2017-2018学年高中数学选修2-1北师大版同步配套课时跟踪训练(三)全称量词与存在量词 Word版 含解析
北师大版2017-2018学年高中数学选修2-3全册教学案
北师大版2017-2018学年高中数学选修2-3全册教学案§1分类加法计数原理和分步乘法计数原理[对应学生用书P2]1.李娜为了备战2014年澳大利亚网球会开赛,需要从北京到A地进行封闭式训练,每天有7次航班,5列动车.问题1:李娜从北京到A城的方法可分几类?提示:两类,即乘飞机、乘动车.问题2:这几类方法都能完成“从北京到A城”这件事吗?提示:都能.问题3:李娜从北京到A城共有多少种不同的方法?提示:7+5=12(种).2.若你班有男生26人,女生24人,从中选一名同学担任班长.问题4:不同的选法的种数为多少?提示:26+24=50.分类加法计数原理(加法原理)完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,……,在第n类办法中有m n种方法.那么,完成这件事共有N=m1+m2+…+m n种方法.1.李娜从北京到A城需在B城停留,若从北京到B城有7次航班,从B城到A城有5列动车.问题1:李娜从北京到A城需要经历几个步骤?提示:两个,即从北京到B城,从B城到A城.问题2:这几个步骤中的某一步能完成“从北京到A城”这件事吗?提示:不能.必须“从北京到B城”“从B城到A城”这两步都完成后才能完成“从北京到A城”这件事.问题3:李娜从北京到A城共有多少种不同的方法?提示:7×5=35(种).2.若你班有男生26人,女生24人,从中选一名男生和一名女生担任班长.问题4:不同的选法的种数为多少?提示:26×24=624.分步乘法计数原理(乘法原理)完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,……,做第n步有m n种方法.那么,完成这件事共有N=m1×m2×…×m n种方法.1.分类加法计数原理中的每一种方法都可以完成这件事情,而分步乘法计数原理的每一个步骤都是完成这件事情的中间环节,都不能独立完成这件事情.2.分类加法计数原理考虑的是完成这件事情的方法被分成不同的类别,求各类方法之和;而分步乘法计数原理考虑的是完成这件事情的过程被分成不同的步骤,求各步骤方法之积.[对应学生用书P3][例1]高二·人,女生30人;高二·三班有学生55人,男生35人.(1)从中选一名学生担任学生会主席,有多少种不同的选法?(2)从高二·一班、二班男生中,或从高二·三班女生中选一名学生任学生会体育部长,有多少种不同的选法?[思路点拨](1)完成的一件事是从三个班级中选一名学生任学生会主席;(2)完成的一件事是从一班、二班男生中,或从三班女生中选一名学生任学生会体育部长,因而可按当选学生来自不同班级分类,利用分类加法计数原理求解.[精解详析](1)选一名学生任学生会主席有3类不同的选法:第一类,从高二·一班选一名,有50种不同的方法;第二类,从高二·二班选一名,有60种不同的方法;第三类,从高二·三班选一名,有55种不同的方法.故任选一名学生任学生会主席的选法共有50+60+55=165种不同的方法.(2)选一名学生任学生会体育部长有3类不同的选法:第一类,从高二·一班男生中选,有30种不同的方法;第二类,从高二·二班男生中选,有30种不同的方法;第三类,从高二·三班女生中选,有20种不同的方法.故选一名学生任学生会体育部长共有30+30+20=80种不同的方法.[一点通]如果完成一件事有n类不同的办法,而且这n类办法是相互独立的,无论用哪一类办法中的哪一种方法都能独立地完成这件事,那么求完成这件事的方法种数就用分类加法计数原理.分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总种数.1.上海世博会期间,一志愿者带一客人去预订房间,宾馆有上等房10间,中等房20间,一般房25间,则客人选一间房的选法有()A.500种B.5 000种C.55种D.10种解析:选法为10+20+25=55种.答案:C2.(福建高考)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12 D.10解析:因为a,b∈{-1,0,1,2},可分为两类:①当a=0时,b可能为-1或0或1或2,即b有4种不同的选法;②当a≠0时,依题意得Δ=4-4ab≥0,所以ab≤1.当a=-1时,b有4种不同的选法,当a=1时,b可能为-1或0或1,即b有3种不同的选法,当a=2时,b可能为-1或0,即b有2种不同的选法.根据分类加法计数原理,(a,b)的个数共有4+4+3+2=13.答案:B3.在所有的两位数中,十位数字大于个位数字的两位数共有多少个?解:依据“十位数字大于个位数字”进行分类,令十位数字为m,个位数字为n,则有当m=1时,n=0,有1个;当m=2时,n=0,1,有2个;当m=3时,n=0,1,2,有3个;……当m=9时,n=0,1,2,3…8,有9个.所有这样的两位数共有1+2+3+…+9=45个.[例2](1)(() A.243 B.252C.261 D.279(2)有三个盒子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个,现从盒子里任取红、白、黄小球各一个,有不同的取法________种.[思路点拨](1)先排百位,然后排十位,最后排个位.注意百位数字不能为0.(2)要从盒子里任取红、白、黄小球各一个,应分三个步骤,并且这三个步骤均完成时,才完成这件事,故须采用乘法原理.[精解详析](1)十个数字组成三位数的个数为9×10×10=900.没有重复数字的三位数有9×9×8=648,所以有重复数字的三位数的个数为900-648=252.(2)完成这件事可分三步:第一步:取红球,有6种不同的取法;第二步:取白球,有5种不同的取法;第三步:取黄球,有4种不同的取法.根据分步乘法计数原理,共有N=6×5×4=120种不同的取法.[答案](1)B(2)120[一点通]利用分步乘法计数原理计数的一般思路:首先将完成这件事的过程分步,然后再找出每一步中的方法有多少种,求其积,注意各步之间的相互联系,每步都完成后,才能完成这件事.4.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同配法的种数为()A.7 B.12C.64 D.81解析:要完成长裤与上衣配成一套,分两步:第一步:选上衣,从4件中任选一件,有4种不同选法;第二步:选长裤,从3条长裤中任选一条,有3种不同选法.故共有4×3=12种不同的配法.答案:B5.将3封信投到4个邮筒,所有投法有()A.24种B.4种C.64种D.81种解析:分三步完成投信这件事.第一步投第1封信有4种方法,第二步投第2封信有4种方法,第三步投第3封信有4种方法,故共有N=4×4×4=64种方法.答案:C6.从1,2,3,4中选三个数字,组成无重复数字的整数,则满足下列条件的数有多少个?(1)三位数;(2)三位数的偶数.解:(1)三位数有三个数位:百位,十位,个位,故可分三步完成:第一步,排个位,从1,2,3,4中选1个数字,有4种方法;第二步,排十位,从剩下的3个数字中选1个,有3种方法;第三步,排百位,从剩下的2个数字中选1个,有2种方法.依据分步乘法计数原理,共有4×3×2=24个满足要求的三位数.(2)分三步完成:第一步,排个位,从2,4中选1个,有2种方法;第二步,排十位,从余下的3个数字中选1个,有3种方法;第三步,排百位,只能从余下的2个数字中选1个,有2种方法.故共有2×3×2=12个三位数的偶数.[例3](12分)如图,一环形花坛分成A,B,C,D四块.现有4种不同的花供选种,要求在每块地里种1种花,且相邻的2块种不同的花,问共有多少种不同的种植方法.[思路点拨]本题可以先分类,由A,C是否种相同的花分为两类,也可以先分步,在考虑C时再分类.[精解详析]法一:分为两类:第一类:当花坛A,C中种的花相同时有4×3×1×3=36种;第二类:当花坛A,C中种的花不同时有4×3×2×2=48种.共有36+48=84种.法二:分为四步:第一步:考虑A,有4种;第二步:考虑B,有3种;第三步:考虑C,有两类:一是A与C同,C的选法有1种,这样第四步D的选法有3种;二是A与C不同,C的选法有2种,此时第四步D的选法也有2种.共有4×3×(1×3+2×2)=84种.[一点通]综合应用两个原理时,一定要把握好分类与分步.分类是根据完成方法的不同类别,分步是根据一种方法进程的不同步骤.7.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,第一、二象限不同点的个数为()A.18 B.16C.14 D.10解析:分为两大类:第一类,以集合M中的元素为点的横坐标,集合N中的元素为点的纵坐标.由分步乘法计数原理,有3×2=6个不同的点.第二类,以集合N中的元素为点的横坐标,集合M中的元素为点的纵坐标.由分步乘法计数原理,有4×2=8个不同的点.由分类加法计数原理,第一、二象限内不同的点共有N=6+8=14个.答案:C8.有不同的中文书7本,不同的英文书5本,不同的法文书3本.若从中选出不属于同一种文字的2本书,共有________种不同的选法.解析:分为三类,每一类再分两步.第一类选中文、英文书各一本有7×5=35种选法,第二类选中文、法文书各一本有7×3=21种选法,第三类选英文、法文书各一本有5×3=15种选法,所以总共有35+21+15=71种不同的选法.答案:719.电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?解:确定幸运观众可分两类:第一类:幸运之星在甲箱中抽,再在两箱中各定一名幸运伙伴,有30×29×20=17 400种结果;第二类:幸运之星在乙箱中抽,再在两箱中各定一名幸运伙伴,有20×30×19=11 400种结果.根据分类加法计数原理,共有17 400+11 400=28 800种不同的结果.1.两个计数原理的区别(1)分类要做到“不重不漏”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”.完成了所有步骤,恰好完成任务,当然步与步之间要相互独立.分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.[对应课时跟踪训练(一)]1.一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中任取一本,则不同的取法共有()A.37种B.1 848种C.3种D.6种解析:根据分类加法计数原理,得不同的取法为N=12+14+11=37(种).答案:A2.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有() A.30个B.42个C.36个D.35个解析:完成这件事分为两个步骤:第一步,虚部b有6种选法;第二步,实部a有6种选法.由分步乘法计数原理知,共有虚数6×6=36 个.答案:C3.现有高一学生9人,高二学生12人,高三学生7人,自发组织参加数学课外活动小组,从中推选两名来自不同年级的学生做一次活动的主持人,不同的选法共有() A.756种B.56种C.28种D.255种解析:推选两名来自不同年级的两名学生,有N=9×12+12×7+9×7=255(种).答案:D4.用4种不同的颜色给矩形A,B,C,D涂色,要求相邻的矩形涂不同的A.12种B.24种C.48种D.72种解析:先涂C,有4种涂法,涂D有3种涂法,涂A有3种涂法,涂B有2种涂法.