cm D.12cm9.(3分)若△ABC的边长a,b,c满足a2+b2+c2+50=6a+8b+10c,那么△ABC是()A.等腰三角形B.直角三角形C.等边三角形 D.锐角三角形10.(3分)如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:(1)BP=CM;(2)△ABQ≌△CAP;(3)∠CMQ的度数始终等于60°;(4)当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有()A.1个B.2个 C.3个 D.4个二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.(3分)﹣8的立方根是.12.(3分)在Rt△ABC中,∠C=90°,a=5,b=12,则c= .13.(3分)在△ABC中,∠A=100°,当∠B= °时,△ABC是等腰三角形.14.(3分)已知a,b为两个连续的整数,且a<<b,则a+b= .15.(3分)已知实数,y满足|﹣4|+=0,则以,y的值为两边长的等腰三角形的周长是.16.(3分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=7cm,BD=5cm,那么D 点到线段AB的距离是cm.17.(3分)如图,已知∠AOB=60°,点P在OA上,OP=8,点M、N在边OB上,PM=PN,若MN=2,则OM= .18.(3分)如图,P是正方形ABCD内一点,连接PA、PB、PC,将△ABP绕点B顺时针旋转到△CBP′的位置.若PA=2,PB=4,∠APB=135°.则PC的长= .三、解答题(本大题共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(8分)计算:(1)(﹣3)2﹣+;(2)﹣﹣|1﹣|.20.(6分)求下列各式中的的值.(1)(+1)3+64=0(2)4(2﹣1)2=.21.(6分)如图:等腰梯形ABCD中,AD∥BC,AB=DC,AD=3,AB=4,∠B=60°求梯形的面积.22.(6分)已知,﹣3≤≤2,化简:2﹣.23.(6分)已知:如图∠ABC=∠ADC=90°,M,N分别是AC、BD的中点.求证:MN ⊥BD.24.(8分)如图,∠ADC=90°,AD=4m,CD=3m,AB=12m,BC=13m,求这块地的面积.25.(8分)如图是规格为4×6的边长为1个单位的正方形网格,请在所给网格中按下列要求画顶点在格点的三角形.(1)在图1中画△ABC,且AB=AC=,BC=;(2)在图2中画一个三边长均为无理数,且各边都不相等的直角△DEF(请注明各边长).26.(8分)已知=+1,求下列代数式的值(1)2﹣2+1;(2)3﹣2﹣4+2.27.(10分)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,BE与CD交于点G.(1)求证:AP=DG;(2)求线段AP的长.28.(10分)如图,已知在△ABC中,BA=AC=2且∠BAC=120°,点D在直线BC上运动,画出点D在运动中使得△ABD为等腰三角形的所有的位置并求相应的AD的长.2017-2018学年江苏省苏州市太仓市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.(3分)下列四个数中,是负数的是()A.(﹣2)2B.|﹣2| C. D.﹣【解答】解:A、(﹣2)2=4,是正数,故本选项错误;B、|﹣2|=2是正数,故本选项错误;C、=2,是正数,故本选项错误;D、﹣是负数,故本选项正确.故选:D.2.(3分)4的算术平方根等于()A.2 B.±2 C.﹣2 D.【解答】解:∵22=4,∴4算术平方根等于2.故选:A.3.(3分)使有意义的的取值范围为()A.≥2B.>2 C.≤2 D.<2【解答】解:由题意可知:﹣2≥0,≥2故选:A.4.(3分)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选:A.5.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.【解答】解:A、=3,与不是同类二次根式,故此选项错误;B、=,与,是同类二次根式,故此选项正确;C、=2,与不是同类二次根式,故此选项错误;D、==,与不是同类二次根式,故此选项错误;故选:B.6.(3分)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.7.(3分)化简(2016×(2+)2017的结果是()A.﹣1B.﹣2 C.+2 D.2﹣【解答】解:原式=(2﹣)2016×(2+)2016×(2+)=[(2+)(2﹣)]2016×(2+)=2+故选:C.8.(3分)如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△DEB的周长是()A.6cm B.8cm C.10cm D.12cm【解答】解:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,∴AC=AE,∴△DEB的周长=BD+DE+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=8cm,∴△DEB的周长是8cm.故选:B.9.(3分)若△ABC的边长a,b,c满足a2+b2+c2+50=6a+8b+10c,那么△ABC是()A.等腰三角形B.直角三角形C.等边三角形 D.锐角三角形【解答】解:a2+b2+c2+50=6a+8b+10c变形为(a﹣3)2+(b﹣4)2+(c﹣5)2=0解之得:a=3,b=4,c=5,符合勾股定理的逆定理,故选:B.10.(3分)如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:(1)BP=CM;(2)△ABQ≌△CAP;(3)∠CMQ的度数始终等于60°;(4)当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有()A.1个B.2个 C.3个 D.4个【解答】解:∵△ABC是等边三角形,∴AB=BC=AC,∠BAC=∠B=∠ACB=60°,根据题意得:AP=BQ,在△ABQ和△CAP中,,∴△ABQ≌△CAP(SAS),(2)正确;∴∠AQB=∠CPA,∵∠BAQ+∠APC+∠AMP=180°,∠BAQ+∠B+∠AQB=180°,∴∠AMP=∠B=60°,∴∠QMC=60°,(3)正确;∵∠QMC=60°,∠QCM≠60°,∴∠CQM≠60°,∴CQ≠CM,∵BP=CQ,∴CM≠BP,(1)错误;当t=时,BQ=,BP=4﹣=,∵PQ2=BP2+BQ2﹣2BP•BQcos60°,∴PQ=,∴△PBQ为直角三角形,同理t=时,△PBQ为直角三角形仍然成立,(4)正确;故选:C.二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.(3分)﹣8的立方根是﹣2 .【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.12.(3分)在Rt△ABC中,∠C=90°,a=5,b=12,则c= 13 .【解答】解:因为∠C=90°,所以c===13,故答案为:13.13.(3分)在△ABC中,∠A=100°,当∠B= 40 °时,△ABC是等腰三角形.【解答】解:∵△ABC是等腰三角形,∠A=100°,∴∠B==40°.故答案为:40.14.(3分)已知a,b为两个连续的整数,且a<<b,则a+b= 11 .【解答】解:∵<,∴a=5,b=6,∴a+b=11,故答案为:11.15.(3分)已知实数,y满足|﹣4|+=0,则以,y的值为两边长的等腰三角形的周长是10 .【解答】解:根据题意得,﹣4=0,3y﹣6=0,解得=4,y=2,①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,周长=4+4+2=10;②4是底边时,三角形的三边分别为4、2、2,不能组成三角形,所以,三角形的周长为:10;故答案为:10.16.(3分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=7cm,BD=5cm,那么D 点到线段AB的距离是 2 cm.【解答】解:CD=BC﹣BD,=7﹣5,=2(cm),∵∠C=90°,∴D到AC的距离为CD=2cm,∴D点到线段AB的距离为2cm.故答案为:2.17.(3分)如图,已知∠AOB=60°,点P在OA上,OP=8,点M、N在边OB上,PM=PN,若MN=2,则OM= 3 .【解答】解:过P作PC⊥MN,∵PM=PN,∴C为MN中点,即MC=NC=MN=1,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=OP=4,则OM=OC﹣MC=4﹣1=3,故答案为:318.(3分)如图,P是正方形ABCD内一点,连接PA、PB、PC,将△ABP绕点B顺时针旋转到△CBP′的位置.若PA=2,PB=4,∠APB=135°.则PC的长= 6 .【解答】解:∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,∵△ABP绕点B顺时针旋转到△CBP′的位置.∴AP=CP′=2,BP=BP′=4,∠PBP′=∠ABC=90°,∠BP′C=∠APB=135°.∴△BPP′为等腰直角三角形,∴∠BP′P=45°,PP′=BP=4,∵∠PP′C=∠BP′C﹣∠BP′P=135°﹣45°=90°,∴△PP′C为直角三角形,∴PC===6.故答案为6.三、解答题(本大题共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(8分)计算:(1)(﹣3)2﹣+;(2)﹣﹣|1﹣|.【解答】解:(1)原式=9﹣9+3=3;(2)原式=﹣1﹣4﹣(﹣1)=﹣5.20.(6分)求下列各式中的的值.(1)(+1)3+64=0(2)4(2﹣1)2=.【解答】解:(1)(+1)3=﹣64+1=﹣4=﹣5(2)(2﹣1)2=2﹣1=±=﹣或=21.(6分)如图:等腰梯形ABCD中,AD∥BC,AB=DC,AD=3,AB=4,∠B=60°求梯形的面积.【解答】解:过A作AE⊥BC于E,过D作DF⊥BC于F,∵AE⊥BC,DF⊥BC,∴AE∥DF,∵AD∥BC,∴四边形AEFD是平行四边形,∴AD=EF=3,AE=DF,∵∠B=60°,∠AEB=90°,∴∠BAE=30°,∴BE=AB=2,∵∠AEB=∠DFC=90°,AE=DF,AB=CD,∴Rt△AEB≌Rt△DFC,∴BE=CF=2,BC=2+2+3=7,由勾股定理得:AE=,∴梯形的面积=×(AD+BC)×AE=×(3+7)×2=10.22.(6分)已知,﹣3≤≤2,化简:2﹣.【解答】解:∵﹣3≤≤2,∴+3≥0,﹣2≤0,∴2﹣=2﹣=2(+3)+(﹣2)=2+6+﹣2=3+4.23.(6分)已知:如图∠ABC=∠ADC=90°,M,N分别是AC、BD的中点.求证:MN ⊥BD.【解答】证明:如图,连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=DM=AC,∵点N是BD的中点,∴MN⊥BD.24.(8分)如图,∠ADC=90°,AD=4m,CD=3m,AB=12m,BC=13m,求这块地的面积.【解答】解:连结AC,在△ADC中∠ADC=90°,AD=4m,CD=3m,∴AC2=AD2+CD2=42+32=52,∴AC=5m,在△ACB中AC=5,AB=12,BC=13,∴BC2=AC2+AB2,∴∠CAB=90°,∴S=S△ABC ﹣S△ADC=×AB×AC﹣×CD×AD=×12×5﹣×3×4=24(m2).答:这块地的面积为24m2.25.