第六章假设检验1

合集下载

第六章 假设检验1

第六章 假设检验1
1. 给定显著性水平α,查表得出相应的临界值 α 查表得出相应的临界值z 或zα/2, tα或tα/2 2. 将检验统计量的值与α 水平的临界值进行比较 3. 作出决策 – 双侧检验:I统计量 > 临界值,拒绝 0 双侧检验: 统计量 临界值,拒绝H 统计量I – 左侧检验:统计量 < -临界值,拒绝 0 左侧检验: 临界值, 临界值 拒绝H – 右侧检验:统计量 > 临界值,拒绝 0 右侧检验: 临界值,拒绝H
二,假设检验的过程
1,提出假设 3,作出决策
拒绝假设 别无选择
总体
我认为人口的 平均年龄是50 50岁 平均年龄是50岁
2,抽取随机样本
均值 X = 20
二,假设检验的过程 假设检验的具体步骤: 假设检验的具体步骤: 第一,提出原假设 第一,提出原假设(null hypothesis)和备择假设 和备择假设 (alternative hypothesis); ; 第二,确定合适的检验统计量; 第二,确定合适的检验统计量; 第三,规定显著性水平 ; 第三,规定显著性水平α; 第四,根据数据计算检验统计量的实现值; 第四,根据数据计算检验统计量的实现值; 第五,统计决策. 第五,统计决策.
原假设
(null hypothesis)
1. 2. 3. 4. 研究者想收集证据予以反对的假设 又称"0假设" 总是有符号 =, ≤ 或 ≥ 表示为 H0
– – –
H0 : = 某一数值 指定为符号 =,≤ 或 ≥ ≤ 例如, H0 : = 10cm
备择假设
(alternative hypothesis)
什么是P 值?
(P-value)
1.p值(p-value)是在零假设下, 1.p值(p-value)是在零假设下,检验统计量取其实现 是在零假设下 值及(沿着备择假设的方向)更加极端值的概率. 值及(沿着备择假设的方向)更加极端值的概率.

计量经济学第6章假设检验

计量经济学第6章假设检验
E S S 6 0 2 7 0 8 . 6 / 1 1 1 F 3 9 9 . 0 9 9 9 9 R S S 4 0 1 5 8 . 0 7 1 / 1 0 ( n 2 )
i1
n
或直接取自输出结果2.2.1中的方差分析部分“回归分析(行) F(列)”(399.09999)。(见表2.4.4)
有时S(回归系数的标准差,有时也记为 S e )也可不写;t统计 量右上角*的表示显著性水平的大小,**一般表示在显著性水平 1%下显著,*一般表示在显著性水平5%下显著,无*表示5%下 不显著。
b1
L xx L yy
n
( x x ) ( y y ) 其 中 x y
i 1
L
n
L xx
L
yy

n
i 1
( xi x )2
i 1
( yi y )2
为x与y的简单线性相关系数,简称相关系数。它表示x和y的线 性相 关关系的密切程度。其取值范围为|r| 1,即-1 r 1。 当r=-1时,表示x与y之间完全负相关; 当r=1时,表示x与y之间完全正相关; 当r=0时,表示x与y之间无线性相关关系,即说明x与y可 能无相关关系或x与y之间存在非线性相关关系。 5、四种检验的关系 前面介绍了t检验、拟合优度( )检验、 F检验和相关 R 2 系数(r)检验,对于一元线性回归方程来说,可以证 明,这四种检验:
第二步:计算F统计量 因为ESS=1602708.6 (计算过程见表2.4.3) 或直接取自输出结果 2.2.1中的方差分析部分“回归分析(行) SS(列)”(1602708.6)。
ˆ= RSS ( yi y )2 40158.071 (计算过程见计算表2.3.3) 或直接取

应用统计学6-假设检验(1)