由分步乘法计数原理,共有4×3×3×2=72种涂法.答案:D5.为了对某农作物新品种选择最佳生产条件,在分别有3种不同土质,2种不同施肥量,4种不同的种植密度,3种不同的种植时间的因素下进行种植试验,则不同的实验方案共有________种.解析:根据分步乘法计数原理,不同的方案有N=3×2×4×3=72(种).答案:726.如图,A→C,有________种不同走法.解析:A→C的走法可分两类:第一类:A→C,有2种不同走法;第二类:A→B→C,有2×2=4种不同走法.根据分类加法计数原理,得共有2+4=6种不同走法.答案:67.设椭圆x2a2+y2b2=1,其中a,b∈{1,2,3,4,5}.(1)求满足条件的椭圆的个数;(2)如果椭圆的焦点在x轴上,求椭圆的个数.解:(1)由椭圆的标准方程知a≠b,要确定一个椭圆,只要把a,b一一确定下来这个椭圆就确定了.∴要确定一个椭圆共分两步:第一步确定a,有5种方法;第二步确定b,有4种方法,共有5×4=20个椭圆.(2)要使焦点在x轴上,必须a>b,故可以分类:a=2,3,4,5时,b的取值列表如下:故共有1+2+38.某艺术小组有9人,每人至少会钢琴和小号中的1种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴和会小号的各1人,有多少种不同的选法?解:由题意可知,在艺术小组9人中,有且仅有1人既会钢琴又会小号(把该人称为“多面手”),只会钢琴的有6人,只会小号的有2人,把选出会钢琴、小号各1人的方法分为两类:第一类:多面手入选,另1人只需从其他8人中任选一个,故这类选法共有8种.第二类:多面手不入选,则会钢琴者只能从6个只会钢琴的人中选出,会小号者也只能从只会小号的2人中选出,故这类选法共有6×2=12种.因此有N=8+12=20种不同的选法.第一课时排列与排列数公式[对应学生用书P6][例1]下列哪些问题是排列问题:(1)从10名学生中选2名学生开会共有多少种不同的选法?(2)从2,3,5,7,11中任取两个数相乘共能得几个不同的乘积?(3)以圆上的10个点为端点作弦可作多少条不同的弦?(4)10个车站,站与站间的车票种数有多少?[思路点拨]判断是否为排列问题的关键是选出的元素在被安排时,是否与顺序有关.[精解详析](1)选2名同学开会没有顺序,不是排列问题.(2)两个数相乘,与这两个数的顺序无关,不是排列问题.(3)弦的端点没有先后顺序,不是排列问题.(4)车票使用时,有起点和终点之分,故车票的使用是有顺序的,是排列问题.[一点通]判定是不是排列问题,要抓住排列的本质特征,第一取出的元素无重复性,第二选出的元素必须与顺序有关才是排列问题.元素相同且排列顺序相同才是相同的排列.元素有序还是无序是判定是否为排列问题的关键.1.下列命题,①abc和bac是两个不同的排列;②从甲、乙、丙三人中选两人站成一排,所有的站法有6种;③过不共线的三点中的任两点所作直线的条数为6.其中为真命题的是()A.①②B.①③C.②③D.①②③答案:A2.判断下列问题是不是排列,若是,写出所有排列.(1)从张红、李明、赵华三人中选出两人去参加数学竞赛有几种不同选法?(2)从(1)中的三人中选出两人分别去参加物理竞赛和数学竞赛有几种不同选法?(3)从a,b,c,d,e中取出两个字母有几种取法?解:(1)不是排列问题,因为选出两人参加数学竞赛与顺序无关.(2)是排列问题,因为选出甲、乙两人参加竞赛,甲参加物理,乙参加数学,与甲参加数学,乙参加物理是不同的结果,即与顺序有关.不同排列为张红李明;李明张红;张红赵华;赵华张红;李明赵华;赵华李明.(3)不是排列问题,因为取出的两个字母与顺序无关.[例2]从的所有三位数.[思路点拨]可按顺序分步解决,然后利用树形图列出所有的排列.[精解详析]画出下列树形图,如下图.由上面的树形图知,所有的三位数为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,4 23,431,432.共24个三位数.[一点通]在“树形图”操作中,先将元素按一定顺序排出,然后以安排哪个元素在首位为分类标准,进行分类,在每类中再按余下元素在前面元素不变的情况下定第二位并按顺序分类,依次一直进行到完成一个排列,这样就能不重不漏地依照“树形图”写出所有排列.3.由1,2,3三个数字可组成________个不同数字的三位数.解析:三位数有123,132,213,231,312,321共6个.答案:64.A,B,C,D四名同学排成一行照相,要求自左向右,A不排第一,B不排第四,试写出所有排列方法.解:因为A不排第一,排第一位的情况有3类(可以B,C,D中任选一人排),而此时兼顾分析B的排法,列树形图如图.所以符合题意的所有排列是:BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CBAD,CBDA,CDBA,DABC,DBAC ,DBCA ,DCBA .[例3] (12分)(1)A 310;(2)A 59+A 49A 610-A 510;(3)A m -1n -1·A n -mn -mA n 1n -1. [思路点拨] 对(1)(2),直接用排列数的连乘形式公式计算;对(3),可利用排列数阶乘形式的公式证明.[精解详析] (1)A 310=10×9×8=720. (4分)(2)A 59+A 49A 610-A 510=9×8×7×6×5+9×8×7×610×9×8×7×6×5-10×9×8×7×6=9×8×7×6×(5+1)10×9×8×7×6×(5-1)=610×4=320. (8分)(3)A m -1n -1·A n -m n -m A n -1n -1=(n -1)![n -1-(m -1)]!·(n -m )!·1(n -1)!=1. (12分) [一点通] (1)排列数的第一个公式A m n =n (n -1)…(n -m +1)适用于具体计算以及解当m 较小时的含有排列数的方程和不等式.在运用该公式时要注意它的特点:从n 起连续写出m 个数的乘积即可.(2)排列数的第二个公式A m n =n !(n -m )!适用于与排列数有关的证明、解方程、解不等式等.5.已知A 2n =7A 2n -4,则n 的值为( )A .6B .7C .8D .2解析:由排列数公式,得n (n -1)=7(n -4)(n -5),n ∈N +. ∴3n 2-31n +70=0,解得n =7或n =103(舍).答案:B6.若A m 10=10×9×…×5,则m =________. 解析:由排列数公式,得m =6. 答案:67.计算:2A 59+3A 699!-A 610=________.解析:法一:原式=2×9×8×7×6×5+3×9×8×7×6×5×49×8×7×…×1-10×9×…×5=2+124×3×2-10=1414=1.法二:原式=29!4!+39!3!9!-10!4!=24!+33!1-104!=2+3×44!-10=1.答案:18.(1)解方程A 42x +1=140A 3x ; (2)解不等式:A x 6<6A x -26.解:(1)∵⎩⎪⎨⎪⎧2x +1≥4,x ≥3,∴x ≥3,x ∈N +,由A 42x +1=140A 3x 得(2x +1)2x (2x -1)(2x -2)=140x (x -1)(x -2), 化简得,4x 2-35x +69=0,解得,x 1=3或x 2=234(舍),∴方程的解为x =3.(2)由⎩⎪⎨⎪⎧1≤x ≤6,1≤x -2≤6,得3≤x ≤6,且x ∈N +.又A x 6<6A x -26⇒6!(6-x )!<6·6!(6-x +2)!⇒(8-x )(7-x )<6 ⇒x 2-15x +50<0 ⇒(x -10)(x -5)<0 ⇒5<x <10.综上可知x =6,不等式解集为{6}.排列的根本特征是每一个排列不仅与选取的元素有关,而且与元素的排列顺序也有关.在判断一个问题是否是排列问题时,可按下列方法进行:[对应课时跟踪训练(二)]1.5A 35+4A 24等于( )A .107B .323C .320D .348解析:原式=5×5×4×3+4×4×3=348. 答案:D 2.A 345!等于( ) A.120 B.125C.15D.110解析:A 345!=4×3×25×4×3×2×1=15.答案:C3.设a ∈N +,且a <27,则(27-a )(28-a )·…·(34-a )等于( ) A .A 827-a B .A 27-a34-aC .A 734-aD .A 834-a解析:8个括号里面是连续的自然数,依据排列数的概念,选D. 答案:D4.若从4名志愿者中选出2人分别从事翻译、导游两项不同工作,则选派方案共有( ) A .16种 B .6种 C .15种D .12种解析:4名志愿者分别记作甲、乙、丙、丁,则选派方案有:甲乙,甲丙,甲丁,乙甲,乙丙,乙丁,丙甲,丙乙,丙丁,丁甲,丁乙,丁丙,即共有A 24=12种方案.答案:D5.已知9!=362 880,那么A 79=________. 解析:A 79=9!(9-7)!=362 8802=181 440. 答案:181 440 6.给出下列问题:①从1,3,5,7这四个数字中任取两数相乘,可得多少个不同的积? ②从2,4,6,7这四个数字中任取两数相除,可得多少个不同的商?③有三种不同的蔬菜品种,分别种植在三块不同的试验田里,有多少种不同的种植方法?④有个头均不相同的五位同学,从中任选三位同学按左高右低的顺序并排站在一排照相,有多少种不同的站法?上述问题中,是排列问题的是________.(填序号)解析:对于①,任取两数相乘,无顺序之分,不是排列问题;对于②,取出的两数,哪一个作除数,哪一个作被除数,其结果不同,与顺序有关,是排列问题;对于③,三种不同的蔬菜品种任一种种植在不同的试验田里,结果不同,是排列问题;对于④,选出的三位同学所站的位置已经确定,不是排列问题.答案:②③7.(1)计算4A 48+2A 58A 88-A 59;(2)解方程3A x 8=4A x -19.解:(1)原式=4A 48+2×4A 484×3×2A 48-9A 48=4+824-9=1215=45. (2)由3A x 8=4A x -19,得3×8!(8-x )!=4×9!(10-x )!,化简,得x 2-19x +78=0,解得x 1=6,x 2=13. 又∵x ≤8,且x -1≤9,∴原方程的解是x =6.8.从语文、数学、英语、物理4本书中任意取出3本分给甲、乙、丙三人,每人一本,试将所有不同的分法列举出来.解:从语文、数学、英语、物理4本书中任意取出3本,分给甲、乙、丙三人,每人一本,相当于从4个不同的元素中任意取出3个元素,按“甲、乙、丙”的顺序进行排列,每一个排列就对应着一种分法,所以共有A 34=4×3×2=24种不同的分法.不妨给“语文、数学、英语、物理”编号,依次为1,2,3,4号,画出下列树形图:由树形图可知,按甲乙丙的顺序分的分法为: 语数英 语数物 语英数 语英物 语物数 语物英 数语英 数语物 数英语 数英物 数物语 数物英 英语数 英语物 英数语 英数物 英物语 英物数 物语数 物语英 物数语 物数英 物英语 物英数第二课时排列的应用[对应学生用书P7][例1]由数字1,2,3,4可组成多少个无重复数字的正整数?[思路点拨]可分别求出一位数、二位数、三位数、四位数的个数,再求和.[精解详析]第一类:组成一位数有A14=4个;第二类:组成二位数有A24=12个;第三类:组成三位数有A34=24个;第四类:组成四位数有A44=24个.