第十二章 电磁感应

合集下载

2025年高三一轮复习物理课件第十二章电磁感应第1讲电磁感应现象楞次定律

2025年高三一轮复习物理课件第十二章电磁感应第1讲电磁感应现象楞次定律
情况
阻碍原电流的变
化——“增反减
同”(即自感现象)
楞次定律
27
例证
第1讲
电磁感应现象
楞次定律
(2024 届北京二模)在匀强磁场中放置一个金属圆环,磁场方向与圆环平面垂直。
规定图 1 所示磁场方向为正。当磁感应强度 B 随时间 t 按图 2 所示的正弦规律变化时,
下列说法正确的是( C )。
A.t2 时刻,圆环中无感应电流
的磁通量增大,A 不符合题意;开关闭合时将滑动变阻器的
滑片向左滑动,A 线圈中的电流增大,则 B 线圈中的磁通量
增大,B 项不符合题意;开关闭合时将 A 线圈从 B 线圈中拔
出,则 B 线圈中的磁通量减小,C 项符合题意;开关闭合时
将 A 线圈倒置,再重新插入 B 线圈中,则 B 线圈中反向的
磁通量增大,D 项符合题意。
向。
3.判断磁通量是否变化的方法
(1)根据公式 Φ=BSsin θ(θ 为 B 与 S 间的夹角)判断。
(2)根据穿过平面的磁感线的条数是否变化判断。
第1讲
电磁感应现象
楞次定律
角度 2 电磁感应现象及其应用
判断感应
电流有无
的方法
产生感应
电流的三
种常见情

8
第1讲
电磁感应现象
楞次定律
(多选)下列各图所描述的物理情境中,能产生感应电流的是( BCD )。
2.电磁感应现象
(1)定义:当穿过闭合导体回路的 磁通量 发生变化时,闭合导体回路中有感应电流产
生,这种利用磁场产生电流的现象叫作电磁感应。
(2)感应电流的产生条件:穿过 闭合 导体电路的 磁通量 发生变化。
4
第1讲

第12章-电磁感应 电磁场和电磁波

第12章-电磁感应 电磁场和电磁波

0n1I1
则穿过半径为 r2 的线圈
的磁通匝数为
N2Φ21 N2B1(π r12 )
n2lB1(πr12 )
代入 B1 计算得 2 N2Φ21 0n1n2l(πr12 )I1

M 21
N 2Φ21 I1
0n1n2l(πr12 )
33
12-3 自感和互感
例3 上题中,若通过长度为 l2 的线圈 N2 的电流为 I2 , 且 I2 是随时间而变化的,那么,因互感的作用,在线 圈 N1 中激起的感应电动势是多少呢? 解 通过线圈 N1 的磁通匝数为
dV
V 2
36
12-4 磁场的能量 磁场能量密度
例1 有一长为 l 0.20m 、截面积 S 5.0cm2 的长直 螺线管。按设计要求,当螺线管通以电流 I 450mA 时,螺线管可储存磁场能量 Wm 0.10J . 试问此长直螺
线管需绕多少匝线圈?
解 由上一节可知,长直螺线管的自感为
L 0N 2S / l
i
OP Ek dl
(v
B)
dl
OP
l
p
i
设杆长为 l
i
vBdl vBl
0
o
16
12-2 动生电动势和感生电动势
例1 一长为 L 的铜棒在磁感强度为 B 的均匀磁场中,
以角速度 在与磁场方向垂直的平面上绕棒的一端转
动,求铜棒两端的感应电动势.
解 di (v B) dl
vBdl
螺线管储存的磁场能量为
Wm
1 2
LI 2
1 2
0 N 2S
l
I2
N 1 ( 2Wml )1/ 2 1.8104匝
当 dL 0 dt

第十二章 电磁感应和麦克斯韦电磁理论

第十二章 电磁感应和麦克斯韦电磁理论

第十二章 电磁感应和麦克斯韦电磁理论12-1将一条形磁铁插入一闭合线圈,线圈中将产生感应电动势。

问在磁铁与线圈相对位置相同的情况下,迅速插入和缓慢插入线圈中所产生的感应电动势是否相同感应电流是否相同因电磁感应所产生的总电量是否相同答:迅速插入在线圈中产生的感应电动势大,缓慢插入线圈中产生的感应电动势小。

感应电流也不相同(因为I=Rε),但电磁感应所产生的总电量是相同的。

(因为11d q Idt dt dt R R dt RεΦ===-=-∆Φ⎰⎰⎰,∆Φ相同,所以q 相同)12-2一闭合圆形线圈在匀强磁场中运动,在下列情况下是否会产生感应电流为什么(1)线圈沿磁场方向平移; (2)线圈沿垂直于磁场方向平移;(3)线圈以自身的直径为轴转动,轴与磁场方向平行;(4)线圈以自身的直径为轴转动,轴与磁场方向垂直。

解:由d dt εΦ=-1d I R R dt εΦ==- (1)因为0d dt Φ=,所以没有电流产生(2)0d dtΦ= 也没有电流产生(3) 0Φ= 0d dtΦ= 没有电流产生(4)0d dt Φ≠ 若转动的角速度为,则2sin d R dtπωθΦ=(θ为线圈平台与之间的夹角)12-3在一环状铁芯上绕有两组线圈1和2,如题图所示,这样就构成了一个变压器。