(8分)如图是规格为4×6的边长为1个单位的正方形网格,请在所给网格中按下列要求画顶点在格点的三角形.(1)在图1中画△ABC,且AB=AC=,BC=;(2)在图2中画一个三边长均为无理数,且各边都不相等的直角△DEF(请注明各边长).【解答】解:(1)如图1所示,AB=,AC=,BC=;(2)如图2,BE=,DF=2,EF=.26.(8分)已知=+1,求下列代数式的值(1)2﹣2+1;(2)3﹣2﹣4+2.【解答】解:(1)当=+1时,2﹣2+1=(﹣1)2=(+1﹣1)2=3;(2)当=+1时,2=(+1)2=4+2,原式=(2﹣4)﹣(2﹣2)=(2+2)(2﹣2)﹣(2﹣2)=(2﹣2)[(2+2)﹣1]=(4+2﹣2)[(+1)(4+2)﹣1]=(2+2)(8+11)=48+70.27.(10分)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,BE与CD交于点G.(1)求证:AP=DG;(2)求线段AP的长.【解答】证明:(1)∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,∴AP=DG;(2)如图所示,∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=,则PD=GE=6﹣,DG=,∴CG=8﹣,BG=8﹣(6﹣)=2+,根据勾股定理得:BC2+CG2=BG2,即62+(8﹣)2=(+2)2,解得:=4.8,∴AP=4.8,28.(10分)如图,已知在△ABC中,BA=AC=2且∠BAC=120°,点D在直线BC上运动,画出点D在运动中使得△ABD为等腰三角形的所有的位置并求相应的AD的长.【解答】解:共有4个点满足条件.过A 作AH ⊥BC 于H∵AB=AC=2,∠BAC=120°∴∠ABH=30°∴AH= BH=3①如图D1,△ABD 1中 AB=BD 1=2∴D1H=BD 1+BH=2+3∴Rt △AD1H 中 AD 12=D 1H 2+AH 2=3+(3+2)2=24+12=(3+)2∴AD1=3+ ②如图D 2,△ABD 2中AD 2=BD 2 设AD 2= D 2H=BH ﹣BD 2=3﹣ ∴Rt △AD 2H 中 AD 22=AH 2+D 2H 2 2=3+(3﹣)2 ∴=2∴AD 2=2.③如图D3,△ABD 3中 AB=BD 3=2∴HD3=2﹣3Rt △AD3H 中 AD 32=AH 2+HD 32=3+(2﹣3)2=24﹣12=(3﹣)2 ∴AD3=3﹣④如图D4,D 4与C 重合,AB=AC=AD 4=2.。

初中数学苏州市太仓市八年级上期中数学考试卷含答案.docx

初中数学苏州市太仓市八年级上期中数学考试卷含答案.docx

xx学校xx学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下面四个QQ表情图案中,是轴对称图形的是()A. B. C. D.试题2:4的平方根是()A.±2 B.16 C.﹣2 D.2试题3:在实数3.14,,0,﹣,,中,是无理数的有()A.1个 B.2个 C.3个 D.4个试题4:如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去 B.带②去 C.带③去 D.带①和②去试题5:已知等腰三角形的一边为2,一边为5,那么它的周长等于()A.9 B.12 C.9或12 D.7或10试题6:工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA、OB上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL试题7:下列各数中,与﹣2互为相反数的是()A. B. C.﹣ D.试题8:如图,数轴上的点A、B、C、D分别表示数﹣1、1、2、3,则表示2﹣的点P应在()A.线段AO上 B.线段OB上 C.线段BC上 D.线段CD上试题9:在等腰△ABC中,∠A=4∠B,则∠C的度数为()A.30° B.60° C.30°或80° D.60°或80°试题10:如图,在△ABC中,已知∠ACB=90°,AB=10cm,AC=8cm,动点P从点A出发,以2cm/s的速度沿线段AB向点B运动.在运动过程中,当△APC为等腰三角形时,点P出发的时刻t可能的值为()A.5 B.5或8 C. D.4或试题11:等边三角形的边长为2,则它的周长为.试题12:使式子有意义的x的取值范围是.试题13:如图,若△ABE≌△ACF,AB=4,AE=2,则EC的长为.试题14:若=2,则x的值为.试题15:如图,在面积为4的等边△ABC的BC边上有一点D,连接AD,以AD为边作等边△ADE,连接BE.则四边形AEBD的面积是.试题16:若正数m的两个平方根a、b (a≠b)是方程3x+2y=2的一个解,则m的值为.试题17:如图,在△ABC中,已知∠B=∠C=30°,EF垂直平分AC于点E,交BC于点F.若FC=3,则BF= .试题18:如图,BD是△ABC的角平分线,DE⊥AB于点E.△ABC的面积为20,AB=12,BC=8,则DE的长为.试题19:计算:﹣|2﹣|﹣.试题20:x2=9试题21:(x﹣1)3+8=0.试题22:若a+7的算术平方根是3,2b+2的立方根是﹣2,求b a的值.试题23:过直线l外一点P用直尺和圆规作直线l的垂线的方法是:以点P为圆心,大于点P到直线l的距离长为半径画弧,交直线l于点A、B;分别以A、B为圆心,大于AB长为半径画弧,两弧交于点C.连结PC,则PC⊥AB.请根据上述作图方法,用数学表达式补充完整下面的已知条件,并给出证明.已知:如图,点P、C在直线l的两侧,点A、B在直线l上,且,.求证:PC⊥AB.试题24:.我们知道,平方数的开平方运算可以直接求得,如等,有些数则不能直接求得,如,但可以通过计算器求得.还有一种方法可以通过一组数的内在联系,运用规律求得.请你观察下表:a …0.04 4 400 40000 ……x 2 y z …(1)表格中的三个值分别为:x= ;y= ;z= ;(2)用公式表示这一规律:当a=4×100n(n为整数)时,= ;(3)利用这一规律,解决下面的问题:已知≈2.358,则①≈;②≈.试题25:.如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;(2)若△ACD为直角三角形,求∠BAD的度数.试题26:如图,已知点A、C、E在同一直线上.从下面四个关系式中,取三个式子作为条件,第四个式子作为结论,构成一个真命题,并证明其正确:①AC=CE,②AB=CD,③AB∥CD,④BC∥DE.已知:,求证:.(只要填序号)试题27:操作与实践:已知长方形纸片ABCD中,AD=3,AB=4.操作一:如图①,任意画一条线段EF,将纸片沿EF折叠,使点B落到点B′的位置,EB′与CD交于点G.试说明重叠部分△EFG为等腰三角形;操作二:如图②,将纸片沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点H.求△B′HC的周长.试题28:探究与发现:如图①,在Rt△ABC中,∠BAC=90°,AB=AC,点D在底边BC上,AE=AD,连结DE.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC (点B、C除外)上运动时,试猜想并探究∠BAD与∠CDE的数量关系;(3)深入探究:若∠BAC≠90°,试就图②探究∠BAD与∠CDE的数量关系.试题29:探索与运用:(1)基本图形:如图①,已知OC是∠AOB的角平分线,DE∥OB,分别交OA、OC于点D、E.求证:DE=OD;(2)在图②中找出这样的基本图形,并利用(1)中的规律解决这个问题:已知△ABC中,两个内角∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,交AB、AC于点D、E.求证:DE=BD+CE;(3)若将图②中两个内角的角平分线改为一个内角(如图③,∠ABC)、一个外角(∠ACF)和两个都是外角(如图④∠DBC、∠BCE)的角平分线,其它条件不变,则线段DE、BD、CE的数量关系分别是:图③为、图④为:并从中任选一个结论证明.试题1答案:C【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.试题2答案:A【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选A.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.试题3答案:B【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:﹣,共有2个.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.试题4答案:C【考点】全等三角形的应用.【专题】应用题.【分析】此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.【点评】主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.试题5答案:B【考点】等腰三角形的性质;三角形三边关系.【分析】根据等腰三角形的定义,可得第三边的长,根据三角形的周长,可得答案.【解答】解:当2为底时,其它两边都为5,5、5、2可以构成三角形,周长为12;当2为腰时,其它两边为2和5,因为2+2=4<5,所以不能构成三角形,故舍去.所以答案只有12.故选B.【点评】本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.试题6答案:A【考点】全等三角形的判定.【专题】作图题.【分析】已知两三角形三边分别相等,可考虑SSS证明三角形全等,从而证明角相等.【解答】解﹕做法中用到的三角形全等的判定方法是SSS证明如下∵OM=ONPM=PNOP=OP∴△ONP≌△OMP(SSS)所以∠NOP=∠MOP故OP为∠AOB的平分线.故选:A.【点评】本题考查全等三角形在实际生活中的应用.对于难以确定角平分线的情况,利用全等三角形中对应角相等,从而轻松确定角平分线.试题7答案:A【考点】实数的性质.【分析】根据相反数和实数的性质,即可解答.【解答】解:A、,2与﹣2互为相反数,故正确;B、=﹣2,故错误;C、﹣与2不是相反数,故错误;D、与2不是相反数,故错误;故选:A.【点评】本题考查了相反数和实数的性质,解决本题的关键是熟记相反数的定义.试题8答案:A【考点】实数与数轴.【分析】根据被开方数越大算术平方根越大,可得的取值范围,根据不等式的性质,可得答案.【解答】解:2<<2.5.由不等式的性质,得﹣2.5<﹣<﹣2,﹣0.5<2﹣<0.故选:A.【点评】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出的取值范围是解题关键.试题9答案:C【考点】等腰三角形的性质.【分析】根据三角形的内角和定理得∠A+∠B+∠C=180°,而∠A=4∠B=∠C,则有∠B+4∠B+4∠B=180°,或∠A=4∠B=4∠C,则有∠B+4∠B+∠B=180°,解方程即可得到∠C的度数.【解答】解:∵∠A+∠B+∠C=180°,∠A=4∠B,∴当∠A=∠C时,即4∠B+4∠B+∠B=180°,∴∠B=20∴,∴∠C=80°,当∠B=∠C时,即∠B+4∠B+∠B=180°,∴∠B=30°,∴∠C=30°,综上所述:∠C的度数为30°或80°.【点评】本题考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形的性质是解题的关键.试题10答案:D【考点】等腰三角形的判定.【专题】动点型.【分析】没有指明等腰三角形的底边,所以需要分类讨论:AP=AC,AP=PC,AC=PC.【解答】解:如图,∵在△ABC中,已知∠ACB=90°,AB=10cm,AC=8cm,∴由勾股定理,得BC==6cm.