根据加法原理,一共可以组成4+12+24+24=64个正整数.[一点通]对于无限制条件的排列问题,可直接根据排列的定义及排列数公式列式求解.若解决问题时需要分类或分步,则要结合两个计数原理求解.1.从4种蔬菜品种中选3种,分别种植在不同土质的3块土地上进行试验,有多少种不同的种植方法?解:从4种蔬菜品种中选3种,分别种在3块不同土质上,对应于从4个元素中取出3个元素的排列数.因此不同的种植方法数为A34=4×3×2=24.故共有24种不同的种植方法.2.(1)有3名大学毕业生到5个招聘雇员的公司应聘,每个公司至多招聘一名新雇员,且3名大学毕业生全部被聘用,若不允许兼职,共有多少种不同的招聘方案?(2)有5名大学毕业生到3个招聘雇员的公司应聘,每个公司只招聘一名新雇员,并且不允许兼职,现假定这三个公司都完成了招聘工作,问共有多少种不同的招聘方案?解:(1)将5个招聘雇员的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题,所以不同的招聘方案共有A35=5×4×3=60种.(2)将5名大学毕业生看作5个不同的位置,从中任选3个位置给3个招聘雇员的公司,则本题仍为从5个不同的元素中任取3个元素的排列问题,所以不同的招聘方案有A35=5×4×3=60种.[例2](1)其中甲站在中间的位置,共有多少种不同的排法?(2)甲、乙只能站在两端的排法共有多少种?(3)甲、乙不能站在排头和排尾的排法共有多少种?[思路点拨]这是一个有限制条件的排列问题,每一问均应优先考虑限制条件,遵循特殊元素或位置优先安排的原则.[精解详析](1)先考虑甲站在中间有1种方法,再在余下的6个位置排另外6名同学,共有A66=6×5×4×3×2×1=720种排法.(2)先考虑甲、乙站在两端的排法有A22种,再在余下的5个位置排另外5名同学的排法有A55种,共有A22A55=2×1×5×4×3×2=240种排法.(3)法一:先考虑在除两端外的5个位置选2个安排甲、乙有A25种,再在余下的5个位置排另外5位同学的排法有A55种,共有A25A55=5×4×5×4×3×2×1=2 400种排法.法二:考虑特殊位置优先法,即两端的排法有A25种,中间5个位置有A55种,共有A25A55=2 400种排法.[一点通](1)“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.(2)从元素入手时,先给特殊元素安排位置,再把其他元素安排在剩余位置上;从位置入手时,先安排特殊位置,再安排其他位置.注意:无论从元素考虑还是从位置考虑,都要贯彻到底,不能既考虑元素又考虑位置.3.电视台连续播放6个广告,其中含4个不同的产品广告和2个不同的公益广告,要求首尾必须播放公益广告,则不同的播放方式有()A.48种B.24种C.720种D.120种解析:分两步:第一步先排首尾,第二步再排中间4个位置,则N=A22A44=2×24=48.答案:A4.用0,1,2这3个数字,可以排成________个无重复数字的3位数.解析:组成3位数,相当于将3个元素排在三个位置,但0不能在首位,首位的排法有A12,而其余两位排法有A22,由分步乘法原理知,共有A12A22=4种排法.答案:45.由0,1,2,3,4,5这六个数字组成没有重复数字的六位数,其中小于50万,又不是5的倍数的数有多少个?解:法一:因为首位和个位上不能排0和5,所以先从1,2,3,4中任选2个排在首位和个位,有A24种排法,再排中间4位数有A44种排法,由分步乘法计数原理,共有A24·A44=12×24=288个符合要求.法二:六个数位的全排列共有A66个,其中有0排在首位或个位上的有2A55个,还有5排在首位或个位上的也有2A55个,其中不合要求的要减去,但这两种情况都包含0和5分别在首位或个位上的排法2A44种,所以有A66-4A55+2A44=288个符合要求.[例言和,准备一起照张合影.(排成一排)(1)要求喜羊羊的四位成员必须相邻,有多少排法?(2)要求灰太狼、红太狼不相邻,有多少排法?[思路点拨]相邻元素可看作一个集团利用捆绑法,不相邻元素利用插空法.[精解详析](1)把喜羊羊家族的四位成员看成一个元素,与灰太狼、红太狼排队共有A33种排法,又因四位成员交换顺序产生不同排列,所以共有A33A44=144种排法. (4分)(2)第一步将喜羊羊家族的四位成员排好,有A44种排法,第二步让灰太狼、红太狼插四位成员形成的空(包括两端),有A25种排法,共有A44A25=480种排法. (8分)[一点通](1)相邻问题用捆绑法解决,即把相邻元素看成一个整体作为一个元素与其他元素排列.但不要忘记再对这些元素“松绑”,即对这些元素内部全排列.(2)不相邻问题用插空法,即先把其余元素排好,再把要求不相邻的元素插入空中排列.6.(重庆高考)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120C.144 D.168解析:依题意,先仅考虑3个歌舞类节目互不相邻的排法种数为A33A34=144,其中3个歌舞类节目互不相邻但2个小品类节目相邻的排法种数为A22A22A33=24,因此满足题意的排法种数为144-24=120,选B.答案:B7.(北京高考)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C 不相邻,则不同的摆法有________种.解析:将A,B捆绑在一起,有A22种摆法,再将它们与其他3件产品全排列,有A44种摆法,共有A22A44=48种摆法,而A,B,C 3件在一起,且A,B相邻,A,C相邻有CAB,BAC两种情况,将这3件与剩下2件全排列,有2×A33=12种摆法,故A,B相邻,A,C 不相邻的摆法有48-12=36种.答案:368.4名男同学和3名女同学站成一排.(1)3名女同学必须排在一起,有多少种不同的排法?。
2017_2018学年高中数学课时跟踪训练(含答案)八二项式系数的性质北师大版选修2_3
课时跟踪训练(八) 二项式系数的性质1.(x -1)11展开式中x 的偶次项系数之和是( ) A .-2 048 B .-1 023 C .-1 024D .1 0242.若C 1n x +C 2n x 2+…+C n n x n能被7整除,则x ,n 的值可能为( ) A .x =4,n =3 B .x =4,n =4 C .x =5,n =4D .x =6,n =53.若⎝⎛⎭⎪⎫x +1x n展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .1204.在⎝ ⎛⎭⎪⎫ax -1x 4的展开式中各项系数之和是16.则a 的值是( )A .2B .3C .4D .-1或35.若(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为________.6.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为________.7.已知(1+3x )n的展开式中,末三项的二项式系数的和等于121,求展开式中二项式系数最大的项.8.对二项式(1-x )10,(1)展开式的中间项是第几项?写出这一项. (2)求展开式中各二项式系数之和.(3)求展开式中除常数项外,其余各项的系数和.答案1.选C 令f (x )=(x -1)11,偶次项系数之和是f 1 +f -1 2=-2 112=-1 024.2.选C 由C 1n x +C 2n x 2+…+C n n x n =(1+x )n-1分别将选项A ,B ,C ,D 代入检验知,仅有x =5,n =4适合.3.选B 由2n=64,得n =6,∴T k +1=C k 6x 6-k⎝ ⎛⎭⎪⎫1x k=C k 6x6-2k(0≤k ≤6,k ∈N ).由6-2k =0,得k =3.∴T 4=C 36=20.4.选D 由题意可得(a -1)4=16,a -1=±2, 解得a =-1或a =3.5.解析:令x =-1,则原式可化为[(-1)2+1][2×(-1)+1]9=-2=a 0+a 1(2-1)+…+a 11(2-1)11,∴a 0+a 1+a 2+…+a 11=-2.答案:-26.解析:(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 2+a 4+a 1+a 3)·(a 0+a 2+a 4-a 1-a 3)=(a 0+a 1+a 2+a 3+a 4)·(a 0-a 1+a 2-a 3+a 4),令x =1,则a 0+a 1+a 2+a 3+a 4=(2+3)4,令x =-1,则a 0-a 1+a 2-a 3+a 4=(-2+3)4=(2-3)4,于是(2+3)4·(2-3)4=1.答案:17.解:由题意知C n n +C n -1n +C n -2n =121, 即C 0n +C 1n +C 2n =121, ∴1+n +n n -12=121,即n 2+n -240=0,解得n =15或-16(舍).∴在(1+3x )15的展开式中二项式系数最大的项是第八、九两项. 且T 8=C 715(3x )7=C 71537x 7,T 9=C 815(3x )8=C 81538x 8.8.解:(1)展开式共11项,中间项为第6项,T 6=C 510(-x )5=-252x 5.(2)C 010+C 110+C 210+…+C 1010 =210=1 024.(3)设(1-x)10=a0+a1x+a2x2+…+a10x10. 令x=1,得a0+a1+a2+…+a10=0.令x=0,得a0=1.∴a1+a2+…+a10=-1.。
精选2017_2018学年高中数学课时跟踪训练一归纳与类比北师大版选修2_2
课时跟踪训练(一) 归纳与类比1.由数列2,20,200,2 000,…,猜测该数列的第n项可能是( )A.2×10n B.2×10n-1C.2×10n+1D.2×10n-212.如图所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是( )11 11 2 11 3 3 11 4 a 4 11 5 10 10 5A.2 B.4C.6 D.83.(湖北高考)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈136L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈275L2h相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.3551134.从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性( )5.类比平面内正三角形的“三边相等,三内角相等”的性质,你认为可推知正四面体的下列哪些性质________.(填写序号)①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.6.四个小动物换座位,开始时鼠、猴、兔、猫分别坐在编号为1,2,3,4的位置上(如图),第1次前后排动物互换座位,第2次左右列动物互换座位,第3次前后排动物互换座位,……这样交替进行下去,那么第2 014次互换座位后,小兔的座位对应的编号是________.7.观察等式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,你能得出怎样的结论?8.如图,在三棱锥S-ABC中,SA⊥SB,SB⊥SC,SA⊥SC,且SA,SB,SC和底面ABC所成的角分别为α1,α2,α3,三侧面△SBC,△SAC,△SAB的面积分别为S1,S2,S3.类比三角形中的正弦定理,给出空间情形的一个猜想.答案1.选B2.选C 由杨辉三角形可以发现:每一行除1外,每个数都是它肩膀上的两数之和.故a=3+3=6.3.选B 由题意知275L2h=13πr2h⇒275L2=13πr2,而L=2πr,代入得π=258.4.选A 每一行图中的黑点从右上角依次递减一个.5.解析:正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.答案:①②③6.解析:第4次左右列动物互换座位后,鼠、猴、兔、猫分别坐在编号为1,2,3,4的位置上,即回到开始时的座位情况,于是可知这样交替进行下去,呈现出周期为4的周期现象,又2 014=503×4+2,故第2 014次互换座位后的座位情况就是第2次互换座位后的座位情况,所以小兔的座位对应的编号是2.答案:27.解:通过观察发现:等式的左边为正奇数的和,而右边是整数(实际上就是左边奇数的个数)的完全平方.因此可推测得出:1+3+5+7+9+…+(2n -1)=n 2(n ≥2,n ∈N +).8.解:在△DEF 中, 由正弦定理,得d sin D =e sin E =fsin F.于是,类比三角形中的正弦定理, 在四面体S -ABC 中,猜想S 1sin α1=S 2sin α2=S 3sin α3成立.。