当在线圈1中所通电流I 增大或减小时,在线圈2中都要感应电动势。

判断在这两种情况下,线圈2中的感应电流的方向。

答:(1)当I 增大,∆Φ增大,由楞次定律,I 产生的磁场应阻碍变化, 所以I 感的方向如图所示(从B 端流出)(2)当I 减小时,∆Φ减小,由楞次定律产生的磁场应阻碍变化 所以I 感的方向从A 端流出。

(3) (4) AB12-4将一条形磁铁插入电介质环中,环内会不会产生感应电动势会不会产生感应电流环内还会发生什么现象 答:不会产生感应电流,但会产生感应电动势(很小)。

环内还会产生极化现象,因为变化的磁场能产生电场,因此会使电解质极化。

大学物理B-第十二章 电磁感应

大学物理B-第十二章 电磁感应
法拉第电磁感应定律
电磁感应
产 生 机 理
i
d m dt
楞次定律 动生电动势
感生电动势
自感电动势
i (v B ) dl L B i dS S t
工业生产
12-3 自感和互感
互感电动势
一、自感电动势
自感系数 I(t) Φm
1.自感现象与自感系数 由于回路自身电流的变化,在回 路中产生感应电动势的现象。
N
ab a
I NIl a b ldr ln 2r 2 a
N B dS
s
dr
I
r
由互感系数定义可得互感为: Nl ab M ln I 2 a
l
a
b
I I I I
0
0
12-4磁场的能量与能量密度
I (t )
L
R
0
充电过程曲线
τ
t
I (t)
K2
麦克斯韦提出全电流的概念
I 全 I 传导 I D
全电流连续不中断的,构成闭合回路
ID

全电流安培环路定理
L H dl I 传导 I D dD d D dS D dS 位移电流 I D S t dt dt S
讨论: 1. 传导电流:电荷定向运动 2. 若传导电流为零
L
L
穿过S1 面 电流
穿过S2 面 电流
S1
I

+ + + +
S2
D
电流不连续 -
二、 全电流安培环路定理 S2 面电位移通量 D DS
极板间电位移矢量 D 位移电流

2025版高考物理大一轮复习课件第十二章电磁感应第2讲法拉第电磁感应定律自感和涡流

2025版高考物理大一轮复习课件第十二章电磁感应第2讲法拉第电磁感应定律自感和涡流

25
考点一 考点二 考点三 考点四 限时规范训练
维度2 转动切割问题
例 3 如图所示,光滑铜环水平固定,半径为l,长为l、电阻为r的
铜棒OA的一端在铜环的圆心O处,另一端与铜环良好接触,整个装置处
在磁感应强度大小为B、方向竖直向上的匀强磁场中。现使铜棒OA以角
速度ω逆时针(俯视)匀速转动,A端始终在铜环上,定值电阻的阻值为3r,
B0;左侧匀强磁场的磁感应强度B随时间t变化的规律如图乙所示,规定垂 直纸面向外为磁场的正方向。一硬质细导线的电阻率为ρ、横截面积为
S0,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上。求:
(1)t=t20时,圆环受到的安培力; 甲

(2)在 0~32t0 内,通过圆环的电荷量。
11
考点一 考点二 考点三 考点四 限时规范训练
03
考点三 自感
30
考点一 考点二 考点三 考点四 限时规范训练
知识梳理
1.自感现象 由于导体线圈本身的电流发生变化而引起的电磁感应现象,叫作自 感。 2.自感电动势 (1)在自感现象中产生的电动势叫作自感电动势。
(2)表达式:EL=LΔΔIt。
31
考点一 考点二 考点三 考点四 限时规范训练
考点一 法拉第电磁感应定律
的理解及应用
4
考点一 考点二 考点三 考点四 限时规范训练
知识梳理
1.感应电动势 (1)概念:在电磁感应现象中产生的电动势。
(2)产生条件:穿过回路的__□_1_磁__通__量____发生改变,与电路是否闭合
无关。
(3)方向判断:感应电动势的方向用__□_2 _楞__次__定__律_____或右手定则判
然联系。

第十二章电磁感应电磁场

第十二章电磁感应电磁场

bA cb 0
bA cb bc
a
a
vBdy v
0I
dy
b
b 2y
0Iv ln b 2 a
O
I
a
C
v
B
A
v
b
y
bc
bA
讨论:(1)在磁场中旋转的导体棒
(a)棒顺时针旋转
v
L
S
0 (v B) dl
L
0 Bvdl
ω
L Bl dl 1 BL2
0
2
动生电动势的方向由 O指向A 。
回路中产生的感应电动势 的大小与磁通量对时
间的变化率成正比。
k dΦm
dt
dm
dt
负号表示感应电动势总是反抗磁通的变化
国际单位制中 k =1
单位: 1V=1Wb/s
若有N匝线圈,每匝磁通量相同,它们彼此串联,总电动 势等于各匝线圈所产生的电动势之和。令每匝的磁通量为 m
磁链数: Ψ NΦm
(2) 在磁场中旋转的线圈
在匀强磁场B 中, 面积为S 的N 匝矩形线
圈以角速度为 绕固定
的轴线作匀速转动。
在任意时刻 t,线圈平面法 线与磁场的夹角为,这时
通过线圈平面的磁链数
Nm NBS cos
ωn
d(Nm )
dt
NBS d sin NBS sin t
dt
max sin t ——交变电动势
能量的转换和守恒
外力做正功输入机械能,安培力做负功吸收 了它,同时感应电流以电能的形式在回路中输出 这份能量。
发电机的工作原理: 靠洛仑兹力将机械能转换为电能
3、动生电动势的计算
计算动生电动势的一般方法是:

一电磁感应现象楞次定律精选全文

一电磁感应现象楞次定律精选全文

2.对楞次定律的理解 (1)从磁通量变化的角度来看:感应电流的磁场 总要阻碍磁通量的变化. (2)从导体和磁体的相对运动的角度来看:感应 电流所受的安培力总要阻碍相对运动.
3.由楞次定律可以得到感应电动势的方向.
(1)产生感应电动势的那部分导体相当于电源,在 电源内部的电流方向与电动势方向相同. (2)由楞次定律判断出的感应电流方向就是感应电 动势的方向.
右手定则反映了磁场方向、 导体运动方向和电流方向 三者的相互垂直关系.
例.如图所示,矩形线圈沿a →b →c在条形磁铁附近移 动,试判断穿过线圈的磁通量如何变化?如果线圈M沿 条形磁铁从N极附近向右移动到S极附近,穿过该线圈的 磁通量如何变化?
a
b
c
a
N
S
b
M
c
由方向向下减小到零,再变为方向向上增大 磁通量先增大再减小 ,方向一直是向左 由方向向上减小到零,再变为方向向下增大
【反馈练习】
1.a、b两个金属圆环静止套在一根水平放置的 绝缘光滑杆上,如图所示.一根条形磁铁自右向左 向b环中心靠近时,a、b两环将
A.两环都向左运动,且两环互相靠近 B.两环都向左运动,且两环互相远离 C.两环都向右运动,且两环靠拢 D.a环向左运动,b环向右运动
答案:A
2.如图所示,MN是一根固定的通电长直导线,电 流方向向上,今将一金属线框abcd放在导线上,让 线框的位置偏向导线的左边,两者彼此绝缘.当导 线中的电流突然增大时,线框整体受力情况为
搞清两个磁场
甲S
乙S
N
N
N
S
丙N
S
丁N
S
S
N
S
N
N
S
4.用楞次定律判定感应电流方向的一般步骤

大学物理《普通物理学简明教程》第十二章 电磁感应 电磁场

大学物理《普通物理学简明教程》第十二章  电磁感应 电磁场

第十二章 电磁感应 电磁场问题12-1 如图,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,试确定在下列情况下,ABCD 上的感应电动势的方向:(1)矩形线圈在纸面内向右移动;(2)矩形线圈绕AD 轴旋转;(3)矩形线圈以直导线为轴旋转.解 导线在右边区域激发的磁场方向垂直于纸面向里,并且由2IB rμ0=π可知,离导线越远的区域磁感强度越小,即磁感线密度越小.当线圈运动时通过线圈的磁通量会发生变化,从而产生感应电动势.感应电动势的方向由楞次定律确定.(1)线圈向右移动,通过矩形线圈的磁通量减少,由楞次定律可知,线圈中感应电动势的方向为顺时针方向.(2)线圈绕AD 轴旋转,当从0o到90o时,通过线圈的磁通量减小,感应电动势的方向为顺时针方向.从90o到180o时,通过线圈的磁通量增大,感应电动势的方向为逆时针. 从180o到270o 时,通过线圈的磁通量减少,感应电动势的方向为顺时针.从270o到360o 时,通过线圈的磁通量增大,感应电动势的方向为逆时针方向. (2)由于直导线在空间激发的磁场具有轴对称性,所以当矩形线圈以直导线为轴旋转时,通过线圈的磁通量并没有发生变化,所以,感应电动势为零.12-2 当我们把条形磁铁沿铜质圆环的轴线插入铜环中时,铜环内有感应电流和感应电场吗? 如用塑料圆环替代铜质圆环,环中仍有感应电流和感应电场吗?解 当把条形磁铁沿铜质圆环的轴线插入铜环过程中,穿过铜环的磁通量增加,铜环中有感应电流和感应电场产生;当用塑料圆环替代铜质圆环,由于塑料圆环中的没有可以移动的自由电荷,所以环中无感应电流和感应电场产生.12-3 如图所示铜棒在均匀磁场中作下列各种运动,试问在哪种运动中的铜棒上会有感应电动势?其方向怎样?设磁感强度的方向铅直向下.(1)铜棒向右平移[图(a)];(2)铜棒绕通过其中心的轴在垂直于B 的平面内转动[图(b)];(3)铜棒绕通过中心的轴在竖直平面内转动[图(c)].CI解 在磁场中运动的导体所产生的感应电动势为()d Lε=⨯⎰v B l ⋅,在图(a)与(c)中的运动情况中,⨯v B 的方向与d l 方向垂直,铜棒中没有感应电动势.在图(b)中,铜棒绕中心轴运动,左右两段产生的感应电动势大小相等,方向相反,所以铜棒中总的感应电动势为零.12-4 有一面积为S 的导电回路,其n e 的方向与均匀磁场的B 的方向之间的夹角为θ.且B 的值随时间变化率为d d B t .试问角θ为何值时,回路中i ε的值最大;角θ为何值时,回路中i ε的值最小?请解释之.解 由i d d d cos S S dt dtεθ=--⎰B BS =⋅,可得当0θ=o 时,回路中i ε的值最大,当90θ=o 时,回路中iε的值最小.12-5 有人认为可以采用下述方法来测量炮弹的速度.在炮弹的尖端插一根细小的永久磁铁,那么,当炮弹在飞行中连续通过相距为r 的两个线圈后,由于电磁感应,线圈中会产生时间间隔为t ∆的两个电流脉冲.您能据此测出炮弹速度的值吗?如0.1m r =,4=210s t -∆⨯,炮弹的速度为多少?解 带有小磁铁的炮弹飞向线圈,线圈中会产生感应电流, 测得的两个电流脉冲产生的时间间隔即炮弹飞过这两个线圈间距所用的时间. 由题意可知, 炮弹的速度为1500m s rv t-==⋅∆12-6 如图所示,在两磁极之间放置一圆形的线圈,线圈的平面与磁场垂直.问在下述各种情况中,线圈中是否产生感应电流?并指出其方向.(1)把线圈拉扁时;(2)把其中B B B (a)(b)(c)ne Bθ一个磁极很快地移去时;(3)把两个磁极慢慢地同时移去时.解 这三种情况中, 通过的磁通量均减小,线圈中均会产生感应电流, 从上往下看, 感应电流的方向沿顺时针方向.12-7 如图所示,均匀磁场被限制在半径为R 的圆柱体内,且其中磁感强度随时间的变化率d d B t =常量,试问: 在回路1L 和2L 上各点的d d B t 是否均为零?各点的k E 是否均为零?1kd L ⋅⎰ÑEl 和2k d L ⋅⎰ÑE l 各为多少?解 由于磁场只存在于圆柱体内,在回路1L 上各点d d B t 为常量,在回路2L 上各点d d B t 为零.空间中各点的感生电场分布为r R < k d 2d r BE t=r R > 2k d 2d R BE r t=可见在回路1L 和2L 上各点的k E 均不为零.对于在回路1L11k d d d d d d L L S S t t⋅=-=-⎰⎰ÑB B E l S ⋅对于回路2L 22kd d 0d L tΦ⋅=-=⎰ÑE l12-8 一根很长的铜管铅直放置,有一根磁棒由管中铅直下落.试述磁棒的运动情况.解 长直铜管可以看作由许多铜线圈组成,当磁棒下落,每通过一个线圈,线圈中的磁通量都会发生变化,在下落过程中,铜管中始终会有感应电流产生,并且感应电流产生的磁场的方向与磁棒磁场方向相反,因此,磁棒始终受到铜管对它的阻碍作用.12-9 有一些矿石具有导电性,在地质勘探中常利用导电矿石产生的涡电流来发现它,这叫电磁勘探.在示意图中,A 为通有高频电流的初级线圈,B为次级线圈,并连接电流计G,从次级线圈中的电流变R2L 1L化可检测磁场的变化.当次级线圈B检测到其中磁场发生变化时,技术人员就认为在附近有导电矿石存在.你能说明其道理吗?利用问题12-9图相似的装置,还可确定地下金属管线和电缆的位置,你能提供一个设想方案吗?解 该检测方法利用的原理是电磁感应。