应用统计学6-假设检验(1)

t 检验
(单边和双边)
χ2检验
(单边和双边)
名称 条件
H0
统计量及其分布
拒绝域 |u| >u1-α/2 u >u1-α u < - u1-α |t| >tα/2 t >tα t < -tα
2 χ 2 > χα / 2 ( n − 1)或
0 u 总体 µ ≤ µ0 2 检 方差σ 均 验 已知 µ ≥ µ 0 值 检 验 t 总体 µ = µ 0 µ ≤ µ0 2 检 方差σ 验 未知 µ ≥ µ 0
正确
α 错误和 β 错误的关系
当H0、H1给定,n固定时,无法同时使α和β变小 α和β的关系就像翘翘板,α小β就大, α大β就小
β α
使α、β 同时变小的办法就是增大样本容量。
“不能拒绝H0”
一般地说,哪一类错误所带来的后果越严重,危害越大, 在假设检验中就应当把哪一类错误作为Fra bibliotek要的控制目标。
通常β不易计算,所以通常我们 主要控制α,尽量减小β
µ ≥ µ0 µ < µ0
µ ≤ µ0 µ > µ0
双边检验
抽样分布
拒绝域 α/2
H0 :µ = µ0
H1 :µ ≠ µ0
置信水平 拒绝域 1-α α/2 接受域 H0值
临界值
临界值
左单边检验
抽样分布
拒绝域
H0 :µ ≥ µ0
H1 :µ < µ0
置信水平
α
1-α 接受域 H0值
临界值
右单边检验
由于α 事先确定,所以拒绝H0 是有说服力的, 而β通常未知,所以如果我们决定“接受H0 “,我们并不 确定这个决策的置信度,所以通常我们不采用“接受H0 “的说法,而是采用“不能拒绝H0 “的说法。

第6章假设检验

第6章假设检验

第6章假设检验一项包括了200个家庭的调查显示,每个家庭每天看电视的平均时间为小时,标准差为小时。

据报道,10年前每天每个家庭看电视的平均时间是小时。

取显着性水平,这个调查能否证明“如今每个家庭每天收看电视的平均时间增加了”?详细答案:,=,,拒绝,如今每个家庭每天收看电视的平均时间显着地增加了。

为监测空气质量,某城市环保部门每隔几周对空气烟尘质量进行一次随机测试。

已知该城市过去每立方米空气中悬浮颗粒的平均值是82微克。

在最近一段时间的检测中,每立方米空气中悬浮颗粒的数值如下(单位:微克):根据最近的测量数据,当显着性水平时,能否认为该城市空气中悬浮颗粒的平均值显着低于过去的平均值详细答案:,=,,拒绝,该城市空气中悬浮颗粒的平均值显着低于过去的平均值。

安装在一种联合收割机的金属板的平均重量为25公斤。

对某企业生产的20块金属板进行测量,得到的重量数据如下:假设金属板的重量服从正态分布,在显着性水平下,检验该企业生产的金属板是否符合要求?详细答案:,,,不拒绝,没有证据表明该企业生产的金属板不符合要求。

在对消费者的一项调查表明,17%的人早餐饮料是牛奶。

某城市的牛奶生产商认为,该城市的人早餐饮用牛奶的比例更高。

为验证这一说法,生产商随机抽取550人的一个随机样本,其中115人早餐饮用牛奶。

在显着性水平下,检验该生产商的说法是否属实详细答案:,,,拒绝,该生产商的说法属实。

某生产线是按照两种操作平均装配时间之差为5分钟而设计的,两种装配操作的独立样本产生如下结果:操作A操作B=100=50====对=,检验平均装配时间之差是否等于5分钟。