2017-2018学年高中数学北师大版选修2-1同步配套课时跟
课时跟踪训练(十三) 距离的计算1.已知平面α的一个法向量n =(-2,-2,1),点A (2,-1,0)在α内,则P (1,3,-2)到α的距离为( )A .10B .3 C.83D.1032.正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在1AC 上且AM =121MC ,N 为B 1B 的中点,则|MN |为( )A.216aB.66aC.156a D.153a3.如图,P -ABCD 是正四棱锥,ABCD -A 1B 1C 1D 1是正方体,其中AB =2,P A =6,则B 1到平面P AD 的距离为( )A .6 B.355C.655D.3224.在长方体ABCD -A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离为( )A.83B.38C.43D.345.如图所示,在正三棱柱ABC -A 1B 1C 1中,所有棱长均为1,则点B 1到平面ABC 1的距离为________.6.如图所示,正方体的棱长为1,E ,F ,M ,N 分别是棱的中点,则平面A 1EF 与平面B 1NMD 1的距离为________.7.如图,已知正方形ABCD ,边长为1,过D 作PD ⊥平面ABCD ,且PD =1,E ,F 分别是AB 和BC 的中点.求直线AC 到平面PEF 的距离.8.如图所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截而得到的,其中AB =4,BC =2,CC 1=3,BE =1.求点C 到平面AEC 1F 的距离.答 案1.选C PA =(1,-4,2),又平面α的一个法向量为n =(-2,-2,1),所以P 到α的距离为|PA ·n |n =|-2+8+2|3=83.2.选A 以D 为原点建立如图所示的空间直角坐标系,则A (a,0,0),C 1(0,a ,a ),N ⎝⎛⎭⎫a ,a ,a2. 设M (x ,y ,z ).∵点M 在1AC 上且AM =121MC .∴(x -a ,y ,z )=12(-x ,a -y ,a -z ),∴x =23a ,y =a 3,z =a3.于是M ⎝⎛⎭⎫2a 3,a 3,a 3. ∴|MN | = ⎝⎛⎭⎫a -23a 2+⎝⎛⎭⎫a -a 32+⎝⎛⎭⎫a 2-a 32=216a . 3.选C 以A1B 1为x 轴,A 1D 1为y 轴,A 1A 为z 轴建立空间直角坐标系,设平面P AD 的法向量是n =(x ,y ,z ),由题意知,B 1(2,0,0),A (0,0,2),D (0,2,2),P (1,1,4).AD =(0,2,0),AP =(1,1,2),∴AD ·n =0,且AP ·n =0.∴y =0,x +y +2z =0,取z =1,得n =(-2,0,1).∵1B A =(-2,0,2),∴B 1到平面P AD 的距离d =|1B A ·n ||n |=655.4.选C 如图,建立空间直角坐标系,则D (0,0,0),A (2,0,0),A 1(2,0,4),B 1(2,2,4),D 1(0,0,4).∴11D B =(2,2,0),1D A =(2,0,-4),1AA =(0,0,4),设n =(x ,y ,z )是平面AB 1D 1的一个法向量,则n ⊥11D B ,n ⊥1D A ,∴⎩⎪⎨⎪⎧n ·11D B =0,n ·1D A =0,即⎩⎪⎨⎪⎧2x +2y =0,2x -4z =0.令z =1,则平面AB 1D 1的一个法向量为n =(2,-2,1).∴由1AA 在n 上射影可得A 1到平面AB 1D 1的距离为d =|1AA ·n ||n |=43.5.解析:建立如图所示的空间直角坐标系,则C (0,0,0),A ⎝⎛⎭⎫32,12,0,B (0,1,0),B 1(0,1,1),C 1(0,0,1),则1C A =⎝⎛⎭⎫32,12,-1,11C B =(0,1,0),1C B =(0,1,-1),设平面ABC 1的法向量为n =(x ,y,1),则有⎩⎪⎨⎪⎧1C A ·n =0 1C B ·n =0,解得n =⎝⎛⎭⎫33,1,1, 则d =|11C B ·n |n ||=113+1+1=217.答案:2176.解析:建立如图所示的空间直角坐标系,则A 1(1,0,0),B 1(1,1,0),E ⎝⎛⎭⎫12,0,1,F ⎝⎛⎭⎫1,12,1,D 1(0,0,0),M ⎝⎛⎭⎫0,12,1,N ⎝⎛⎭⎫12,1,1. ∵E ,F ,M ,N 分别是棱的中点, ∴MN ∥EF ,A 1E ∥B 1N . ∴平面A 1EF ∥平面B 1NMD 1.∴平面A 1EF 与平面B 1NMD 1的距离即为A 1到平面B 1NMD 1的距离. 设平面B 1NMD 1的法向量为n =(x ,y ,z ), ∴n ·11D B =0,且n ·1B N =0. 即(x ,y ,z )·(1,1,0)=0,且(x ,y ,z )·⎝⎛⎭⎫-12,0,1=0. ∴x +y =0,且-12x +z =0,令x =2,则y =-2,z =1. ∴n =(2,-2,1),n 0=⎝⎛⎭⎫23,-23,13. ∴A 1到平面B 1NMD 1的距离为d =|11A B ·n 0|=⎪⎪⎪⎪(0,1,0)·⎝⎛⎭⎫23,-23,13=23. 答案:237.解:由题意知直线AC 到平面PEF 的距离即为点A 到平面PEF 的距离,以DA 为x 轴,DC 为y 轴,DP 为z 轴,建立空间直角坐标系,则A (1,0,0),P (0,0,1),E ⎝⎛⎭⎫1,12,0,F ⎝⎛⎭⎫12,1,0,∴PE =⎝⎛⎭⎫1,12,-1,PF =⎝⎛⎭⎫12,1,-1. 设n =(x ,y ,z )是平面PEF 的一个法向量,则由⎩⎨⎧n ·PE =0,n ·PF =0,得⎩⎨⎧x +y2-z =0,x 2+y -z =0.令x =1,则y =1,z =32,∴n =⎝⎛⎭⎫1,1,32.又∵AP =(-1,0,1), ∴d =|AP ·n ||n |=-1×1+0×1+1×321+1+94=1717.8.解:建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0),A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设n 为平面AEC 1F 的法向量,显然n 不垂直于平面ADF ,故可设n =(x ,y,1).由⎩⎪⎨⎪⎧n ·AE =0,n ·1EC =0,得⎩⎪⎨⎪⎧0·x +4·y +1=0,-2·x +0·y +2=0, 即⎩⎪⎨⎪⎧4y +1=0,-2x +2=0, ∴⎩⎪⎨⎪⎧x =1,y =-14.n =⎝⎛⎭⎫1,-14,1. 又1CC =(0,0,3).∴C 到平面AEC 1F 的距离为 d =|1CC ·n ||n |=31+116+1=43311.。
2017_2018学年高中数学课时跟踪训练十二二项散布北师大版选修2_3
8.(四川高考)某居民小区有两个彼此独立的平安防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率别离为 和p.
(1)假设在任意时刻至少有一个系统不发生故障的概率为 ,求p的值;
(2)设系统A在3次彼此独立的检测中不发生故障的次数为随机变量X,求X的概率散布列.
课时跟踪训练(十二) 二项散布
1.假设X~B ,那么P(X=2)=( )
A. B.
C. D.
2.在4次独立重复实验中,事件A发生的概率相同,假设事件A至少发生1次的概率为 ,那么事件A在1次实验中发生的概率为( )
AHale Waihona Puke B.C. D.3.某人射击一次击中目标的概率为0.6,通过3次射击,这人至少有2次击中目标的概率为( )
答案
1.选D∵X~B ,
∴P(X=2)=C 2 4= .
2.选A 事件A在一次实验中发生的概率为p,由题意得1-C p0(1-p)4= .因此1-p= ,p= .
3.选A 至少有2次击中目标包括以下情形:
只有2次击中目标,现在概率为
C ×0.62×(1-0.6)= ,
3次都击中目标,现在的概率为C ×0.63= ,
答案:
7.解:(1)该射手射击了5次,其中只在第一、三、五次击中目标,是在确信的情形下击中目标3次,也即在第二、四次没有击中目标,因此只有一种情形,又各次射击的结果互不阻碍,故所求其概率为
P1= × × × × = ;
(2)该射手射击了5次,其中恰有3次击中目标,击中次数X~B(5, ),故所求其概率为
5.解析:∵X~B(2,p),
∴P(X=k)=C pk(1-p)2-k,k=0,1,2.
【推荐K12】2017_2018学年高中数学课时跟踪训练十六抛物线及其标准方程北师大版选修2_1
5.解析:因为y2=2px过点M(2,2),于是p=1,所以点M到抛物线准线的距离为2+ = .
答案:
6.解析:抛物线y2=2px(p>0)的准线为x=- ,因为P(6,y)为抛物线上的点,所以P到焦点F的距离等于它到准线的距离,所以6+ =8,所以p=4,故焦点F到抛物线准பைடு நூலகம்的距离等于4.
8.解:(1)抛物线y2=2px的准线为x=- ,
于是,4+ =5,p=2.
所以抛物线方程为y2=4x.
(2)因为点A的坐标是(4,4),
由题意得B(0,4),M(0,2).
又F(1,0),所以kAF= .
因为MN⊥FA,所以kMN=- .
则FA的方程为y= (x-1),
MN的方程为y=- x+2.
C.8D.-8
4.若动圆与圆(x-2)2+y2=1外切,又与直线x+1=0相切,则动圆圆心的轨迹方程是()
A.y2=8xB.y2=-8x
C.y2=4xD.y2=-4x
5.抛物线y2=2px过点M(2,2),则点M到抛物线准线的距离为________________.
6.已知点P(6,y)在抛物线y2=2px(p>0)上,若点P到抛物线焦点F的距离等于8,则焦点F到抛物线准线的距离等于________________.