①当AP=AC时,2t=8,则t=4;②当AP=PC时,过点P作PD⊥AC于点D,则AD=CD,PD∥BC,∴PD是△ABC的中位线,∴点P是AB的中点,∴2t=5,即t=;③若AC=PC=8cm时,与PC<AC矛盾,不和题意.综上所述,t的值是4或;故选:D.【点评】本题考查了等腰三角形的判定,注意要分类讨论,还要注意PC的取值范围.试题11答案:【考点】等边三角形的性质.【分析】由于等边三角形的三边相等,故能求出它的周长.【解答】解:因为等边三角形的三边相等,所以周长为3×2=6.故答案为:6.【点评】本题考查等边三角形的性质,关键是利用了等边三角形的三边相等的性质.试题12答案:x≥0 .【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:有意义的x的取值范围是x≥0.故答案为:x≥0.【点评】本题考查的知识点为:二次根式的被开方数是非负数.试题13答案:2 .【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等求出AC的长,结合图形计算即可.【解答】解:∵△ABE≌△ACF,∴AC=AB=4,∴EC=AC﹣AE=2,故答案为:2.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.试题14答案:5 .【考点】算术平方根.【专题】计算题;实数.【分析】利用算术平方根的定义计算即可求出x的值.【解答】解:由=2,得到x﹣1=4,解得:x=5.故答案为:5.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.试题15答案:4 .【考点】全等三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形的性质得到AE=AD,AB=AC,∠BAC=∠DAE=60°,于是得到∠EAB=∠DAC,推出△AEB≌△ADC,得到S△AEB=S△ADC,即可得到结论.【解答】解:∵△ABC与△ADE是等边三角形,∴AE=AD,AB=AC,∠BAC=∠DAE=60°,∴∠EAB=∠DAC,在△AEB与△ADC中,,∴△AEB≌△ADC,∴S△AEB=S△ADC,∴四边形AEBD的面积=等边△ABC的面积=4.【点评】本题考查了全等三角形的判定和性质,图形的面积的计算,等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.试题16答案:4 .【考点】二元一次方程的解;平方根.【分析】根a、b (a≠b)是正数m的两个平方根,则a和b互为相反数,把x=﹣y代入3x+2y=2求得x,进而求得y的值,然后求得m.【解答】解:当x=﹣y时,代入3x+2y=2,得3x﹣2x=2,解得:x=2,则y=﹣2.则m=22=4.故答案是:4.【点评】本题考查了二元一次方程的解以及平方根的性质,正确理解x=﹣y这一关系是关键.试题17答案:6 .【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】连接AF,先由三角形内角和定理得出∠BAC的度数,再由线段垂直平分线的性质得出CF=AF,∠CAF=∠C=30°,故可得出∠BAF的度数,根据直角三角形的性质即可得出结论.【解答】解:连接AF,∵∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°.∵EF垂直平分AC于点E,交BC于点F,FC=3,∴CF=AF=3,∠CAF=∠C=30°,∴∠BAF=∠BAC﹣∠CAF=120°﹣30°=90°,∴BF=2AF=6.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.试题18答案:2 .【考点】角平分线的性质.【分析】作DF⊥BC于F,根据角平分线的性质得到DF=DE,根据三角形面积公式计算即可.【解答】解:作DF⊥BC于F,∵BD是△ABC的角平分线,DE⊥AB,DF⊥BC,∴DF=DE,∴×AB×DE+×BC×DF=20,即×12×DE+×8×DF=20,∴DF=DE=2.故答案为:2.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.试题19答案:【考点】实数的运算.【分析】先化简二次根式、绝对值,再进行计算即可.【解答】解:原式=2﹣2++2=2+.【点评】本题考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、二次根式、绝对值等考点的运算.试题20答案:∵(±)32=9,∴x=±3;试题21答案:∵移项得,(x﹣1)3=﹣8,∴x﹣1=﹣2,∴x=﹣1.【点评】本题考查的是平方根及立方根,熟知平方根及立方根的定义是解答此题的关键.试题22答案:【考点】立方根;算术平方根.【分析】根据a+7的算术平方根是3,2b+2的立方根是﹣2,可得a+7=9,2b+2=﹣8,求出a,b的值,即可解答.【解答】解:由题意得:a+7=9,2b+2=﹣8,∴a=2,b=5,∴b a=(﹣5)2=25.【点评】本题考查的是平方根、立方根及算术平方根的定义,解答此题时要注意一个数的平方根有两个,这是此题的易错点.试题23答案:【考点】作图—基本作图;线段垂直平分线的性质.【分析】首先根据作图过程可得PA=PB,AC=BC,再根据线段垂直平分线的判定可得PA=PAB,则P在AB的垂直平分线上,由AC=BC,可得C在AB的垂直平分线上,再根据两点确定一条直线可得PC是AB的垂直平分线.【解答】已知:如图,点P、C在直线l的两侧,点A、B在直线l上,且 PA=PB,AC=BC,证明:∵PA=PB,∴P在AB的垂直平分线上,∵AC=BC,∴C在AB的垂直平分线上,∴PC是AB的垂直平分线,∴PC⊥AB.【点评】此题主要考查了线段垂直平分线的判定,以及已知直线的垂线的做法,关键是掌握到线段两端点距离相等的点在线段的垂直平分线上.试题24答案:【考点】算术平方根.【专题】计算题;规律型.【分析】(1)利用算术平方根定义计算,填表即可;(2)归纳总结得到一般性规律,求出的值即可;(3)利用得出的规律计算即可得到结果.【解答】解:(1)根据题意得:x=0.2;y=20;z=200;(2)当a=4×100n(n为整数)时,=2×10n;(3)若≈2.358,则①≈0.2358;②≈23.58.故答案为:(1)0.2;20;200;(2)2×10n;(3)0.2358;23.58.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.试题25答案:【考点】等腰三角形的判定;直角三角形的性质.【分析】(1)根据等腰三角形的性质求出∠B=∠C=30°,根据三角形内角和定理求出∠BAC=120°,求出∠CAD=∠ADC,根据等腰三角形的判定得出即可;(2)有两种情况:①当∠ADC=90°时,当∠CAD=90°时,求出即可.【解答】(1)证明:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠BAD=45°,∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°,∴∠ADC=∠CAD,∴AC=CD,即△ACD为等腰三角形;(2)解:有两种情况:①当∠ADC=90°时,∵∠B=30°,∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;即∠BAD的度数是60°或30°.【点评】本题考查了三角形内角和定理,等腰三角形的判定的应用,能根据定理求出各个角的度数是解此题的关键,用了分类讨论思想.试题26答案:【考点】全等三角形的判定与性质;命题与定理.【分析】根据平行线的性质得到∠A=∠DCE,推出△ABC≌△CDE,根据全等三角形的性质得到∠ACB=∠E,由平行线的判定定理即可得到结论.【解答】已知:①AC=CE,②AB=CD,③AB∥CD,求证:④BC∥DE.证明:∵AB∥CD,∴∠A=∠DCE,在△ABC与△CDE中,,∴△ABC≌△CDE,∴∠ACB=∠E,∴BC∥DE.故答案为:①②③,④.【点评】本题考查了全等三角形的判定和性质,平行线的性质和判定,命题与定理,熟练掌握全等三角形的判定和性质是解题的关键.试题27答案:【解答】解:(1)由折叠的性质可知∠GEF=∠BEF.∵DC∥AB,∴∠GFE=∠FEB.∴∠FEB=∠BEF.∴EG=FG.∴△EFG为等腰三角形.(2)∵四边形ABCD为矩形,∴AD=BC.由翻折的性质可知:BC=CB′,∠B′=∠B=90°.∴AD=CB′,∠D=∠B′.在△ADH和△CB′H中,,∴△ADH≌△CB′H.∴B′H=DH.∴△B′HC的周长=B′C+B′H+HC=BC+DH+HC=7.【点评】本题主要考查的是翻折的性质、等腰三角形的判定、全等三角形的性质和判定,证得B′H=DH是解题的关键.试题28答案:【考点】等腰三角形的性质.【分析】(1)根据等腰三角形的性质得到∠CAD=∠BAD=60°,由于AD=AE,于是得到∠ADE=60°,根据三角形的内角和即可得到∠CDE=75°﹣45°=30°;(2)设∠BAD=x,于是得到∠CAD=90°﹣x,根据等腰三角形的性质得到∠AED=45°+,于是得到结论;(3)设∠BAD=x,∠C=y,根据等腰三角形的性质得到∠BAC=180°﹣2y,由∠BAD=x,于是得到∠DAE=y+x,即可得到结论.【解答】解:(1)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠BAD=60°,∴∠DAE=30°,∵AD=AE,∴∠AED=75°,∴∠CDE=∠AED=∠C=30°;(2)设∠BAD=x,∴∠CAD=90°﹣x,∵AE=AD,∴∠AED=45°+,∴∠CDE=x;(3)设∠BAD=x,∠C=y,∵AB=AC,∠C=y,∴∠BAC=180°﹣2y,∵∠BAD=x,∴∠DAE=y+x,∴x.【点评】本题考查等腰三角形的性质,三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.试题29答案:【考点】等腰三角形的判定与性质;平行线的性质.【分析】(1)根据角平分线的定义得到∠AOC=∠BOC,根据平行线的性质得到∠DEO=∠BOC,等量代换得到∠DEO=AOC,根据等腰三角形的判定即可得到结论;(2)根据△ABC中,∠ABC和∠ACB的平分线相交于点O.求证∠DBO=∠OBC,∠ECO=∠BCO,再利用两直线平行内错角相等,求证出∠DOB=∠DBO,∠COE=∠BCO,即BD=DO,OE=CE,然后利用等量代换即可求出结论;(3)选③证明:由(1)中证明可得:DB=DO,EO=EC,根据线段的和差即可得到结论【解答】证明:(1)∵OC平分∠AOB,∴∠AOC=∠BOC,∵DE∥OB,∴∠DEO=∠BOC,∴∠DEO=AOC,∴DE=OD;(2)∵∠ABC和∠ACB的平分线相交于点O,∴∠DBO=∠OBC,∠ECO=∠BCO,∵DE∥BC,交AB于点D,交AC于点E.∴∠DOB=∠DBO,∠COE=∠ECO,∴BD=DO,OE=CE,∴DE=BD+CE;(3)图③:DE=BD﹣CE,图④:DE=BD+CE,选③证明:由(1)中证明可得:DB=DO,EO=EC,∴DE=OD=OE=DB﹣CE.故答案为:DE=BD﹣CE,DE=BD+CE.【点评】本题考查了等腰三角形的判定和性质,平行线的性质,熟练掌握等腰三角形的性质是解题的关键.。

太仓市XX中学2017-2018学年八年级上数学期中模拟试卷含答案

太仓市XX中学2017-2018学年八年级上数学期中模拟试卷含答案

