一元一次含参不等式教学设计

合集下载

含参不等式的解法教案

含参不等式的解法教案

含参不等式的解法教案一、教学目标1. 让学生掌握含参数的不等式的解法,提高解题能力。

2. 培养学生分析问题、解决问题的能力,提高学生的数学思维水平。

3. 通过教学,使学生能够运用含参数的不等式解法解决实际问题。

二、教学内容1. 含参数不等式的概念及特点。

2. 含参数不等式的解法:图像法、代数法、不等式组法等。

3. 典型例题解析及练习。

三、教学重点与难点1. 教学重点:含参数不等式的解法及应用。

2. 教学难点:含参数不等式解法在实际问题中的应用。

四、教学方法1. 采用讲授法、示范法、练习法、讨论法等相结合的教学方法。

2. 利用多媒体辅助教学,直观展示含参数不等式的解法过程。

3. 组织学生进行小组合作学习,培养学生的团队协作能力。

五、教学过程1. 导入新课:复习相关知识点,如不等式的概念、性质等,引出含参数不等式。

2. 讲解含参数不等式的解法:a) 图像法:通过绘制不等式的图像,找出解集。

b) 代数法:运用不等式的性质,求解含参数的不等式。

c) 不等式组法:将多个含参数的不等式组合起来,求解公共解集。

3. 典型例题解析:分析例题,引导学生运用所学解法解决问题。

4. 课堂练习:布置练习题,让学生巩固所学知识。

5. 总结与反思:对本节课的内容进行总结,提醒学生注意解题中可能出现的问题。

6. 课后作业:布置课后作业,巩固所学知识。

六、教学评价1. 评价目标:检查学生对含参数不等式解法的掌握程度以及解决实际问题的能力。

2. 评价方法:课堂练习、课后作业、小组讨论、个人总结等。

3. 评价内容:a) 学生能理解含参数不等式的概念及特点。

b) 学生能运用图像法、代数法、不等式组法等解法解决含参数不等式问题。

c) 学生能将所学知识应用于实际问题,提高问题解决能力。

七、教学反思1. 教师应在课后对教学效果进行反思,分析学生的反馈意见,调整教学方法及内容。

2. 关注学生在解题过程中的困难,针对性地进行辅导,提高学生的解题技巧。

含参不等式的解法教案

含参不等式的解法教案
(2)
(3)
总结解简单不等式类似 或 的方法:
变式:求下列不等式的解集:
(1)
(2)
总结解含参不等式类似 或 的方法:
变式训练:求不等式 的解集.
(1)
(2)
思考、解方程
学生思考,分析解题思路,书写解题过程
探求一种比较通用的方法
根据解题的过程,总结归纳解题一般方法
分析解题思路,书写解题过程
熟悉常见方程的解法
教学背景分析
教学
内容
分析
不等式的解法通常以函数的定义域、集合的基本运算为背景进行考查,主要以选择题或填空题形式出现,难度偏低;经常与导数的应用相结合讨论含参数函数的单调性,要利用分类讨论的方法解出相应不等式 或 的解集,从而确定函数的单调区间,此类问题是历年高考常考内容,难度较大。
教学
目标
1、能够通过解方程、结合函数图象解不含参的简单不等式;
教学
方法
引导启发式
教学
重点
含参二次不等式的解法
教学
难点
如何通过解方程、结合函数图象找不等式的解集
课前
准备
学案
板书
设计
课题:简单含参不等式的解法
例题:变式:
方法总结:
教学过程
教学
步骤
教师活动
学生活动
设计目的
一、热身训练
二、ห้องสมุดไป่ตู้题精讲
三、课堂练习
解下列方程:
(1)
(2)
(3)
例题:求下列不等式的解集:
(1)
五、作业布置
学案上的课后练习题
2、通过对含参一元一次、一元二次不等式例题的分析,了解解不等式的基本方法与步骤,初步明确分类讨论的依据;

数学《一元一次不等式》教学设计(通用6篇)

数学《一元一次不等式》教学设计(通用6篇)

数学《一元一次不等式》教学设计数学《一元一次不等式》教学设计(通用6篇)作为一名教师,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

一份好的教学设计是什么样子的呢?下面是小编精心整理的数学《一元一次不等式》教学设计,仅供参考,欢迎大家阅读。

数学《一元一次不等式》教学设计篇1【教学目标】:1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题。

2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。

【重点难点】:重点:一元一次不等式在实际问题中的应用。

难点:在实际问题中建立一元一次不等式的数量关系。

关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。

注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。

【教学过程】:创设情境,研究新知这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。

在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。

问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。

本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。

人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案设计

人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案设计

.⎧变式1:若不等式组⎨⎧x-2m≤0⋅⋅⋅①人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题(专题课)教案核心素养:1.使学生加深对一元一次不等式组和它的解集的理解,会用数轴确定含参数的一元一次不等式组的参数范围;2.培养学生探究、独立思考的学习习惯,感受数形结合的作用,熟悉并掌握数形结合的思想方法,提高分析问题和解决的能力;3.提升学生之间合作与交流以及对问题的探讨能力,从中发现数学的乐趣【教学重难点】重点:含参一元一次不等式组的分类解法难点:1.一元一次不等式中字母参数的讨论2.一元一次不等式中运用数轴分析参数的范围【教学过程】1.问题引导合作交流出示问题:请同学们解下列两个不等式(1)x-2m<0,(2)x+m>3并思考m的取值范围.同学们不难得出不等式(1)的解为x<2m;(2)的解为x>3-m.引导分析m的取值范围.师引导,生回答:任意实数.[问题1]如果将上述两个不等式联立成不等式组⎨x-2m<0⎩x+m>3,你能确定不等式组的解集吗?师提示学生画数轴,问:能画几种情况[问题2]如果这个不等式组无解,你能确定m的取值范围吗?(学生分组讨论)借助数轴)师生一起分析:如果不等式组无解,则2m<3-m,解得m<1。

