高三复习理科数学不等式学案-简单的线性规划问题

合集下载

简单的线性规划问题(附答案)

简单的线性规划问题(附答案)

简单的线性规划问题(附答案)简单的线性规划问题[学习目标]知识点一线性规划中的基本概念知识点二线性规划问题1.目标函数的最值线性目标函数z=ax+by(b≠0)对应的斜截式直线方程是y=-ab x+zb,在y轴上的截距是zb,当z变化时,方程表示一组互相平行的直线.当b>0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b<0,截距最大时,z取得最小值,截距最小时,z取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一求线性目标函数的最值例1 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-1答案 B 解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A时,z 取得最大值.由⎩⎨⎧ y =2,x -y =1⇒⎩⎨⎧x =3,y =2,此时z =3x +y =11.跟踪训练1 (1)x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.答案 (1)D (2)1解析 (1)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z =3x +y ,即y =-3x +z 过点(0,1)时z 取最小值1.题型二 非线性目标函数的最值问题例2 设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,求 (1)x 2+y 2的最小值;(2)y x 的最大值.解 如图,画出不等式组表示的平面区域ABC ,(1)令u =x 2+y 2,其几何意义是可行域ABC 内任一点(x ,y )与原点的距离的平方.过原点向直线x +2y -4=0作垂线y =2x ,则垂足为⎩⎨⎧x +2y -4=0,y =2x 的解,即⎝ ⎛⎭⎪⎪⎫45,85, 又由⎩⎨⎧ x +2y -4=0,2y -3=0,得C ⎝ ⎛⎭⎪⎪⎫1,32, 所以垂足在线段AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC |= 1+⎝ ⎛⎭⎪⎪⎫322=132,所以,x 2+y 2的最小值为134.(2)令v =yx ,其几何意义是可行域ABC 内任一点(x ,y )与原点相连的直线l 的斜率为v ,即v =y -0x -0.由图形可知,当直线l 经过可行域内点C 时,v 最大,由(1)知C ⎝⎛⎭⎪⎪⎫1,32,所以v max =32,所以y x 的最大值为32.跟踪训练2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为________.答案10解析画出可行域(如图所示).(x+3)2+y2即点A(-3,0)与可行域内点(x,y)之间距离的平方.显然AC长度最小,∴AC2=(0+3)2+(1-0)2=10,即(x+3)2+y2的最小值为10.题型三线性规划的实际应用例3某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少? 解 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z=300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值, 最大值是z =300×4+400×4=2 800, 即该公司可获得的最大利润是2 800元. 反思与感悟 线性规划解决实际问题的步骤:①分析并根据已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解. 跟踪训练3 预算用2 000元购买单价为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行? 解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y ,把所给的条件表示成不等式组,即约束条件为⎩⎪⎪⎨⎪⎪⎧50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.由⎩⎨⎧50x +20y =2 000,y =x ,解得⎩⎪⎨⎪⎧x =2007,y =2007,所以A 点的坐标为⎝⎛⎭⎪⎪⎫2007,2007. 由⎩⎨⎧50x +20y =2 000,y =1.5x ,解得⎩⎨⎧x =25,y =752,所以B 点的坐标为⎝⎛⎭⎪⎪⎫25,752.所以满足条件的可行域是以A ⎝⎛⎭⎪⎪⎫2007,2007,B ⎝⎛⎭⎪⎪⎫25,752,O (0,0)为顶点的三角形区域(如图).由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝⎛⎭⎪⎪⎫25,752,但注意到x ∈N *,y ∈N *,故取⎩⎨⎧x =25,y =37.故买桌子25张,椅子37把是最好的选择.1.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( ) A .-1 B .1 C.32D .22.某公司招收男职员x 名,女职员y 名,x 和y需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,x ∈N *,y ∈N *,则z =10x+10y 的最大值是( ) A .80 B .85 C .90 D .953.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤1,x ≤1,x +y ≥1,则z =x 2+y 2的最小值为________.一、选择题1.若点(x, y )位于曲线y =|x |与y =2所围成的封闭区域, 则2x -y 的最小值为()A .-6B .-2C .0D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43D .43.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x 的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( )A .-3B .-2C .-1D .05.已知x ,y 满足⎩⎪⎨⎪⎧x ≥1,x +y ≤4,x +by +c ≤0,目标函数z=2x +y 的最大值为7,最小值为1,则b ,c 的值分别为( )A .-1,4B .-1,-3C .-2,-1D .-1,-26.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≥0,x ≤3,使z=x +ay (a >0)取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2,y ≤2,x +y ≥2,则z =x+2y 的取值范围是________.8.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示). 9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y 给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.10.满足|x |+|y |≤2的点(x ,y )中整点(横纵坐标都是整数)有________个.11.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________. 三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,目标函数z =2x -y ,求z 的最大值和最小值.13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,求a 的取值范围.14.某家具厂有方木料90 m3,五合板600 m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板2 m2,生产每个书橱需要方木料0.2 m3,五合板1 m2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?当堂检测答案1.答案 B解析如图,当y=2x经过且只经过x+y-3=0和x=m的交点时,m取到最大值,此时,即(m,2m)在直线x +y-3=0上,则m=1.2.答案 C解析该不等式组表示的平面区域为如图所示的阴影部分.由于x ,y ∈N *,计算区域内与⎝⎛⎭⎪⎪⎫112,92最近的点为(5,4),故当x =5,y =4时,z 取得最大值为90.3.答案 12解析实数x ,y 满足的可行域如图中阴影部分所示,则z 的最小值为原点到直线AB 的距离的平方,故z min =⎝ ⎛⎭⎪⎫122=12.课时精练答案一、选择题1.答案 A解析画出可行域,如图所示,解得A(-2,2),设z=2x-y,把z=2x-y变形为y=2x-z,则直线经过点A时z取得最小值;所以z min=2×(-2)-2=-6,故选A.2.答案 D解析作出可行域,如图所示.联立⎩⎨⎧ x +y -4=0,x -3y +4=0,解得⎩⎨⎧x =2,y =2.当目标函数z =3x -y 移到(2,2)时,z =3x -y 有最大值4. 3.答案 D解析 作出可行域,如图所示,y -1x的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l 过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1).4.答案 C解析不等式组所表示的平面区域如图阴影部分所示,当a=0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a=-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点.故选C.5.答案 D解析由题意知,直线x+by+c=0经过直线2x +y=7与直线x+y=4的交点,且经过直线2x +y=1和直线x=1的交点,即经过点(3,1)和点(1,-1),∴⎩⎨⎧ 3+b +c =0,1-b +c =0,解得⎩⎨⎧b =-1,c =-2.6.答案 D解析 如图,作出可行域,作直线l :x +ay =0,要使目标函数z =x +ay (a >0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x +y =5重合,故a =1,选D.二、填空题 7.答案 [2,6]解析 如图,作出可行域,作直线l :x +2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故z 的取值范围为[2,6].8.答案 [3,8] 解析 作出不等式组⎩⎨⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值z min =2×3-3×1=3;当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值z max =2×1+3×2=8.所以z ∈[3,8]. 9.答案 4解析 由线性约束条件⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图中阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.10.答案13解析 |x |+|y |≤2可化为⎩⎪⎨⎪⎧x +y ≤2 (x ≥0,y ≥0),x -y ≤2 (x ≥0,y <0),-x +y ≤2 (x <0,y ≥0),-x -y ≤2 (x <0,y <0),作出可行域为如图正方形内部(包括边界),容易得到整点个数为13个. 11.答案 21解析 作出可行域(如图),即△ABC 所围区域(包括边界),其顶点为A (1,3),B (7,9),C(3,1)方法一∵可行域内的点都在直线x+2y-4=0上方,∴x+2y-4>0,则目标函数等价于z=x+2y-4,易得当直线z=x+2y-4在点B(7,9)处,目标函数取得最大值z max=21.方法二z=|x+2y-4|=|x+2y-4|5·5,令P(x,y)为可行域内一动点,定直线x+2y-4=0,则z=5d,其中d为P(x,y)到直线x+2y-4=0的距离.由图可知,区域内的点B与直线的距离最大,故d的最大值为|7+2×9-4|5=215.故目标函数z max=215·5=21.三、解答题12.解z=2x-y可化为y=2x-z,z的几何意义是直线在y轴上的截距的相反数,故当z取得最大值和最小值时,应是直线在y轴上分别取得最小和最大截距的时候.作一组与l0:2x-y=0平行的直线系l,经上下平移,可得:当l移动到l1,即经过点A(5,2)时,z max=2×5-2=8.当l移动到l2,即过点C(1,4.4)时,z min=2×1-4.4=-2.4.13.解先画出可行域,如图所示,y=a x必须过图中阴影部分或其边界.∵A(2,9),∴9=a2,∴a=3.∵a>1,∴1<a≤3.14.解由题意可画表格如下:(1)设只生产书桌x张,可获得利润z元,则⎩⎪⎨⎪⎧0.1x ≤90,2x ≤600,z =80x ,x ≥0⇒⎩⎪⎨⎪⎧x ≤900,x ≤300,x ≥0⇒0≤x ≤300. 所以当x =300时,z max =80×300=24 000(元), 即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元.(2)设只生产书橱y 个,可获得利润z 元,则⎩⎪⎨⎪⎧0.2y ≤90,1·y ≤600,z =120y ,y ≥0⇒⎩⎪⎨⎪⎧y ≤450,y ≤600,y ≥0⇒0≤y ≤450. 所以当y =450时,z max =120×450=54 000(元), 即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图).作直线l :80x +120y =0,即直线l :2x +3y =0. 把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎨⎧x +2y =900,2x +y =600,解得,点M 的坐标为(100,400).所以当x=100,y=400时,z max=80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。

高三一轮复习教案24二元一次不等式组与简单的线性规划问题

高三一轮复习教案24二元一次不等式组与简单的线性规划问题

二元一次不等式组与简单的线性规划问题一、知识归纳:1.二元一次不等式表示的平面区域:二元一次不等式0>++C By Ax 在平面直角坐标系中表示直线0=++C By Ax 某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线).对于在直线0=++C By Ax 同一侧的所有点),(y x ,实数C By Ax ++的符号相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从C By Ax ++00的正负即可判断0>++C By Ax 表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点) 2.线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解),(y x 叫做可行解,由所有可行解组成的集合叫做可行域。

分别使目标函数取得最大值和最小值的可行解叫做最优解。

3.线性规划问题应用题的求解步骤:(1)先设出决策变量,找出约束条件和线性目标函数; (2)作出相应的图象(注意特殊点与边界)(3)利用图象,在线性约束条件下找出决策变量,使线性目标函数达到最大(小)值; 二、基础例题:例1.①画出不等式062<-+y x 表示的平面区域.②点),2(t -在直线0632=+-y x 的上方,则t 的取值范围是________.③ 画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域。

并求出平面区域的面积。

例2.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x ,分别求下列目标函数的的最大值与最小值:(1)y x z 106+=; (2)y x z -=2; (3)ω=; (4)1+=x y ω例3.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元。

高中数学简单线性规划教案

高中数学简单线性规划教案

高中数学简单线性规划教案
目标:学生能够理解和应用简单线性规划概念,解决实际问题
一、引入
1. 引导学生回顾线性规划的基本概念:目标函数、约束条件等。

2. 引导学生思考以下问题:什么是线性规划?线性规划在生活中有哪些应用?
二、知识点讲解
1. 线性规划的定义:将问题转化为目标函数和约束条件的最优化问题。

2. 线性规划的基本步骤:确定目标函数、列出约束条件、求解最优解等。

3. 简单线性规划的例子:例如生产某种产品时的最优生产数量、销售某种商品时的最大利润等。

三、练习与应用
1. 让学生通过实际例子练习简单线性规划的求解过程。

2. 给学生一个生活中的实际问题,让他们尝试用线性规划方法解决。

四、总结与反思
1. 总结本节课所学的内容,强调线性规划的重要性和应用价值。

2. 让学生思考如何将线性规划应用到更复杂的实际问题中,并鼓励他们多做练习。

五、作业
1. 布置相关练习题和应用题作为作业,巩固本节课所学的知识。

2. 提醒学生在做作业时要注意思考问题的建模和求解方法。

六、拓展
1. 可以邀请专业人士或相关领域的学者给学生讲解线性规划在实际中的应用和发展趋势。

2. 可以组织学生参加线性规划竞赛或实践活动,增强他们的动手能力和实际应用能力。

高三-教案-数学-第2讲不等式第二部分(不等式组与简单线性规划)

高三-教案-数学-第2讲不等式第二部分(不等式组与简单线性规划)