详细答案:,=,,拒绝,两种装配操作的平均装配时间之差不等于5分钟。

某市场研究机构用一组被调查者样本来给某特定商品的潜在购买力打分。

样本中每个人都分别在看过该产品的新的电视广告之前与之后打分。

潜在购买力的分值为0~10分,分值越高表示潜在购买力越高。

原假设认为“看后”平均得分小于或等于“看前”平均得分,拒绝该假设就表明广告提高了平均潜在购买力得分。

统计学第六章假设检验

统计学第六章假设检验

10
即 z 拒绝域,没有落入接受域,所以没有足够理由接受原假设H0, 同
时,说明该类型电子元件的使用寿命确实有了显著的提高。
第六章 假设检验
1. 正态总体均值的假设检验
(2) 总体方差 2 未知的情形
双侧举例:【例 6-6】某厂用生产线上自动包装的产品重量服从正态
分布,每包标准重量为1000克。现随机抽查9包,测得样本平均重量为
100个该类型的元件,测得平均寿命为102(小时), 给定显著水平α=0.05,
问,该类型的电子元件的使用寿命是否有明显的提高?
解:该检验的假设为右单侧检验 H0: u≤100, H1: u>100
已知 z z0.05 1.645
zˆ x u0 n 100 (102 100 ) 2 1.645
986克,样本标准差是24克。问在α=0.05的显著水平下,能否认为生产线
工作正常? 解:该检验的假设为双侧检验 H0: u=0.5, H1: u≠0.5
已知 t /2 (n 1) t0.025 (9 1) 2.306, 而 tˆ x u 986 1000 1.75 可见 tˆ 1.75 2.306
设H0, 同时,说明该包装机生产正常。
其中 P( Z 1.8) 1 P( Z 1.8) 1 0.9281 0.0719 0.05。
第六章 假设检验
单侧举例:【例 6-4】某电子产品的平均寿命达到5000小时才算合格,
现从一批产品中随机抽出12件进行试验,产品的寿命分别为
5059, 3897, 3631, 5050, 7474, 5077, 4545, 6279, 3532, 2773, 7419, 5116
的显著性水平=0.05,试测算该日生产的螺丝钉的方差是否正常?

(卫生统计学)第六章 假设检验基础

(卫生统计学)第六章 假设检验基础

药前后患儿血清中免疫球蛋白IgG(mg/dl)含量
编号 1 2 3 4 5 6 7 8 9 10 11 12
用药前 1206.4 921.69 1294.08 945.36 721.36 692.32 980.01 691.01 910.39 568.56 1105.52 757.43
用药后 1678.44 1293.36 1711.66 1416.70 1204.55 1147.30 1379.59 1091.46 1360.34 1091.83 1728.03 1398.86
目的
H0
H1
双侧检验 是否μ1≠μ2
μ1=μ2
μ1≠μ2
单侧检验 是否μ1>μ2
μ1=μ2
μ1>μ2
或是否μ1<μ2
μ1=μ2
μ1<μ2
返回
选定检验方法和计算检验统计量
要根据研究设计的类型和统计推断的目的选用不同的检验方法。如 成组设计的两样本均数的比较用t检验(小样本)或Z检验(大样本), 两样本方差的比较用F检验。
(卫生统计学)第六章 假设检验基础
第一节、假设检验的概念与原理 一、假设检验的思维逻辑
1.小概率原理 小概率事件在一次随机试验中几乎是不可能发生
2.假设检验处理问题的特点 ⑴从全局的范围,即从总体上对问题作出判断 ⑵不可能对总体的每个个体均作观察
二、假设检验步骤
例6-1 已知北方农村儿童前囟门闭合月龄为14.1月。某研究者从东北某县抽取36名 儿童,得囟门闭合月龄均值为14.3月,标准差为5.08月。问该县儿童前囟门闭合月 龄的均数是否大于一般儿童?
四、方差齐性检验 homogeneity of variance test