大学物理电磁学电磁感应

大学物理电磁学电磁感应
有电流产生必有电动势存在
二、 法拉第电磁感应定律
通过回路面积内的磁通量发生变化时,回路中产生 的感应电动势与磁通量对时间的变化率成正比。
1、数学表述
i
k
dΦm dt
在SI制中比例系数为1
i
dΦm dt
§12-1 电磁感应定律

N
匝线圈 i
N
dΦm dt
d (NΦm ) dt
令 Ψ NΦm 全磁通 磁通链数
洛仑兹力不提供能量, 他只起到了一个传递能量的 作用。
至此详谬得以解释
f0
v
v0 V f
§12-2 动生电动势
例1有力一线半运圆动形。金已属知导:线v在, B匀,强R磁. 场中作切割磁
求:动生电动势。
b
解:方法一
作辅助线 a b,形成闭合回路。
i i
0
a (v
b
半圆
B) dl
ab
2RBv
② 求电量
i dq 0 sin t
dt R
q
idt
0 sin tdt
0R
BS sin td (t) 2BS
0R
R
§12-2 动生电动势
求解动生电动势的步骤
1. 选择 dl 方向;
2. 确定 dl 所在处的 B 及 v 3. 确定 v × B 的方向; 4. 确定 dl 与 v × B 的夹角
B A
vC
§12-2 动生电动势
例3 一直导线CD在一无限长直电流磁场中作
切割磁力线运动。求:动生电动势。
解: 方法一
d (v B) dl
v
0I
sin
900 dl
I
cos1800

第十二章电磁感应电磁场

第十二章电磁感应电磁场

第十二章电磁感应电磁场题12.1:如图所示,在磁感强度T 106.74-⨯=B 的均匀磁场中,放置一个线圈。

此线圈由两个半径均为3.7 cm 且相互垂直的半圆构成,磁感强度的方向与两半圆平面的夹角分别为 62和 28。

若在s 105.43-⨯的时间内磁场突然减至零,试问在此线圈内的感应电动势为多少? 题12.1分析:由各种原因在回路中所引起的感应电动势,均可由法拉第电磁感应定律求解,即⎰⋅-=-=Sd d d d d S B t t Φε但在求解时应注意下列几个问题: 1.回路必须是闭合的,所求得的电动势为回路的总电动势。