第三讲二元一次不等式(组)与简洁的线性规划问题【学问梳理】1.二元一次不等式(组)表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By +C=0某一侧的全部点组成的平面区域(半平面)不含边界直线.不等式Ax+By +C≥0所表示的平面区域(半平面)包括边界直线.(2)对于直线Ax+By+C=0同一侧的全部点(x,y),使得Ax+By+C的值符号相同,也就是位于同一半平面内的点,其坐标适合同一个不等式Ax+By+C>0;而位于另一个半平面内的点,其坐标适合另一个不等式Ax+By+C<0.2.线性规划的有关概念【考点自测】推断下列命题的真假:1.对二元一次不等式(组)表示的平面区域的相识(1)若点(m,1)在不等式2x+3y-5>0所表示的平面区域内,则m的取值范围是m 1()(2)点(x1,y1),(x2,y2)在直线Ax+By+C=0同侧的充要条件是(Ax1+By1+C )(Ax 2+By 2+C )>0,异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.( )2.对简洁的线性规划问题的理解(3)线性目标函数取得最值的点肯定在可行域的顶点或边界上.( )(4)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( ) 【例题讲解】考点一 二元一次不等式(组)表示的平面区域【例1】 (1)不等式组⎪⎩⎪⎨⎧≤≥-+≤-+203062y y x y x 表示的平面区域的面积为( ) A .4 B .1 C .5 D .无穷大变式1:若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫43,+∞ B .(0,1] C.⎣⎢⎡⎦⎥⎤1,43 D .(0,1]∪⎣⎢⎡⎭⎪⎫43,+∞规律方法 二元一次不等式组所确定的平面区域是不等式组中各个不等式所表示的半平面区域的公共部分,画出平面区域的关键是把各个半平面区域确定精确,其基本方法是“直线定界、特别点定域”. 考点二 线性目标函数的最值【例2】设变量x ,y 满意约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x的最小值为 目标函数z=2x-y 的最小值为 .变式2:(1)已知a >0,x ,y 满意约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a x -3.若z =2x +y的最小值为1,则a =( ).A.14B.12C .1D .2 (2)设z =kx +y ,其中实数x ,y 满意⎩⎪⎨⎪⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k =________.(3)x,y 满意约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若z=y-ax 取得最大值的最优解不唯一,则实数a 的值为 .规律方法 (1)求目标函数最值的一般步骤为:一画、二移、三求.其关键是精确作出可行域,理解目标函数的意义.(2)在约束条件是线性的状况下,线性目标函数只有在可行域的顶点或者边界上取得最值.在解答选择题或者填空题时可以依据可行域的顶点干脆进行检考点三:利用线性规划思想求解非线性目标函数的最值【例3】 已知实数x ,y 满意⎩⎪⎨⎪⎧x +y -3≥0,x -y +1≥0,x ≤2.(1)若z =yx,求z 的最大值和最小值;(2)若z =x 2+y 2,求z 的最大值和最小值.变式3:.变量x ,y 满意⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)设z =yx,求z 的最小值; (2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.规律方法:求非线性目标函数的最值关键是利用数形结合的思想方法,给目标函数赋于肯定的几何意义.通常与两点之间距离,点到直线距离,两点间连线斜率有关。

二元一次不等式(组)与简单的线性规划问题1

二元一次不等式(组)与简单的线性规划问题1

高三一轮复习数学学案二元一次不等式(组)与简单的线性规划问题一、考纲要求及重难点: 1、 考纲要求:(1) 会从实际情境中抽象出二元一次不等式(组)。

(2) 了解二元一次不等式(组)的几何意义,能用平面区域表示二元一次不等式(组)。

(3) 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

2、 重难点:(1) 以考查线性目标函数的最值为重点,兼顾考查代数式的几何意义(如斜率、距离、面积)。

(2) 多在选择题、填空题中出现,有时也会在解答题中出现,常与实际问题相联系,列出线性约束条件,求出最优解。

二、课前自测:1、下列各点中,不在10x y +-≤表示的平面区域内的点是( ) A 、(0,0) B 、(1,1)- C 、(1,3)- D 、(2,3)-2、直线2x+y-10=0与不等式组0024320x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩表示的平面区域的公共点有( )A 、0个B 、1个C 、2个D 、无数个3.(2013山东)在平面直角坐标系xoy 中,M 为不等式组220,210,380,x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .13-D .12-4.实数x ,y 满足不等式组5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,那么目标函数24z x y =+的最小值是( )A 、6B 、-6C 、-2D 、45.完成一项装修工程需要木工和瓦工共同完成。

请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2000元,设木工x 人,瓦工y 人,请工人的约束条件是 。

三、知识梳理:1、二元一次不等式表示的平面区域 已知直线l :0Ax By C ++=(1)开半平面与闭半平面直线l 把坐标平面分成 部分,每个部分叫开半平面, 与 的并集叫做闭半平面。

(2)不等式表示的区域以不等式解 为坐标的所有点构成的集合,叫做不等式表示的区域或不等式的图象。

高三数学第七章不等式及线性规划复习学案(教师版)

高三数学第七章不等式及线性规划复习学案(教师版)