解方程组 得 所以N .
7.由条件解下列各题的标准方程及准线方程.
(1)求焦点在直线2x-y+5=0上的抛物线的标准方程及其准线方程.
(2)已知抛物线方程为2x2+5y=0,求其焦点和准线方程.
北师大版2017-2018学年高中数学选修2-3全册课时跟踪训练
北师大版2017-2018学年高中数学选修2-3全册课时跟踪训练目录课时跟踪训练(一) 分类加法计数原理和分步乘法计数原理1 课时跟踪训练(二)排列与排列数公式 (4)课时跟踪训练(三)排列的应用 (7)课时跟踪训练(四)组合与组合数公式 (10)课时跟踪训练(五)组合的应用 (13)课时跟踪训练(六)简单计数问题 (16)课时跟踪训练(七)二项式定理 (19)课时跟踪训练(八)二项式系数的性质 (22)课时跟踪训练(九)离散型随机变量及其分布列 (25)课时跟踪训练(十)超几何分布 (28)课时跟踪训练(十一)条件概率与独立事件 (31)课时跟踪训练(十二)二项分布 (35)课时跟踪训练(十三)离散型随机变量的均值 (39)课时跟踪训练(十四)离散型随机变量的方差 (44)课时跟踪训练(十五)正态分布 (48)阶段质量检测(一) (51)阶段质量检测(二) (56)阶段质量检测(三) (64)阶段质量检测(一) 计数原理 (72)阶段质量检测(二) 概率 (78)阶段质量检测(三) 统计案例 (86)阶段质量检测(四) 模块综合检测 (94)课时跟踪训练(一) 分类加法计数原理和分步乘法计数原理1.一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中任取一本,则不同的取法共有( )A .37种B .1 848种C .3种D .6种2.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a +b i ,其中虚数有( )A .30个B .42个C .36个D .35个3.现有高一学生9人,高二学生12人,高三学生7人,自发组织参加数学课外活动小组,从中推选两名来自不同年级的学生做一次活动的主持人,不同的选法共有( )A .756种B .56种C .28种D .255种4.用4种不同的颜色给矩形A ,B ,C ,D 涂色,要求相邻的矩形涂不同的颜色,则不同的涂色方法共有( )A .12种B .24种C .48种D .72种5.为了对某农作物新品种选择最佳生产条件,在分别有3种不同土质,2种不同施肥量,4种不同的种植密度,3种不同的种植时间的因素下进行种植试验,则不同的实验方案共有________种.6.如图,A →C ,有________种不同走法.7.设椭圆x 2a 2+y 2b 2=1,其中a ,b ∈{1,2,3,4,5}.(1)求满足条件的椭圆的个数;(2)如果椭圆的焦点在x 轴上,求椭圆的个数.8.某艺术小组有9人,每人至少会钢琴和小号中的1种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴和会小号的各1人,有多少种不同的选法?答案1.选A根据分类加法计数原理,得不同的取法为N=12+14+11=37(种).2.选C完成这件事分为两个步骤:第一步,虚部b有6种选法;第二步,实部a有6种选法.由分步乘法计数原理知,共有虚数6×6=36 个.3.选D推选两名来自不同年级的两名学生,有N=9×12+12×7+9×7=255(种).4.选D先涂C,有4种涂法,涂D有3种涂法,涂A有3种涂法,涂B有2种涂法.由分步乘法计数原理,共有4×3×3×2=72种涂法.5.解析:根据分步乘法计数原理,不同的方案有N=3×2×4×3=72(种).答案:726.解析:A→C的走法可分两类:第一类:A→C,有2种不同走法;第二类:A→B→C,有2×2=4种不同走法.根据分类加法计数原理,得共有2+4=6种不同走法.答案:67.解:(1)由椭圆的标准方程知a≠b,要确定一个椭圆,只要把a,b一一确定下来这个椭圆就确定了.∴要确定一个椭圆共分两步:第一步确定a,有5种方法;第二步确定b,有4种方法,共有5×4=20个椭圆.(2)要使焦点在x轴上,必须a>b,故可以分类:a=2,3,4,5时,b的取值列表如下:故共有1+2+38.解:由题意可知,在艺术小组9人中,有且仅有1人既会钢琴又会小号(把该人称为“多面手”),只会钢琴的有6人,只会小号的有2人,把选出会钢琴、小号各1人的方法分为两类:第一类:多面手入选,另1人只需从其他8人中任选一个,故这类选法共有8种.第二类:多面手不入选,则会钢琴者只能从6个只会钢琴的人中选出,会小号者也只能从只会小号的2人中选出,故这类选法共有6×2=12种.因此有N=8+12=20种不同的选法.课时跟踪训练(二) 排列与排列数公式1.5A 35+4A 24等于( )A .107B .323C .320D .3482.A 345!等于( ) A.120 B.125 C.15D.1103.设a ∈N +,且a <27,则(27-a )(28-a )·…·(34-a )等于( ) A .A 827-a B .A 27-a34-aC .A 734-aD .A 834-a4.若从4名志愿者中选出2人分别从事翻译、导游两项不同工作,则选派方案共有( ) A .16种 B .6种 C .15种D .12种5.已知9!=362 880,那么A 79=________. 6.给出下列问题:①从1,3,5,7这四个数字中任取两数相乘,可得多少个不同的积? ②从2,4,6,7这四个数字中任取两数相除,可得多少个不同的商?③有三种不同的蔬菜品种,分别种植在三块不同的试验田里,有多少种不同的种植方法?④有个头均不相同的五位同学,从中任选三位同学按左高右低的顺序并排站在一排照相,有多少种不同的站法?上述问题中,是排列问题的是________.(填序号)7.(1)计算4A 48+2A 58A 88-A 59;(2)解方程3A x 8=4A x -19.8.从语文、数学、英语、物理4本书中任意取出3本分给甲、乙、丙三人,每人一本,试将所有不同的分法列举出来.答案1.选D 原式=5×5×4×3+4×4×3=348. 2.选C A 345!=4×3×25×4×3×2×1=15.3.选D 8个括号里面是连续的自然数,依据排列数的概念,选D.4.选D 4名志愿者分别记作甲、乙、丙、丁,则选派方案有:甲乙,甲丙,甲丁,乙甲,乙丙,乙丁,丙甲,丙乙,丙丁,丁甲,丁乙,丁丙,即共有A 24=12种方案.5.解析:A 79=9!(9-7)!=362 8802=181 440. 答案:181 4406.解析:对于①,任取两数相乘,无顺序之分,不是排列问题;对于②,取出的两数,哪一个作除数,哪一个作被除数,其结果不同,与顺序有关,是排列问题;对于③,三种不同的蔬菜品种任一种种植在不同的试验田里,结果不同,是排列问题;对于④,选出的三位同学所站的位置已经确定,不是排列问题.答案:②③7.解:(1)原式=4A 48+2×4A 484×3×2A 48-9A 48=4+824-9=1215=45. (2)由3A x 8=4A x -19,得3×8!(8-x )!=4×9!(10-x )!,化简,得x 2-19x +78=0,解得x 1=6,x 2=13. 又∵x ≤8,且x -1≤9,∴原方程的解是x =6.8.解:从语文、数学、英语、物理4本书中任意取出3本,分给甲、乙、丙三人,每人一本,相当于从4个不同的元素中任意取出3个元素,按“甲、乙、丙”的顺序进行排列,每一个排列就对应着一种分法,所以共有A 34=4×3×2=24种不同的分法.不妨给“语文、数学、英语、物理”编号,依次为1,2,3,4号,画出下列树形图:由树形图可知,按甲乙丙的顺序分的分法为:语数英语数物语英数语英物语物数语物英数语英数语物数英语数英物数物语数物英英语数英语物英数语英数物英物语英物数物语数物语英物数语物数英物英语物英数课时跟踪训练(三)排列的应用1.6个人站成一排,甲、乙、丙3人必须站在一起的所有排列的总数为()A.A66B.3A33C.A33·A33D.A44·A332.(北京高考)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24 B.18C.12 D.63.由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23 145且小于43 521的数共有()A.56个B.57个C.58个D.60个4.(辽宁高考)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为() A.144 B.120C.72 D.245.(大纲全国卷)6个人排成一行,其中甲、乙两人不相邻的不同排法共有________种.(用数字作答)6.有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次,A,B 两位学生去问成绩,老师对A说:“你的名次不知道,但肯定没得第一名”;又对B说:“你是第三名”.请你分析一下,这五位学生的名次排列共有________种不同的可能.7.由A,B,C等7人担任班级的7个班委.(1)若正、副班长两职只能由这三人中选两人担任,有多少种分工方案?(2)若正、副班长两职至少要选三人中的1人担任,有多少种分工方案?8.如图,某伞厂生产的“太阳”牌太阳伞蓬是由太阳光的七种颜色组成的,七种颜色分别涂在伞蓬的八个区域内,且恰有一种颜色涂在相对区域内,则不同的颜色图案的此类太阳伞至多有多少种?答案1.选D甲、乙、丙3人站在一起有A33种站法,把3人作为一个元素与其他3人排列有A44种,共有A33·A44种.2.选B若选0,则0只能在十位,此时组成的奇数的个数是A23;若选2,则2只能在十位或百位,此时组成的奇数的个数是2×A23=12,根据分类加法计数原理得总个数为6+12=18.3.选C首位为3时,有A44=24个;首位为2时,千位为3,则有A12A22+1=5个,千位为4或5时有A12A33=12个;首位为4时,千位为1或2有A12A33=12个,千位为3时,有A12A22+1=5个.由分类加法计数原理知,共有符合条件的数字24+5+12+12+5=58(个).4.选D剩余的3个座位共有4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.5.解析:法一:先把除甲、乙外的4个人全排列,共有A44种方法.再把甲、乙两人插入这4人形成的五个空位中的两个,共有A25种不同的方法.故所有不同的排法共有A44·A25=24×20=480(种).法二:6人排成一行,所有不同的排法有A66=720(种),其中甲、乙相邻的所有不同的排法有A55A22=240(种),所以甲、乙不相邻的不同排法共有720-240=480(种).答案:4806.解析:先安排B有1种方法,再安排A有3种方法,最后安排C,D,E共A33种方法.由分步乘法计数原理知共有3A33=18种方法.答案:187.解:(1)先安排正、副班长有A23种方法,再安排其余职务有A55种方法,依分步乘法计数原理,共有A23A55=720种分工方案.(2)7人的任意分工方案有A77种,A,B,C三人中无一人任正、副班长的分工方案有A24 A55种,因此A,B,C三人中至少有1人任正、副班长的方案有A77-A24A55=3 600种.8.解:如图,对8个区域进行编号,任选一组对称区域(如1与5)同色,用7种颜色涂8个区域的不同涂法有7!种,又由于1与5,2与6,3与7,4与8是对称的,通过旋转后5,6,7,8,1,2,3,4与1,2,3,4,5,6,7,8是同一种涂色,即重复染色2次,故此种图案至多有7!2=2 520种.课时跟踪训练(四)组合与组合数公式1.给出下面几个问题:①10人相互通一次电话,共通多少次电话?②从10个人中选出3个作为代表去开会,有多少种选法?③从10个人中选出3个不同学科的课代表,有多少种选法?④由1,2,3组成无重复数字的两位数.其中是组合问题的有()A.①③B.②④C.①②D.①②④2.若A3n=12C2n,则n等于()A.8 B.5或6C.3或4 D.43.下列四个式子中正确的个数是()(1)C m n=A m nm!;(2)A m n=n A m-1n-1;(3)C m n÷C m+1n =m+1n-m;(4)C m+1n+1=n+1m+1C m n.A.1个B.2个C.3个D.4个4.若C7n+1-C7n=C8n,则n等于()A.12 B.13C.14 D.155.从2,3,5,7四个数中任取两个不同的数相乘,有m个不同的积,任取两个不同的数相除,有n个不同的商,则m∶n=________.6.