2.Φ应该是回路在任意时刻或任意位置处的磁通量。

它由⎰⋅=Sd S B Φ计算。

对于均匀磁场则有θcos d SBS Φ=⋅=⎰S B ,其中⊥=S S θcos 为闭会回路在垂直于磁场的平面内的投影面积。

对于本题,2211cos cos θθBS BS Φ+=中1θ和2θ为两半圆形平面法线n e 与B 之间的夹角。

3.感应电动势的方向可由tΦd d -来判定,教材中已给出判定方法。

为方便起见,所取回路的正向(顺时针或逆时针)应与穿过回路的B 的方向满足右螺旋关系,此时Φ恒为正值,这对符号确定较为有利。

题12.1解:迎着B 的方向,取逆时针为线圈回路的正向。

由法拉第电磁感应定律V 1091.4)cos cos (cos cos d d cos cos d d d d 4221122112211-⨯=+∆∆-=+-=+-=-=θθθθθθεS S tB S S t B BS BS t t Φ)()(0>ε,说明感应电动势方向与回路正向一致题12.2:一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φ)s 100s i n ()Wb 100.8(15--⨯=π,求在s 100.12-⨯=t 时,线圈中的感应电动势。

题12.2解:线圈中总的感应电动势t t ΦN )s 100cos()V 51.2(d d 1-=-=πε当 s 100.12-⨯=t 时, ε= 2.51 V 。

第十二章 电磁感应

第十二章  电磁感应

第19页 共 47 页 第19页
(3)根据磁通量的计算式知 引起磁通量变化的原因可能是 未 根据磁通量的计算式知,引起磁通量变化的原因可能是 根据磁通量的计算式知 引起磁通量变化的原因可能是S未 发生变化;也可能是 未变,S发生变化 或者B和 均未 变,B发生变化 也可能是 未变 发生变化 或者 和S均未 发生变化 也可能是B未变 发生变化;或者 而它们之间夹角有变化等,要具体问题具体分析 变,而它们之间夹角有变化等 要具体问题具体分析 求磁通 而它们之间夹角有变化等 要具体问题具体分析.求磁通 量的变化用公式∆Φ=Φ末-Φ初,公式应用时先规定一个正面 公式应用时先规定一个正面, 量的变化用公式 公式应用时先规定一个正面 然后根据从正面穿过为正,从反面穿过为负 把初 然后根据从正面穿过为正 从反面穿过为负,把初、末磁通量 从反面穿过为负 把初、 代入计算. 代入计算
第6页 共 47 页 第6页
(2)几种常见引起磁通变化的情形 几种常见引起磁通变化的情形 磁感应强度变化,即 ①投影面积不变,磁感应强度变化 即 投影面积不变 磁感应强度变化 ∆Φ=∆B·S · 投影面积发生变化,即 ②磁感应强度不变,投影面积发生变化 即∆Φ=B·∆S,其中投 磁感应强度不变 投影面积发生变化 · 其中投 影面积的变化又有两种形式: 影面积的变化又有两种形式 a.处在磁场中的闭合回路面积发生变化 处在磁场中的闭合回路面积发生变化. 处在磁场中的闭合回路面积发生变化 b.闭合回路面积不变 但与磁场方向的夹角发生变化 从而引 闭合回路面积不变,但与磁场方向的夹角发生变化 闭合回路面积不变 但与磁场方向的夹角发生变化,从而引 起投影面积变化. 起投影面积变化
第15页 共 47 页 第15页
第二关:技法关 第二关 技法关 解读高考

高三物理第十二章知识点

高三物理第十二章知识点

高三物理第十二章知识点高三物理的第十二章主要涉及电磁感应和电磁波两个方面的知识点。

在这一章节中,我们将学习电磁感应的基本原理、法拉第电磁感应定律以及应用于发电机和变压器的相关知识;同时,我们还将了解电磁波的概念、性质以及波长和频率的关系等内容。