第七章不等式及线性规划131第七章 不等式及线性规划【高考考情解读】1.本章在高考中主要考查两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题. 【知识梳理】1. 四类不等式的解法(1)一元二次不等式的解法先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法①变形⇒f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0);②变形⇒f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0.(3)简单指数不等式的解法①当a >1时,a f (x )>a g (x )⇔f (x )>g (x ); ②当0<a <1时,a f (x )>a g (x )⇔f (x )<g (x ). (4)简单对数不等式的解法①当a >1时,log a f (x )>log a g (x )⇔f (x )>g (x )且f (x )>0,g (x )>0; ②当0<a <1时,log a f (x )>log a g (x )⇔f (x )<g (x )且f (x )>0,g (x )>0. 2. 五个重要不等式(1)|a |≥0,a 2≥0(a ∈R ). (2)a 2+b 2≥2ab (a 、b ∈R ). (3)a +b 2≥ab (a >0,b >0).(4)ab ≤(a +b 2)2(a ,b ∈R ).(5)a 2+b 22≥a +b 2≥ab ≥2aba +b(a >0,b >0). 3. 二元一次不等式(组)和简单的线性规划(1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等. (2)解不含实际背景的线性规划问题的一般步骤:①画出可行域;②根据线性目标函数的几何意义确定其取得最优解的点;③求出目标函数的最大值或者最小值.132 4. 两个常用结论(1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.【典型题型解析】考点一 一元二次不等式的解法例1 (2012·江苏)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________. 答案 9解析 由题意知f (x )=x 2+ax +b =⎝⎛⎭⎫x +a 22+b -a24. ∵f (x )的值域为[0,+∞),∴b -a 24=0,即b =a 24.∴f (x )=⎝⎛⎭⎫x +a22. 又∵f (x )<c .∴⎝⎛⎭⎫x +a22<c , 即-a 2-c <x <-a2+c .∴⎩⎨⎧-a2-c =m , ①-a2+c =m +6. ②②-①,得2c =6,∴c =9.二次函数、二次不等式是高中数学的重要基础知识,也是高考的热点.本题考查了二次函数的值域及一元二次不等式的解法.突出考查将二次函数、二次方程、二次不等式三者进行相互转化的能力和转化与化归的数学思想方法.(1)已知p :∃x 0∈R ,mx 20+1≤0,q :∀x ∈R ,x 2+mx +1>0.若p ∧q 为真命题,则实数m 的取值范围是( )A .(-∞,-2)B .[-2,0)C .(-2,0)D .[0,2](2)设命题p :{x |0≤2x -1≤1},命题q :{x |x 2-(2k +1)x +k (k +1)≤0},若p 是q 的充分不必要条件,则实数k 的取值范围是__________. 答案 (1)C (2)⎣⎡⎦⎤0,12 解析 (1)p ∧q 为真命题,等价于p ,q 均为真命题.命题p 为真时,m <0;命题q 为真第七章不等式及线性规划133时,Δ=m 2-4<0,解得-2<m <2.故p ∧q 为真时,-2<m <0. (2)p :{x |12≤x ≤1},q :{x |k ≤x ≤k +1},由p ⇒q 且qD ⇒/p ,则⎩⎪⎨⎪⎧k ≤121≤k +1,∴0≤k ≤12,即k 的取值范围是⎣⎡⎦⎤0,12. 考点二 利用基本不等式求最值问题例2 (1)(2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285C .5D .6(2)设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________. 答案 (1)C (2)2105解析 (1)∵x >0,y >0,由x +3y =5xy 得15⎝⎛⎭⎫1y +3x =1. ∴3x +4y =15(3x +4y )⎝⎛⎭⎫1y +3x =15⎝⎛⎭⎫3xy +4+9+12y x =135+15⎝⎛⎭⎫3x y+12y x ≥135+15×23x y ·12yx=5(当且仅当x =2y 时取等号), ∴3x +4y 的最小值为5. (2)方法一 ∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1,即(2x +y )2-32·2xy =1,∴(2x +y )2-32·⎝⎛⎭⎫2x +y 22≤1,解之得(2x +y )2≤85,即2x +y ≤2105.等号当且仅当2x =y >0,即x =1010,y =105时成立. 方法二 令t =2x +y ,则y =t -2x ,代入4x 2+y 2+xy =1, 得6x 2-3tx +t 2-1=0,由于x 是实数, 故Δ=9t 2-24(t 2-1)≥0,解得t 2≤85,即-2105≤t ≤2105,即t 的最大值也就是2x +y 的最大值为2105.134 方法三 化已知4x 2+y 2+xy =1为⎝⎛⎭⎫2x +14y 2+⎝⎛⎭⎫154y 2=1,令2x +14y =cos α,154y =sin α,则34y =155sin α,则2x +y =2x +14y +34y =cos α+155sin α=2105sin(α+φ)≤2105.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.解题时应根据已知条件适当进行添(拆)项,创造应用基本不等式的条件.(1)已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a的最小值为( )A .1 B.32C .2D.52答案 B 解析 2x +2x -a =2(x -a )+2x -a +2a ≥2·2(x -a )·2x -a+2a =4+2a , 由题意可知4+2a ≥7,得a ≥32,即实数a 的最小值为32,故选B.(2)(2013·山东)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当zxy 取得最小值时,x +2y-z 的最大值为 ( )A .0 B.98 C .2D.94答案 C解析 由题意知:z =x 2-3xy +4y 2,则z xy =x 2-3xy +4y 2xy =x y +4y x-3≥1,当且仅当x =2y 时取等号,此时z =xy =2y 2. 所以x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2≤2. 所以当y =1时,x +2y -z 取最大值2. 考点三 简单的线性规划问题例3 (2013·湖北)某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为 ( )A .31 200元B .36 000元C .36 800元D .38 400元答案 C第七章不等式及线性规划135解析 设租A 型车x 辆,B 型车y 辆时租金为z 元 则z =1 600x +2 400y x 、y 满足⎩⎪⎨⎪⎧x +y ≤21y -x ≤736x +60y ≥900,x ,y ≥0,x 、y ∈N画出可行域如图直线y =-23x +z2 400过点A (5,12)时纵截距最小,∴z min =5×1 600+2 400×12=36 800, 故租金最少为36 800元.(1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围.(2)解决线性规划问题首先要找到可行域,再注意目标函数所表示的几何意义,利用数形结合找到目标函数的最优解.(3)对于应用问题,要准确地设出变量,确定可行域和目标函数.(1)(2013·山东)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12(2)(2013·北京)设关于x 、y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( )A.⎝⎛⎭⎫-∞,43B.⎝⎛⎭⎫-∞,13 C.⎝⎛⎭⎫-∞,-23D.⎝⎛⎭⎫-∞,-53 答案 (1)C (2)C解析 (1)由⎩⎪⎨⎪⎧x +2y -1=0,3x +y -8=0136 得A (3,-1).此时线OM 的斜率最小,且为-13.(2)当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0. 如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23.1. 三个“二次”的关系一元二次不等式解集的端点值是相应一元二次方程的根,也是相应的二次函数图象与x 轴交点的横坐标,即二次函数的零点. 2. 基本不等式的作用二元基本不等式具有将“积式”转化为“和式”或将“和式”转化为“积式”的放缩功能,常常用于比较数(式)的大小或证明不等式或求函数的最值或解决不等式恒成立问题.解决问题的关键是弄清分式代数式、函数解析式、不等式的结构特点,选择好利用基本不等式的切入点,并创设基本不等式的应用背景,如通过“代换”、“拆项”、“凑项”等技巧,改变原式的结构使其具备基本不等式的应用条件.利用基本不等式求最值时要注意“一正、二定、三相等”的条件,三个条件缺一不可. 3. 二元一次不等式表示平面区域的快速判断法:记为“同上异下”,这叫B 的值判断法.解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.【当堂达标】1. 若实数x 、y 满足4x +4y =2x +1+2y +1,则t =2x +2y 的取值范围是( )A .0<t ≤2B .0<t ≤4第七章不等式及线性规划137C .2<t ≤4D .t ≥4答案 C解析 依题意得,(2x +2y )2-2×2x ×2y =2(2x +2y ), 则t 2-2t =2×2x×2y≤2×(2x +2y 2)2=t 22;即t 22-2t ≤0,解得0≤t ≤4; 又t 2-2t =2×2x ×2y >0,且t >0, 因此有t >2,故2<t ≤4,故选C.2. 已知点A (2,-2),点P (x ,y )在⎩⎪⎨⎪⎧x -y +1≥0,x +y +1≥0,2x -y -1≤0所表示的平面区域内,则OP →在OA →方向上投影的取值范围是( )A .[-22,22) B .(-22,22) C .(-22,22]D .[-22,22] 答案 D解析 不等式组表示的平面区域,如图所示:由向量投影的几 何意义知,当点P 与点D 重合时投影最大,当点P 与点B 或点 C 重合时投影最小. 又C (-1,0),D (0,-1), ∴OC →=(-1,0),OD →=(0,-1), ∴OD →在OA →方向上的投影为OD →·OA →|OA →|=22,OC →在OA →方向上的投影为OC →·OA →|OA →|=-22,故OP →在OA →方向上投影的取值范围是[-22,22].【点击高考】 一、选择题1. (2012·福建)下列不等式一定成立的是( )A .lg ⎝⎛⎭⎫x 2+14>lgx (x >0)138 B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 答案 C解析 应用基本不等式:x ,y ∈R +,x +y 2≥xy (当且仅当x =y 时取等号)逐个分析,注意基本不等式的应用条件及取等号的条件. 当x >0时,x 2+14≥2·x ·12=x ,所以lg ⎝⎛⎭⎫x 2+14≥lg x (x >0),故选项A 不正确; 运用基本不等式时需保证一正二定三相等,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确; 由基本不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确.2. 设a >b >1,c <0,给出下列三个结论:①c a >cb ;②ac <b c ;③log b (a -c )>log a (b -c ). 其中所有的正确结论的序号是( )A .①B .①②C .②③D .①②③答案 D解析 由不等式的基本性质可知①对; 幂函数y =x c (c <0)在(0,+∞)上单调递减, 又a >b >1,所以②对;由对数函数的单调性可得log b (a -c )>log b (b -c ), 又由对数的换底公式可知log b (b -c )>log a (b -c ), 所以log b (a -c )>log a (b -c ),故选项D 正确.3. 设A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B =(3,4],则a +b 等于( )A .7B .-1C .1D .-7答案 D解析 依题意,A =(-∞,-1)∪(3,+∞), 又因为A ∪B =R ,A ∩B =(3,4],则B =[-1,4].第七章不等式及线性规划139所以a =-(-1+4)=-3,b =-1×4=-4, 于是a +b =-7.故选D.4. (2012·陕西)小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b 2 D .v =a +b2答案 A解析 由小王从甲地往返到乙地的时速分别为a 和b , 则全程的平均时速为v =2s(s a +s b )=2aba +b , 又∵a <b ,∴2a 22a <2ab a +b <2ab2ab =ab ,∴a <v <ab ,A 成立.5. (2013·课标全国Ⅱ)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a 等于 ( )A.14B.12C .1D .2答案 B解析 作出不等式组表示的可行域,如图(阴影部分). 易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1, 解得a =12,故选B.6. 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y +3≥0,x -3y +3≤0,y -1≤0,若目标函数z =y -ax 仅在点(-3,0)处取到最大值,则实数a 的取值范围为( )A .(3,5)B.⎝⎛⎭⎫12,+∞140 C .(-1,2)D.⎝⎛⎭⎫13,1答案 B解析 如图所示,在坐标平面内画出不等式组表示的平面区域 及直线y -ax =0,要使目标函数z =y -ax 仅在点(-3,0)处取到 最大值(即直线z =y -ax 仅当经过该平面区域内的点(-3,0)时, 在y 轴上的截距达到最大), 结合图形可知a >12.二、填空题7. 已知p :x -1x≤0,q :4x +2x -m ≤0,若p 是q 的充分条件,则实数m 的取值范围是________.答案 [6,+∞)解析 由p 得:0<x ≤1,若p 是q 的充分条件, 则有对∀x ∈(0,1],4x +2x -m ≤0恒成立, 即m ≥4x +2x 恒成立,只需m ≥(4x +2x )max ,而(4x +2x )max =6,∴m ≥6.8. 函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0 (mn >0)上,则1m +1n 的最小值为________. 答案 4解析 定点A (1,1),又A 在mx +ny -1=0上, ∴m +n =1.∴1m +1n =(m +n )⎝⎛⎭⎫1m +1n =2+n m +m n≥4.当且仅当m =n =12时取等号.9. 已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥0,y -x +1≤0,y -2x +4≥0,若z =y -ax 取得最大值时的最优解(x ,y )有无数个,则a 的值为________. 答案 1解析 依题意,在坐标平面内画出题中的不等式组表示的平面区域, 如图所示.要使z =y -ax 取得最大值时的最优解(x ,y )有无数个, 则直线z =y -ax 必平行于直线y -x +1=0,于是有a =1.第七章不等式及线性规划14110.(2013·浙江)设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k =________.答案 2解析 作出可行域如图阴影部分所示:由图可知当0≤-k <12时,直线y =-kx +z 经过点M (4,4)时z 最大,所以4k +4=12,解得k =2(舍去);当-k ≥12时,直线y =-kx +z 经过点(0,2)时z 最大,此时z 的最大值为2,不合题意;当-k <0时,直线y =-kx +z 经过点M (4,4)时z 最大,所以4k +4=12,解得k =2,符合题意.综上可知,k =2.三、解答题11.求解关于x 的不等式ax 2-(a +1)x +1<0.解 (1)当a =0时,原不等式变为-x +1<0,此时不等式的解集为{x |x >1}.(2)当a ≠0时,原不等式可化为a (x -1)⎝⎛⎭⎫x -1a <0. 若a <0,则上式即为(x -1)⎝⎛⎭⎫x -1a >0, 又因为1a<1, 所以此时不等式的解集为{x |x >1或x <1a}. 若a >0,则上式即为(x -1)⎝⎛⎭⎫x -1a <0. ①当1a<1,即a >1时, 原不等式的解集为⎩⎨⎧⎭⎬⎫x |1a <x <1; ②当1a=1,即a =1时,原不等式的解集为∅; ③当1a>1,即0<a <1时, 原不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1a .142 综上所述,当a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1a 或x >1; 当a =0时,原不等式的解集为{x |x >1};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1a ; 当a =1时,原不等式的解集为∅;当a >1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x |1a <x <1. 12.某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离x (km)的关系式为p =k 3x +5(0≤x ≤8),若距离为1 km 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元.设f (x )为建造宿舍与修路费用之和.(1)求f (x )的表达式;(2)宿舍应建在离工厂多远处,可使总费用f (x )最小,并求最小值.解 (1)根据题意得100=k 3×1+5,所以k =800, 故f (x )=8003x +5+5+6x,0≤x ≤8. (2)因为f (x )=8003x +5+2(3x +5)-5≥80-5, 当且仅当8003x +5=2(3x +5)即x =5时f (x )min =75. 所以宿舍应建在离厂5 km 处,可使总费用f (x )最小,最小为75万元.13.已知函数f (x )=13ax 3-bx 2+(2-b )x +1在x =x 1处取得极大值,在x =x 2处取得极小值,且0<x 1<1<x 2<2.(1)证明:a >0;(2)若z =a +2b ,求z 的取值范围.(1)证明 求函数f (x )的导数f ′(x )=ax 2-2bx +2-b .由函数f (x )在x =x 1处取得极大值,在x =x 2处取得极小值,知x 1、x 2是f ′(x )=0的两个根,所以f ′(x )=a (x -x 1)(x -x 2).当x <x 1时,f (x )为增函数,f ′(x )>0,由x -x 1<0,x -x 2<0得a >0.第七章不等式及线性规划143 (2)解 在题设下,0<x 1<1<x 2<2等价于⎩⎪⎨⎪⎧ f ′(0)>0,f ′(1)<0,f ′(2)>0,即⎩⎪⎨⎪⎧ 2-b >0,a -2b +2-b <0,4a -4b +2-b >0,化简得⎩⎪⎨⎪⎧ 2-b >0,a -3b +2<0,4a -5b +2>0.此不等式组表示的区域为平面aOb 上的三条直线:2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为:A ⎝⎛⎭⎫47,67,B (2,2),C (4,2).z 在这三点的值依次为167,6,8. 所以z 的取值范围为(167,8).。

2020版新高考复习理科数学教学案:不等式、线性规划含答案

2020版新高考复习理科数学教学案:不等式、线性规划含答案
答案:B
调研二 基本不等式
■备考工具——————————————
1.基本不等式及有关结论
(1)基本不等式:如果a>0,b>0,则 ≥ ,当且仅当a=b时,等号成立,即正数a与b的算术平均数不小于它们的几何平均数.
(2)重要不等式:a∈R,b∈R,则a2+b2≥2ab,当且仅当a=b时,等号成立.
(3)几个常用的重要结论
∴x(y+1)+2(y+1)=6,
即(x+2)(y+1)=6,∴(x+2)(2y+2)=12.
∵x>0,y>0,∴x+2>2,2y+2>2.
∴(x+2)+(2y+2)≥2 =2 =4 .
当且仅当x+2=2y+2,即x=2 -2,y= -1时取“=”.
∴x+2y≥4 -4.即(x+2y)min=4 -4.
答案:C
2.[20xx·浙江卷]若实数x,y满足约束条件 则z=3x+2y的最大值是( )
A.-1B.1
C.10D.12
■自测自评——————————————
1.[20xx·石家庄质检]已知a>0>b,则下列不等式一定成立的是( )
A.a2<-abB.|a|<|b|
C. > D. a> b
解析:通解:当a=1,b=-1时,满足a>0>b,此时a2=-ab,|a|=|b|, a< b,∴A,B,D不一定成立.∵a>0>b,∴b-a<0,ab<0,∴ - = >0,∴ > 一定成立,故选C.
6.[20xx·湖北重点中学考试]已知集合A={x|x2-3x+2≥0},B={x|log3(x+2)<1},则A∩B=( )
A.{x|-2<x<1}B.{x|x≤1或x≥2}

高中数学 (简单的线性规划问题)学案 大纲人教版 学案

高中数学 (简单的线性规划问题)学案 大纲人教版 学案

简单的线性规划问题
一、学习目标:
1.了解线性约束条件、线性目标函数、可行解、可行域、最优解等概念.
2.让学生掌握线性规划的图解法,并会用图解法求线性目标函数的最大值与最小值.
二、预习指导
1.目标函数:
2.线性规划问题:
3.可行解:可行域:最优解:
4.判断可行域的方法:

⎨⎧≤<-≤<-1111y x 所表示的平面区域内的整点坐标 三、例题选讲
例1 已知x 、y 满足不等式⎪⎩
⎪⎨⎧≥≥≥+≥+0,01222y x y x y x ,求z =3x +y 的最小值
例2求z =2x +y 的最大值,使式中的x 、y 满足约束条件⎪⎩
⎪⎨⎧-≥≤+≤.1,1,y y x x y
四、课堂练习
≥0,y ≥0,且x+y ≤1,则z =x-y 的最大值是
≤x ≤1,0≤y ≤2,且2y-x ≥1,则z=2y-x+4的最小值为
≥0,y ≥0,2x+3y ≤100, 2x+y ≤60,则z=6x+4y 的最大值是
z =3x +5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩
⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x
5.已知13a b ≤+≤,24b a ≤-≤,求3a b +的取值X 围
五、小结与作业: 教材P 75 4, 5。

高三数学一轮复习 简单线性规划教案

高三数学一轮复习 简单线性规划教案
一、教材分析:
本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。
三、教学过程:
(一)组织教学
让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。
(二)引入新课,
通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!
早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。(请学生讨论这几种字体的特点?)古文字是一种以象形为主的字体。
4.由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的
5. 填表:线性规划中的基本概念
二、基础练习
1.满足如图所示的平面区域(阴影部分)的不等式是___________.
2.不等式组 所表示的平面区域的
面积为________.
3.画出下列不等式(组)表示的平面区域.
(1)2x+y-10<0;
四、课堂练习
如图,△ABC中,A(0,1),B(-2,2),C(2,6),写出△ABC区域所表示的二元一次不等式组.