确定一下“<”要不要添加“=”(这是参数取值问题中的难点)学生借助数轴讨论.师生总结:2m和3-m在两个不等式的解中都不包含,所以2m可以等于3-m,即m≤1. 2.变式拓展强化理解⎩x+m>3⋅⋅⋅⋅⋅②无解,这时m的取值会有变化吗?解不等式①得x≤2m解不等式②得x>3-m变式2:如果不等式组变化为⎨⎧x-2m≤0⋅⋅⋅①[问题3]如果不等式组⎨⎧x-2m≤0⋅⋅⋅①例:已知不等式组⎨⎧x-a≥0⋅⋅⋅⋅⋅⋅⋅⋅①:(学生分组探究)引导:虽然第一个不等式“<”改成“≤”通过数轴可以看到由于和第二个不等式的解集不包含3-m,所以2m≤3-m,m的取值范围仍然是m≤1.⎩x+m≥3⋅⋅⋅⋅⋅②,这时m的取值又会有改变吗?(学生分组探究)由于两个不等式都含有等号,这时2m和3-m可能是公共点,而要想使不等式组无解,2m和3-m不能重合,只能2m<3-m,所以m不能等于1,即m<1.3.问题反转⎩x+m≥3⋅⋅⋅⋅⋅②有解,怎样确定m的取值范围?把两个不等式的解集在数轴上表示出,同学们观察数轴,不难得出要想使不等式组有解,只要2m≥3-m,即m≥1这样两个不等式的解集有公共部分,不等式组有解,所以m的取值范围m≥14.方法小结归纳步骤解含参一元一次不等式(组)有、无解问题时注意掌握四个步骤一解.解不等式组,用参数分别表示出两个不等式的解集;二画.借助数轴进行视觉观察,画出有无解的情况;三验:验证端点取舍判断等号是否可取;四:列出不等式,确定取值范围5,拓展演练题型再变[问题4]下面这种类型的一元一次不等式组如何确定字母参数取值范围?⎩1-2x<x-2⋅⋅⋅②的解集是x>1,求a的取值范围?学生分组解出每个不等式的解集:解①得:x≥a解②得:x>1因为不等式的解集是x>1,(学生分组探讨):a的位置在数轴上应该在哪个位置?分析得出:a在数轴上的位置应该在1的左侧.把不等式组的解集在数轴上表示出来:1.若不等式组 ⎨ 无解,求 m 的取值范围? x ≤ m⎧ 3.若不等式组 ⎨ 的解集是 x >3,求 m 的取值范围? x > m + 1即 a <1,[思考 3]a 可不可以等于 1?因为 a=1 时不等式组的解集仍然是 x >1.所以 a 可以等于 1,即 a 的取值范围 a ≤15.基础过关⎧2 x - 6 ≥ 0 ⎩2.若不等式组 ⎨x - 3( x - 2) < 2 ⎩a + 2 x > 4 x有解,求 a 的取值范围?⎧x + 7 < 3x + 1 ⎩。

人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案

人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案

人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题(专题课)教案核心素养:1.使学生加深对一元一次不等式组和它的解集的理解,会用数轴确定含参数的一元一次不等式组的参数范围;2.培养学生探究、独立思考的学习习惯,感受数形结合的作用,熟悉并掌握数形结合的思想方法,提高分析问题和解决的能力;3.提升学生之间合作与交流以及对问题的探讨能力,从中发现数学的乐趣.【教学重难点】重点:含参一元一次不等式组的分类解法难点:1.一元一次不等式中字母参数的讨论2.一元一次不等式中运用数轴分析参数的范围【教学过程】1.问题引导 合作交流出示问题:请同学们解下列两个不等式(1)x-2m<0,(2)x+m >3并思考m 的取值范围. 同学们不难得出不等式(1)的解为x <2m ;(2)的解为x >3-m.引导分析m 的取值范围. 师引导,生回答:任意实数.[问题1]如果将上述两个不等式联立成不等式组⎩⎨⎧>+<-302m x m x ,你能确定不等式组的解集吗? 师提示学生画数轴 ,问:能画几种情况[问题2]如果这个不等式组无解,你能确定m 的取值范围吗?(学生分组讨论)(借助数轴)师生一起分析:如果不等式组无解,则2m <3-m ,解得m <1。

确定一下“<”要不要添加“=”(这是参数取值问题中的难点)学生借助数轴讨论.师生总结:2m 和3-m 在两个不等式的解中都不包含,所以2m 可以等于3-m ,即m ≤1.2.变式拓展 强化理解变式1:若不等式组⎩⎨⎧⋅⋅⋅⋅⋅>+⋅⋅⋅≤-②①302m x m x 无解,这时m 的取值会有变化吗?解不等式①得x ≤2m 解不等式②得x >3-m(学生分组探究)引导:虽然第一个不等式“<”改成“≤”通过数轴可以看到由于和第二个不等式的解集不包含3-m ,所以2m ≤3-m ,m 的取值范围仍然是m ≤1.变式2:如果不等式组变化为⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x ,这时m 的取值又会有改变吗?(学生分组探究)由于两个不等式都含有等号,这时2m 和3-m 可能是公共点,而要想使不等式组无解,2m 和3-m 不能重合,只能2m <3-m ,所以m 不能等于1,即m <1.3.问题反转[问题3]如果不等式组⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x 有解,怎样确定 m 的取值范围?把两个不等式的解集在数轴上表示出,同学们观察数轴 ,不难得出要想使不等式组有解,只要2m ≥3-m ,即m ≥1这样两个不等式的解集有公共部分,不等式组有解,所以m 的取值范围m ≥14.方法小结 归纳步骤解含参一元一次不等式(组)有、无解问题时注意掌握四个步骤:一解 .解不等式组,用参数分别表示出两个不等式的解集;二画.借助数轴进行视觉观察,画出有无解的情况;三验:验证端点取舍判断等号是否可取;四:列出不等式,确定取值范围5,拓展演练 题型再变[问题4]下面这种类型的一元一次不等式组如何确定字母参数取值范围?例:已知不等式组⎩⎨⎧⋅⋅⋅-<⋅⋅⋅⋅⋅⋅⋅⋅≥-②①22-10x x a x 的解集是x >1,求a 的取值范围?学生分组解出每个不等式的解集:解①得:x ≥a 解②得:x >1因为不等式的解集是x >1,(学生分组探讨):a 的位置在数轴上应该在哪个位置? 分析得出:a 在数轴上的位置应该在1的左侧.把不等式组的解集在数轴上表示出来:即a <1,[思考3]a 可不可以等于1?因为a=1时不等式组的解集仍然是x >1.所以a 可以等于1,即a 的取值范围a ≤15.基础过关1.若不等式组⎩⎨⎧≤≥-m x x 062 无解,求m 的取值范围? 2.若不等式组⎩⎨⎧>+<--xx a x x 422)2(3有解,求a 的取值范围?3.若不等式组⎩⎨⎧+>+<+1137m x x x 的解集是x >3,求m 的取值范围?。