方程C x28=C3x-828的解为________.7.计算:(1)C58+C98100C77;(2)C05+C15+C25+C35+C45+C55.8.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加; (3)甲、乙、丙三人不能参加; (4)甲、乙、丙三人只能有1人参加.答案1.选C ①是组合问题,因为甲与乙通了一次电话,也就是乙与甲通了一次电话,没有顺序的区别;②是组合问题,因为三个代表之间没有顺序的区别;③是排列问题,因为三个人担任哪一科的课代表是有顺序区别的;而④中选出的元素还需排列,有顺序问题是排列.所以①②是组合问题.2.选A ∵A 3n =12C 2n ,∴n (n -1)(n -2)=12×n (n -1)2.解得n =8. 3.选D 因为C m n =n !m !(n -m )!=1m !·n !(n -m )!=A m nm !,故(1)正确;因为n A m -1n -1=n ·(n -1)!(n -m )!=n !(n -m )!=A m n ,故(2)正确; 因为Cmn÷Cm +1n=n !m !(n -m )÷n !(m +1)!(n -m -1)!=n !m !(n -m )!×(m +1)!(n -m -1)!n !=m +1n -m,故(3)正确.因为C m +1n +1=(n +1)!(m +1)!(n -m )!,n +1m +1C m n =n +1m +1·n !m !(n -m )!=(n +1)!(m +1)!(n -m )!,所以C m +1n +1=n +1m +1C m n,故(4)正确. 4.选C C 7n +1-C 7n =C 8n ,即C 7n +1=C 8n +C 7n =C 8n +1,所以n +1=7+8,即n =14.5.解析:∵m =C 24,n =A 24,∴m ∶n =12. 答案:126.解析:当x =3x -8,解得x =4;当28-x =3x -8,解得x =9. 答案:4或97.解:(1)原式=C 38+C 2100×1=8×7×63×2×1+100×992×1 =56+4 950=5 006.(2)原式=2(C 05+C 15+C 25)=2(C 16+C 25)=2×⎝ ⎛⎭⎪⎫6+5×42×1=32. 8.解:(1)C 512=792种不同的选法.(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有C 29=36种不同的选法. (3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有C 59=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,分两步:第一步从甲、乙、丙中选1人,有C 13=3种选法;第二步从另外的9人中选4人有C 49种选法.共有C 13C 49=378种不同的选法.课时跟踪训练(五)组合的应用1.9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品,抽出产品中至少有2件一等品的抽法种数为()A.81B.60C.6 D.112.以一个正三棱柱的顶点为顶点的四面体有()A.6个B.12个C.18个D.30个3.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85 B.56C.49 D.284.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10 B.11C.12 D.155.(大纲全国卷)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有________种.(用数字作答)6.某校开设9门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门.学校规定,每位同学选修4门,共有________种不同选修方案.(用数字作答) 7.12件产品中,有10件正品,2件次品,从这12件产品中任意抽出3件.(1)共有多少种不同的抽法?(2)抽出的3件中恰好有1件次品的抽法有多少种?(3)抽出的3件中至少有1件次品的抽法有多少种?8.10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现如下结果:(1)4只鞋子没有成双的;(2)4只鞋子恰成两双;(3)4只鞋中有2只成双,另2只不成双.答案1.选A分三类:恰有2件一等品,有C24C25=60种取法;恰有3件一等品,有C34C15=20种取法;恰有4件一等品,有C44=1种取法.∴抽法种数为60+20+1=81.2.选B从6个顶点中任取4个有C46=15种取法,其中四点共面的有3种.所以满足题意的四面体有15-3=12个.3.选C由条件可分为两类:一类是甲、乙两人只有一人入选,有C12·C27=42种不同选法,另一类是甲、乙都入选,有C22·C17=7种不同选法,所以共有42+7=49种不同选法.4.选B与信息0110至多有两个位置上的数字对应相同的信息包括三类:第一类:与信息0110只有两个对应位置上的数字相同有C24=6个;第二类:与信息0110只有一个对应位置上的数字相同有C14=4个;第三类:与信息0110没有一个对应位置上的数字相同有C04=1个.∴与信息0110至多有两个对应位置上的数字相同的信息有6+4+1=11个.5.解析:第一步决出一等奖1名有C16种情况,第二步决出二等奖2名有C25种情况,第三步决出三等奖3名有C33种情况,故可能的决赛结果共有C16C25C33=60种情况.答案:606.解析:分两类完成:第一类,A,B,C三门课程都不选,有C46种不同的选修方案;第二类,A,B,C三门课程恰好选修一门,有C13·C36种不同选修方案.故共有C46+C13·C36=75种不同的选修方案.答案:757.解:(1)有C312=220种抽法.(2)分两步:先从2件次品中抽出1件有C12种方法;再从10件正品中抽出2件有C210种方法,所以共有C12C210=90种抽法.(3)法一(直接法):分两类:即包括恰有1件次品和恰有2件次品两种情况,与(2)小题类似共有C12C210+C22C110=100种抽法.法二(间接法):从12件产品中任意抽出3件有C312种方法,其中抽出的3件全是正品的抽法有C310种方法,所以共有C312-C310=100种抽法.8.解:(1)从10双鞋子中选取4双,有C410种不同选法,每双鞋子中各取一只,分别有2种取法,根据分步乘法计数原理,选取种数为N=C410·24=3 360(种).即4只鞋子没有成双有3 360种不同取法.(2)从10双鞋子中选取2双有C210种取法,所以选取种数为N=C210=45(种),即4只鞋子恰成双有45种不同取法.(3)先选取一双有C110种选法,再从9双鞋中选取2双有C29种选法,每双鞋只取一只各有2种取法.根据分步乘法计数原理,不同取法为N=C110C29·22=1 440(种).课时跟踪训练(六)简单计数问题1.从4名男生和3名女生中选3人分别从事三项不同的工作,若这3人中至少有1名女生,则选派的方案共有()A.108种B.186种C.216种D.270种2.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.C28A23B.C28A66C.C28A26D.C28A253.(大纲全国卷)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种4.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法有() A.40种B.50种C.60种D.70种5.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有________种.6.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法.7.如图,在∠AOB的两边上,分别有3个点和4个点,连同角的顶点共8个点.这8个点能作多少个三角形?8.有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?(1)甲得4本,乙得3本,丙得2本;(2)一人得4本,一人得3本,一人得2本.答案1.选B(1)直接法:从4名男生和3名女生中选出3人,至少有1名女生的选派方案可分为三类:①恰好有1名女生,2名男生,有C13C24A33种方法;②恰好有2名女生,1名男生,有C23C14A33种方法;③恰好有3名女生,有C33A33种方法;由分类加法计数原理得共有C13 C24A33+C23C14A33+C33A33=186种不同的选派方案.(2)间接法:从全部方案数中减去只派男生的方案数,则有A37-A34=186种不同的选派方案.2.选C从后排8人中选2人安排到前排6个位置中的任意两个位置即可,所以选法种数是C28A26.3.选A由分步乘法计数原理,先排第一列,有A33种方法,再排第二列,有2种方法,故共有A33×2=12种排列方法.4.选B先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以共有(15+10)×2=50种不同的乘车方法.5.解析:有两种满足题意的放法:(1)1号盒子里放2个球,2号盒子里放2个球,有C24C22种放法;(2)1号盒子里放1个球,2号盒子里放3个球,有C14C33种放法.综上可得,不同的放球方法共有C24C22+C14C33=10种.答案:106.解析:区域5有4种种法,区域1有3种种法,区域4有2种种法,若1,3同色,区域2有2种种法,或1,3不同色,区域2有1种种法,所以共有4×3×2×(1×2+1×1)=72种不同的种法.答案:727.解:从8个点中,任选3点共有C38种选法,其中有一个5点共线和4点共线,故共有C38-C34-C35=42个不同的三角形.8.解:(1)分三步完成:第一步:从9本不同的书中,任取4本分给甲,有C49种方法;第二步:从余下的5本书中,任取3本给乙,有C35种方法;第三步:把剩下的书给丙,有C22种方法.∴共有不同的分法为C49C35C22=1 260种.(2)分两步完成:第一步:按4本、3本、2本分成三组有C49C35C22种方法;第二步:将分成的三组书分给甲、乙、丙三个人,有A33种方法.∴共有C49C35C22A33=7 560种.课时跟踪训练(七) 二项式定理1.(x -2y )7的展开式中的第4项为( ) A .-280x 4y 3 B .280x 4y 3 C .-35x 4y 3D .35x 4y 32.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610B .27C 410 C .-9C 610D .9C 4103.(大纲全国卷)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ) A .56 B .84 C .112D .1684.已知⎝⎛⎭⎫2x 3+1x n 的展开式中的常数项是第7项,则正整数n 的值为( ) A .7 B .8 C .9D .105.(安徽高考)若⎝ ⎛⎭⎪⎫x +a 3x 8的展开式中x 4的系数为7,则实数a =________. 6.(浙江高考)设二项式⎝ ⎛⎭⎪⎫x -13x 5的展开式中常数项为A ,则A =________.7.⎝⎛⎭⎪⎫x +23x n展开式第9项与第10项二项式系数相等,求x 的一次项系数.8.在⎝⎛⎭⎪⎫2x 2-13x 8的展开式中,求:(1)第5项的二项式系数及第5项的系数; (2)倒数第3项.答案1.选A (x -2y )7的展开式中的第4项为T 4=C 37x 4(-2y )3=(-2)3C 37x 4y 3=-280x 4y 3. 2.选D T k +1=C k 10·x 10-k (-3)k ,令10-k =6,知k =4,∴T 5=C 410x 6(-3)4,即x 6的系数为9C 410.3.选D 在(1+x )8展开式中含x 2的项为C 28x 2=28x 2,(1+y )4展开式中含y 2的项为C 24y2=6y 2,所以x 2y 2的系数为28×6=168,故选D.4.选B ⎝⎛⎭⎫2x 3+1x n 的展开式的通项T r +1=C r n 2n -r x 3n -4r,由r =6时,3n -4r =0.得n =8.5.