不等式简单的线性规划问题利用简单的线性规划求最值

不等式简单的线性规划问题利用简单的线性规划求最值

线性规划问题的应用
生产计划
如何安排各种资源(如人力、原材 料、设备等)以生产出最大利润或 最小成本的产品。
货物运输
如何安排车辆或船只运输货物,使 得运输成本最低或运输时间最短。
资源分配
如何将有限的资源分配给不同的项 目或任务,以获得最大的效益。
配料问题
如何在满足一定质量要求的条件下 ,使用最少的原料或以最小的成本 配制出所需的产品。
引入人工变量
对于不等式约束条件,可以引入人工变量来扩展变量的维度,将不等式约束条件 转换为等式约束条件。
不等式约束条件下线性规划问题的求解方法
将不等式约束条件加入目标函数中
将不等式约束条件加入目标函数中,并求解目标函数的最小值或最大值。
利用线性规划求解
对于不等式约束条件下线性规划问题,可以利用线性规划的求解方法,如单 纯形法、椭球法等来求解目标函数的最小值或最大值。
数据科学
1. 研究大数据分析中的优化问题;2. 探索高效的数据处理和特征提取方法;3. 提高数据 分析和处理的精度和效率。
THANKS
谢谢您的观看
迭代法
通过不断迭代,逼近最优解。
优化问题的实际应用
资源分配问题
如何分配有限资源,使得产出最大化或成本最小 化。
运输问题
如何制定最优运输计划,使得运输成本最低且满 足需求。
选址问题
如何在多个候选地点中选择最优地点,使得某项 业务运营成本最低或收益最大。
06
总结与展望
不等式简单的线性规问题求解方法的优缺点
05
利用简单的线性规划解决优化问题
优化问题的定义与分类
定义
优化问题是在一定约束条件下,寻求一个或多个自变量取何值时,使得目标 函数取得极值(极大值或极小值)。

2020届高三数学一轮复习 《简单线性规划问题》学案

2020届高三数学一轮复习 《简单线性规划问题》学案

《简单的线性规划问题》学案课前准备【考纲要求】1.从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.【知识梳理】1.一元二次不等式(组)表示的平面区域22【基础自测】1.(2019厦门质检)已知实数,x y满足1,20,21,x yxx y-≤⎧⎪+≥⎨⎪+≤⎩则目标函数2z x y=+的最大值等于()A.2B.3C.52-D.7-【答案】A2.(2019华师附中)实数,x y满足220110x yx yy-+≥⎧⎪+≤⎨⎪+≥⎩,且2z x y=-,则z的最大值为()A.7-B.1-C.5D.7【答案】C3.(2019衡水中学)若,x y满足不等式组201050yx yx y-≥⎧⎪-+≥⎨⎪+-≤⎩,则yx的最大值是()A.32B.1C.2D.3【答案】C4.(2018广州一模)若,x y 满足约束条件20,210,10,x y y x ≥≥≤-+⎧⎪-⎨⎪-⎩则222z x x y =++的最小值为( )A .12B .14C .12-D .34-【答案】D【解析】画出约束条件表示的区域,如图,22(1)1z x y =++-, 点(1,0)-到直线210y -=的距离为12. ∴22(1)x y ++的最小值为14,∴22(1)1z x y =++-的最小值为34-. 课堂互动【典例剖析】考点一 平面区域问题【例1】(2019郑州质检)如果实数,x y 满足30101x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,若直线)1(-=x k y 将可行域分成面积相等的两部分,则实数k 的值为______. 【答案】3-【解析】直线)1(-=x k y 恒过点(1,0),∴当直线过BC 的中点(0,3)时符合条件, ∴3AD k k ==-.【方法技巧】确定二元一次不等式(组)表示的平面区域的方法 (1)当不等式中带等号时,边界为实线; 不带等号时,边界应画为虚线.(2)“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式组.若满足不等式组,则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.【变式】曲线xy 2=上存在点(,)x y 满足约束条件30,230,.x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为( )A .2B . 32C .1D .1- 【答案】C【解析】由302xx y y +-=⎧⎨=⎩,解得12x y =⎧⎨=⎩∴1m ≤,∴m 的最大值为1.考点二 求目标函数的值或范围 命题点1 求线性目标函数的最值【例2】(2019南昌质检)若,x y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是( )A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞【答案】D【解析】可行域为一开放区域,∴直线过点(2,1)时取最小值4,无最大值. 【方法技巧】求线性目标函数的最值方法(1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值. (2)可行域为封闭图形,最值在端点处取得,故只需比较端点值.【变式】(2019济南质检)设,x y 满足约束条件1,1,22,x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩若目标函数3z ax y =+仅在点(1,0)处取得最小值,则a 的取值范围为( )A .(6,3)-B .(6,3)--C .(0,3)D .(6,0]- 【答案】A【解析】不等式组表示的平面区域的角点坐标分别为(0,1),(1,0),(3,4)A B C ,3,,312A B C z z a z a ===+,∴3312a a a <⎧⎨<+⎩,解得63a -<<.命题点2 求非线性目标的最值【例3】(2019兰州质检)已知实数,x y 满足240,220,330,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩则22x y +的取值范围是___________.【答案】4[,13]5【解析】画出约束条件表示的区域,如图, 原点到直线220x y +-=的距离为5. 原点到点(2,3)的距离为13, ∴22x y +的取值范围是4[,13]5.【方法技巧】非线性的函数时,常见代数式的几何意义有: (1)yx 表示点(,)x y 与原点(0,0)连线的斜率; y bx a--表示点(,)x y 与点(,)a b 连线的斜率. (2)22x y +表示点(,)x y 与原点(0,0)的距离;22()()x a y b -+-表示点(,)x y 与点(,)a b 的距离.【变式】(2019晋城一模)若,x y 满足约束条件20,40, 2,x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则1y x +的取值范围为__________.【答案】2[,2]3【解析】画出不等式组表示的可行域(如图阴影部分所示).1yx +表示可行域内的点(,)M x y 与点(1,0)P -连线的斜率. 由40 2x y y +-=⎧⎨=⎩,解得22x y =⎧⎨=⎩,故得(2,2)B ;由202x y y -+=⎧⎨=⎩,解得0 2x y =⎧⎨=⎩,故得(0,2)A .因此可得2PA k =,23PB k =, 结合图形可得1y x +的取值范围为2[,2]3. 考点三 线性规划的实际应用【例4】(2019河师附中)某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润以及运输限制如表:在最合理的安排下,获得的最大利润的值为 . 【答案】62【解析】设租甲、乙两种货物的数量分别为,x y ,则20101101020100,x y x y x y +≤⎧⎪+≤⎨⎪∈⎩N,即211210,x y x y x y +≤⎧⎪+≤⎨⎪∈⎩N , 利润810z x y =+, 由211210x y x y +=⎧⎨+=⎩,解得43x y =⎧⎨=⎩, 当直线8100x y z +-=过点(4,3)A 时,z 取得最大值, ∴max 8410362z =⨯+⨯=.【谨记通法】解线性规划应用问题的一般步骤: (1)分析题意,设出未知量;(2)列出线性约束条件和目标函数;(3)作出可行域并利用数形结合求解; (4)作答.【变式】某所学校计划招聘男教师x 名,女教师y 名,x 和y 须满足约束条件25,2,6.x y x y x -≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师最多是 名. 【答案】10【解析】依题意可知z x y =+, 不等式组表示的平面区域如下:易知(3,1),(6,4),(6,7)A B C ,满足条件的整点为(3,1),(4,2),(4,3),(5,3),(5,4),(5,5),∴今年计划招聘教师最多5510z =+=名.【课后作业】1.(2018广州调研)已知变量,x y 满足202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,,,则2z x y =+的最大值为( )A .5B .4C .6D .0 【答案】B2.(2019南昌质检)变量(,)x y 满足约束条件20,20,1.x y x y y +-≥⎧⎪--≤⎨⎪≥⎩则目标函数3z x y =+的最小值为( )A .2B .4C .5D .6 【答案】B 【解析】画出可行域如图, 当直线过(1,1)A 时,min 4z =3.(2019华师附中)已知0a >,,x y 满足约束条件3,(3),x y y a x ⎧⎪+≤⎨⎪≥-⎩若2z x y =+的最小值为1,则a =( ) A .12 B .13C .1D .2 【答案】A【解析】目标函数在(1,2)a -处取得最小值,∴2121a ⨯-=,∴12a =. 4.(2019江师附中)已知实数,x y 满足不等式组2040250x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,若目标函数z y ax =-取得最大值时的唯一最优解是(1,3),则实数a 的取值范围为( )A .(,1)-∞-B .(0,1)C .(1,)+∞D .[1,)+∞ 【答案】C【解析】不等式组表示的可行域的角点坐标分别为(1,3),(3,1),(7,9)A B C , ∴3,13,57A B C z a z a z a =-=-=-,由A B AC z z z z >⎧⎨>⎩,即313397a a a a ->-⎧⎨->-⎩,解得1a >.5.(2019华师附中)已知y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若z ax y =-+取得最大值的最优解有无数多个,则实数a 的值为( )A .1-B .2C .1-或2D .12【答案】C【解析】画出约束条件表示的区域,如图, 由z ax y =-+,得y ax z =+, 即直线的截距最大,z 最大.∴直线y ax z =+必过点A ,∴a =2或1-.6.(2019重庆一中),x y 满足约束条件40,240,240,x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩若z ax y =-取得最大值的最优解不唯一...,则实数a 的值为( ) A .1- B .2C .12D .2或1-【答案】C【解析】作出不等式组对应的平面区域如图: 由z ax y =-,得z ax y -=, 即直线的截距最小,z 最大.要使z ax y =-取得最大值的最优解不唯一,则直线z ax y -=与直线042=--y x 平行,此时21=a . 7.(2019南充质检)设,x y 满足约束条件22026020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则x z y =的取值范围是( )A .[1,4]B .7[1,]2C .1[,1]4D .2[,1]7【答案】A【解析】依题意可得1[,1]4y x ∈, ∴xz y=的取值范围是[1,4]. A BCO yx8.(2019太原三模)设不等式组310,3 6.x y x y +≥⎧⎨+≤⎩表示的平面区域为D ,若在区域D 上存在函数log (1)a y x a =>图象上的点,则实数a 的取值范围是( )A .(3,)+∞B .(1,3)C . [3,【答案】C【解析】由31036x y x y +=⎧⎨+=⎩,得(3,1)A .依题意log 31log a a a ≤=,∴3a ≥.9.(2018新课标Ⅰ)若x y ,满足约束条件10,0,x y y ⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为________.【答案】610.(2018北京高考)若,x y 满足12x y x +≤≤,则2y x -的最小值是_________. 【答案】3【解析】不等式可转化为1,2.x y y x +≤⎧⎨≤⎩∴画出约束条件表示的区域,如图: 令2y x z -=,1122y x z =+, 由图象可知,当2y x z -=过点(1,2)A 时,z 取最小值,此时2213z =⨯-=.11.(2019沈阳质检)已知实数,x y 满足约束条件110x y y x y +≤⎧⎪-≤⎨⎪≥⎩,若目标函数(1)z a x ay =-+在点(1,0)-处取得最大值,则实数a 的取值范围为_________. 【解析】不等式组表示的平面区域的角点坐标分别为(1,0),(1,0),(0,1)A B C -. ∴1A z a =-,1B z a =-,C z a =. ∴111a a a a-≥-⎧⎨-≥⎩,解得12a ≤.。