江苏省太仓市2017-2018学年上学期八年级数学期中模拟试卷一、填空题(本大题共10小题,每小题3分,共30分)1.(3分)在以下四个银行标志中,属于轴对称图形的是()2.(3分)二次根式有意义,则x的取值范围是()A.x>2 B.x<2 C.x≥2D.x≤23.(3分)下列几组数中不能作为直角三角形三边长度的是()A.a=7,b=24,c=25 B.a=1.5,b=2,c=2.5C.D.a=15,b=8,c=174.(3分)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm5.(3分)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F;B.∠B=∠E;C.BC∥EF ;D.∠A=∠EDF6.(3分)如图,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F.若S△ABC=12,DF=2,AC=3,则AB的长是()A.2 B.4 C.7 D.97.(3分)如图,王大伯家屋后有一块长12m、宽8m的长方形空地,他在以较长边BC为直径的半圆内种菜,他家养的一只羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长最长不超过()A.3m B.4m C.5m D.6m8.(3分)如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),请观察图案,指出以下关系式中不正确的是()A.x2+y2=49 B.x﹣y=2 C.2xy+4=49 D.x+y=99. (3分)如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.﹣2﹣B.﹣1﹣C.﹣2+D.1+10. (3分)如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE 于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A.2B.C.2D.二、填空题(本大题共8小题,每题3分,共24分)11.(3分)用四舍五入法对162520取近似数,162520(精确到千位)≈.12.(3分)已知等腰三角形的一个内角是30°,那么这个等腰三角形顶角的度数是.13.(3分)若+(b+2)2=0,则a+b=.14.(3分)如图,在△ABC中,AB=AC=9cm,DE是AB的垂直平分线,分别交AB、AC 于D、E两点.若BC=6cm,则△BCE的周长是cm.15.(3分)如图,在△ABC中,AB=AC,点D在BC上,且AD=BD,∠ADB=100°,则∠DAC的度数为.16.(3分)如图,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD,连接DE,则∠BDE=°.17.(3分)我国古代数学中有一道数学题:如图,有一棵枯树直立在地上,树高20尺,粗3尺,有一根藤条从树根处缠绕而上,缠绕5周到达树顶,则这条树藤有尺.(注:枯树可以看成圆柱;树粗3尺,指的是圆柱底面周长为3尺)18.(3分)如图,正方形ABCD的边长为4,将长为4的线段QR的两端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从点B出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为.三、解答题(本大题共10小题,共76分)19.(8分)(1)计算:(2)解方程:3x2﹣75=0.20.(6分)已知3x+1的平方根为±2,2y﹣1的立方根为3,求2x+y的平方根.21.(6分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC 边上的点,且BD=CE.求证:MD=ME.22.(6分)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.23.(6分)先阅读下面的材料,然后再根据要求解答提出的问题:设a,b是有理数,且满足a+b=3﹣2,求b a的值.解:由题意得(a﹣3)+(b+2)=0,因为a,b都是有理数,所以a﹣3,b+2也是有理数,由于是无理数,所以a﹣3=0,b+2=0,所以a=3,b=﹣2,所以b a=(﹣2)3=﹣8.问题:设x,y都是有理数,且满足x2﹣2y+y=8+4,求x+y的值.24.(8分)小王剪了两张直角三角形纸片,进行了如下的操作:(1)如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE,若AC=6cm,BC=8cm,求CD的长.(2)如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=6cm,BC=8cm,求CD的长.华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图2所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.这种方法叫做构图法.①△ABC的面积为:.26.(8分)如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE 于点F,点G为AF的中点,∠ACD=2∠ACB.(1)说明DC=DG;(2)若DG=7,EC=4,求DE的长.27.(10分)已知△ABC中,∠C是其最小的内角,如果过顶点B的一条直线把这个三角形分割成了两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC 的关于点B的伴侣分割线.例如:如图1,在Rt△ABC中,∠C=20°,过顶点B的一条直线BD交AC于点D,且∠DBC=20°,显然直线BD是△ABC的关于点B的伴侣分割线.(1)如图2,在△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC的关于点B的伴侣分割线,并标注角度;(2)在△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x之间满足怎样的关系时,△ABC存在关于点B的伴侣分割线.28.(10分)如图,△ABC中,AB=5cm,BC=3cm,AC=4cm,若动点P从点C开始,按C→A→B 的路径运动,且速度为每秒2cm,设出发的时间为t秒.(1)请判断△ABC的形状,说明理由.(2)当t=时,△BCP是以BC为腰的等腰三角形.(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒1cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,P、Q 两点之间的距离为?参考答案与试题解析一、填空题(本大题共10小题,每小题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得2﹣x≥0,解得,x≤2,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.【分析】根据勾股定理的逆定理对各个选项进行分析,从而得到答案.【解答】解:A、满足勾股定理:72+242=252,故A选项不符合题意;B、满足勾股定理:1.52+22=2.52,故B选项不符合题意;C、不满足勾股定理,不是勾股数,故C选项符合题意;D、满足勾股定理:152+82=172,故D选项不符合题意.故选:C.【点评】本题考查了用勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.4.【分析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.【解答】解:当腰是3cm时,则另两边是3cm,7cm.而3+3<7,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是5cm,5cm.则该等腰三角形的底边为3cm.故选:B.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.5.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.【分析】求出DE的值,代入面积公式得出关于AB的方程,求出即可.【解答】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=2,∵S△ABC=S△ABD+S△ACD,∴12=×AB×DE+×AC×DF,∴24=AB×2+3×2,∴AB=9,故选D.【点评】本题考查了角平分线性质,三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.7.【分析】为了不让羊吃到菜,必须≤点A到圆的最小距离.要确定最小距离,连接OA 交半圆于点E,即AE是最短距离.在直角三角形AOB中,因为OB=6m,BA=8m,所以根据勾股定理得OA=10m.那么AE的长即可解答.【解答】解:连接OA,交⊙O于E点,在Rt△OAB中,OB=6m,BA=8m,【点评】此题考查了点与圆的位置关系,此题确定点到半圆的最短距离是难点.熟练运用勾股定理.9. 【考点】实数与数轴.【分析】由于A,B两点表示的数分别为﹣1和,先根据对称点可以求出OC的长度,根据C在原点的左侧,进而可求出C的坐标.【解答】解:∵对称的两点到对称中心的距离相等,∴CA=AB,|﹣1|+||=1+,∴OC=2+,而C点在原点左侧,∴C表示的数为:﹣2﹣.故选A.【点评】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.10. 【考点】勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线.【专题】几何图形问题.【分析】根据直角三角形斜边上的中线的性质可得DG=AG,根据等腰三角形的性质可得∠GAD=∠GDA,根据三角形外角的性质可得∠CGD=2∠GAD,再根据平行线的性质和等量关系可得∠ACD=∠CGD,根据等腰三角形的性质可得CD=DG,再根据勾股定理即可求解.【解答】解:∵AD∥BC,DE⊥BC,∴DE⊥AD,∠CAD=∠ACB,∠ADE=∠BED=90°,又∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB=2∠CAD,∴∠ACD=∠CGD,∴CD=DG=3,【点评】综合考查了勾股定理,等腰三角形的判定与性质和直角三角形斜边上的中线,解题的关键是证明CD=DG=3.二、填空题(本大题共8小题,每题3分,共24分)11.【分析】先利用科学记数法表示,然后把百位上的数子5进行四舍五入即可.【解答】解:162520≈1.63×105(精确到千位).故答案为1.63×105.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.12.【分析】分情况讨论:当30°是等腰三角形的顶角时或当30°是等腰三角形的底角时.再结合三角形的内角和是180°进行计算.【解答】解:当30°是等腰三角形的顶角时,顶角就是30°;当30°是等腰三角形的底角时,则顶角是180°﹣30°×2=120°.则该等腰三角形的顶角是30°或120°.故填30°或120°.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.13.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.∴a+b=3﹣2=1,故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.【分析】证明EA=EB,EB+EC=AC,即可解决问题.【解答】解:如图,∵MN⊥AB,且平分AB,∴EA=EB,EB+EC=AC;∴△BCE的周长=AC+BC=9+6=15;故答案为:15.【点评】该题主要考查了线段垂直平分线的性质及其应用问题;应牢固掌握等腰三角形、线段垂直平分线等几何知识点的内容,并能灵活运用.15.