含参数的一元一次不等式组的解集教学设计

含参数的一元一次不等式组的解集教学设计

《含参数的一元一次不等式组的解集》教学设计扬大附中东部分校杨定兵教材分析:本章内容是苏科版八年级数学(下)第七章,是在学习了《一元一次方程》和《一次函数》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》《二元一次不等式》打下基础。

上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用数轴直观的得到一元一次不等式组的解集,它是解决本节课内容《含参数的一元一次不等式组的解集》的基础和关键,通过本节课知识的学习,学生能对初中数学中的分类讨论、数形结合的思想方法有进一步的认识,养成独立思考的习惯,也能加强与同学的合作交流意识与创新意识,为今后生活和学习中更好运用数学作准备。

教学目标:(1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。

(2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。

(3)德育目标:加强同学之间的合作交流与探讨,体验数学发现带来的乐趣。

学习重点:(1)加深对一元一次不等式组的概念与解集的理解。

(2)通过含参数不等式的分析与讨论,让学生理解掌握分类讨论和数形结合的数学思想。

学习难点:(1)一元一次不等式组中字母参数的讨论。

(2)运用数轴分析不等式组中参数的范围。

教学难教学难点突破办法:(1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。

(2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。

x m 12、关于x 的不等式组的解集是xx m 23、如图是表示某个不等式组的解集,则该不等式组的整数解的个数是()A.— 1 B . 0 C . 2 D . 35、 满足 1 x 2的所有整数为 ____________________________ •6、 满足1 x 2的所有整数为_•7、请写出一个只含有三个整数1、2和3的解集为 _____________________________预习要求:1、复习上节课的知识,考察学生对一元一次不等式组的解集的四种情况的熟悉程度,能直接根据下面口诀求出不等式组的解集:同大取大;同小取小;大小小大(大于较小的 数,小于较大的数)在中间;大大小小(大于较大的数,小于较小的数)不存在2、根据不等式组的解集,结合数轴,能找出满足条件的解(如整数解),并能注意“ x a 与“ xa ”的区别,为本节课的拓展应用打下基础。

一元一次不等式教案(精选9篇)

一元一次不等式教案(精选9篇)

一元一次不等式教案(精选9篇)篇1:一元一次不等式教案实际询问题与一元一次不等式教案教学目标1、会从实际询问题中抽象出数学模型,会用一元一次不等式解决实际询问题;2、通过观看、实践、争辩等活动,经受从实际中抽象出数学模型的过程,积存利用一元一次不等式解决实际询问题的阅历,渗透分类争辩思想,感知方程与不等式的内在联系;3、在乐观参与数学学习活动的过程中,初步熟识一元一次不等式的应用价值,形成实事求是的态度和独立思考的适应。

教学难点弄清列不等式解决实际询问题的思想方法,用去括号法解一元一次不等式。

学询问重点查找实际询问题中的不等关系,建立数学模型。

教学过程(师生活动)设计理念提出询问题某学校方案购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,同时多买都有确信的优待.甲商场的优待条件是:第一台按原报价收款,其余每台优待25%;乙商场的优待条件是:每台优待20%.假如你是校长,你该如何考虑,如何选择?(多媒体呈现商场购物情景)通过买电脑那个同学特不生疏的生活实例,引起同学深厚的学习爱好,感受到数学来源于生活,生活中更需要数学。

探究新知1、分组活动.先独立思考,理解题意.再组内沟通,发表自个儿的观点.最终小组汇报,派代表论述理由.2、在同学充分发表意见的基础上,师生共同归纳出以下三种选购方案:(1)啥状况下,到甲商场购买更优待?(2)啥状况下,到乙商场购买更优待?(3)啥状况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,假如到甲商场购买更优待.询问题1:如何列不等式?询问题2:如何解那个不等式?在同学充分争辩的基础上,老师归纳并板书如下:解:设购买x 台电脑,假如到甲商场购买更优待,则6000+6000(1-25%)(x-1)<6000(1-20%)x去括号,得去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优待.4、让同学自个儿完成方案(2)与方案(3),并汇报完成状况.老师最终作适当点评.鼓舞同学大胆猜想,对争论的询问题发表见解,进行探究、合作与沟通,涌现出多样化的解题思路.老师准时予以引导、归纳和总结,让同学感知不等式的建模。