第六章 假设检验

第六章 假设检验
第六章 假设检验
第一节 假设检验的基本原理
第二节 总体参数假设检验
假设检验在统计方法中的地位
统计方法
描述统计 推断统计
参数估计
假设检验
第一节 假设检验的基本原理
一、假种假设,然后利
用样本信息来判断原假设是否成立,决定应接受或
否定假设。假设检验也称为显著性检验。
在此,我们关心的是新机床加工零件的椭圆度总体均值 与老机床加工零件的椭圆度总体均值为0.081mm是否有 不同,可作如下假设 原假设 H 0 : 0.081mm 没有明显差异 备择假设 H1 : 0.081mm 有显著差异, 这是一个双侧检验问题,所以只要 > 0 或 < 0 二者之间有一个成立就可以拒绝原假设。
例某机床厂加工一种零件,根据经验知道,该厂加工零件的椭
圆度近似服从正态分布,其总体均值为0=0.081mm,总体标
准差为= 0.025 今换一种新机床进行加工,抽取n=200个零件 进行检验,得到的椭圆度为0.076mm。试问新机床加工零件的 椭圆度的均值与以前有无显著差异?(=0.05)
H 0 : 0.081mm H1 : 0.081mm < 0 或 > 0 有一个成立就可以拒绝原假设。
为了减少冤枉好人的概率,应尽可能接受原假设, 判被告无罪,这可能增大了放过坏人的概率。
第二节总体参数假设检验
一、总体均值的假设检验
总体均值的检验
(检验统计量)

总体 是否已知 ?

小 样本容量 n
用样本标 准差S代替

z 检验
z 检验
t 检验
Z
X 0

n
Z
X 0 S n
t

第六章假设检验1

第六章假设检验1

H0 为不真
正确概率 1-
第二类错误概率
拒绝 H0 第一类错误概率
正确概率1-
【注意】(1) 两类错误概率的关系 两类错误是互相关联的,当样本容量n 固定时,
一类错误概率的减少将导致另一类错误概率的增加。 一般采取的原则:在控制犯第一类错误的概率的
条件下, 尽量使犯第二类错误 小。 要同时降低两类错误的概率、(或者要在不变
(3)多个随机变量关系假设 如 H0:它们有相同分布 H0:它们相互独立
10
统计假设: 关于总体(参数,分布,特征等)的各种假设.
参数假设—总体分布函数形式已知,对其所包含的参数所作 的假设,如(1) 非参数假设--总体分布函数形式未知,对分布函数形式或特 征所作的假设,如(2)(3)
原(零)假设(null hypothesis) H0 :在假设检验中,根据 需要所作的基本假设,是整个检验推理的出发点。如(1)中H0 备择(对立)假设 (alternative hypothesis) H1:指原假设 H0 的对立假设。如(1)中H1。
n
L L( x1, x2 ,...xn;1,...,m ) p( xi;1,...,m ) i 1
1
三、区间估计、置信度、置信区间
四、常见类型总体均数及总体比率的区间估计
X Z / 2 n
S X Z /2 n
x t / 2(n 1)
S n
pˆ Z / 2
p (1 p) n
2
利用从总体抽样得到的样本 来估计总体的某些参数。
假设检验
单侧假设检验
双侧假设检验
拒绝域位于数轴一端, 即V0 =(-∞,a]或[b,+ ∞) 假设形如:
H0: ≥0 H1: <0 (完备的) H0: =0 H1: <0 (不完备)

《概率论》第六章假设检验

《概率论》第六章假设检验

例1 某服务系统的相应时间服从正态分布,需求 其平均相应时间在0.5秒之内。若16次抽样测试得 到样本平均值为x=0.56秒,样本标准差为s=0.12秒, 该服务系统工作是否正常?(=0.05)
解:H0 : 0.5 n=16 =0.05 t1 1.753 t x 0 0.56 0.5 =2 >1.753 s n 0.12 16
因此否定H0 即该服务系统工作不正常
(二)未知方差2,关于期望的检验
1.检验假设(单边)H0 : 0 H1 : 0
2.选取检验统计量 T X 0 [ t(n 1)] Sn
3.由备选假设确定拒绝域形式,W=(t c)
4.由显著性水平决定临界值c=t (n 1),
2.选取检验统计量 T X 0 [ t(n 1)] Sn
3.由备选假设确定拒绝域形式,W=(t c)
4.由显著性水平决定临界值c=t1 (n 1),
P T t1 (n 1)
5.求出检验统计量的观测值,判断是否在拒绝域中
即:若t t1 (n 1),则否定H0; 若t t1 (n 1),则接受H0.
因此这实际上需要比较第二个正态总体 的期望值是与第一个正态总体期望值相 等还是比它高?
这种作为检验对象的假设称为原假设, 通常用 H0表示。比如, 例2中的待检假设为:H0:Eξ=3140
如何根据样本的信息来判断关于总体分布的 某个设想是否成立,也就是检验假设H0成立 与否的方法是本章要介绍的主要内容。
P T t (n 1)
5.求出检验统计量的观测值,判断是否在拒绝域中
即:若t<t (n 1),则否定H0; 若t>t (n 1),则接受H0.
(二)未知方差2,关于期望的检验