【分析】根据等边对等角可得∠B=∠BAD,∠B=∠C,再根据三角形的内角和等于180°列式计算即可得解.【解答】解:∵AD=BD,∠ADB=100°,∴∠B=∠BAD=40°,∵AB=AC,∴∠B=∠C=40°,在△ABC中,∠DAC=180°﹣40°×3=60°.故答案为:60°.【点评】本题考查了等腰三角形的性质,三角形的内角和定理,主要利用了等边对等角的性质,熟记性质是解题的关键.16.【分析】由△ABC为等边三角形,可求出∠BDC=90°,由△DCE是等腰三角形求出∠CDE=∠CED=30°,即可求出∠BDE的度数.【解答】解:∵△ABC为等边三角形,BD为中线,∴∠BDC=90°,∠ACB=60°∴∠ACE=180°﹣∠ACB=180°﹣60°=120°,∵CE=CD,∴∠CDE=∠CED=30°,∴∠BDE=∠BDC+∠CDE=90°+30°=120°,故答案为:120.【点评】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.17.【分析】根据题意画出图形,再根据勾股定理求解即可.【解答】解:如图所示,在如图所示的直角三角形中,【点评】本题考查的是平面展开﹣最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.18.【分析】根据直角三角形的性质,斜边上的中线等于斜边的一半,可知:点M到正方形各顶点的距离都为2,故点M所走的运动轨迹为以正方形各顶点为圆心,以2为半径的四个扇形,点M所经过的路线围成图形的面积为正方形ABCD的面积减去4个扇形的面积.【解答】解:根据题意得点M到正方形各顶点的距离都为2,点M所走的运动轨迹为以正方形各顶点为圆心,以2为半径的四个扇形,∴点M所经过的路线围成的图形的面积为正方形ABCD的面积减去4个扇形的面积.∴点M所经过的路线围成的图形的面积为16﹣4π.故答案为16﹣4π【点评】本题考查轨迹问题,关键是根据直角三角形斜边上的中线等于斜边的一半,正方形的性质以及扇形面积的计算解答.三、解答题(本大题共10小题,共76分)19.(8分)【分析】(1)原式利用二次根式性质,绝对值的代数意义,以及零指数幂法则计算即可得到结果;(2)方程整理后,利用平方根定义计算即可得到结果.【解答】解:(1)原式=3+﹣1﹣1=1+;(2)方程整理得:x2=25,解得:x=±5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)【分析】首先依据平方根和立方根的定义求得x、y的值,从而可求得代数式2x+y的值.【解答】解:∵3x+1的平方根为±2,2y﹣1的立方根为3,∴3x+1=4,2y﹣1=27,∴x=1,y=14,∴2x+y=16,∴2x+y的平方根为±4.【点评】本题主要考查的是平方根和立方根的定义,熟练掌握相关定义是解题的关键.21.(6分)【分析】根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.【解答】证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM,∵M是BC的中点,∴BM=CM,在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质.22.(6分)【分析】先证明△DEC是等边三角形,再在RT△DEC中求出EF即可解决问题.【解答】解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEF中,∵∠DEF=90°,DE=2,∴DF=2DE=4,【点评】不同考查等边三角形的性质、直角三角形中30度角所对的直角边等于斜边的一半,勾股定理等知识,解题的关键是利用特殊三角形解决问题,属于中考常考题型.23.(6分)解:∵x2﹣2y+y=8+4,∴(x2﹣2y﹣8)+(y﹣4)=0,∴x2﹣2y﹣8=0,y﹣4=0,解得,x=±4,y=4,当x=4,y=4时,x+y=4+4=8,当x=﹣4,y=4时,x+y=(﹣4)+4=0,即x+y的值是8或0.【点评】本题考查实数的运算,解题的关键是明确题目中例题的解答方法,然后运用类比的思想解答所求式子的值.24.(8分)【分析】(1)利用对称找准相等的量:BD=AD,∠BAD=∠B,然后利用周长求得答案;(2)利用折叠找着AC=AE,利用勾股定理列式求出AB,设CD=x,表示出BD,AE,在Rt△BDE中,利用勾股定理可得答案.由折叠可知,AE=AC=6,CD=ED,∠ADE=∠C=90°,∴BE=10﹣6=4,设CD=x,则DE=x,BD=8﹣x,∴x2+42=(8﹣x)2,∴x=3,∴CD=3.【点评】本题考查了直角三角形中的勾股定理的应用及图形的翻折问题;解决翻折问题时一般要找着相等的量,然后结合有关的知识列出方程进行解答.25.(8分)【分析】(1)根据勾股定理画出图形即可;(2)①利用△ABC所在的正方形的面积减去四周三个小直角三角形的面积,计算即可得解;②根据网格结构和勾股定理作出△DEF,再利用△DEF所在的矩形的面积减去四周三个小直角三角形的面积,计算即可得解【解答】解:(1)如图1所示,△ABC即为所求;(2)①S△ABC=3×3﹣×2×1﹣×3×1﹣×2×3=9﹣1﹣﹣3=3.5;②如图,△DEF即为所求,S△DEF═2×4﹣×1×2﹣×2×2﹣×1×4,=8﹣1﹣2﹣2,=8﹣5,=3.【点评】本题考查的是作图﹣应用与设计作图,勾股定理,构图法求三角形的面积,读懂题目信息,理解构图法的操作方法是解题的关键.26.(8分)【解答】(1)证明:∵DE⊥BC,∴∠DEB=90°,∵AD∥BC,∴∠ADE+∠DEB=180°,∴∠ADE=90°,∵G为AF的中点,∴DG=AG,∴∠DAF=∠ADG,∴∠DGC=∠DAF+∠ADG=2∠DAC,∵AD∥BC,∴∠ACB=∠DAC,∵∠ACD=2∠ACB,∴∠DGC=∠DCA,∴DC=DG;(2)解:∵在Rt△DEC中,∠DEC=90°,DG=DC=7,CE=4,【点评】本题考查了勾股定理,直角三角形斜边上中线性质,直角三角形的性质的应用,解此题的关键是求出DG=DC,注意:直角三角形斜边上的中线等于斜边的一半.。

八年级上期中数学试卷含答案解析 (4)

八年级上期中数学试卷含答案解析 (4)

八年级(上)期中数学试卷一、选择题:(每小题3分,共30分.请将选择题的答案填在答题纸相对应的位置上)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA3.如果一个数的平方根等于它的立方根,则这个数是()A.0 B.1 C.﹣1 D.±14.下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣45.在﹣2,,,3.14,,()0中有理数的个数是()A.5 B.4 C.3 D.26.下列四组线段中,可以构成直角三角形的是()A.5,6,7 B.0.7,2.4,2.5 C.1,1,2 D.1,,37.到三角形三边的距离相等的点P应是三角形的三条()的交点.A.角平分线 B.高C.中线 D.垂直平分线8.直角三角形两直角边长分别为3和4,则它斜边上的高是()A.3.5 B.2.4 C.1.2 D.59.如图,在△ABC中,AO⊥BC,垂足为O,若AO=4,∠B=45°,△ABC的面积为10,则AC边长的平方的值是()A.16 B.17 C.6 D.1810.如图,在△ABC中,∠ACB=90°,以AC为一边在△ABC外侧作等边三角形ACD,过点D作DE⊥AC,垂足为F,DE与AB相交于点E,连接CE,AB=15cm,BC=9cm,P是射线DE上的一点.连接PC、PB,若△PBC的周长最小,则最小值为()A.22cm B.21cm C.24 cm D.27cm二.填空题(每小题3分,共24分.把答案直接填在答题纸相对应的位置上.)11.的算术平方根是.12.若等腰三角形的边长分别为2和6,则它的周长为.13.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,AB=5,则CD=.14.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=.15.如图,以Rt△ABC的三边向外作正方形,若最大正方形的边长为7cm,以AC为边的正方形的面积为25cm2,则正方形M的面积为cm2.16.如图,在△ABC中,DE是AC的垂直平分线,AE=5cm,△ABC的周长为26cm,则△ABD的周长为cm.17.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=5,CD=3,则AB的长是.18.如图,在△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点,如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,当一个点停止运动时,另一个点也随之停止运动,当点Q的运动速度为时,能够在某一时刻使△BPD与△CQP全等.三、解答题:本大题共10大题,共76分.解答时应写出必要的计算过程、推演19.求下列各式的值:(1)求y的值:(2y﹣3)2﹣64=0;(2)求x的值:64(x+1)3﹣125=0.20.计算:(1)()2﹣﹣(2)﹣+﹣+()0﹣|﹣1+|.21.(1)已知(x﹣1)的平方根是±3,(x﹣2y+1)的立方根是3,求x2﹣y2的平方根.(2)已知y=+﹣8,求的值.22.尺规作图:如左图,在四边形ABCD内找一点P,使得点P到AB、AD的距离相等,并且点P到点B、C的距离也相等.(不写作法,保留作图痕迹).23.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.24.如图,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片使点C落在AB边上的D 点处,折痕BE与AC交于点E.若AD=BD,求折痕BE的长.25.已知:如图,在四边形ABCD中,∠ABC=∠ADC=90°,点E是AC的中点,连接BE、BD、DE.(1)求证:△BED是等腰三角形;(2)当∠BAD=°时,△BED是等腰直角三角形.26.已知:如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上的一点,求证:△ACE≌△BCD.27.角平分线上的点到角两边的距离相等.这一性质在解决图形面积问题时有何妙用呢?阅读材料:已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,三条角平分线的交点O到三边的距离为r.连接OA、OB、OC,△ABC被划分为三个小三角形.∵S=S△OBC +S△OAC+S△OAB=BC•r+AC•r+AB•r=(a+b+c)•r,∴r=(1)类比推理:若面积为S的四边形ABCD的四条角平分线交于O点,如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求点O到四边的距离r;(2)理解应用:如图(3),在四边形ABCD中,AB∥DC,AB=21,CD=11,AD=BC=13,对角线BD=20,点O1与O2分别为△ABD与△BCD的三条角平分线的交点,设它们到各自三角形三边的距离为r1和r2,求的值.28.如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C运动,设点P运动的时间为t秒.(1)当t为何值时,点P与点A的距离为5cm?(2)当t为何值时,△APD是等腰三角形?(3)当t为何值时,(2<t<5),以线段AD、CP、AP的长度为三边长的三角形是直角三角形,且AP是斜边?2016-2017学年江苏省苏州市张家港二中八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分.