1. 电磁感应电磁感应是指当磁通量穿过一个闭合回路时,该回路中会产生电动势。

根据法拉第电磁感应定律,产生的电动势的大小与磁通量的变化率成正比。

这一定律可以表示为U=-dΦ/dt,其中U表示电动势,Φ表示磁通量,t表示时间。

2. 磁通量和磁感应强度磁通量是指磁场穿过一个给定区域的总磁力线的数量。

磁感应强度则表示单位面积上垂直通过的磁力线的数量,单位为特斯拉(T)。

根据安培环路定律,磁感应强度的大小与环路上的电流以及环路围成的面积成正比。

3. 发电机发电机是利用电磁感应产生电动势,将机械能转化为电能的装置。

其工作原理是通过一个旋转的导体线圈与磁场相互作用,使线圈中产生交流电。

4. 变压器变压器是利用电磁感应的原理来改变交流电的电压大小的装置。

变压器由两个互相绕制的线圈组成,其中一个线圈称为高压线圈,另一个线圈称为低压线圈。

通过改变线圈的匝数比,可以改变电压的大小。

5. 电磁波电磁波是一种由电场和磁场相互作用而形成的波动现象。

它具有无线传输的特性,可以在真空中传播,且速度为光速。

电磁波的频率范围非常广泛,从无线电波到可见光、红外线、紫外线、X 射线和γ射线等。

6. 波长和频率波长是指电磁波一个完整周期所占据的空间距离,用λ表示,单位为米。

频率则表示单位时间内电磁波的周期个数,用f表示,单位为赫兹(Hz)。

波长和频率之间的关系可以用光速c来表示,λ=c/f。

通过对这些知识点的学习,我们可以深入了解电磁感应和电磁波的原理和应用,从而更好地理解电磁现象在日常生活中所起到的作用。

同时,这些知识也为我们进一步学习和研究电磁学提供了坚实的基础。

大学物理课件-电磁感应定律

大学物理课件-电磁感应定律

× ××××
i
dm dt
12t 7
× ××××
× ×××× R
× ×××× × ××××
t =2s時, εi =31 V
由於磁通量隨時間的增加而增大,由楞次定律可知,電流 方向為逆時針方向,所以電流通過電阻時的方向為從下向上。
1
例2 無限長直導線電流I=I0sint,求如圖矩形線圈內的感應電
安培力 dF Idl B
若給一初速度,由受力分析 知,導體棒受安培力與速度 反向,速度越來越小,機械 能轉換成電能、熱能等其他 形式能量,符合能量守恆定 律!
1
×B
×
×
×××Fm×××
× × ×
× × ×
×
× ×v
× × × ×I i × ×
××××××
機械能
焦耳熱
要維持滑杆運動必須外加一力,此過程為外力克服安培 力做功轉化為焦耳熱.
1
三 法拉第電磁感應定律
不論何種原因,當穿過閉 合回路所圍面積的磁通量發 生變化時,回路中會產生感 應電動勢,且感應電動勢正 比於磁通量對時間變化率的 負值。
i
k
dΦm dt
負號表示方向
國際單位制 ε i
Φ
伏特
韋伯 k 1
1
說明:
(1) “-”表示εi的方向,是楞次定律的數學表述。
B实 n
ΦN
)
d dt
Φ Φi
ψ NΦ
εi
N
dΦ dt
Ψ Φ1 Φ2 ΦN 稱為線圈的磁鏈
1
例1 如圖,磁場方向與線圈平面垂直,且穿入紙面向內,設通
過線圈回路的磁通量隨時間的變化關係為Φ=6t2+7t+1。

电磁感应定律

电磁感应定律

·
原 i

12 - 1 电磁感应定律
第十二章 电磁感应 电磁场
(4)楞次定律是能量守恒定律的一种表现
原 N 感
原 v
S N S S

v
S
N N
违反能量守恒定律
不违反能量守恒定律
12 - 1 电磁感应定律
第十二章 电磁感应 电磁场
+ B
+ + + + + + +
+ + + + + + + + + + +
LB
12 - 1 电磁感应定律
第十二章 电磁感应 电磁场
i
可见:1) i 与 i 反向。
ˆ n

B L
L
X
2)电动势分为两部分,一部分是由场变引 起的,一部分由导线运动所引起的。
i k
dΦ dt
国际单位制
i
Φ
伏特 韦伯
k 1
第十二章 电磁感应 电磁场 12 - 1 电磁感应定律 说明(1) “一”表示εi的方向,是楞次定律 的数学表述。
如何确定感应电动势的方向? 选定回路的绕行方向 定回路的法线方向,与绕行方向成右手螺旋
判定 m以及
i
d m dt
截面积 S 0.5mm N 10 n 10转 / 秒
' 2
= .7 10 ( m) 1
8
L

a
求:1)由图示位置旋转300时, 线圈内的感应电动势
n
2)线圈转动时的最大感应电动势及该时位置 3)由图示位置转1秒时,其内的感应电动势 4)转过1800时通过线圈任一截面的电量。

ch12-1电磁感应定律-2动生感生电动势.

ch12-1电磁感应定律-2动生感生电动势.

ch12
3.讨论
dΦ1 dΦ2 dΦ3 dψ ε ε1 ε 2 ε 3 dt dt dt dt
磁通匝链数或磁链Ψ
•对于多匝回路
Ψ Φ1 Φ2 Φ3
dΨ dΦ 若每匝磁通量相同 N dt dt
•有关感应电流
Fv(非静电力)对电子做正功(电能) Fu宏观上表现为安培力,反抗外力做功
外力作功 洛伦兹力不提供能量,只是传递能量
4.动生电动势的计算
• 闭合导体回路
ch12
v B dl
l
dΦ dt
• 不闭合导体回路

b
a
v B dl
也可假想一条曲线与不闭合导体组成闭合回路, 运用法拉第定律求解
电流产生的焦耳热从何而来?
ch12
Fv u q(v u) B Fv Fu Fv u (v u) 0 Fv u Fu v 0
洛伦兹力不作功
Fu
Fv+u
v Fu
v
v+u
Fv u Fu v
一、动生电动势
1. 动生电动势公式 洛伦兹(分)力

d dt
c b
ch12
F (e)v B
d

I
l
a
v
B
电动势 ε K dl
F 非静电力 K e
ε (v B ) dl
b a

v
B
Fv
动生电动势
2.动生电动势产生过程中的能量转换
非静电力K →感生电场Er 感生电动势

第十二章第二节法拉第电磁感应定律

第十二章第二节法拉第电磁感应定律

A.电源的内阻较大 B.小灯泡电阻偏大 C.线圈电阻偏大 D.线圈的自感系数较大
解析:选C.由自感规律可知在开关断 开的瞬间造成灯泡闪亮以及延时的原 因是在线圈中产生了与原电流同向的 自感电流且大于稳定时通过灯泡的原 电流.由图可知灯泡和线圈构成闭合 的自感回路,与电源无关,故A错;
造成不闪亮的原因是自感电流不大于 稳定时通过灯泡的原电流,当线圈电 阻小于灯泡电阻时才会出现闪亮现象, 故B错C正确.自感系数越大,则产生 的自感电流越大,灯泡更亮,故D错.
ΔΦ=B·12πa2② Δt=2va③ 由①②③得 E =14πBav,D 正确.
三、对自感现象的进一步理解 1.自感线圈的作用 (1)使线圈中的电流渐变而不突变,即 电流从一个值到另一个值总需要一定 的时间.
(2)在阻碍电流增大的过程中本身储存 了磁场能,而在阻碍电流减小的过程 中,又把储存的磁场能释放出来.
通电自感
断电自感
能量转化 电能转化为磁场 磁场能转化为电
情况