解析:二项式⎝⎛⎭⎪⎫x +a 3x 8展开式的通项为T r +1=C r 8a rx 8-43r ,令8-43r =4,可得r =3,故C 38a 3=7,易得a =12. 答案:126.解析:T r +1=(-1)r C r 5x 15-5r 6,令15-5r =0,得r =3,故常数项A =(-1)3C 35=-10.答案:-107.解:由题意知,C 8n =C 9n .∴n =17.∴T r +1=C r 17x 17-r 2·2r ·x -r 3=C r 17·2r ·x 17-r 2-r 3. ∴17-r 2-r3=1. 解得r =9.∴T r +1=C 917·x 4·29·x -3, 即T 10=C 917·29·x . 其一次项系数为C 917·29. 8.解:法一:利用二项式的展开式解决.(1)⎝ ⎛⎭⎪⎫2x 2-13x 8=(2x 2)8-C 18(2x 2)7·13x+C 28(2x 2)6·⎝ ⎛⎭⎪⎫13x 2-C 38(2x 2)5·⎝ ⎛⎭⎪⎫13x 3+C 48(2x 2)4·⎝ ⎛⎭⎪⎫13x 4-C 58(2x 2)3·⎝ ⎛⎭⎪⎫13x 5+C 68(2x 2)2·⎝ ⎛⎭⎪⎫13x 6-C 78(2x 2)·⎝ ⎛⎭⎪⎫13x 7+C 88⎝ ⎛⎭⎪⎫13x 8,则第5项的二项式系数为C 48=70,第5项的系数C 48·24=1 120. (2)由(1)中⎝ ⎛⎭⎪⎫2x 2-13x 8的展开式可知倒数第3项为C 68·(2x 2)2·⎝ ⎛⎭⎪⎫13x 6=112x 2. 法二:利用二项展开式的通项公式.(1)T 5=C 48(2x 2)8-4·⎝⎛⎭⎪⎫-13x 4=C 48·24·x 203, 则第5项的二项式系数是C 48=70, 第5项的系数是C 48·24=1 120. (2)展开式中的倒数第3项即为第7项, T 7=C 68·(2x 2)8-6·⎝⎛⎭⎪⎫-13x 6=112x 2.课时跟踪训练(八) 二项式系数的性质1.(x -1)11展开式中x 的偶次项系数之和是( ) A .-2 048 B .-1 023 C .-1 024D .1 0242.若C 1n x +C 2n x 2+…+C n n x n能被7整除,则x ,n 的值可能为( )A .x =4,n =3B .x =4,n =4C .x =5,n =4D .x =6,n =53.若⎝⎛⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( ) A .10 B .20 C .30D .1204.在⎝⎛⎭⎫ax -1x 4的展开式中各项系数之和是16.则a 的值是( ) A .2 B .3 C .4D .-1或35.若(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为________.6.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为________. 7.已知(1+3x )n 的展开式中,末三项的二项式系数的和等于121,求展开式中二项式系数最大的项.8.对二项式(1-x )10,(1)展开式的中间项是第几项?写出这一项. (2)求展开式中各二项式系数之和.(3)求展开式中除常数项外,其余各项的系数和.答案1.选C 令f (x )=(x -1)11,偶次项系数之和是f (1)+f (-1)2=(-2)112=-1 024.2.选C 由C 1n x +C 2n x 2+…+C n n x n =(1+x )n-1分别将选项A ,B ,C ,D 代入检验知,仅有x =5,n =4适合.3.选B 由2n =64,得n =6,∴T k +1=C k 6x 6-k ⎝⎛⎭⎫1x k =C k 6x6-2k(0≤k ≤6,k ∈N ).由6-2k =0,得k =3.∴T 4=C 36=20.4.选D 由题意可得(a -1)4=16,a -1=±2, 解得a =-1或a =3.5.解析:令x =-1,则原式可化为[(-1)2+1][2×(-1)+1]9=-2=a 0+a 1(2-1)+…+a 11(2-1)11,∴a 0+a 1+a 2+…+a 11=-2.答案:-26.解析:(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 2+a 4+a 1+a 3)·(a 0+a 2+a 4-a 1-a 3)=(a 0+a 1+a 2+a 3+a 4)·(a 0-a 1+a 2-a 3+a 4),令x =1,则a 0+a 1+a 2+a 3+a 4=(2+3)4,令x =-1,则a 0-a 1+a 2-a 3+a 4=(-2+3)4=(2-3)4,于是(2+3)4·(2-3)4=1.答案:17.解:由题意知C n n +C n -1n +C n -2n =121,即C 0n +C 1n +C 2n =121,∴1+n +n (n -1)2=121,即n 2+n -240=0,解得n =15或-16(舍).∴在(1+3x )15的展开式中二项式系数最大的项是第八、九两项.且T 8=C 715(3x )7=C 71537x 7, T 9=C 815(3x )8=C 81538x 8.8.解:(1)展开式共11项,中间项为第6项,T 6=C 510(-x )5=-252x 5. (2)C 010+C 110+C 210+…+C 1010=210=1 024.(3)设(1-x )10=a 0+a 1x +a 2x 2+…+a 10x 10. 令x =1,得a 0+a 1+a 2+…+a 10=0. 令x =0,得a 0=1.∴a1+a2+…+a10=-1.课时跟踪训练(九)离散型随机变量及其分布列1.一个袋子中有质量相等的红、黄、绿、白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是()A.小球滚出的最大距离B.倒出小球所需的时间C.倒出的三个小球的质量之和D.倒出的三个小球的颜色种数2.袋中有大小相同的5个钢球,分别标有1,2,3,4,5五个号码.在有放回地抽取条件下依次取出2个球,设两个球号码之和为随机变量X,则X所有可能值的个数是() A.25B.10C.9 D.53.设随机变量X等可能取值1,2,3,…,n,若P(X<4)=0.3,则n=()A.3 B.4C.10 D.不确定4.设随机变量X等可能地取值1,2,3,4,…,10.又设随机变量Y=2X-1,P(Y<6)的值为()A.0.3 B.0.5C.0.1 D.0.25.随机变量Y的分布列如下:则(1)x=(3)P(1<Y≤4)=________.6.随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,其中C为常数,则P(X≥2)=________.7.若离散型随机变量X的分布列为:求常数a8.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)记“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举A 包含的基本事件; (2)设X =m 2,求X 的分布列.答案1.选D A ,B 不能一一列举,不是离散型随机变量,而C 是常量,是个确定值,D 可能取1,2,3,是离散型随机变量.2.选C 第一次可取1,2,3,4,5中的任意一个,由于是有放回抽取,第二次也可取1,2,3,4,5中的任何一个,两次的号码和可能为2,3,4,5,6,7,8,9,10.3.选C ∵X 等可能取1,2,3,…,n , ∴X 的每个值的概率均为1n.由题意知P (X <4)=P (X =1)+P (X =2)+P (X =3)=3n =0.3,∴n =10.4.选A Y <6,即2X -1<6,∴X <3.5.X =1,2,3,P =310.5.解析:(1)由 i =16p i =1,∴x =0.1.(2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6) =0.1+0.15+0.2=0.45.(3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4) =0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.556.解析:由P (X =1)+P (X =2)+P (X =3)=1,得C 1×2+C 2×3+C 3×4=1,∴C =43.P (X ≥2)=P (X =2)+P (X =3)=432×3+433×4=13.答案:137.解:由离散型随机变量的性质得 ⎩⎪⎨⎪⎧9a 2-a +3-8a =1,0≤9a 2-a ≤1,0≤3-8a ≤1,解得a =13,或a =23(舍).所以随机变量X 的分布列为:8.解:(1)由x 2-x -6≤0,得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0,所以A 包含的基本事件为(-2,2),(2,-2),(-1,1),(1,-1),(0,0).(2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以X =m 2的所有不同取值为0,1,4,9, 且有P (X =0)=16,P (X =1)=26=13,P (X =4)=26=13,P (X =9)=16.故X 的分布列为课时跟踪训练(十) 超几何分布1.一个小组有6人,任选2名代表,求其中甲当选的概率是( ) A.12 B.13 C.14D.152.在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少摸到2个黑球的概率等于( )A.27 B.38 C.37D.9283.某12人的兴趣小组中,有5名“三好生”,现从中任意选6人参加竞赛,用X 表示这6人中“三好生”的人数,则C 35C 37C 612是表示的概率是( )A .P (X =2)B .P (X =3)C .P (X ≤2)D .P (X ≤3)4.从一副不含大、小王的52张扑克牌中任意抽出5张,则至少有3张A 的概率为( )A.C 34C 248C 552B.C 348C 24C 552C .1-C 148C 44C 552D.C 34C 248+C 44C 148C 5525.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为________.6.知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,小张抽4题,则小张抽到选择题至少2道的概率为________.7.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,求X 的分布列.8.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的分布列. (2)顾客乙从10张奖券中任意抽取2张. ①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值Y 元,求Y 的分布列.答案1.选B 设X 表示2名代表中有甲的个数,X 的可能取值为0,1, 由题意知X 服从超几何分布,其中参数为N =6,M =1,n =2,则P (X =1)=C 11C 15C 26=13.2.选A 黑球的个数X 服从超几何分布,则至少摸到2个黑球的概率P (X ≥2)=P (X =2)+P (X =3)=C 23C 15C 38+C 33C 05C 38=27.3.选B 6人中“三好生”的人数X 服从超几何分布,其中参数为N =12,M =5,n=6,所以P (X =3)=C 35C 37C 612.4.选D 设X 为抽出的5张扑克牌中含A 的张数.则P (X ≥3)=P (X =3)+P (X =4)=C 34C 248C 552+C 44C 148C 552.5.解析:至少有1名女生当选包括1男1女,2女两种情况,概率为C 13C 17+C 23C 210=815. 答案:8156.解析:由题意知小张抽到选择题数X 服从超几何分布(N =10,M =6,n =4), 小张抽到选择题至少2道的概率为:P (X ≥2)=P (X =2)+P (X =3)+P (X =4)=C 26C 24C 410+C 36C 14C 410+C 46C 04C 410=3742.答案:37427.解:由题意知,旧球个数X 的所有可能取值为3,4,5,6.