高中数学 第三章 不等式 3.3.2 简单的线性规划问题(第

高中数学 第三章 不等式 3.3.2 简单的线性规划问题(第

3.3.2《简单的线性规划问题》(第1课时)一、选择题:1.目标函数z =4x +y ,将其看成直线方程时,z 的几何意义是( )A .该直线的截距B .该直线的纵截距C .该直线的横截距D .该直线的纵截距的相反数 【答案】B【解析】把z =4x +y 变形为y =-4x +z ,则此方程为直线方程的斜截式,所以z 为该直线的纵截距. 2.在如下图所示的可行域内(阴影部分且包括边界),目标函数z =x -y ,则使z 取得最小值的点的坐标为( )A .(1,1)B .(3,2)C .(5,2)D .(4,1) 【答案】A【解析】对直线y =x +b 进行平移,注意b 越大,z 越小.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-32,6B.⎣⎢⎡⎦⎥⎤-32,-1 C.[]-1,6 D.⎣⎢⎡⎦⎥⎤-6,32【答案】A【解析】利用线性规划的知识求解.作出不等式组表示的可行域,如图阴影部分所示,作直线3x -y =0,并向上、下平移,又直线y =3x -z 的斜率为3. 由图象知当直线y =3x -z 经过点A (2,0)时z 取最大值6,当直线y =3x -z 经过点B (12,3)时,z 取最小值-32. ∴z =3x -y 的取值范围为[-32,6].故选A.4.设变量x ,y 满足⎩⎪⎨⎪⎧x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最大值为( )A .20B .35C .45D .55 【答案】D【解析】根据题意画出不等式组表示的平面区域,然后求值.不等式组表示的区域如图所示,所以过点A (5,15)时2x +3y 的值最大,此时2x +3y =55.5.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,则yx的取值范围是( )A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞) 【答案】C【解析】⎩⎪⎨⎪⎧x -y +1≤0,x >0所表示的可行域如下图.而y x表示可行域内任一点与坐标原点连线的斜率,过点O 与直线AB 平行的直线l 的斜率为1,l 绕点O 逆时针转动必与AB 相交,直线OB 的倾斜角为90°,因此y x的范围为(1,+∞).6.已知以x ,y 为自变量的目标函数ω=kx +y (k >0)的可行域如下图阴影部分(含边界),若使ω取最大值时的最优解有无穷多个,则k 的值为( )A .1 B.32 C .2 D .4【答案】A【解析】目标函数可变形为y =-kx +ω,又∵k >0,结合图象可知,当ω最大时,-k =k DC =4-22-4=-1.即k =1.二、填空题:7.若实数x ,y 满足⎩⎪⎨⎪⎧x ≥2,y ≥2,x +y ≤6,则目标函数z =x +3y 的取值范围是________.【答案】[8,14]【解析】画出可行域,如图所示.作直线x +3y =0,并平移,由图象可知当直线经过A (2,2)时,z 取最小值,则z min =2+3×2=8.当直线经过C (2,4)时,z 取最大值z max =2+3×4=14. 所以z =x +3y 的取值范围是[8,14].8.已知x ,y 满足⎩⎪⎨⎪⎧ y ≤x ,x +y ≤1,y ≥-1,则z =2x +y 取最大值时点的坐标为________.【答案】(2,-1)【解析】不等式组⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1所表示的可行域如图所示.当平行直线系z =2x +y 经过点A (2,-1)时,目标函数z =2x +y 取得最大值.9.已知x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y +k ≥0,且z =2x +4y 的最小值为-6,则常数k =________.【答案】0【解析】由条件作出可行域如下图.根据图象知,目标函数过x +y +k =0与x =3的交点(3,-3-k )时取最小值,代入目标函数得-6=2×3+4×(-3-k ),∴k =0. 三、解答题10.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D ,若指数函数y =a x的图象上存在区域D 上的点,试求a 的取值范围. 【答案】见解析【解析】 区域D 如下图所示,其中A (2,9).当y =a x恰过点A 时,a =3.因此当1<a ≤3时,y =a x的图象上存在区域D 上的点.故a 的取值范围为(1,3]. 11.设z =2x +y ,式中变量x ,y 满足条件⎩⎪⎨⎪⎧x -4y≤-3,3x +5y≤25,x≥1,求z 的最大值和最小值.【答案】见解析【解析】 作出不等式组表示的平面区域,即可行域,如图所示.把z =2x +y 变形为y =-2x +z ,得到斜率为-2,在y 轴上的截距为z ,随z 变化的一族平行直线. 由图可以看出,当直线z =2x +y 经过可行域上的点A 时,截距z 最大,经过点B 时,截距z 最小.解方程组⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,得A 点坐标为(5,2),解方程组⎩⎪⎨⎪⎧x =1,x -4y +3=0得B 点坐标为(1,1),所以z max =2×5+2=12,z min =2×1+1=3.12.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4下,当3≤s ≤5时,求目标函数z =3x +2y 的最大值的变化范围.【答案】见解析【解析】 由⎩⎪⎨⎪⎧x +y =s ,y +2x =4,如图得交点为A (2,0),B (4-s,2s -4),C (0,s ),C ′(0,4),令z =0,得l 0:3x +2y =0,当l 0向上平移时z 值逐渐增大.(1)当3≤s <4时可行域为四边形OABC ,此时l 0平移到B 点时z 取最大值,z max =3×(4-s )+2(2s -4)=s +4. ∵3≤s <4,∴7≤z max <8.(2)当4≤s <5时,可行域是△OAC ′,此时l 0过C ′点时z 取最大值,z max =3×0+2×4=8.综上所述,z max ∈[7,8].。

高三复习课“简单的线性规划问题”教学设计

高三复习课“简单的线性规划问题”教学设计

高三复习课“简单的线性规划问题”教学设计发布时间:2022-07-29T06:24:24.077Z 来源:《教学与研究》2022年第6期作者:杜丹琼[导读] 1.会从实际情境中抽象出二元一次不等式组。

2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。

杜丹琼北京师范大学庆阳附属学校甘肃庆阳 745000一、教学目标1.会从实际情境中抽象出二元一次不等式组。

2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。

3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

二、重点、难点重点:用数学结合思想解决线性规划问题的过程和方法;难点:如何准确求得线性规划问题的最优解。

三、高考考情考向分析高考中对于本节知识的考查以线性、非线性目标函数最值的求法为主,兼顾由最优解(可行域)情况确定参数的范围,以及简单线性规划问题的实际应用,重在考查学生转化与化归和数形结合思想的应用意识,以选择、填空题的形式进行考查,难度为中低档。

四、设计思路本节课的教学设计采用“五环节教学模式”,包括:考纲分析、预习导学、精讲点拨、限时导练、总结评价五个环节。

这样设计的主要目的是通过教师的协助,让学生通过交流、讨论、互助进行学习,提高学生的学习效率。

近几年全国正在进行新高考改革,通过对高考改革趋势的分析、对各省数学题型进行分析整合,可以发现近年来高考命题逐渐向多样性,开放性方向发展,考题中增加了应用题和情景题的比重,因此本节课也设计了应用题,顺应新高考改革趋势。

五、教学设计(一)考纲分析——高考引航引入:展示两道高考真题。

例3.自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援。

截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套,N95口罩47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等。