请将选择题的答案填在答题纸相对应的位置上)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选:A.2.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA【考点】全等三角形的判定.【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.【解答】解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A 不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD ≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选:B.3.如果一个数的平方根等于它的立方根,则这个数是()A.0 B.1 C.﹣1 D.±1【考点】立方根;平方根.【分析】根据立方根和平方根性质可知即可求解.【解答】解:∵只有0的立方根和它的平方根相等,∴一个数的平方根等于它的立方根,则这个数是0.故选A.4.下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣4【考点】二次根式的混合运算.【分析】根据算术平方根的定义对A进行判断;根据平方根的定义对B进行判断;根据立方根的定义对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.5.在﹣2,,,3.14,,()0中有理数的个数是()A.5 B.4 C.3 D.2【考点】零指数幂;有理数;实数.【分析】根据有理数的定义来判断.【解答】解:有理数有﹣2,=2,3.14,,()0=1,共有5个.故本题的答案选A.6.下列四组线段中,可以构成直角三角形的是()A.5,6,7 B.0.7,2.4,2.5 C.1,1,2 D.1,,3【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵52+62≠72,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;B、∵0.72+2.42=2.52,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;C、12+12≠22,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵12+()2≠32,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选B.7.到三角形三边的距离相等的点P应是三角形的三条()的交点.A.角平分线 B.高C.中线 D.垂直平分线【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等解答即可.【解答】解:在同一平面内,到三角形三边距离相等的点是三角形的三条角平分线的交点,故选:A.8.直角三角形两直角边长分别为3和4,则它斜边上的高是()A.3.5 B.2.4 C.1.2 D.5【考点】勾股定理;相似三角形的判定与性质.【分析】依题意作图,如下图所示:根据题意可证△BDC∽△BCA,所以=,由于AC、BC的值已知,所以只需求出AB的值即可求出斜边上的高CD的值,在直角△ABC,可求出斜边AB的值,进而求出CD的值.【解答】解:如下图所示:△ABC中,∠C=90°,CD是斜边AB上的高,AC=4,BC=3在Rt△ABC中,由勾股定理得:AB===5,∵∠C=∠CDB=90°,∠B=∠B,∴△BDC∽△BCA,∴=即:CD=×AC=×4=2.4.所以,本题应选择B.9.如图,在△ABC中,AO⊥BC,垂足为O,若AO=4,∠B=45°,△ABC的面积为10,则AC边长的平方的值是()A.16 B.17 C.6 D.18【考点】勾股定理.【分析】由三角形的面积可求出BC的长,进而求出CO的长,再利用勾股定理即可求出AC边长的平方.【解答】解:∵AO=4,△ABC的面积为10,∴BC=5,∵AO⊥BC,∠B=45°,∴AO=BO=4,∴CO=BC﹣BO=1,∴AC2=AO2+CO2=42+12=17,故选:B.10.如图,在△ABC中,∠ACB=90°,以AC为一边在△ABC外侧作等边三角形ACD,过点D作DE⊥AC,垂足为F,DE与AB相交于点E,连接CE,AB=15cm,BC=9cm,P是射线DE上的一点.连接PC、PB,若△PBC的周长最小,则最小值为()A.22cm B.21cm C.24 cm D.27cm【考点】轴对称-最短路线问题;等边三角形的性质.【分析】根据轴对称求最短路径的知识可得,点C关于DE的对称点和点B的连线与DE的交点即是点P的位置,结合图形及(1)可得点P的位置即是点E的位置,从而可求出此时△PBC的周长.【解答】解:根据轴对称求最短路径的知识,可得当点P与点E重合的时候PB+PC最小,也即△PBC的周长最小,此时PB=PC=AB=cm,故△PBC的最小周长=PB+PC+BC=AB+BC=15+9=24cm.故选C.二.填空题(每小题3分,共24分.把答案直接填在答题纸相对应的位置上.)11.的算术平方根是2.【考点】算术平方根.【分析】首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:∵=4,∴的算术平方根是=2.故答案为:2.12.若等腰三角形的边长分别为2和6,则它的周长为14.【考点】等腰三角形的性质.【分析】题目给出等腰三角形有两条边长为2和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:假设以2为等腰三角形的腰长,则三角形的各边长分别为2,2,6,不符合两边之和大于第三边;所以腰长只能为6,等腰三角形的周长为6+6+2=14.故填14.13.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,AB=5,则CD= 2.5.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD.【解答】解:∵∠ACB=90°,D是AB的中点,∴AB=2CD,∴CD=.故答案为:2.514.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=40°.【考点】三角形的外角性质;三角形内角和定理.【分析】先根据等腰三角形的性质及三角形内角和定理可求出∠B的度数,再根据三角形外角的性质可求出∠ADC的度数,再由三角形内角和定理解答即可.【解答】解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.15.如图,以Rt△ABC的三边向外作正方形,若最大正方形的边长为7cm,以AC为边的正方形的面积为25cm2,则正方形M的面积为24cm2.【考点】勾股定理.【分析】由勾股定理求出AB2,即可得出正方形M的面积.【解答】解:∵△ABC是直角三角形,∠BAC=90°,∴AB2=BC2﹣AC2=72﹣25=24(cm2),∴正方形M的面积=AB2=24cm2.故答案为:24.16.如图,在△ABC中,DE是AC的垂直平分线,AE=5cm,△ABC的周长为26cm,则△ABD的周长为16cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,再求解即可.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=2×5=10cm,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵△ABC的周长为26cm,∴AB+BC=26﹣10=16cm,即△ABD的周长为16cm.故答案为:16.17.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=5,CD=3,则AB的长是10.【考点】角平分线的性质.【分析】作DE⊥AB于E,根据角平分线的性质得到DE=DC,根据勾股定理求出BE,再根据勾股定理计算即可.【解答】解:作DE⊥AB于E,∵AD是∠BAC的平分线,∠ACB=90°,DE⊥AB,∴DE=DC=3,∴AC=AE,由勾股定理得,BE==4,设AC=AE=x,由勾股定理得,x2+82=(x+4)2,解得,x=6,则AB=AE+BE=4=6=10,故答案为:10.18.如图,在△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点,如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,当一个点停止运动时,另一个点也随之停止运动,当点Q的运动速度为3或2时,能够在某一时刻使△BPD与△CQP全等.【考点】等腰三角形的性质;全等三角形的判定.【分析】根据等边对等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD与CQ是对应边两种情况讨论求解即可.【解答】解:∵AB=10cm,BC=8cm,点D为AB的中点,∴BD=×12=6cm,设点P、Q的运动时间为t,则BP=3t,PC=(8﹣3t)cm①当BD=PC时,8﹣3t=6,解得:t=,则BP=CQ=3t=2,故点Q的运动速度为:2÷1=2(厘米/秒);②当BP=PC时,∵BC=8cm,∴BP=PC=4cm,∴t=4÷2=2(秒),故点Q的运动速度为6÷2=3(厘米/秒);故答案为:2或3厘米/秒.三、解答题:本大题共10大题,共76分.解答时应写出必要的计算过程、推演19.求下列各式的值:(1)求y的值:(2y﹣3)2﹣64=0;(2)求x的值:64(x+1)3﹣125=0.【考点】立方根;平方根.【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)方程整理后,利用立方根定义开立方即可求出解.【解答】解:(1)方程整理得:(2y﹣3)2=64,开方得:2y﹣3=8或2y﹣3=﹣8,解得:y=5.5或y=﹣2.5;(2)方程整理得:(x+1)3=,开立方得:x+1=,解得:x=.20.计算:(1)()2﹣﹣(2)﹣+﹣+()0﹣|﹣1+|.【考点】实数的运算;零指数幂.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用平方根、立方根定义,零指数幂法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=4+3﹣10=﹣3;(2)原式=﹣+2﹣2+1﹣=0.21.(1)已知(x﹣1)的平方根是±3,(x﹣2y+1)的立方根是3,求x2﹣y2的平方根.(2)已知y=+﹣8,求的值.【考点】二次根式有意义的条件;平方根;立方根.【分析】根据平方根和立方根的概念以及二次根式有意义的条件解答即可.【解答】解:∵(x﹣1)的平方根是±3,∴x﹣1=9,解得,x=10,∵(x﹣2y+1)的立方根是3,∴x﹣2y+1=27,解得,y=﹣8,则x2﹣y2=36,则x2﹣y2的平方根是±6;(2)由题意得,x﹣24≥0,24﹣x≥0,解得,x=24,则y=﹣8,故=4.22.尺规作图:如左图,在四边形ABCD内找一点P,使得点P到AB、AD的距离相等,并且点P到点B、C的距离也相等.(不写作法,保留作图痕迹).【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】利用角平分线的作法得出∠A的平分线,再作出线段BC的平分线进而得出答案.【解答】解:如图所示:点P即为所求.23.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】(1)ED是AC的垂直平分线,可得AE=EC;∠A=∠C;已知∠A=36,即可求得;(2)△ABC中,AB=AC,∠A=36°,可得∠B=72°又∠BEC=∠A+∠ECA=72°,所以,得BC=EC=5;【解答】解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.