含参不等式的解法教案

含参不等式的解法教案

一、教学目标1. 让学生掌握含参数的不等式的解法,提高他们的数学解题能力。

2. 通过解决实际问题,培养学生运用不等式解决问题的意识。

3. 培养学生的逻辑思维能力和团队协作能力。

二、教学内容1. 含参数不等式的基本概念。

2. 含参数不等式的解法:图像法、代数法、分析法。

3. 实际问题中的应用案例。

三、教学重点与难点1. 教学重点:含参数不等式的解法。

2. 教学难点:如何运用不同的解法解决实际问题。

四、教学方法1. 采用案例教学法,让学生在解决实际问题的过程中掌握含参数不等式的解法。

2. 运用分组讨论法,培养学生的团队协作能力和逻辑思维能力。

3. 利用多媒体教学,直观地展示含参数不等式的解法过程。

五、教学过程1. 导入:通过一个实际问题引入含参数不等式的概念。

2. 基本概念:讲解含参数不等式的定义和性质。

3. 解法讲解:a. 图像法:通过绘制函数图像,分析不等式的解集。

b. 代数法:运用代数运算,求解不等式的解集。

c. 分析法:从不等式的性质出发,推导出解集。

4. 案例分析:运用不同的解法解决实际问题,巩固所学知识。

5. 课堂练习:布置相关练习题,检测学生对含参数不等式解法的掌握程度。

7. 课后作业:布置适量作业,巩固所学知识。

六、教学评估1. 课堂练习:通过课堂练习题,及时了解学生对知识的掌握情况,针对性地进行讲解和辅导。

2. 课后作业:布置适量作业,要求学生在规定时间内完成,以检验他们对知识的掌握程度。

3. 小组讨论:观察学生在分组讨论中的表现,了解他们的团队协作能力和逻辑思维能力。

4. 期中期末考试:通过考试全面评估学生对含参数不等式解法的掌握情况。

七、教学资源1. 教材:选用权威、实用的教材,为学生提供系统的学习资源。

2. 教案:制定详细的教学计划和教案,确保教学目标的实现。

3. 课件:制作生动、直观的课件,帮助学生更好地理解含参数不等式的解法。

4. 练习题:收集和编写各类练习题,巩固学生所学知识。

一元一次不等式教学设计(优秀4篇)

一元一次不等式教学设计(优秀4篇)

一元一次不等式教学设计(优秀4篇)元一次不等式教学反思篇一这节课我的设想是:在学习不等式的基本性质的基础上,类比一元一次方程的解法,学习如何解一元一次不等式,学会用数轴直观的表示不等式的解集(数形结合思想),注意其中的区别与联系(即类比思想),下面我对本节课的讲课作如下分析。

一、由于录课在外校,自己对学生不了解,课上的不是很好,匆忙的复习不等式的性质后就让学生进入下一个环节,以至于先学环节不连贯,大约有2分钟后还是能充分调动学生的积极性,并注重了学生回答:在两边同时乘以或者除以负数时,不等号改变方向,这个环节能想方设法鼓励孩子,这时课堂气氛也开始活跃起来。

二、在学习新知的教学中,我采用了先学后教,当堂训练的教学模式。

我先引导学生通过看教材思考,运用举例子等学习活动,将主动权交给学生,这样不仅培养了学生小组合作学习的能力,同时也提高了其参与尝试的兴趣。

其次,我在后教环节,除让三个孩子上黑板练习外,其余学生分组练习,同时,我在课堂巡堂时,检查每个学生的练习,发挥学生的力量,开展“生帮生”的活动,放手给孩子改正的权利,发现问题及时纠正。

三、我采用引导发现法培养学生类比推理能力,通过类比一元一次方程的解法归纳一元一次不等式的解法,并在小结环节充分发挥学生的主体作用,让学生自己发表见解,使学生在轻松愉快的气氛中掌握知识。

总之,这节课有收获也有遗憾,学生的积极性和主动性有了提高,不足的是先学环节耽搁了时间,因此在今后的教学中,一方面加强训练,锻炼学生的解题能力,同时通过“纠错”的练习和学生的相互学习逐步提高解题的正确性。

元一次不等式教学反思篇二在讲完不等式的性质后,我们根据学生情况安排三个课时学习解一元一次不等式,我们的设想是:第一课时:在简单理解不等式的基本性质的基础上,类比一元一次方程的解法,学习如何解一〔〕元一次不等式,注意其中的区别与联系(即类比思想),学会用数轴直观的表示不等式的解集(数形结合思想);第二课时:熟练解一元一次不等式;第三课时:一元一次不等式的应用。

《含参数的一元一次不等式教学设计

《含参数的一元一次不等式教学设计

含参数的一元一次不等式教学设计一、教学目标1.掌握含参数的一元一次不等式的基本概念和性质2.理解含参数的一元一次不等式的解集表示方法3.能够解决含参数的一元一次不等式的问题二、教学内容1.含参数的一元一次不等式的定义和基本性质2.含参数的一元一次不等式的解集表示方法3.含参数的一元一次不等式的解决方法和技巧三、教学重点1.含参数的一元一次不等式的定义和解集表示方法2.含参数的一元一次不等式的解决方法和技巧四、教学过程步骤一:导入老师通过提问及实例引入含参数的一元一次不等式的概念,如:对于不等式3x+2>x,当参数x取不同值时,该不等式的解集会发生什么变化?步骤二:概念讲解老师讲解含参数的一元一次不等式的定义:在不等式中含有字母表示未知数,并且不等式中的常数因子可以是未知参数。

同时,介绍含参数的一元一次不等式的解集表示方法:用参数的范围来表示不等式的解集。

步骤三:解决含参数的一元一次不等式介绍解决含参数的一元一次不等式的方法和技巧,包括以下几种情况:1.当参数为正数时,不等式的解集与参数无关,直接按照一元一次不等式的解决方法解题。