高三数学大一轮复习 简单的线性规划问题学案 理 新人教A版

高三数学大一轮复习 简单的线性规划问题学案 理 新人教A版

简单的线性规划问题导学目标: 1.从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.自主梳理1.二元一次不等式(组)表示的平面区域(1)判断不等式Ax +By +C >0所表示的平面区域,可在直线Ax +By +C =0的某一侧的半平面内选取一个特殊点,如选原点或坐标轴上的点来验证Ax +By +C 的正负.当C ≠0时,常选用______________.对于任意的二元一次不等式Ax +By +C >0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时,①Ax +By +C >0表示直线Ax +By +C =0______的区域; ②Ax +By +C <0表示直线Ax +By +C =0______的区域.(2)画不等式Ax +By +C >0表示的平面区域时,其边界直线应为虚线;画不等式Ax +By +C ≥0表示的平面区域时,边界直线应为实线.画二元一次不等式表示的平面区域,常用的方法是:直线定“界”、原点定“域”.2.线性规划的有关概念(1)线性约束条件——由条件列出一次不等式(或方程)组. (2)线性目标函数——由条件列出一次函数表达式.(3)线性规划问题:求线性目标函数在约束条件下的最大值或最小值问题. (4)可行解:满足________________的解(x ,y ). (5)可行域:所有________组成的集合.(6)最优解:使______________取得最大值或最小值的可行解. 3.利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域. (2)作出目标函数的等值线.(3)确定最优解:在可行域内平行移动目标函数等值线,从而确定__________. 自我检测1.(2011·北京东城1月检测)在平面直角坐标系中,若点(-2,t )在直线x -2y +4=0的上方,则t 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(-1,+∞)D .(0,1)2.不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示)应是( )3.(2010·重庆)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x -y ≥0,2x -y -2≤0,则z =3x -2y 的最大值为( )A .0B .2C .4D .64.(2010·浙江)若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0,且x +y 的最大值为9,则实数m 等于( )A .-2B .-1C .1D .25.(2010·天津河西高三期中)已知实数x ,y 满足⎩⎪⎨⎪⎧x +y ≥2,x -y ≤2,0≤y ≤3,则z =2x -y 的最大值为________.探究点一 不等式组表示的平面区域例1 画出不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域,并回答下列问题:(1)指出x ,y 的取值范围;(2)平面区域内有多少个整点?变式迁移1 (2011·安庆模拟)在平面直角坐标系中,有两个区域M 、N ,M 是由三个不等式y ≥0,y ≤x 和y ≤2-x 确定的;N 是随t 变化的区域,它由不等式t ≤x ≤t +1 (0≤t ≤1)所确定.设M 、N 的公共部分的面积为f (t ),则f (t )等于( )A .-2t 2+2t B.12(t -2)2C .1-12t 2D .-t 2+t +12探究点二 求目标函数的最值例2 (2010·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤3,x -y ≥-1,y ≥1,则目标函数z =4x+2y 的最大值为( )A .12B .10C .8D .2变式迁移2 (2010·山东)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为( )A .3,-11B .-3,-11C .11,-3D .11,3 探究点三 线性规划的实际应用例3 某公司计划2010年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分和200元/分.假定甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元.问:该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?变式迁移3 (2010·四川)某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品,甲车间加工一箱原料需耗费工时10小时,可加工出7千克A 产品,每千克A 产品获利40元,乙车间加工一箱原料需耗费工时6小时,可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为( )A .甲车间加工原料10箱,乙车间加工原料60箱B .甲车间加工原料15箱,乙车间加工原料55箱C .甲车间加工原料18箱,乙车间加工原料50箱D .甲车间加工原料40箱,乙车间加工原料30箱数形结合思想的应用例 (12分)变量x 、y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =4x -3y ,求z 的最大值;(2)设z =yx ,求z 的最小值; (3)设z =x 2+y 2,求z 的取值范围.【答题模板】 解由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧x =13x +5y -25=0,解得A ⎝⎛⎭⎪⎫1,225.由⎩⎪⎨⎪⎧x =1x -4y +3=0,解得C (1,1).由⎩⎪⎨⎪⎧x -4y +3=03x +5y -25=0,解得B (5,2).[4分](1)由z =4x -3y ,得y =43x -z3.当直线y =43x -z 3过点B 时,-z3最小,z 最大.∴z max =4×5-3×2=14.[6分](2)∵z =y x =y -0x -0,∴z 的值即是可行域中的点与原点O 连线的斜率.观察图形可知z min =k OB =25.[9分](3)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方.结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29.∴2≤z ≤29.[12分] 【突破思维障碍】1.求解目标函数不是直线形式的最值的思维程序是:画出可行域→明确目标函数z 的几何意义→结合图形找最优解→求目标函数的最值2.常见代数式的几何意义主要有以下几点:(1)x 2+y 2表示点(x ,y )与原点(0,0)的距离;x -a 2+y -b 2表示点(x ,y )与点(a ,b )的距离.(2)y x 表示点(x ,y )与原点(0,0)连线的斜率;y -bx -a表示点(x ,y )与点(a ,b )连线的斜率. 这些代数式的几何意义能使所求问题得以转化,往往是解决问题的关键. 【易错点剖析】本题会出现对(2)(3)无从下手的情况,原因是学生没有数形结合思想的应用意识,不知道从目标函数表示的几何意义入手解题.1.在直角坐标系xOy 内,已知直线l :Ax +By +C =0与点P (x 0,y 0),若Ax 0+By 0+C >0,则点P 在直线l 上方,若Ax 0+By 0+C <0,则点P 在直线l 下方.2.在直线l :Ax +By +C =0外任意取两点P (x 1,y 1)、Q (x 2,y 2),若P 、Q 在直线l 的同一侧,则Ax 1+By 1+C与Ax 2+By 2+C 同号;若P 、Q 在直线l 异侧,则Ax 1+By 1+C 与Ax 2+By 2+C 异号,这个规律可概括为“同侧同号,异侧异号”.3.线性规划解决实际问题的步骤:①分析并将已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解.(满分:75分)一、选择题(每小题5分,共25分)1.(2011·龙岩月考)下面给出的四个点中,位于⎩⎪⎨⎪⎧x +y -1<0,x -y +1>0表示的平面区域内的点是( )A .(0,2)B .(-2,0)C .(0,-2)D .(2,0)2.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1 C.12 D.143.(2011·广东)已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定,若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为( )A .4 2B .3 2C .4D .3 4.(2011·安徽)设变量x ,y 满足|x |+|y |≤1,则x +2y 的最大值和最小值分别为( ) A .1,-1 B .2,-2 C .1,-2 D .2,-1 5.(2011·四川)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需送往A 地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z 等于( )A .4 650元B .4 700元C .4 900元D .5 000元 二、填空题(每小题4分,共12分)6.(2010·北京改编)设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x的图象上存在区域D 上的点,则a 的取值范围是________.7.(2011·长沙一中月考)已知实数x 、y 同时满足以下三个条件:①x -y +2≤0;②x ≥1;③x +y -7≤0,则yx的取值范围是______________.8.(2011·湖南师大月考)设不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域为M ,若函数y =k (x +1)+1的图象经过区域M ,则实数k 的取值范围是____________.三、解答题(共38分)9.(12分)(2010·广东)某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?10.(12分)已知⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0,求:(1)z =x +2y -4的最大值;(2)z =x 2+y 2-10y +25的最小值;(3)z =2y +1x +1的范围.11.(14分)(2011·杭州调研)预算用2 000元购买单件为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行?学案35 简单的线性规划问题自主梳理1.(1)原点(0,0) ①上方 ②下方 2.(4)线性约束条件 (5)可行解 (6)目标函数 3.(3)最优解 自我检测1.B 2.C 3.C 4.C 5.7课堂活动区例1 解题导引 在封闭区域内找整点数目时,若数目较小时,可画网格逐一数出;若数目较大,则可分x =m 逐条分段统计.解 (1)不等式x -y +5≥0表示直线x -y +5=0上及右下方的点的集合.x +y ≥0表示直线x +y =0上及右上方的点的集合,x ≤3表示直线x =3上及左方的点的集合.所以,不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域如图所示.结合图中可行域得x ∈⎣⎢⎡⎦⎥⎤-52,3,y ∈[-3,8].(2)由图形及不等式组知⎩⎪⎨⎪⎧-x ≤y ≤x +5,-2≤x ≤3,且x ∈Z .当x =3时,-3≤y ≤8,有12个整点;当x =2时,-2≤y ≤7,有10个整点; 当x =1时,-1≤y ≤6,有8个整点; 当x =0时,0≤y ≤5,有6个整点; 当x =-1时,1≤y ≤4,有4个整点; 当x =-2时,2≤y ≤3,有2个整点;∴平面区域内的整点共有2+4+6+8+10+12=42(个).变式迁移1 D [作出由不等式组⎩⎪⎨⎪⎧y ≥0y ≤xy ≤2-x组成的平面区域M ,即△AOE 表示的平面区域,当t =0时,f (0)=12×1×1=12,当t =1时,f (1)=12×1×1=12,当0<t <1时,如图所示,所求面积为f (t )=S △AOE -S △OBC -S △FDE =12×2×1-12t 2-12[2-(t +1)]2=-t 2+t +12, 即f (t )=-t 2+t +12,此时f (0)=12,f (1)=12,综上可知选D.]例2 解题导引 1.求目标函数的最值,必须先准确地作出线性可行域再作出目标函数对应的直线,据题意确定取得最优解的点,进而求出目标函数的最值.2.线性目标函数z =ax +by 取最大值时的最优解与b 的正负有关,当b >0时,最优解是将直线ax +by =0在可行域内向上平移到端点(一般是两直线交点)的位置得到的,当b <0时,则是向下方平移.B[画出可行域如图中阴影部分所示,目标函数z =4x +2y 可转化为y =-2x +z2,作出直线y =-2x 并平移,显然当其过点A 时纵截距z2最大.解方程组⎩⎪⎨⎪⎧x +y =3,y =1得A (2,1),∴z max =10.]变式迁移2 A [作出可行域如图所示.目标函数y =34x -14z ,则过B 、A 点时分别取到最大值与最小值.易求B (5,3),A (3,5).∴z max =3×5-4×3=3,z min =3×3-4×5=-11.]例3 解题导引 解线性规划应用问题的一般步骤是:(1)分析题意,设出未知量; (2)列出线性约束条件和目标函数;(3)作出可行域并利用数形结合求解;(4)作答.解 设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由题意得⎩⎪⎨⎪⎧x +y ≤300,500x +200y ≤90 000,x ≥0,y ≥0.目标函数为z =3 000x +2 000y .二元一次不等式组等价于⎩⎪⎨⎪⎧x +y ≤300,5x +2y ≤900,x ≥0,y ≥0.作出二元一次不等式组所表示的平面区域,即可行域,如图所示. 作直线l :3 000x +2 000y =0,即3x +2y =0.平移直线l ,从图中可知,当直线l 过点M 时,目标函数取得最大值.由方程⎩⎪⎨⎪⎧x +y =300,5x +2y =900,解得x =100,y =200.所以点M 的坐标为(100,200).所以z max =3 000x +2 000y =700 000(元). 答 该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.变式迁移3 B[设甲车间加工原料x 箱,乙车间加工原料y 箱, 由题意可知⎩⎪⎨⎪⎧x +y ≤70,10x +6y ≤480,x ≥0,y ≥0.甲、乙两车间每天总获利为z =280x +200y . 画出可行域如图所示.点M (15,55)为直线x +y =70和直线10x +6y =480的交点,由图象知在点M (15,55)处z 取得最大值.]课后练习区1.C 2.B 3.C 4.B 5.C 6.(1,3]7.⎣⎢⎡⎦⎥⎤95,6 解析 由⎩⎪⎨⎪⎧x =1x +y -7=0⇒A (1,6),⎩⎪⎨⎪⎧x -y +2=0x +y -7=0⇒B ⎝ ⎛⎭⎪⎫52,92, ∴k OA =6,k OB =95.∴k ∈⎣⎢⎡⎦⎥⎤95,6,即y x ∈⎣⎢⎡⎦⎥⎤95,6. 8.⎣⎢⎡⎦⎥⎤-14,12 解析作可行域,如图.因为函数y =k (x +1)+1的图象是过点P (-1,1),且斜率为k 的直线l ,由图知,当直线l 过点A (1,2)时,k 取最大值12,当直线l 过点B (3,0)时,k 取最小值-14,故k ∈⎣⎢⎡⎦⎥⎤-14,12. 9.解 设该儿童分别预订x ,y 个单位的午餐和晚餐,共花费z 元,则z =2.5x +4y .(2分)可行域为⎩⎪⎨⎪⎧12x +8y ≥64,6x +6y ≥42,6x +10y ≥54,x ≥0,x ∈N ,y ≥0,y ∈N ,即⎩⎪⎨⎪⎧3x +2y ≥16,x +y ≥7,3x +5y ≥27,x ≥0,x ∈N ,y ≥0,y ∈N .(6分)作出可行域如图所示:(9分)经试验发现,当x =4,y =3时,花费最少,为2.5×4+4×3=22(元).故应当为儿童分别预订4个单位的午餐和3个单位的晚餐.(12分)10.解作出可行域如图所示,并求出顶点的坐标A (1,3)、B (3,1)、C (7,9).(1)易知可行域内各点均在直线x +2y -4=0的上方,故x +2y -4>0,将点C (7,9)代入z 得最大值为21.(4分)(2)z =x 2+y 2-10y +25=x 2+(y -5)2表示可行域内任一点(x ,y )到定点M (0,5)的距离的平方,过M 作直线AC 的垂线,易知垂足N 在线段AC 上,故z 的最小值是|MN |2=92.(8分) (3)z =2×y -⎝ ⎛⎭⎪⎫-12x --1表示可行域内任一点(x ,y )与定点Q ⎝ ⎛⎭⎪⎫-1,-12连线的斜率的两倍,因此k QA =74,k QB =38,故z 的范围为⎣⎢⎡⎦⎥⎤34,72.(12分)11.解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y ,(2分)把所给的条件表示成不等式组,即约束条件为⎩⎪⎨⎪⎧ 50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.(6分)由⎩⎪⎨⎪⎧ 50x +20y =2 000,y =x , 解得⎩⎪⎨⎪⎧x =2007,y =2007,所以A 点的坐标为⎝ ⎛⎭⎪⎫2007,2007.由⎩⎪⎨⎪⎧ 50x +20y =2 000,y =1.5x , 解得⎩⎪⎨⎪⎧x =25,y =752. 所以B 点的坐标为⎝ ⎛⎭⎪⎫25,752.(9分)所以满足条件的可行域是以A ⎝ ⎛⎭⎪⎫2007,2007、B ⎝ ⎛⎭⎪⎫25,752、O (0,0)为顶点的三角形区域(如图).(12分)由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝ ⎛⎭⎪⎫25,752,但注意到x ∈N *,y ∈N *,故取⎩⎪⎨⎪⎧x =25,y =37.故买桌子25张,椅子37把是最好的选择.(14分)。

高考数学复习讲义:二元一次不等式(组) 与简单的线性规划问题

高考数学复习讲义:二元一次不等式(组) 与简单的线性规划问题

返回
[解析] (1)作出满足约束条 件的可行域如图中阴影部分所 示.由 z=3x+2y,得 y=-32x+2z.
作直线 l0:y=-32x. 平移直线 l0,当直线 y=-32x+2z过点(2,0)时, z 取最大值,zmax=3×2+2×0=6.
返回
(2)




x+1≤y, y≤2x,

x-y+1≤0, 2x-y≥0,
返回
[方法技巧]
解决求平面区域面积问题的方法步骤 (1)画出不等式组表示的平面区域; (2)判断平面区域的形状,并求得直线的交点坐标、图形 的边长、相关线段的长(三角形的高、四边形的高)等,若为规 则图形则利用图形的面积公式求解;若为不规则图形则利用 割补法求解. [提醒] 求面积时应考虑圆、平行四边形等图形的对称性.
x<2y 选项 B 所表示的区域,故选 B. 答案:B
返回
3x+y-6≥0, 2.(2019·河南豫北联考)关于 x,y 的不等式组x-y-2≤0,
x+y-4≤0
表示的平面区域的面积为
()
A.3
B.52
C.2
D.32
解析:平面区域为一个直角三角形 ABC,其中 A(3,1),
B(2,0),C(1,3),所以面积为12|AB|·|AC|=12× 2× 8=2,
-dc,-ba连线的斜率的ac倍的取值范围、最值等
返回
对形如 z=|Ax+By+C|型的目标函数,可先 点到直线 变形为 z= A2+B2·|Ax+A2B+y+B2C|的形式,将 距离型 问题化为求可行域内的点(x,y)到直线 Ax+
By+C=0 的距离的 A2+B2倍的最值
返回
考法三 线性规划中的参数问题

高中数学 第三章不等式 §3.3.3简单的线性规划问题1导学案 苏教版必修5

高中数学 第三章不等式 §3.3.3简单的线性规划问题1导学案 苏教版必修5

简单的线性规划问题(1) 第 课时一、学习目标 (1)了解线性规划的意义、了解可行域的意义;(2)掌握简单的二元线性规划问题的解法.二、学法指导1.用图解法解决简单的线性规划问题的基本步骤:方法一:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);(2)设0=z ,画出直线0l (3)观察、分析,平移直线0l ,从而找到最优解(4)最后求得目标函数的最大值及最小值说明:(1)线性目标函数的最大值、最小值一般在可行域的顶点处取得;(2)线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数多个.线性规划的意义、最优解的含义三、课前预习1.对于变量x 、y 在约束条件下,都是关于变量x 、y 的一次不等式,称为 ,z=f(x,y)是欲达到最大或最小值所涉及的变量x 、y 的解析式叫做 ,当f(x,y)是x 、y 的一次解析式时,z=f(x,y)叫做2.这类求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为 问题。

满足线性约束条件的解(x,y)叫做 由所有可行解组成的集合叫做 使目标函数取得最大值或最小值的可行解叫做四、课堂探究1.问题:在约束条件41043200x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩下,如何求目标函数2P x y =+的最大值?2.例题讲解:例1.设2z x y =+,式中变量,x y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值例2.设610z x y =+,式中,x y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值.巩固训练(一)当堂练习书后练习(二)课后作业(选做)求54z x y =+的最大值,使式中,x y 满足约束条件321041100,0,x y x y x y x y Z+<⎧⎪+-≤⎪⎨>>⎪⎪∈⎩.五、反思总结。

高中数学 第三章不等式 简单的线性规划问题教案学生版2 新人教A版必修5

高中数学 第三章不等式 简单的线性规划问题教案学生版2 新人教A版必修5

简单的线性规划问题目标:1.能够体会线性规划的基本思想2.能借助几何直观解决一些简单的线性规划问题3.体会数学知识形成过程中所蕴涵的数学思想和方法重点:求线性目标函数的最值问题难点:求线性目标函数的最值问题教 学 过 程 设 计活动1:1)若y x ,满足条件⎪⎩⎪⎨⎧≥≤+-≤-1,2553,34x y x y x 求y x z +=2的最大值与最小值。

2)满足线性约束条件⎪⎩⎪⎨⎧<-+>++≤-0535,032,02y x y x x y 的可行域中整点可行解为_______________________。

3) 你能说出解决线性规划问题的步骤吗?活动2:营养学家指出,成人良好的日常饮食应该至少提供kg 0750⋅的碳水化合物,kg 060⋅的蛋白质,kg 060⋅脂肪。

1kg 食物A 含有kg 1050⋅碳水化合物,kg 070⋅蛋白质,脂肪,花费28元;1kg 食物B 含有kg 1050⋅碳水化合物,kg 140⋅蛋白质,kg 070⋅脂肪,花费21元。

为了满足营养专家指出的日常饮食要求,同kg 140⋅时使花费最低,需要同时食用食物A 和食物B 多少kg?问题1.问题2解:设___________________________________________________________(线性约束条件是)_____________________________________________(目标函数是) _________________________作出可行域(如下所示):(找出最优解)__________________________________________________答:活动3:某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料分别为A 、B 两种规格的金属板,每张面积分别为2m 2与3m 2。