答:(1)∠ECD的度数是36°;(2)BC长是5.24.如图,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片使点C落在AB边上的D 点处,折痕BE与AC交于点E.若AD=BD,求折痕BE的长.【考点】翻折变换(折叠问题).【分析】根据折叠的性质得BC=BD,∠CBE=∠ABE,由于BD=AD,所以BC=AB,则根据含30度的直角三角形三边的关系得∠A=30°,可计算出BC=AC=2,然后在Rt △BCE中,利用∠CBE=30°,可计算出CE=BC=2,BE=2CE=4.【解答】解:∵折叠△ABC纸片使点C落在AB边上的D点处,∴BC=BD,∠CBE=∠ABE,∵BD=AD,∴BC=AB,∴∠A=30°,∴BC=AC=×6=2,∵∠ABC=90°﹣∠A=60°,∴∠CBE=∠ABC=30°,在Rt△BCE中,∵∠CBE=30°,∴CE=BC=2,∴BE=2CE=4.25.已知:如图,在四边形ABCD中,∠ABC=∠ADC=90°,点E是AC的中点,连接BE、BD、DE.(1)求证:△BED是等腰三角形;(2)当∠BAD=45°时,△BED是等腰直角三角形.【考点】等腰三角形的判定;直角三角形斜边上的中线;等腰直角三角形.【分析】(1)根据直角三角形斜边上中线等于斜边的一半,进而得出答案;(2)利用等边对等角以及三角形外角的性质得出∠DEB=∠DAB,即可得出答案.【解答】解:(1)在△ABC中,∵∠ABC=90°,点E是AC的中点(已知),∴BE=AC(直角三角形斜边上的中线等于斜边的一半).同理,DE=AC,∴BE=DE(等量代换),∴△BED是等腰三角形(等腰三角形的定义);(2)∵AE=ED,∴∠DAE=∠EDA,∵AE=BE,∴∠EAB=∠EBA,∵∠DAE+∠EDA=∠DEC,∠EAB+∠EBA=∠BEC,∴∠DAB=∠DEB,∵△BED是等腰直角三角形,∴∠DEB=90°,∴∠BAD=45°.故答案为:45.26.已知:如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上的一点,求证:△ACE≌△BCD.【考点】全等三角形的判定;等腰直角三角形.【分析】首先根据△ABC和△ECD都是等腰直角三角形,可知EC=DC,AC=CB,再根据同角的余角相等可证出∠1=∠2,再根据全等三角形的判定方法SAS即可证出△ACE≌△BCD.【解答】证明:∵△ABC和△ECD都是等腰直角三角形,∴EC=DC,AC=CB,∵∠ACB=∠DCE=90°,∴∠ACB﹣∠3=∠ECD﹣∠3,即:∠1=∠2,在△ACE和△BCD中,∴△ACE≌△BCD(SAS).27.角平分线上的点到角两边的距离相等.这一性质在解决图形面积问题时有何妙用呢?阅读材料:已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,三条角平分线的交点O到三边的距离为r.连接OA、OB、OC,△ABC被划分为三个小三角形.∵S=S△OBC +S△OAC+S△OAB=BC•r+AC•r+AB•r=(a+b+c)•r,∴r=(1)类比推理:若面积为S的四边形ABCD的四条角平分线交于O点,如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求点O到四边的距离r;(2)理解应用:如图(3),在四边形ABCD中,AB∥DC,AB=21,CD=11,AD=BC=13,对角线BD=20,点O1与O2分别为△ABD与△BCD的三条角平分线的交点,设它们到各自三角形三边的距离为r1和r2,求的值.【考点】角平分线的性质;平行线的性质.【分析】(1)已知已给出示例,我们仿照例子,连接OA,OB,OC,OD,则四边形被分为四个小三角形,且每个三角形都以内切圆半径为高,以四边形各边作底,这与题目情形类似.仿照证明过程,r易得;(2)(1)中已告诉我们内切圆半径的求法,如是我们再相比即得结果.但求内切圆半径需首先知道三角形各边边长,根据等腰梯形性质,过点D 作AB 垂线,进一步易得BD 的长,则r 1、r 2、易得.【解答】解:(1)如图,连接OA 、OB 、OC 、OD ,∵S=S △AOB +S △BOC +S △COD +S △AOD =ar +br +cr +dr=(a +b +c )r ,∴r=;(2)∵AB ∥CD ,∴S △ABD :S △BCD =AB :CD=21:11;∵r 1==, r 2==, ∴=: =×==.28.如图,长方形ABCD 中,AB=4cm ,BC=6cm ,现有一动点P 从A 出发以2cm/秒的速度,沿矩形的边A ﹣B ﹣C 运动,设点P 运动的时间为t 秒.(1)当t 为何值时,点P 与点A 的距离为5cm ?(2)当t 为何值时,△APD 是等腰三角形?(3)当t 为何值时,(2<t <5),以线段AD 、CP 、AP 的长度为三边长的三角形是直角三角形,且AP 是斜边?【考点】四边形综合题.【分析】(1)分为两种情况:P 在BC 上,P 在DC 上,根据勾股定理得出关于t 的方程,求出即可;(2)分AD=DP ,DP=AP ,AD=AP 三种情况进行讨论;(3)求出BP=2t ﹣4,CP=10﹣2t ,根据AP 2=AB 2+BP 2=42+(2t ﹣4)2和AD 2+CP 2=AP 2得出方程62+(10﹣2t )2=42+(2t ﹣4)2,求出方程的解即可.【解答】解:(1)如图1,若点P在BC上,∵在Rt△ABP中,AP=5,AB=4∴BP=2t﹣4=3,∴t=;如图2,若点P在DC上,则在Rt△ADP中,AP是斜边,∵AD=6,∴AP>6,∴AP≠5.综上所述,当t=秒时,点P与点A的距离为5cm;(2)当AD=DP时,如图3,PC=(10﹣2t)cm,CD=4cm,DP=6cm,∵CD2+PC2=DP2,即42+(10﹣2t)2=62,解得t=5±,即t1=5+,t2=5﹣;当DP=AP时,如图4,PC=PB=3cm,∵AB=4cm,∴AB+BP=4+3=7cm,∴t=(秒);当AD=AP=6时,PB=2t﹣4,∵AB2+BP2=AP2,即42+(2t﹣4)2=62,解得t=2+或t=2﹣(舍去),综上所述,当t=(5±)秒或t=秒时,△APD是等腰三角形;(3)当2<t<5时,点P在BC边上,∵BP=2t﹣4,CP=10﹣2t,∴AP2=AB2+BP2=42+(2t﹣4)2由题意,有AD2+CP2=AP2∴62+(10﹣2t)2=42+(2t﹣4)2∴t=<5,∴t=.答:当t=秒时,以线段AD、CP、AP的长度为三边长的三角形是直角三角形,且AP是斜边.2017年1月7日第21页共21页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年江苏省苏州市昆山市、太仓市八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3.00分)下面有4个汽车标志图案,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.(3.00分)下列说法正确的是()A.9的立方根是3B.算术平方根等于它本身的数一定是1C.﹣2是4的平方根D.的算术平方根是43.(3.00分)下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形4.(3.00分)如图,∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是()A.AC=BD B.∠1=∠2 C.AD=BC D.∠C=∠D5.(3.00分)在,﹣3.14,,﹣0.3,,0.5858858885…,中无理数有()A.3个 B.4个 C.5个 D.6个6.(3.00分)如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.57.(3.00分)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数为()A.45°B.60°C.55°D.75°8.(3.00分)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b ﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或109.(3.00分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.510.(3.00分)已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③B.①③④C.①②④D.①②③④二、填空题(本大题共8小题,每小题3分,共24分)11.(3.00分)的平方根是.12.(3.00分)如图,OC是∠AOB的平分线,PD⊥DA,垂足为D,PD=2,则点P 到OB的距离是.13.(3.00分)如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为.14.(3.00分)已知+=0,那么(a+b)2016的值为.15.(3.00分)若一个正数的两个不同的平方根为2m﹣6和m+3,则m为.16.(3.00分)若等腰三角形的一个外角是80°,则等腰三角形的底角是°.17.(3.00分)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有个.18.(3.00分)如图,等边△ABC中,AB=4,E是线段AC上的任意一点,∠BAC 的平分线交BC于D,AD=2,F是AD上的动点,连接CF、EF,则CF+EF的最小值为.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8.00分)计算或化简:(1)()2﹣﹣(2)﹣+(1﹣)0﹣|﹣2|20.(6.00分)求下列各式中x的值(1)(x+1)2﹣3=0;(2)3x3+4=﹣20.21.(5.00分)已知5x﹣1的算术平方根是3,4x+2y+1的立方根是1,求4x﹣2y 的平方根.22.(5.00分)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.23.(6.00分)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.24.(8.00分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC 于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.25.(8.00分)如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.26.(8.00分)在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.27.(9.00分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E 是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.28.(12.00分)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.2016-2017学年江苏省苏州市昆山市、太仓市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3.00分)下面有4个汽车标志图案,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故是轴对称图形的有3个.