2.当参数为负数时,不等式的解集与参数无关,同样按照一元一次不等式的解决方法解题。

3.当参数为零时,不等式的解集受到参数的限制,需要通过参数的范围确定解集。

4.当参数不为零时,不等式的解集与参数的取值范围有关,需要通过参数的范围确定解集。

步骤四:练习让学生通过练习题来巩固和应用所学的方法和技巧。

可以设计一些典型的练习题,如:解不等式xx+3x+1<5x,并确定参数x的取值范围。

步骤五:拓展应用通过拓展应用来培养学生的综合运用能力。

例如,设计一个拓展应用题:某手机流量套餐月费为常数x元,每月免费流量为100x M,手机流量使用费为0.5元/M,请计算当月流量使用量不超过100M的条件下,手机流量的最高费用。

步骤六:总结让学生总结含参数的一元一次不等式的解决方法和技巧,并进行思考和讨论。

一元一次不等式含参问题

一元一次不等式含参问题

一元一次不等式(组)专项培优【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用. 要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如,等都是一元一次不等式组.一元一次不等式的解法【学习目标】1.理解并掌握一元一次不等式的概念及性质;2.能够熟练解一元一次不等式;3. 掌握不等式解集的概念并会在数轴上表示解集.【要点梳理】要点一、一元一次不等式的概念只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,是一个一元一次不等式. 要点诠释:(1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);②只含有一个未知数;③未知数的最高次数为1.(2) 一元一次不等式与一元一次方程既有区别又有联系:相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<”、“≤”、“≥”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向.要点二、一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:(或)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为(或)的形式(其中);(5)两边同除以未知数的系数,得到不等式的解集.要点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用. 2562010x x ->⎧⎨-<⎩7021163159x x x ->⎧⎪+>⎨⎪+<⎩2503x >a x <a x >ax b >ax b <0a ≠(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变.要点三、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.要点诠释:3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8.(2) 用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:(3)要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a 而言,x >a 或x ≥a 向右画;对边界点a 而言,x <a 或x ≤a 向左画.注意:在表示a 的点上画空心圆圈,表示不包括这一点.【典型例题】 类型一、一元一次不等式的概念1.下列式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?(1) (2)(3) (4) (5)0x >1x1->2x 2>3y x ->+1x -=类型二、解一元一次不等式2.求不等式﹣≤的非负整数解,并把它的解在数轴上表示出来.举一反三:【变式1】解不等式:【变式2】代数式的值不大于的值,求x 的范围.3.m 为何值时,关于x 的方程:的解大于1?举一反三:【变式】已知关于方程的解是非负数,是正整数,则 .4.(2016•杭州模拟)若关于x ,y 的二元一次方程组的解满足x ﹣y >﹣3.5,求出满足条件的m 的所有正整数解. 2x ]2)14x (32[23<---6151632x m m x ---=-x 3x 23m x 2x -=--m =m类型二、不等式的解及解集5.若关于的不等式只有三个正整数解,求的取值范围.举一反三:【变式】已知的解集中的最大整数为3,则的取值范围是 .类型四、逆用不等式的解集6. 若关于的不等式的解集为,则关于的不等式的解集 .一元一次不等式组【典型例题】类型一、解一元一次不等式组1.(2016•深圳)解不等式组:.x a x ≤a a x <a x n m x >53x <x 0n 5m x )n m 2(>-+-2. 不等式组是否存在整数解?如果存在请求出它的解;如果不存在要说明理由.举一反三:【变式】(2015•北京)解不等式组,并写出它的所有非负整数解.3.试确定实数a 的取值范围.使不等式组 恰好有两个整数解.3(2)5(4) 2.......(1)562(2)1,........(2)32211............(3)23x x x x x x ⎧⎪++-<⎪+⎪+≥+⎨⎪++⎪-≤⎪⎩1023544(1)33x x a x x a +⎧+>⎪⎪⎨+⎪+>++⎪⎩类型二、解特殊的一元一次不等式组4.(2015•黔西南州)求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求不等式≥0的解集.课堂练习类型一根据不等式租的整数解情况确定字母的取值范围例1.不等式组有3个整数解,则m的取值范围是.变式练习1.不等式组有3个整数解,则m的取值范围是.变式练习2.已知关于x的不等式组只有3个整数解,则实数a的取值范围是.变式练习3. 已知关于x 的不等式组{4x +2>3(x +a)2x >3(x −2)+5,仅有4个整数解,则实数a 的取值范围是 .变式练习4. 已知关于x 的不等式组{5x +2>3(x −1)12x ≤8−32x +2a ,仅有4个整数解,则实数a 的取值范围是 .类型二 根据不等式组的解集确定字母的取值范围例2.已知关于x 的不等式组无解,则a 的取值范围是 .变式练习1.若关于x 的不等式组有解,则实数a 的取值范围是 .变式练习2.若不等式的解集为x >3,则a 的取值范围是 .变式练习3.若关于x 的不等式的解集为x <2,则a 的取值范围是 .变式练习4.已知不等式组无解,则a 的取值范围是 .类型三 根据未知数解集或者未知数间的关系确定字母的取值范围例3. 已知方程组⎩⎨⎧-=++=+my x m y x 12312满足x +y <0,求m 的取值范围变式练习1.若关于x ,y 的二元一次方程组的解满足x +y <2,则a 的取值范围为 .2.已知⎩⎨⎧+=+=+12242k y x k y x 且的取值范围为则k y x ,01-〈-〈 .例4. 已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是.变式练习1.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.2.若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为.3.若不等式ax+b<0的解集是x>﹣1,则a,b应满足的条件有.综合练习1.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14B.7C.﹣2D.22.不等式组的解集是x>﹣1,则a的取值范围是.3.若关于x的一元一次不等式组无解,则a的取值范围是.4.若不等式组的解集为3≤x≤4,则不等式ax+b<0的解集为.5.已知关于x的不等式组无解,则a的取值范围是.6.不等式组的解是0<x<2,那么a+b的值等于.7.已知关于x的不等式组只有3个整数解,则实数a的取值范围是.8.已知关于x的不等式组的整数解共有6个,则a的取值范围是.。