特别提醒:(1)通电时线圈产生的自感电 动势阻碍电流的增加且与电流方向相反,
此时含线圈L的支路相当于断开.
(2)断电时线圈产生的自感电动势与原 电流方向相同,在与线圈串联的回路 中,线圈相当于电源,它提供的电流 从原来的IL逐渐变小.但流过灯A的电 流方向与原来相反.(3)自感电动势只 是延缓了过程的进行,但它不能使过 程停止,更不能使过程反向.
(1)若B、l、v相互垂直,则E=_____.
(2)E=Blvsinθ,θ为运动方向与磁感 线方向的夹角.
(3)导体棒在磁场中转动:
导体棒以端点为轴,在匀强磁场中垂直 于磁感线方向匀速转动产生感应电动势 E=Bl v =__12_B__l2_ω___ (平均速度取中点 位置线速度12lω).

九年级物理第十二章知识点

九年级物理第十二章知识点

九年级物理第十二章知识点九年级物理第十二章主要讲述了电磁感应与电磁场方面的知识。

下面将为您详细介绍这些知识点。

1. 电磁感应电磁感应是指磁场中的磁通量变化会引起电场的感应,从而产生电动势和电流。

按照法拉第电磁感应定律,磁场的变化速率越大,感应电动势就越大。

电磁感应的应用包括电动机、发电机和变压器等。

2. 法拉第电磁感应定律法拉第电磁感应定律描述了电磁感应现象。

它的数学表示为:感应电动势E=-dΦ/dt,其中E表示感应电动势,Φ表示磁通量,t表示时间。

该定律说明了感应电动势的大小与磁通量变化速率成正比。

3. 感应电动势的方向根据楞次定律,感应电动势的方向与磁通量变化的方向相反,以阻止磁通量变化。

根据右手法则,当导体通过磁场运动时,电流的方向垂直于导体和磁场的平面。

4. 电磁感应实验电磁感应实验可以通过改变导体的运动状态或改变磁场的强度来观察感应电动势的产生。

常见的电磁感应实验包括导体在磁场中移动产生感应电动势、通过线圈的磁场变化产生感应电动势等。

5. 电磁场电磁场是指由电荷和电流所产生的电磁力作用所形成的电场和磁场。

电场和磁场是相互耦合的,互相转换。

6. 磁场的产生电流在导体中流动时会产生磁场。

根据奥姆定律,电流的大小和导线的长度、横截面积以及电阻的关系为I=U/R,其中I表示电流强度,U表示电压,R表示电阻。

7. 线圈的磁场当电流通过线圈时,线圈内会形成一个磁场。

线圈的磁场强度由电流强度、线圈的匝数和线圈的形状决定。

8. 磁感应强度磁感应强度是指单位面积上的磁力线数目,用字母B表示。

磁感应强度的单位是特斯拉(T)。

9. 磁感应强度的测量磁感应强度可以使用霍尔电平计进行测量。

霍尔电平计可以测量电流流经导体时产生的磁场强度。

10. 电磁感应的应用电磁感应在我们的生活中有很多应用。

例如,电动机、发电机、变压器等都是利用电磁感应原理工作的。

以上是关于九年级物理第十二章知识点的总结。

通过学习这些知识,我们可以更好地理解电磁感应和电磁场的原理和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 电磁感应
一、选择题(本题共8小题,在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分) 1.如图(a ),圆形线圈P 静止在水平桌面上,其正上方悬挂一相同的线圈Q ,P 和Q 共轴,Q 中通有变化电流,电流随时间变化的规律如图B .所示,P 所受的重力为G ,桌面对P 的支持力为N ,则
A .1t 时刻N >G 。