用A 种规格的金属板可造甲种产品3个,乙种产品5个;用B 种规格的金属板可造甲、乙两种产品各6个。

高中数学 第三章不等式 §333简单的线性规划问题3导学案 苏教版必修5 学案

高中数学 第三章不等式 §333简单的线性规划问题3导学案 苏教版必修5 学案

简单的线性规划问题(3) 第 课时 一、学习目标 (1)巩固图解法求线性目标函数的最大、最小值的方法
(2)会用画网格的方法求解整数线性规划问题
二、学法指导
图解法,学生要学会用“数形结合”的方法建立起代数问题和
几何问题间的密切联系
三、课前预习
1.求解线性规划的可行解的步骤
四、课堂探究
例 1 设,,x y z 满足约束条件组1
32
0101
x y z y z x y ++=⎧⎪+≥⎪⎨≤≤⎪⎪≤≤⎩,求
264u x y z =++的最大值和最小值。

例2 已知,x y 满足不等式组230
236035150
x y x y x y -->
⎧⎪+-<⎨⎪--<⎩,求使x y +取
最大值的整数,x y .
巩固训练
(一)当堂练习(书后练习)
(二)课后作业
1.设,,x y z 满足约束条件组1320102x y z y z x y ++=⎧⎪+≥⎪⎨≤≤⎪⎪≤≤⎩,求364F x y z =++的最大值和最小值; 五、反思总结。