第二章一元一次不等多和一元一次不等式组-不等式含参类型专题(教案)

第二章一元一次不等多和一元一次不等式组-不等式含参类型专题(教案)
最后,总结回顾环节,我觉得学生对本节课的知识点掌握得还算扎实。但我也意识到,在教学过程中,我对部分难点的讲解可能还不够透彻,导致部分学生仍然存在疑问。因此,我需要在今后的教学中,针对重点和难点进行更加细致的讲解和指导。
第二章一元一次不等多和一元一次不等式组-不等式含参类型专题(教案)
一、教学内容
《第二章一元一次不等多和一元一次不等式组-不等式含参类型专题》
(1)教材章节:本章主要针对人教版八年级数学下册第二章的内容。
(2)教学内容:
①含参一元一次不等式的解法:ax+b>c或ax+b<c的形式,其中a、b、c为常数,x为未知数。
②含参一元一次不等式组的解法:包括两个或两个以上含参一元一次不等式的组合。
③判断含参不等式的解集与参数的关系,掌握不等式含参问题的解题策略。
④通过实际例题,让学生掌握含参不等式在实际问题中的应用。
二、核心素养目标
《第二章一元一次不等多和一元一次不等式组-不等式含参类型专题》
(1)逻辑推理:通过分析含参一元一次不等式的性质和解法,培养学生逻辑推理能力和数学思维能力,使学生能够理解和运用数学语言进行严谨的逻辑表达。
3.重点难点解析:在讲授过程中,我会特别强调含参不等式的解法和含参不等式组的解集这两个重点。对于难点部分,我会通过具体例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与含参不等式相关的实际问题,如“如何根据身高和体重的不等式关系来确定某个学生的健康范围”。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

含参数的一元一次不等式教学设计

含参数的一元一次不等式教学设计

含参数的一元一次不等式教学设计本文档旨在介绍教学设计的目的和背景。

教学设计的目的是引导学生理解和掌握含参数的一元一次不等式的解法。

通过设计合适的教学活动和素材,激发学生的兴趣和思考能力,提高他们的数学解决问题的能力。

教学设计的背景是当今数学教育中的重要内容之一。

含参数的一元一次不等式是数学中的基础知识,也是学生在后续研究中需要运用的工具。

通过研究和解决这类不等式,学生可以培养逻辑思维、分析问题和解决问题的能力。

在设计教学活动时,应充分考虑学生的认知水平和研究能力,采用简洁明了的策略和方法。

不涉及过多的法律复杂性,而是注重培养学生的数学思维和解决问题的能力。

请注意,本文档所引用的内容必须经过确认,并避免引用无法确认的内容。

明确教学设计的目标,包括学生要达到的能力和理解理解含参数的一元一次不等式的概念和性质能够解决含参数的一元一次不等式能够分析和应用含参数的一元一次不等式解决实际问题培养逻辑思维和数学推理的能力培养学生独立解决问题的能力提高学生的数学表达和沟通能力本次教学将着重介绍一元一次不等式的相关概念和性质,以及参数的概念和使用。

以下是教学设计的详细内容:引入:首先,通过实际生活中的例子,向学生解释一元一次不等式的概念和意义。

例如,可以提到在购物中使用不等式判断哪种商品更划算,或者在运动中使用不等式来评估运动员的成绩等等。

相关概念:介绍一元一次不等式中常见的符号和表示方法,如大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)等等。