第六章-假设检验(Hypothesis-test)

第六章-假设检验(Hypothesis-test)
Back
二、接受域和拒绝域
假设设定之后,我们需要一个判别标准,判断拒绝或 接受H0。利用“小概率原理”,指发生概率很小的随机 事件,在一次试验中几乎是不可能发生的。如果发生 了,就可以拒绝提出的原假设。
例如:有一个厂商声称其产品的合格品率很高,可以达到 99%,则从一批产品(100件)中随机抽取1件,该件是次品 的概率就非常小,只有1%。
➢ 根据α值和抽样分布,确定临界值。 ➢ 将检验统计量的数值与临界值相比较,做出
是否拒绝H0的判断。 ➢ 或以检验统计量计算p值,确定是否拒绝H0 。
Back
五、p值(p-value)
p值:H0为真时,由样本数据给出的犯第Ⅰ类错误 的概率的精确数值(观察到的显著性水平)。
统计软件给出检验统计量的数值时,一般都给出该
Back
四、假设检验的步骤
Step1:提出原假设 H0 和备择假设 H1
例如:H0:μ=μ0;H1:μ≠μ0
Step2:确定显著性水平α
➢ 是决策中的风险。主观确定。 ➢ α一般取0.05或0.01。
四、假设检验的步骤
Step3:选择检验统计量(Test Statistic)
➢ 假设检验也是从抽样分布出发,借由样本数据 计算检验统计量的数值进行推断。
检验统计量数值的p值。
以Zobs表示Z统计量的观测值: 双侧检验時p值=P(|Z|≥ Zobs)
右侧检验时p值=P(Z≥ Zobs)
p值/2
p值/2
以p值进行假设检验:
α/2
1 -α
α/2
p值>α,接受H0
-1.96
1.96(临界值)
计算的检验统计量数值
p值<α ,拒绝H0
Back
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 例如,H0:=10,拒绝H0时,我们可以说10 并未给出明确的结论 不能说原假设是正确的,也不能说它不是正确的 例如, 当不拒绝H0:=10,我们并未说它就是10, 但也未说它不是10。我们只能说样本提供的证据还 不足以推翻原假设
第七章 假设检验 第一节 假设检验的基本问题
3. 当不拒绝原假设时
假设检验步骤的总结
1. 陈述原假设和备择假设 2. 从所研究的总体中抽出一个随机样本 3. 确定一个适当的检验统计量,并利用样本数据 算出其具体数值 4. 确定一个适当的显著性水平,并计算出其临界 值,指定拒绝域 5. 将统计量的值与临界值进行比较,作出决策
统计量的值落在拒绝域,拒绝H0,否则不拒绝H0
H0 : 30%
第七章 假设检验
H1 : 30%
第一节 假设检验的基本问题
提出假设
(结论与建议)
1. 原假设和备择假设是一个完备事件组,而且 相互对立
在一项假设检验中,原假设和备择假设必有 一个成立,而且只有一个成立
2. 先确定备择假设,再确定原假设
3. 等号“=”总是放在原假设上 4. 因研究目的不同,对同一问题可能提出不同 的假设(也可能得出不同的结论)
x 0 Z s n
Z
样本方差 代替
x 0

t
n
第七章 假设检验 第一节
x 0 s n
假设检验的基本问题
显著性水平和拒绝域
(双侧检验 )
置信水平
抽样分布
拒绝H0 拒绝H0 1-
/2
/2
临界值
0
临界值
样本统计量
第七章
假设检验
第一节
假设检验的基本问题
显著性水平和拒绝域
(单侧检验 )
假设检验
假设检验的基本问题
错误和 错误的关系
和 的关系就像 翘翘板,小 就 大, 大 就小
你不能同时减 少两类错误!