故选:C.2.(3.00分)下列说法正确的是()A.9的立方根是3B.算术平方根等于它本身的数一定是1C.﹣2是4的平方根D.的算术平方根是4【解答】解:A、9的立方根为,错误;B、算术平方根等于本身的数是0和1,错误;C、﹣2是4的平方根,正确;D、=4,4的算术平方根为2,错误,故选:C.3.(3.00分)下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形【解答】解:A、全等三角形的形状相同,但形状相同的两个三角形不一定是全等三角形.故该选项错误;B、全等三角形是指能够完全重合的两个三角形,则全等三角形的周长和面积一定相等,故B正确;C、全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;D、两个等边三角形,形状相同,但不一定能完全重合,不一定全等.故错误.故选:B.4.(3.00分)如图,∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是()A.AC=BD B.∠1=∠2 C.AD=BC D.∠C=∠D【解答】解:A、∵AC=BD,∠CAB=∠DBA,AB=AB,∴根据SAS能推出△ABC≌△BAD,故本选项错误;B、∵∠CAB=∠DBA,AB=AB,∠1=∠2,∴根据ASA能推出△ABC≌△BAD,故本选项错误;C、根据AD=BC和已知不能推出△ABC≌△BAD,故本选项正确;D、∵∠C=∠D,∠CAB=∠DBA,AB=AB,∴根据AAS能推出△ABC≌△BAD,故本选项错误;故选:C.5.(3.00分)在,﹣3.14,,﹣0.3,,0.5858858885…,中无理数有()A.3个 B.4个 C.5个 D.6个【解答】解:,,0.5858858885…是无理数,故选:A.6.(3.00分)如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.5【解答】解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.7.(3.00分)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数为()A.45°B.60°C.55°D.75°【解答】解:等边△ABC中,有∵∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE∴∠APE=∠BAD+∠ABP=∠ABP+∠PBD=∠ABD=60°.故选:B.8.(3.00分)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b ﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或10【解答】解:∵+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.9.(3.00分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.5【解答】解:作DM=DE交AC于M,作DN⊥AC于点N,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S=S△ADG﹣S△ADM=50﹣39=11,△MDGS△DNM=S△EDF=S△MDG=×11=5.5.故选:B.10.(3.00分)已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③B.①③④C.①②④D.①②③④【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),…①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,…②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.…③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,,∴Rt△CEG≌Rt△AFE(HL),∴AF=CG,∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF.…④正确.故选:D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3.00分)的平方根是±2.【解答】解:的平方根是±2.故答案为:±212.(3.00分)如图,OC是∠AOB的平分线,PD⊥DA,垂足为D,PD=2,则点P 到OB的距离是2.【解答】解:如图,过点P作PE⊥OB,∵OC是∠AOB的平分线,点P在OC上,且PD⊥OA,PE⊥OB,∴PE=PD,又PD=2,∴PE=PD=2.故答案为2.13.(3.00分)如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为65°.【解答】解:∵∠BAC=90°,AB=AC,∴∠ACB=∠B=45°,∵∠1=20°,∴∠ACM=20°+45°=65°,∵直线a∥直线b,∴∠2=∠ACM=65°,故答案为:65°.14.(3.00分)已知+=0,那么(a+b)2016的值为1.【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则(a+b)2016=1,故答案为:1.15.(3.00分)若一个正数的两个不同的平方根为2m﹣6和m+3,则m为1.【解答】解:由题意可知:(2m﹣6)+(m+3)=0,∴3m=3,∴m=1,故答案为:116.(3.00分)若等腰三角形的一个外角是80°,则等腰三角形的底角是40°.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故答案为:40.17.(3.00分)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有5个.【解答】解:如图所示:与△ABC成轴对称的有:△FBM,△ABE,△AND,△CMN,△BEC共5个,故答案为:5.18.(3.00分)如图,等边△ABC中,AB=4,E是线段AC上的任意一点,∠BAC 的平分线交BC于D,AD=2,F是AD上的动点,连接CF、EF,则CF+EF的最小值为2.【解答】解:∵AD是等边△ABC的∠BAC的平分线,∴AD⊥BC,BD=CD,∴点B、C关于AD对称,过点B作BE⊥AC于E,交AD于F,连接CF,由轴对称确定最短路线问题,点E、F即为使CF+EF的最小值的点,∵△ABC是等边三角形,AD、BE都是高,∴BE=AD=2,∴CF+EF的最小值=BE=2.故答案为:2.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8.00分)计算或化简:(1)()2﹣﹣(2)﹣+(1﹣)0﹣|﹣2|【解答】解:(1)原式=4﹣2﹣5=﹣3;(2)原式=﹣+1﹣2+=﹣1.20.(6.00分)求下列各式中x的值(1)(x+1)2﹣3=0;(2)3x3+4=﹣20.【解答】解:(1)(x+1)2﹣3=0,∴x+1=±,解得:x1=﹣1+,x2=﹣1﹣;(2)3x3+4=﹣20,∴3x3=﹣24,∴x3=﹣8,解得:x=﹣2.21.(5.00分)已知5x﹣1的算术平方根是3,4x+2y+1的立方根是1,求4x﹣2y 的平方根.【解答】解:∵5x﹣1的算术平方根为3,∴5x﹣1=9,∴x=2,∵4x+2y+1的立方根是1,∴4x+2y+1=1,∴y=﹣4,4x﹣2y=4×2﹣2×(﹣4)=16,∴4x﹣2y的平方根是±4.22.(5.00分)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.【解答】证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.23.(6.00分)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【解答】(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.24.(8.00分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC 于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.【解答】解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.25.(8.00分)如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.【解答】解:所作图形如下所示:26.(8.00分)在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.【解答】解:(1)如图,∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10cm,∴OC=5cm,∴OA=OC=OB=5cm.27.(9.00分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E 是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.【解答】(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,∴△AEC≌△CGB(ASA),∴AE=CG,(2)解:BE=CM.证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.28.(12.00分)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+FD;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:∵小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,∴EF=FG,FG=FD+DG=FD+BE,∴EF=BE+FD,故答案为:EF=BE+FD;探索延伸:上述结论EF=BE+FD成立,理由:如图2,延长FD到点G,使得DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,∵AB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG +∠DAF=∠DAF +∠BAE=∠BAD ﹣∠EAF=∠BAD , ∴∠GAF=∠EAF , 又∵AG=AE ,AF=AF , ∴△AFG ≌△AFE (SAS ), ∴EF=GF ,∵GF=DF +DG=DF +BE , ∴EF=BE +FD ; 实际应用:如图3,连接EF ,延长AE 、BF 相交于点C , 在四边形AOBC 中,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠FOE=70°=,又∵OA=OB ,∠OAC +∠OBC=(90°﹣30°)+(70°+50°)=60°+120°=180°, ∴图3符合探索延伸的条件,∴EF=AE +FB=1.5×(60+80)=210(海里), 即此时两舰艇之间的距离210海里.赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DFE-a1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.A Array变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。

相关文档
最新文档