解释这些符号表示的含义,并通过示例进行演示和讨论。

参数的概念和使用:讲解参数在不等式中的作用和意义。

解释参数是不等式中的未知数,它的取值可以使不等式成立。

通过实例,引导学生探究参数对不等式解的影响,并讨论参数如何进行取值。

相关性质:列举一元一次不等式的相关性质,如同增同减原则、等式与不等式的关系等。

解释这些性质的意义和应用,并通过例题进行示范和讨论。

含参不等式的解法教案

含参不等式的解法教案

含参不等式的解法教案一、教学目标1. 让学生掌握含参不等式的基本概念和解法。

2. 培养学生运用含参不等式解决实际问题的能力。

3. 提高学生分析问题和解决问题的能力。

二、教学内容1. 含参不等式的定义及分类。

2. 含参不等式的解法:图像法、代数法、不等式组法。

3. 含参不等式在实际问题中的应用。

三、教学重点与难点1. 重点:含参不等式的解法及其应用。

2. 难点:含参不等式解法的灵活运用。

四、教学方法与手段1. 采用案例分析法、讨论法、实践教学法等多种教学方法。

2. 使用多媒体课件、黑板、教具等教学手段辅助教学。

五、教学过程1. 导入:通过生活实例引入含参不等式的概念,激发学生兴趣。

2. 讲解:讲解含参不等式的定义、分类和解法。

3. 案例分析:分析含参不等式在实际问题中的应用,引导学生学会解决问题。

4. 练习:布置练习题,让学生巩固所学知识。

5. 总结:对本节课内容进行总结,强调重点和难点。

6. 作业布置:布置课后作业,巩固所学知识。

六、教学活动设计1. 课堂互动:通过提问、讨论等方式,让学生积极参与课堂,提高课堂氛围。

2. 小组合作:分组练习含参不等式的解法,培养学生的团队协作能力。

3. 课后实践:布置实践性作业,让学生将所学知识应用于实际问题中。

七、教学评价1. 课堂表现:评价学生在课堂上的参与程度、提问回答等情况。

2. 练习作业:评价学生课后作业的完成情况,检查掌握程度。

3. 实践成果:评价学生在实际问题中的应用能力,展示成果。

八、教学反思1. 总结本节课的教学效果,反思教学方法的适用性。

2. 针对学生的掌握情况,调整教学策略,提高教学效果。

3. 搜集学生反馈意见,不断优化教学内容和方法。

九、教学拓展1. 探讨含参不等式与实际生活中的联系,引导学生关注数学在生活中的应用。

2. 介绍含参不等式的相关研究动态和最新成果,激发学生的学习兴趣。

3. 推荐相关的学习资料,引导学生开展课外学习。

十、教学时间表1. 第1-2课时:介绍含参不等式的定义、分类和解法。

一元一次含参不等式(组)的解法 学案

一元一次含参不等式(组)的解法  学案

314-2x x -≥复习专题:一元一次含参不等式(组)的解法一:课前自主预习二:课标要求◎结合具体问题,了解不等式的意义,探索不等式的基本性质. ◎能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集. 三:知识框架四:知识大盘点五:考点精析考点1:不等式的性质例1:(2021常德)若a >b ,下列不等式不一定成立的是( ) A :a -5>b -5 B :-5a <-5bC : c b c a >D :a +c >b +c考点2:一元一次不等式(组)的解法例2:(1)解不等式并把它的解集在数轴上表示出来。

(2)解不等式组 并把它的解集在数轴上表示出来。

xx )>(12+2721+≥-x x考点3:含参不等式(组)例3:(1)如果不等式组 的解集为 ,则m 的取值范围是( )A: 2≤m B: 2≥m C: 2>m D: 2<m(2)已知关于x 的不等式组 有且仅有5个整数解,则a 的取值范围是( )A: 2-3-≤a < B: 031-≤a <C: 031-<a ≤ D: 03-≤a <五:小试牛刀1:若关于x 的一元一次不等式组 的解集为x ≤a ,求a 的取值范围 。

变式:若关于x 的一元一次不等式组 的解集为x ≤a ;且关于y 的分式方程 12432=--+--y y y a y 有正整数解,则所有满足条件的整数a 的值之积是( )A. 7B. -14C. 28D. -56 六:课堂小结1、你在知识上有哪些收获?2、你在数学思想方法方面有何体会?3、你还有哪些困惑?())1(23-≥-x a x 22312x x -≤-2>x 145-+x x <mx >321-3+≤x x a x ≤321-3+≤x x ax ≤七:课后作业(1)必做:本节练习册1至13题(2)选做:能力提升第14题、第15题。

一元一次含参不等式教学设计-

一元一次含参不等式教学设计-

教学设计年级:七年级学科:数学课题:一元一次含参不等式龙文教育个性化辅导教案讲义任教科目:数学授课题目:一元一次方程年级:初三任课教师:余大勇授课对象:钟思晴惠州龙文个性化教育惠阳淡水校区教导主任签名:日期:惠州龙文教育学科辅导讲义(A );253b a =- (B );6213+=+b a(C );523+=bc ac (D ).3532+=b a 解题思路:利用等式的性质(1)两边都减去5,则A 正确;利用性质(1)两边都加1,则B 正确;性质(2)两边都除以3,则D 正确,故选C例2、下列说法正确的是( )A 、在等式ab=ac 中,两边都除以a ,可得b=cB 、在等式a=b 两边都除以c 2+1可得1122+=+c b c aC 、在等式ac a b =两边都除以a ,可得b=c D 、在等式2x=2a 一b 两边都除以2,可得x=a 一b剖析:A 中a 代表任意数,当a ≠0时结论成立;但当a=0时,不能运用等式的性质(2)结论不一定成立,如0·3=0·(-1)但3≠-1,所以,等式两边同时除以一个数,要保证除数不为0才能行。

B 中c 2+1≠0所以成立。

C 用的性质错误,应在等式两边都乘以a 。

D 中一b 这一项没除以2,应为x=a -2b 选B 。

变式练习1、将等式4x=2x+8变形为x=4,下列说法正确的是( )A 运用了等式的性质1,没有运用等式的性质2B 运用了等式的性质2,没有运用等式的性质1C 既运用了等式的性质1,又运用等式的性质2D 等式的两条性质都没有运用2、(1)在等式3x-4=5的两边都 得3x=9,依据是 .(2)在等式x x =-213的两边都 得2x-3=6x ,依据是 . 知识点2: 解一元一次方程典型例题例1、 解方程4131312-+=--y y y . 分析:方程中含有分母,一般应先去分母,即方程的两边都乘以最小公分母12,特别注意要防止漏乘不含分母的项,分子是多项式时要注意用括号括起来.解:去分母,得12y-4(2y-1)=12+3(3y-1),去括号,得12y-8y+4=12+9y-3,移项,得12y-8y-9y=12-3-4,合并同类项,得-5y=5,两边同除以-5,得y=-1.评注:为了知道所求的解是否正确,可把所求到的x 的值代入原方程验证左右两边是否相家长签名:惠州龙文教育学科辅导教案附:跟踪回访表主任签字:龙文教育教务处龙文教育个性化辅导课后作业学生:_ ____性别:___ _ 学校: ____ __ 年级:__ _____ 科目:____ ____1、下列结论正确的是( )A .若x+3=y-7,则x+7=y-11;B .若7y-6=5-2y,则7y+6=17-2y;C .若0.25x=-4,则x=-1;D .若7x=-7x,则7=-7.2、列说法错误的是( ).A .若ay a x =,则x=y; B .若x 2=y 2,则-4x 2=-4y 2; C .若-41x=6,则x=-23; D .若6=-x,则x=-6. 3、知等式ax=ay,下列变形不正确的是( ).A .x=yB .ax+1= ay+1C .ay=axD .3-ax=3-ay4、列说法正确的是( )A .等式两边都加上一个数或一个整式,所得结果仍是等式;B .等式两边都乘以一个数,所得结果仍是等式;C .等式两边都除以同一个数,所以结果仍是等式;D .一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式;5、等式2-31-x =1变形,应得( ) A .6-x+1=3B .6-x-1=3C .2-x+1=3D .2-x-1=3 6、在梯形面积公式S=21(a+b )h 中,如果a=5cm,b=3cm,S=16cm 2,那么h=( ) A .2cm B .5cm C .4cm D .1cm7、若关于x 的方程3(x-1)+a=b(x+1)是一元一次方程,则( ).A .a,b 为任意有理数B .a ≠0C .b ≠0D .b ≠38、、解方程(1)2(3)15(23)t t +-=- (2)54324x x -=(3)21101136x x ---= (4)12225x x x -+-=-。