第七章 假设检验 第一节 假设检验的基本问题
显著性水平
(significant level)
1.是一个概率值 2.原假设为真时,拒绝原假设的概率
被称为抽样分布的拒绝域


H1 : <某一数值,或 某一数值
例如, H1 : < 10cm,或 10cm
第七章
假设检验
第一节
假设检验的基本问题
确定假设实例—双侧检验
• 某超市面向等待结账的顾客播放电视广告,每10分钟循环 放映一次。为了确定这种安排是否合理,该超市随机抽取 了200名购物者,记录其等待时间。 (1)不论平均等待时间大于还是小于10分钟,都说明安 排不合理。
解:研究者想收集证据予以证明的 假设应该是“生产过程不正常”。 建立的原假设和备择假设为
H0 : 10cm H1 : 10cm
第七章 假设检验 第一节 假设检验的基本问题
提出假设
(例题分析)
• 【例】某品牌洗涤剂在它的产品说明书中声称: 平均净含量不少于500克。从消费者的利益出发, 有关研究人员要通过抽检其中的一批产品来验 证该产品制造商的说明是否属实。试陈述用于 检验的原假设与备择假设 解:研究者抽检的意图是倾向于证 绿叶 实这种洗涤剂的平均净含量并不符 洗涤剂 合说明书中的陈述 。建立的原假设 和备择假设为 H0 : 500
• 3. 小概率由研究者事先确定
什么是小 概率?

第七章 假设检验 第一节
假设检验的基本问题
统计量
拒绝域
第七章
假设检验
第一节
假设检验的基本问题
检验统计量
(test statistic)
1. 根据样本观测结果计算得到的,并据以对原假设和 备择假设作出决策的某个样本统计量
2. 对样本估计量的标准化结果
第一节
假设检验的基本问题
假设检验中的两类错误
(决策结果)
H0: 无罪
假设检验就好像 一场审判过程 统计检验过程
陪审团审判 实际情况 裁决 无罪 无罪 有罪 正确 错误
第七章
H0 检验 决策 有罪 错误 正确 未拒绝H0 拒绝H0
第一节
实际情况
H0为真
H0为假
正确决策 第Ⅱ类错 误() (1 – ) 第Ⅰ类错 正确决策 误() (1-)
3.表示为
(alpha)
0.05 0.10
常用的 值有 0.01
4.由研究者事先确定
第七章 假设检验 第一节 假设检验的基本问题
假设检验中的小概率原理
• 什么是小概率? • 1. 在一次试验中,一个几乎不可能发生 的事件发生的概率
• 2. 在一次试验中小概率事件一旦发生, 我们就有理由拒绝原假设
抽样分布
拒绝H0 置信水平

1-
临界值
第七章 假设检验
0
第一节
样本统计量
假设检验的基本问题
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平 拒绝H0 1-

0
观察到的样本统计量
第七章 假设检验 第一节
临界值
样本统计量
假设检验的基本问题
决策规则
1. 给定显著性水平,查表得出相应的临界 值z或z/2, t或t/2 2. 将检验统计量的值与 水平的临界值进 行比较 3. 作出决策