B .2t 时刻N >G 。

C .2t 时刻N <G 。

D .4t 时刻N=G 。

2.如图所示,闭合小金属环从高h 的光滑曲面上端无初速滚下,沿曲面的另一侧上升,曲面在磁场中 ( )
A . 若是非匀强磁场,环在左侧滚上的高度小于h
B. 若是匀强磁场,环在左侧滚上的高度等于h
c.若是非匀强磁场,环在左侧滚上的高度等于h
D.若是匀强磁场,环在左侧滚上的高度小于h
3.如图所示,将一个正方形导线框ABCD 置于一个范围足够大的匀强磁场中,磁场方向与其平面垂直.现在AB 、CD 的中点处连接一个电容器,其上、下极板分别为a 、b ,让匀强磁场以某一速度水平向右匀速移动,则( )
A.ABCD 回路中没有感应电流
B.A 与D 、B 与C 间有电势差
C.电容器a 、b 两极板分别带上负电和正电
D.电容器a 、b 两极板分别带上正电和负电
4.如图所示,一电子以初速v 沿与金属板平行的方向飞入两板间,在下列哪种情况下,电子将向M 板偏转?( )
A .开关K 接通瞬间
B .断开开关K 瞬间
C .接通K 后,变阻器滑动触头向右迅速滑动
D .接通K 后,变阻器滑动触头向左迅速滑动
5.如图所示,A 、B 是电阻均为R 的电灯,L 是自感系数较大的线圈,当S 1闭合,S 2断开且电路稳定时,A 、B 亮度相同,再闭合S 2,待电路稳定后,将S 1断开,下列说法中正确的是
A.B 灯立即熄灭
B.A 灯将比原来更亮一些后再熄灭
C.有电流通过B 灯,方向为
c d
D.有电流通过A 灯,方向为b a
6.如图所示,用铝板制成“ ”形框,将一质量为m 的带电小 球用绝缘细线悬挂在板上方,让整体在垂直于水平方向的 匀强磁场中向左以速度v 匀速运动,悬线拉力为T ,则:( )
××××××× D Ab B C
A .悬线竖直,T = mg
B .v 选择合适,可使T = 0
C .悬线竖直,T <mg
D .条件不足,不能确定一闭合线圈固定在垂直于纸面的 7.匀强磁场中,设向里为磁感强度B 的正方向,线圈中的箭头为电流i 的正方向(如图所示).已知线圈中感生电流i 随时间而变化的图像如图所示,则磁感强度B 随时间而变化的图像可能是:
8.将硬导线中间一段折成不封闭的正方形,每边长为l ,它在磁感应强度为B 方向如图的匀强磁场中匀速转动,转速为n ,导线在a 、b 两处通过电刷与外电路连接,外电路有额定功率为P 的小灯泡并正常发光,电路中除灯泡外,其余部分的电阻不计,灯泡的电阻应为
A . (2πl 2n
B )2/P B .2(πl 2nB )2
/P
C .(l 2nB)2/2P
D .(l 2nB)2
/P
二、填空题 9.09上海如图,金属棒ab 置于水平放置的U 形光滑导轨上,在ef 右侧存在有界匀强磁场B ,磁场方向垂直导轨平面向下,在ef 左侧的无磁场区域cdef 内有一半径很小的金属圆环L ,圆环与导轨在同一平面内。

当金属棒ab 在水平恒力F 作用下从磁场左边界ef 处由静止开始向右运动后,圆环L 有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。

10.截面积为0.10m 2
的120匝闭合线圈放在平行于线圈轴线的匀
强磁场中,线圈总电阻为1.2Ω.匀强磁场的磁感应强度B 随时
间t 变化的规律如右图所示.则从t =0到t =0.30s 时间内,通过
线圈导线任意一个横截面的电荷量为____C ,线圈中产生的电热为____J .
/s
B
第十二章电磁感应
班别学号姓名日期:月日
一、选择题
二、填空题
9.________ __(填收缩、扩张) _______________(填变大、变小、不变)。

10.__ __C, _ ___J.
三、计算题
11 .如图所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直、磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略.初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度v0.在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触.
(1)求初始时刻导体棒受到的安培力.
(2)若导体棒从初始时刻到速度第一次为零时,弹簧的弹性势能为E p,则这一过程中安培力所做的功W1和电阻R上产生的焦耳热Q1分别为多少?
(3)导体棒往复运动,最终将静止于何处?从导体棒开始运动直到最终静止的过程中,电阻R上产生的焦耳热Q为多少?
12.如图所示,在水平台面上铺设两条很长但电阻可忽略的平行导轨MN和PQ,轨间宽度L=0.5m,水平部分是粗糙的,置于匀强磁场中,磁感强度B=0.60T,方向竖直向上.倾斜部分是光滑的,该处设有磁场,直导线a和b可在导轨上滑动,质量均为m=0.20kg,电阻均为R=0.15 ,b放在水平轨上,a置于斜轨上高h=0.05m处,无初速释放(设在运动过程中,a,b间距离足够远,且始终与导轨MN,PQ接触并垂直,回路感应电流的磁场可忽略不计(g=10m/s2).
(1)问由导线和导轨组成的回路的最大感应电流是多少?
(2)如果导线与水平导轨间的动摩擦因数μ=0.10,当导线b的速度达到最大值时,导线a的加速度大小是多少?
第十二章 电磁感应
9.收缩,变小 10. 2.0 18
11.(1)初始时刻棒中感应电动势0E Lv B =
棒中感应电流E
I R
=
作用于棒上的安培力F ILB =
联立得22
0L v B F R
=安培力方向:水平向左
(2)由功和能的关系,得 安培力做功21012
p W E mv =-
电阻R 上产生的焦耳热 2
1012
p Q mv E =
- (3)由能量转化及平衡条件等,可判断: 棒最终静止于初始位置2012
Q mv =
12. 解 (1)设ab 刚滑下时的速度为v 0,则
202
1mv mgh =
s m gh v /120==
此时回路电流最大, r
R E
I +=
A R BLv I m 115
.021
5.06.020=⨯⨯⨯==
(2)a 棒刚滑下时,b 棒所受的安培力大于摩擦力,而作加速运动,但安培力逐渐减
小,当安培力与摩擦力大小相等时,b 棒速度达到最大,
ILB=μmg . ②
对a 棒 ILB +μmg=ma . ③ 由②、③式能解得
a=2μg=2米/秒2。

相关文档
最新文档