含参数的一元一次不等式组的解法及应用

含参数的一元一次不等式组的解法及应用

<<含参数的一元一次不等式组的解法及应用>>教学设计——————初一中 向利军学习目标:1、会解含参数的一元一次不等式组;2、已知含参数的一元一次不等式组的解集或解的情况,会求参数的取值范围. 重点:1、会解含参数的一元一次不等式组;2、已知含参数的一元一次不等式组的解集或解的情况,会求参数的取值范围. 难点:已知含参数的一元一次不等式组的解集或解的情况,会构造含参数的方程或不等式.一、 情景导学设计2016年重庆中考题A 卷和B 卷选择题12题考的是含参数的一元一次不等式组和含参方程的一道综合型的题,同学们在上节课我们复习了含参方程的内容,今天这节课我们来探讨含参的一元一次不等式组的解法及应用.师:我来检查同学们课前做的学前准备,完成得怎么样?第1题由4个同学来回答,每人回答一道,第2题由一个同学到黑板上板演,第3题再由一个同学回答最后教师总结。

二、例题讲解 例1 : 解关于x 的一元一次不等式组:教师板书规范格式小结:(1)解每个不等式 ;(2)画数轴,分类讨论;(3)写出解集。

学生到黑板上板书练习1的答案练习1:解关于x 的一元一次不等式组:⎪⎩⎪⎨⎧->-≥-1x 2133--x )2(x x a师:我们会解含参不等式组中一个不等式含参数,那两个不等式都含参数又如何解呢?拓展: 解关于x 的不等式组:⎩⎨⎧+<>521-m x m x⎪⎩⎪⎨⎧>---≥-33124)(2x x x a提问:第一步还需解每个不等式吗?生:不解师:第一步做什么?生:画数轴表示解集师:先表示哪一个?生:都可以学生口答,教师用投影仪出示范灯片思考: (1)若练习1的不等式组有解,则a 的取值范围是 .(2)若练习1的不等式组无解,则a 的取值范围是 .三、能力提升例2 :已知关于x 的一元一次不等式组⎩⎨⎧->>3x a x 的解集为3->x ,则a 的取值范围 是 .由学生回答,投影仪展示。

含参不等式的解法教案

含参不等式的解法教案

含参不等式的解法教案一、教学目标:1. 让学生掌握含参不等式的基本概念和解法。

2. 培养学生运用含参不等式解决实际问题的能力。

3. 提高学生分析问题、解决问题的能力。

二、教学内容:1. 含参不等式的定义及分类。

2. 含参不等式的解法:图像法、代入法、不等式法、参数分离法等。

3. 含参不等式在实际问题中的应用。

三、教学重点与难点:1. 教学重点:含参不等式的解法及其应用。

2. 教学难点:含参不等式解法在实际问题中的应用。

四、教学方法:1. 采用讲授法,讲解含参不等式的基本概念和解法。

2. 利用案例分析法,分析含参不等式在实际问题中的应用。

3. 组织小组讨论法,让学生合作探究含参不等式的解法。

五、教学过程:1. 导入:通过简单的不等式问题,引导学生思考含参不等式的概念。

2. 讲解:讲解含参不等式的定义、分类和解法,结合实际例子进行分析。

3. 练习:布置练习题,让学生巩固含参不等式的解法。

4. 案例分析:分析含参不等式在实际问题中的应用,引导学生运用所学知识解决实际问题。

5. 小组讨论:组织学生进行小组讨论,分享含参不等式的解法心得。

6. 总结:对本节课的内容进行总结,强调含参不等式的解法及其应用。

7. 作业布置:布置课后作业,巩固所学知识。

教学反思:在课后对教学效果进行反思,了解学生的掌握情况,针对存在的问题进行调整教学方法,以提高学生对含参不等式的理解和应用能力。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习兴趣和积极性。

2. 练习题评价:通过学生完成的练习题,评估学生对含参不等式解法的掌握程度。

3. 案例分析评价:评估学生在案例分析中的表现,包括分析问题的能力、运用所学知识解决问题的能力。

七、教学拓展:1. 对比分析:引导学生对比含参不等式与一般不等式的异同,加深对含参不等式的理解。

2. 研究性问题:提出研究性问题,引导学生进行深入探究,如探讨含参不等式在实际应用中的局限性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计
年级:七年级 学科:数学 课题:一元一次含参不等式
知识目标:加深对一元一次不等式和它的解集的概念的 理
解,会应用数轴确定含参数的一元一次不 等式
的参数范围,会求某些给定条件的一元 一次不
等式中字母参数的值。

能力目标:变式教学,增强学生的应变能力。

培养探究、 独立思考的学习习惯,逐步熟悉和掌握数形 结合、化归、分类讨论
等思想方法,提高分 析问题和解决问题的能力。

情感目标:积极参与数学活动,体验数学发现带来的乐 趣。

重点:通过含参数不等式的分析与讨论,让学生理解掌 握分
类讨论和数形结合的数学思想。

难点:运用数轴分析不等式中参数的范围。

讲练结合法、引导发现法
多媒体课件 借助几何画板,动态演示解集的变化规律,探究参数范围 突破难点。

教学步骤
三维目标 教学重、难点 教学方法
教学准备
板书设计
教学设计反思。

相关文档
最新文档