6.1 假设检验的基本问题
原假设与备择假设备 拒绝域和检验统计量 两类错误和显著性水平
单侧检验与双侧检验
什么是假设?
(hypothesis)
对总体参数的具体数值 所作的陈述
总体参数包括总体均值、 比例、方差等
我认为这种新药的疗效 比原有的药物更有效!
分析之前必需陈述
第 七章
假设 因此我们拒 绝假设 = 50
... 如果这是总 体的真实均值 20
第七章 假设检验
= 50 H0
第一节
样本均值
假设检验的基本问题
原假设
备择假设
第七章
假设检验
第一节
假设检验的基本问题
原假设
(null hypothesis)
1. 2. 3. 4. 研究者想收集证据予以反对的假设 又称“0假设” 总是有符号 , 或 表示为 H0

H0: μ≥μ0 H1 :μ<μ0 H0: μ≤μ0 H1 :μ>μ0
n x 0 Z s n
Z≤-Z1-α
Z≥ Z1-α
第七章
假设检验
第一节
假设检验的基本问题
假设检验结论的表述
第七章
假设检验
第一节
假设检验的基本问题
假设检验结论的表述
1. 假设检验的目的就在于试图找到拒绝原假设, 而不在于证明什么是正确的 2. 拒绝原假设时结论是清楚的
– – –
H0 : = 某一数值 指定为符号 =, 或 例如, H0 : 10cm
假设检验 第一节
为什么叫 0假设?

假设检验的基本问题
第七章
备择假设
(alternative hypothesis)
1. 研究者想收集证据予以支持的假设 2. 也称“研究假设” 3. 总是有符号 , 或 4. 表示为 H1
第七章 假设检验 第一节 假设检验的基本问题
双侧检验
单侧检验
第七章
假设检验
第一节
假设检验的基本问题
双侧检验与单侧检验
1. 备择假设没有特定的方向性,并含有符号 “”的假设检验,称为双侧检验或双尾 检验(two-tailed test) 2. 备择假设具有特定的方向性,并含有符号 “>”或“<”的假设检验,称为单侧检验或 单尾检验(one-tailed test)
第6 章 假设检验
6.1 6.2 6.3 6.3 假设检验的基本问题 大样本情形下的总体均值检验 小样本情形下的总体均值检验 总体比例的检验
传统观念被颠覆了吗?
• • • • • • 雪儿.海蒂在她出版的《女性与爱情:前进中的文化之旅》一书中 给出了大量数据: 84%的女性“在情感上对两性关系不满意” 70%的女性“在结婚五年或者更久后发生了婚外性关系” 95%的女性“在恋爱时会因男友而出现情感及心理上的烦恼” 84%的女性“在与男友恋爱中有屈尊感” 这本书遭到全美报刊及杂志文章的广泛批评。例如《时代周刊》 的封面故事“后退,巴蒂”里认为海蒂的研究结论是“模糊地”、 “价值是有限的”。但也有人说海蒂提供的数据说明了现代女性的价 值观念,颠覆了人们传统观念中的女性。 海蒂的数据真的颠覆了人们传统的观念了吗?回答这个问题我们 需要假设检验。
H0 : 70000
H1 : 70000
左侧检验
回上级目录
回本节目录
确定假设实例—右侧检验
• 一家银行相信,它的信誉卡客户30%以上已经使用该银行 所提供的其他服务, 随机抽取50个客户进行调查 。 (1)使用其他服务的客户如果超过30%,证明该银行的研 究结论是正确的。 (2)而研究者往往倾向于支持自己的研究结论。
H0 : 30%
H1 : 30%
右侧检验
回上级目录
回本节目录
提出假设
(例题分析)

【例】一种零件的生产标准是直径应为10cm,为对 生产过程进行控制,质量监测人员定期对一台加工机 床检查,确定这台机床生产的零件是否符合标准要求。 如果零件的平均直径大于或小于10cm,则表明生产 过程不正常,必须进行调整。试陈述用来检验生产过 程是否正常的原假设和被择假设
第七章
假设检验
第一节
假设检验的基本问题
6.2 总体均值的检验
大样本情形下总体均值的检验 小样本情形下总体均值的检验
总体均值的检验
(作出判断)
相关文档
最新文档