高中数学第三章不等式 简单的线性规划问题学案含解析新人教A版必修

高中数学第三章不等式 简单的线性规划问题学案含解析新人教A版必修

3.3.2 简单的线性规划问题[目标] 1.了解线性规划的意义;2.通过实例弄清线性规划的有关概念术语;3.会用图解法求一些简单的线性规划问题.[重点] 用线性规划知识求目标函数的最值.[难点] 准确理解线性规划中的有关概念.知识点线性规划中的基本概念[填一填][答一答]1.在线性约束条件下,最优解唯一吗? 提示:不一定,可能有一个或多个或无穷多个.2.在线性目标函数z =-x -y 中,目标函数z 的最大、最小值与截距的对应关系是怎样的?提示:z 的最大值对应于截距的最小值,z 的最小值对应于截距的最大值. 3.试总结解答简单线性规划问题的一般步骤. 提示:解简单的线性规划问题,一般经历以下四个步骤: (1)画:画出线性约束条件所表示的可行域.(2)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且使纵截距最大或最小的直线.(3)求:通过解方程组求出最优解. (4)答:写出答案.类型一 求线性目标函数的最值[例1] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x +5y 的最大值为( )A .6B .19C .21D .45[分析] 先画出表示不等式组的平面区域,再求解目标函数的最值.[解析] 不等式组表示的平面区域如图中阴影部分所示,作出直线y =-35x ,平移该直线,当经过点C 时,z 取得最大值,由⎩⎪⎨⎪⎧-x +y =1,x +y =5得⎩⎪⎨⎪⎧x =2,y =3,即C (2,3),所以z max =3×2+5×3=21,故选C .[答案] C利用图解法解决线性规划问题的一般步骤:1.作出可行域.将约束条件中的每一个不等式当作等式,作出相应的直线,并确定原不等式表示的区域,然后求出所有区域的交集.2.令z =0,作出直线ax +by =0.3.求出最终结果.在可行域内平行移动直线ax +by =0,从图中能判定问题有唯一最优解,或者是有无穷最优解,或者是无最优解.[变式训练1] 若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤6,x +y ≥2,则z =x +3y 的最小值是-2,最大值是8.解析:由题可得,该约束条件表示的平面区域是以(2,2),(1,1),(4,-2)为顶点的三角形及其内部区域(图略).由线性规划的知识可知,目标函数z =x +3y 在点(2,2)处取得最大值,在点(4,-2)处取得最小值,则最小值z min =4-6=-2,最大值z max =2+6=8. 类型二 线性规划中的参数问题 命题视角1:目标函数中含参数[例2] 若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( )A .(-1,2)B .(-4,2)C .(-4,0]D .(-2,4)[分析] 深刻体会条件中的目标函数z =ax +2y 仅在点(1,0)处取得最小值的“仅”字,运用数形结合思想求解.[解析] 方法一(斜率比较):作出可行域如图所示.把z =ax +2y 变形为y =-a 2x +z2.其斜率为-a 2,目标函数在点(1,0)处取得最小值,由图可知斜率-a 2满足:-1<-a2<2可得-4<a <2,所以参数a 的取值范围是(-4,2).方法二(端点值比较):由图可知,可行域是△ABC 区域,顶点为A (1,0),B (3,4),C (0,1),由于目标函数的最小值仅在A 点处取得,且z A =a ,z B =3a +8,z C =2,则z A =a <z B =3a +8,z A =a <z C =2,所以参数a 的取值范围是(-4,2),故选B .[答案] B线性目标函数z =ax +2y ,从直线的角度看有两个参数a ,z ,直线无法确定,信息量较少,只能得到该直线的斜率为-a 2,在y 轴上的截距为z2.故需要对斜率的正负进行讨论,利用数形结合的方法,根据“z ”的几何意义解题.[变式训练2] 如果实数x 、y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,目标函数z =kx +y 的最大值为12,最小值为3,那么实数k 的值为( C ) A .-2 B .15C .2D .不存在解析:作出不等式组表示的可行域如图所示.可行域中的最优解可能是A (5,2),B ⎝⎛⎭⎫1,225,C (1,1).若k =-2,则目标函数z =kx +y 取得最大值的最优解是B ⎝⎛⎭⎫1,225,取得最小值的最优解是A (5,2),有12=-2×1+225不成立与3=-2×5+2不成立,排除选项A .若k=2,则目标函数z =kx +y 取得最大值的最优解是A (5,2),取得最小值的最优解是C (1,1),有12=2×5+2与3=2×1+1都成立,所以选C .命题视角2:约束条件中含参数[例3] 若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-12[分析] 从本题来看,直线kx -y +2=0中参数k 的几何含义是斜率,由于z =y -x 的最小值为-4,因而斜率k 只能为负.[解析] 若k ≥0,z =y -x 没有最小值,不合题意;若k <0,画出可行域,如图中阴影部分所示,由图可知,直线z =y -x ,即y =x +z ,在点A ⎝⎛⎭⎫-2k ,0处取得最小值,所以0-⎝⎛⎭⎫-2k =-4,解得k =-12. [答案] D对于约束条件含有参数的问题,关键是抓住参数的几何意义(从考题设计的特征看,这个参数往往是斜率).可以先作出不含参数的约束条件表示的区域,再依据目标函数的最值可能在可行域的某个顶点处取得而求出参数的值.[变式训练3] 设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +5y 的最大值为4,则m的值为3.解析:在平面直角坐标系中作出y ≥x ,x +y ≤1和目标函数取得最大值时的位置x +5y =4.求出A 点坐标⎝⎛⎭⎫14,34.y =mx 过A 点,所以m =3. 类型三 线性规划在实际中的应用[例4] 医院用甲、乙两种原料为手术后的病人配营养餐.甲种原料每10 g 含5单位蛋白质和10单位铁质,售价3元;乙种原料每10 g 含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质.试问:应如何使用甲、乙两种原料,才能既满足病人的营养需要,又使费用最省?[解] 设甲、乙两种原料分别用10x g 和10y g,总费用为z ,那么⎩⎪⎨⎪⎧5x +7y ≥35,10x +4y ≥40,x ≥0,y ≥0.目标函数为z =3x +2y ,作出可行域如下图所示.把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2且随z 变化的一组平行直线.由图可知,当直线y =-32x +z 2经过可行域上的点A 时,截距z2最小,即z 最小.由⎩⎪⎨⎪⎧10x +4y =40,5x +7y =35,得A (145,3),∴z min =3×145+2×3=14.4. ∴甲种原料145×10=28 (g),乙种原料3×10=30 (g),即当使用甲、乙两种原料分别为28 g,30 g 时才能既满足病人的营养需要,又能使费用最省.建立线性规划问题的数学模型一般按以下步骤:(1)明确问题中有待确定的未知量,并用数学符号表示;(2)明确问题中所有的限制条件(约束条件),并用线性方程或线性不等式表示;(3)明确问题的目标,并用线性函数(目标函数)表示,按问题的不同,求其最大值或最小值.[变式训练4] 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A ,B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( C )A .1 800元B .2 400元C .2 800元D .3 100元解析:设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z =300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值,最大值是z =300×4+400×4=2 800,即该公司可获得的最大利润是2 800元,选C .1.z =x -y 在⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x +y ≤1的线性约束条件下,取得最大值的可行解为( C )A .(0,1)B .(-1,-1)C .(1,0)D .⎝⎛⎭⎫12,12解析:可以验证这四个点均是可行解,当x =0,y =1时,z =-1;当x =-1,y =-1时,z =0;当x =1,y =0时,z =1;当x =12,y =12时,z =0.排除选项A,B,D,故选C .2.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,x -y ≤1,x +1≥0,则z =x +2y 的最小值为( C )A .3B .1C .-5D .-6解析:由约束条件作出可行域如图:由z =x +2y 得y =-12x +z 2,z 2的几何意义为直线在y 轴上的截距,当直线y =-12x +z2过直线x =-1和x -y =1的交点A (-1,-2)时,z 最小,最小值为-5,故选C .3.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≤2x ,y ≥-2x ,x ≤3,则目标函数z =x -2y 的最小值是-9.解析:不等式组表示的平面区域如图中阴影部分所示.目标函数可化为y =12x -12z ,作直线y =12x 及其平行线,知当此直线经过点A 时,-12z 的值最大,即z 的值最小.又A 点坐标为(3,6),所以z 的最小值为3-2×6=-9.4.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,点O 为坐标原点,那么|PO |的最小值等于2,最大值等于10.解析:点P (x ,y )满足的可行域为△ABC 区域,A (1,1),C (1,3).由图可得,|PO |最小值=|AO |=2;|PO |最大值=|CO |=10.——本课须掌握的两大问题1.在求目标函数z =ax +by +c 的最值时,根据y 的系数b 的正负,可分以下两种情形求最值:(1)求目标函数z =ax +by +c ,b >0的最值.在线性约束条件下,求目标函数z =ax +by +c 的最小值或最大值的求解程序如下:①作出可行域;②作出直线l 0:ax +by =0;③确定l 0的平移方向:若把l 0向上平移,所对应的z 值随之增大;若把l 0向下平移,所对应的z 值随之减小.依可行域判断取得最优解的点;④解相关方程组,求出最优解,从而得出目标函数的最大值或最小值. (2)若b <0,则目标函数的最值情况恰好与b >0时的最值相反.2.已知目标函数的最值求参数,这是线性规划的逆向思维问题.解答此类问题必须要明确线性目标函数的最值一般在可行域的顶点或边界取得,运用数形结合的思想方法求解.同时,要注意边界直线斜率与目标函数斜率的关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单的线性规划问题导学目标: 1.从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.自主梳理1.二元一次不等式(组)表示的平面区域(1)判断不等式Ax +By +C >0所表示的平面区域,可在直线Ax +By +C =0的某一侧的半平面内选取一个特殊点,如选原点或坐标轴上的点来验证Ax +By +C 的正负.当C ≠0时,常选用______________.对于任意的二元一次不等式Ax +By +C >0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时,①Ax +By +C >0表示直线Ax +By +C =0______的区域; ②Ax +By +C <0表示直线Ax +By +C =0______的区域.(2)画不等式Ax +By +C >0表示的平面区域时,其边界直线应为虚线;画不等式Ax +By +C ≥0表示的平面区域时,边界直线应为实线.画二元一次不等式表示的平面区域,常用的方法是:直线定“界”、原点定“域”.2.线性规划的有关概念(1)线性约束条件——由条件列出一次不等式(或方程)组. (2)线性目标函数——由条件列出一次函数表达式.(3)线性规划问题:求线性目标函数在约束条件下的最大值或最小值问题. (4)可行解:满足________________的解(x ,y ). (5)可行域:所有________组成的集合.(6)最优解:使______________取得最大值或最小值的可行解. 3.利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域. (2)作出目标函数的等值线.(3)确定最优解:在可行域内平行移动目标函数等值线,从而确定__________. 自我检测 1.(2011·北京东城1月检测)在平面直角坐标系中,若点(-2,t )在直线x -2y +4=0的上方,则t 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(-1,+∞)D .(0,1)2.不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示)应是( )3.(2010·重庆)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x -y ≥0,2x -y -2≤0,则z =3x -2y 的最大值为( )A .0B .2C .4D .64.(2010·浙江)若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0,且x +y 的最大值为9,则实数m 等于( )A .-2B .-1C .1D .25.(2010·天津河西高三期中)已知实数x ,y 满足⎩⎪⎨⎪⎧x +y ≥2,x -y ≤2,0≤y ≤3,则z =2x -y 的最大值为________.探究点一 不等式组表示的平面区域 例1 画出不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域,并回答下列问题:(1)指出x ,y 的取值范围;(2)平面区域内有多少个整点?变式迁移1 (2011·安庆模拟)在平面直角坐标系中,有两个区域M 、N ,M 是由三个不等式y ≥0,y ≤x 和y ≤2-x 确定的;N 是随t 变化的区域,它由不等式t ≤x ≤t +1 (0≤t ≤1)所确定.设M 、N 的公共部分的面积为f (t ),则f (t )等于( )A .-2t 2+2t B.12(t -2)2C .1-12t 2D .-t 2+t +12探究点二 求目标函数的最值例2 (2010·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤3,x -y ≥-1,y ≥1,则目标函数z =4x +2y 的最大值为( )A .12B .10C .8D .2变式迁移2 (2010·山东)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x-4y 的最大值和最小值分别为( )A .3,-11B .-3,-11C .11,-3D .11,3 探究点三 线性规划的实际应用例3 某公司计划2010年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分和200元/分.假定甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元.问:该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?变式迁移3 (2010·四川)某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品,甲车间加工一箱原料需耗费工时10小时,可加工出7千克A 产品,每千克A 产品获利40元,乙车间加工一箱原料需耗费工时6小时,可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为( )A .甲车间加工原料10箱,乙车间加工原料60箱B .甲车间加工原料15箱,乙车间加工原料55箱C .甲车间加工原料18箱,乙车间加工原料50箱D .甲车间加工原料40箱,乙车间加工原料30箱数形结合思想的应用例 (12分)变量x 、y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =4x -3y ,求z 的最大值;(2)设z =yx,求z 的最小值;(3)设z =x 2+y 2,求z 的取值范围. 【答题模板】 解由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧x =13x +5y -25=0,解得A ⎝⎛⎭⎫1,225. 由⎩⎪⎨⎪⎧ x =1x -4y +3=0,解得C (1,1).由⎩⎪⎨⎪⎧x -4y +3=03x +5y -25=0, 解得B (5,2).[4分](1)由z =4x -3y ,得y =43x -z3.当直线y =43x -z 3过点B 时,-z3最小,z 最大.∴z max =4×5-3×2=14.[6分](2)∵z =y x =y -0x -0,∴z 的值即是可行域中的点与原点O 连线的斜率.观察图形可知z min =k OB =25.[9分](3)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方.结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29.∴2≤z ≤29.[12分] 【突破思维障碍】1.求解目标函数不是直线形式的最值的思维程序是:画出可行域→明确目标函数z 的几何意义→结合图形找最优解→求目标函数的最值2.常见代数式的几何意义主要有以下几点:(1)x 2+y 2表示点(x ,y )与原点(0,0)的距离;(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离. (2)yx 表示点(x ,y )与原点(0,0)连线的斜率; y -bx -a表示点(x ,y )与点(a ,b )连线的斜率. 这些代数式的几何意义能使所求问题得以转化,往往是解决问题的关键. 【易错点剖析】本题会出现对(2)(3)无从下手的情况,原因是学生没有数形结合思想的应用意识,不知道从目标函数表示的几何意义入手解题.1.在直角坐标系xOy 内,已知直线l :Ax +By +C =0与点P (x 0,y 0),若Ax 0+By 0+C >0,则点P 在直线l 上方,若Ax 0+By 0+C <0,则点P 在直线l 下方.2.在直线l :Ax +By +C =0外任意取两点P (x 1,y 1)、Q (x 2,y 2),若P 、Q 在直线l 的同一侧,则Ax 1+By 1+C与Ax 2+By 2+C 同号;若P 、Q 在直线l 异侧,则Ax 1+By 1+C 与Ax 2+By 2+C 异号,这个规律可概括为“同侧同号,异侧异号”. 3.线性规划解决实际问题的步骤:①分析并将已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解.(满分:75分)一、选择题(每小题5分,共25分)1.(2011·龙岩月考)下面给出的四个点中,位于⎩⎪⎨⎪⎧x +y -1<0,x -y +1>0表示的平面区域内的点是( )A .(0,2)B .(-2,0)C .(0,-2)D .(2,0)2.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1 C.12 D.143.(2011·广东)已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定,若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为( )A .4 2B .3 2C .4D .3 4.(2011·安徽)设变量x ,y 满足|x |+|y |≤1,则x +2y 的最大值和最小值分别为( ) A .1,-1 B .2,-2 C .1,-2 D .2,-1 5.(2011·四川)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需送往A 地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z 等于( )A .4 650元B .4 700元C .4 900元D .5 000元 二、填空题(每小题4分,共12分)6.(2010·北京改编)设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x的图象上存在区域D 上的点,则a 的取值范围是________.7.(2011·长沙一中月考)已知实数x 、y 同时满足以下三个条件:①x -y +2≤0;②x ≥1;③x +y -7≤0,则yx的取值范围是______________.8.(2011·湖南师大月考)设不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域为M ,若函数y=k (x +1)+1的图象经过区域M ,则实数k 的取值范围是____________.三、解答题(共38分) 9.(12分)(2010·广东)某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?10.(12分)已知⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0,求:(1)z =x +2y -4的最大值;(2)z =x 2+y 2-10y +25的最小值;(3)z =2y +1x +1的范围.11.(14分)(2011·杭州调研)预算用2 000元购买单件为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行?学案35 简单的线性规划问题自主梳理1.(1)原点(0,0) ①上方 ②下方 2.(4)线性约束条件 (5)可行解 (6)目标函数 3.(3)最优解 自我检测1.B 2.C 3.C 4.C 5.7课堂活动区例1 解题导引 在封闭区域内找整点数目时,若数目较小时,可画网格逐一数出;若数目较大,则可分x =m 逐条分段统计.解 (1)不等式x -y +5≥0表示直线x -y +5=0上及右下方的点的集合.x +y ≥0表示直线x +y =0上及右上方的点的集合,x ≤3表示直线x =3上及左方的点的集合.所以,不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域如图所示.结合图中可行域得x ∈⎣⎡⎦⎤-52,3,y ∈[-3,8]. (2)由图形及不等式组知⎩⎪⎨⎪⎧-x ≤y ≤x +5,-2≤x ≤3,且x ∈Z .当x =3时,-3≤y ≤8,有12个整点;当x =2时,-2≤y ≤7,有10个整点; 当x =1时,-1≤y ≤6,有8个整点; 当x =0时,0≤y ≤5,有6个整点; 当x =-1时,1≤y ≤4,有4个整点; 当x =-2时,2≤y ≤3,有2个整点;∴平面区域内的整点共有2+4+6+8+10+12=42(个). 变式迁移1 D [作出由不等式组⎩⎪⎨⎪⎧y ≥0y ≤xy ≤2-x 组成的平面区域M ,即△AOE 表示的平面区域,当t =0时,f (0)=12×1×1=12,当t =1时,f (1)=12×1×1=12,当0<t <1时,如图所示,所求面积为f (t )=S △AOE -S △OBC -S △FDE =12×2×1-12t 2-12[2-(t +1)]2=-t 2+t +12, 即f (t )=-t 2+t +12,此时f (0)=12,f (1)=12,综上可知选D.]例2 解题导引 1.求目标函数的最值,必须先准确地作出线性可行域再作出目标函数对应的直线,据题意确定取得最优解的点,进而求出目标函数的最值.2.线性目标函数z =ax +by 取最大值时的最优解与b 的正负有关,当b >0时,最优解是将直线ax +by =0在可行域内向上平移到端点(一般是两直线交点)的位置得到的,当b <0时,则是向下方平移.B[画出可行域如图中阴影部分所示,目标函数z =4x +2y 可转化为y =-2x +z2,作出直线y =-2x 并平移,显然当其过点A 时纵截距z2最大.解方程组⎩⎪⎨⎪⎧x +y =3,y =1得A (2,1),∴z max =10.]变式迁移2 A [作出可行域如图所示.目标函数y =34x -14z ,则过B 、A 点时分别取到最大值与最小值.易求B (5,3),A (3,5).∴z max =3×5-4×3=3,z min =3×3-4×5=-11.]例3 解题导引 解线性规划应用问题的一般步骤是:(1)分析题意,设出未知量; (2)列出线性约束条件和目标函数;(3)作出可行域并利用数形结合求解;(4)作答.解 设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由题意得⎩⎪⎨⎪⎧x +y ≤300,500x +200y ≤90 000,x ≥0,y ≥0.目标函数为z =3 000x +2 000y .二元一次不等式组等价于⎩⎪⎨⎪⎧x +y ≤300,5x +2y ≤900,x ≥0,y ≥0.作出二元一次不等式组所表示的平面区域,即可行域,如图所示. 作直线l :3 000x +2 000y =0,即3x +2y =0.平移直线l ,从图中可知,当直线l 过点M 时,目标函数取得最大值.由方程⎩⎪⎨⎪⎧x +y =300,5x +2y =900,解得x =100,y =200.所以点M 的坐标为(100,200).所以z max =3 000x +2 000y =700 000(元).答 该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.变式迁移3 B[设甲车间加工原料x 箱,乙车间加工原料y 箱, 由题意可知 ⎩⎪⎨⎪⎧x +y ≤70,10x +6y ≤480,x ≥0,y ≥0.甲、乙两车间每天总获利为z =280x +200y . 画出可行域如图所示.点M (15,55)为直线x +y =70和直线10x +6y =480的交点,由图象知在点M (15,55)处z 取得最大值.]课后练习区1.C 2.B 3.C 4.B 5.C 6.(1,3] 7.⎣⎡⎦⎤95,6解析 由⎩⎪⎨⎪⎧x =1x +y -7=0⇒A (1,6),⎩⎪⎨⎪⎧x -y +2=0x +y -7=0 ⇒B ⎝⎛⎭⎫52,92,∴k OA =6,k OB =95.∴k ∈⎣⎡⎦⎤95,6,即y x ∈⎣⎡⎦⎤95,6. 8.⎣⎡⎦⎤-14,12 解析作可行域,如图.因为函数y =k (x +1)+1的图象是过点P (-1,1),且斜率为k 的直线l ,由图知,当直线l过点A (1,2)时,k 取最大值12,当直线l 过点B (3,0)时,k 取最小值-14,故k ∈⎣⎡⎦⎤-14,12. 9.解 设该儿童分别预订x ,y 个单位的午餐和晚餐,共花费z 元,则z =2.5x +4y .(2分)可行域为⎩⎪⎨⎪⎧12x +8y ≥64,6x +6y ≥42,6x +10y ≥54,x ≥0,x ∈N ,y ≥0,y ∈N ,即⎩⎪⎨⎪⎧3x +2y ≥16,x +y ≥7,3x +5y ≥27,x ≥0,x ∈N ,y ≥0,y ∈N .(6分)作出可行域如图所示:(9分)经试验发现,当x =4,y =3时,花费最少,为2.5×4+4×3=22(元).故应当为儿童分别预订4个单位的午餐和3个单位的晚餐.(12分)10.解作出可行域如图所示,并求出顶点的坐标A (1,3)、B (3,1)、C (7,9).(1)易知可行域内各点均在直线x +2y -4=0的上方,故x +2y -4>0,将点C (7,9)代入z 得最大值为21.(4分)(2)z =x 2+y 2-10y +25=x 2+(y -5)2表示可行域内任一点(x ,y )到定点M (0,5)的距离的平方,过M 作直线AC 的垂线,易知垂足N 在线段AC 上,故z 的最小值是|MN |2=92.(8分)(3)z =2×y -⎝⎛⎭⎫-12x -(-1)表示可行域内任一点(x ,y )与定点Q ⎝⎛⎭⎫-1,-12连线的斜率的两倍, 因此k QA =74,k QB =38,故z 的范围为⎣⎡⎦⎤34,72.(12分)11.解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y ,(2分)把所给的条件表示成不等式组,即约束条件为⎩⎪⎨⎪⎧50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.(6分) 由⎩⎪⎨⎪⎧ 50x +20y =2 000,y =x , 解得⎩⎨⎧ x =2007,y =2007, 所以A 点的坐标为⎝⎛⎭⎫2007,2007. 由⎩⎪⎨⎪⎧ 50x +20y =2 000,y =1.5x , 解得⎩⎪⎨⎪⎧x =25,y =752. 所以B 点的坐标为⎝⎛⎭⎫25,752.(9分) 所以满足条件的可行域是以A ⎝⎛⎭⎫2007,2007、B ⎝⎛⎭⎫25,752、 O (0,0)为顶点的三角形区域(如图).(12分)由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝⎛⎭⎫25,752,但注意到x ∈N *,y ∈N *,故取⎩⎪⎨⎪⎧x =25,y =37. 故买桌子25张,椅子37把是最好的选择.(14分)。

相关文档
最新文档