则P (X =3)=C 33C 312=1220,P (X =4)=C 23C 19C 312=27220,P (X =5)=C 29C 13C 312=108220=2755,P (X =6)=C 39C 312=84220=2155.所以X 的分布列为8.解:(1)抽奖一次,只有中奖和不中奖两种情况,故X 的取值只有0和1两种情况. P (X =1)=C 14C 110=410=25,则P (X =0)=1-P (X =1)=1-25=35.因此X 的分布列为(2)①顾客乙中奖可分为互斥的两类:所抽取的2张奖券中有1张中奖或2张都中奖.故所求概率P =C 14C 16+C 24C 06C 210=3045=23. ②Y 的所有可能取值为0,10,20,50,60,且P (Y =0)=C 04C 26C 210=1545=13,P (Y =10)=C 13C 16C 210=1845=25,P (Y =20)=C 23C 06C 210=345=115,P (Y =50)=C 11C 16C 210=645=215,P (Y =60)=C 11C 13C 210=345=115.因此随机变量Y 的分布列为课时跟踪训练(十一) 条件概率与独立事件1.抛掷一颗骰子一次,A 表示事件:“出现偶数点”,B 表示事件:“出现3点或6点”,则事件A 与B 的关系是( )A .相互互斥事件B .相互独立事件C .既相互互斥又相互独立事件D .既不互斥又不独立事件2.设A ,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为( )A.25 B.35 C.45D.3103.某农业科技站对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地取出一粒,则这粒水稻种子发芽能成长为幼苗的概率为( )A .0.02B .0.08C .0.18D .0.724.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为15,身体关节构造合格的概率为14,从中任挑一儿童,这两项至少有一项合格的概率是(假定体型与身体关节构造合格与否相互之间没有影响)( )A.1320B.15C.14D.255.有一个数学难题,在半小时内,甲能解决的概率是12,乙能解决的概率是13,两人试图独立地在半小时内解决它,则两人都未解决的概率为________,问题得到解决的概率为________.6.从编号为1,2,…,10的10个大小相同的球中任取4个,已知选出4号球的条件下,选出球的最大号码为6的概率为________.7.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1。
2017-2018学年北师大版高中数学选修2-1同步配套课时跟踪训练含解析
2017-2018学年高中数学北师大版选修2-1同步配套课时跟踪训练目录课时跟踪训练(一) 命题 (1)课时跟踪训练(二)充分条件与必要条件 (4)课时跟踪训练(三)全称量词与存在量词 (8)课时跟踪训练(四)逻辑联结词“且”“或”“非” (11)课时跟踪训练(五)从平面向量到空间向量 (15)课时跟踪训练(六)空间向量的运算 (18)课时跟踪训练(七)空间向量的标准正交分解与坐标表示空间向量基本定理 (22)课时跟踪训练(八)空间向量运算的坐标表示 (26)课时跟踪训练(九)空间向量与平行关系 (29)课时跟踪训练(十)空间向量与垂直关系 (33)课时跟踪训练(十一)直线间的夹角、平面间的夹角 (38)课时跟踪训练(十二)直线与平面的夹角 (43)课时跟踪训练(十三)距离的计算 (48)课时跟踪训练(十四)椭圆及其标准方程 (54)课时跟踪训练(十五)椭圆的简单性质 (58)课时跟踪训练(十六)抛物线及其标准方程 (62)课时跟踪训练(十七)抛物线的简单性质 (65)课时跟踪训练(十八)双曲线及其标准方程 (68)课时跟踪训练(十九)双曲线的简单性质 (71)课时跟踪训练(二十)曲线与方程 (75)课时跟踪训练(二十一)圆锥曲线的共同特征直线与圆锥曲线的交点 (78)课时跟踪训练(一) 命 题1.命题“若x >1,则x >-1”的否命题是( ) A .若x >1,则x ≤-1 B .若x ≤1,则x >-1 C .若x ≤1,则x ≤-1 D .若x <1,则x <-12.给出下列三个命题:( )①“全等三角形的面积相等”的否命题; ②“若lg x 2=0,则x =-1”的逆命题;③“若x ≠y ,或x ≠-y ,则|x |≠|y |”的逆否命题. 其中真命题的个数是( ) A .0 B .1 C .2D .33.(湖南高考)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π44.已知命题“若ab ≤0,则a ≤0或b ≤0”,则下列结论正确的是( ) A .真命题,否命题:“若ab >0,则a >0或b >0” B .真命题,否命题:“若ab >0,则a >0且b >0” C .假命题,否命题:“若ab >0,则a >0或b >0” D .假命题,否命题:“若ab >0,则a >0且b >0”5.已知命题:弦的垂直平分线经过圆心,并平分弦所对的弧.若把上述命题改为“若p ,则q ”的形式,则p 是____________________________,q 是__________________________.6.命题“若x 2<4,则-2<x <2”的逆否命题为________________,为________(填“真、假”)命题.7.把命题“两条平行直线不相交”写成“若p ,则q ”的形式,并写出其逆命题、否命题、逆否命题.8.证明:已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.答 案1.选C 原命题的否命题是对条件“x >1”和结论“x >-1”同时否定,即“若x ≤1,则x ≤-1”,故选C.2.选B ①的否命题是“不全等的三角形面积不相等”,它是假命题;②的逆命题是“若x =-1,则lg x 2=0”,它是真命题;③的逆否命题是“若|x |=|y |,则x =y 且x =-y ”,它是假命题,故选B.3.选C 以否定的结论作条件、否定的条件作结论得出的命题为逆否命题,即“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”. 4.选B 逆否命题“若a >0且b >0,则ab >0”,显然为真命题,又原命题与逆否命题等价,故原命题为真命题.否命题为“若ab >0,则a >0且b >0”,故选B.5.答案:一条直线是弦的垂直平分线 这条直线经过圆心且平分弦所对的弧 6.答案:若x ≥2或x ≤-2,则x 2≥4 真7.解:原命题:若直线l 1与l 2平行,则l 1与l 2不相交; 逆命题:若直线l 1与l 2不相交,则l 1与l 2平行; 否命题:若直线l 1与l 2不平行, 则l 1与l 2相交; 逆否命题:若直线l 1与l 2相交,则l 1与l 2不平行.8.证明:法一:原命题的逆否命题为“已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若a +b <0,则f (a )+f (b )<f (-a )+f (-b )”.∵a +b <0,∴a <-b ,b <-a . 又∵f (x )在(-∞,+∞)上是增函数, ∴f (a )<f (-b ),f (b )<f (-a ).∴f(a)+f(b)<f(-a)+f(-b),即逆否命题为真命题.∴原命题为真命题.法二:假设a+b<0,则a<-b,b<-a,又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a).∴f(a)+f(b)<f(-a)+f(-b).这与已知条件f(a)+f(b)≥f(-a)+f(-b)相矛盾.因此假设不成立,故a+b≥0.课时跟踪训练(二) 充分条件与必要条件1.“1<x <2”是“x <2”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2.函数f (x )=x 2+mx +1的图像关于直线x =1对称的充要条件是( ) A .m =-2 B .m =2 C .m =-1D .m =13.已知命题p :“a ,b ,c 成等差数列”,命题q :“a b +cb =2”,则命题p 是命题q的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件4.“a >3”是“函数f (x )=ax +2在区间[-1,2]上存在零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.直线l :x -y +m =0与圆C :(x +1)2+y 2=2有公共点的充要条件是_________ _______________.6.在下列各项中选择一项填空: ①充分不必要条件 ②必要不充分条件 ③充要条件④既不充分也不必要条件(1)记集合A ={-1,p,2},B ={2,3},则“p =3”是“A ∩B =B ”的________; (2)“a =1”是“函数f (x )=|2x -a |在区间[12,+∞)上为增函数”的________.7.指出下列各组命题中,p 是q 的什么条件(充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件)?(1)p :△ABC 中,b 2>a 2+c 2,q :△ABC 为钝角三角形; (2)p :△ABC 有两个角相等,q :△ABC 是正三角形; (3)若a ,b ∈R ,p :a 2+b 2=0,q :a =b =0; (4)p :△ABC 中,A ≠30°,q :sin A ≠12.8.求方程ax 2+2x +1=0有两个不相等的负实根的充要条件.答 案1.选A 当1<x <2时,必有x <2;而x <2时,如x =0,推不出1<x <2,所以“1<x <2”是“x <2”的充分不必要条件.2.选A 函数f (x )=x 2+mx +1的图像关于x =1对称⇔-m2=1⇔m =-2.3.选A 若a b +cb =2,则a +c =2b ,由此可得a ,b ,c 成等差数列;当a ,b ,c 成等差数列时,可得a +c =2b ,但不一定得出a b +cb =2,如a =-1,b =0,c =1.所以命题p 是命题q 的必要不充分条件,故选A.4.选A 当a >3时,f (-1)f (2)=(-a +2)(2a +2)<0,即函数f (x )=ax +2在区间[-1,2]上存在零点;但当函数f (x )=ax +2在区间[-1,2]上存在零点;不一定是a >3,如当a =-3时,函数f (x )=ax +2=-3x +2在区间[-1,2]上存在零点.所以“a >3”是“函数f (x )=ax +2在区间[-1,2]上存在零点”的充分不必要条件,故选A.5.解析:直线l 与圆C 有公共点⇔|-1+m |2≤2⇔|m -1|≤2⇔-1≤m ≤3.答案:m ∈[-1,3]6.解析:(1)当p =3时,A ={-1,2,3},此时A ∩B =B ;若A ∩B =B ,则必有p =3.因此“p =3”是“A ∩B =B ”的充要条件.(2)当a =1时,f (x )=|2x -a |=|2x -1|在⎣⎡⎭⎫12,+∞上是增函数;但由f (x )=|2x -a |在区间[12,+∞)上是增函数不能得到a =1,如当a =0时,函数f (x )=|2x -a |=|2x |在区间⎣⎡⎭⎫12,+∞上是增函数.因此“a =1”是“函数f (x )=|2x -a |在区间⎣⎡⎭⎫12,+∞上为增函数”的充分不必要条件. 答案:(1)③ (2)①7.解:(1)△ABC 中,∵b 2>a 2+c 2,∴cos B =a 2+c 2-b 22ac<0,∴B 为钝角,即△ABC 为钝角三角形,反之若△ABC 为钝角三角形,B 可能为锐角,这时b 2<a 2+c 2. ∴p ⇒q ,q ⇒/ p ,故p 是q 的充分不必要条件. (2)有两个角相等不一定是等边三角形,反之一定成立, ∴p ⇒/ q ,q ⇒p ,故p 是q 的必要不充分条件.(3)若a 2+b 2=0,则a =b =0,故p ⇒q ;若a =b =0,则a 2+b 2=0,即q ⇒p ,所以p 是q 的充要条件.(4)转化为△ABC 中sin A =12是A =30°的什么条件.∵A =30°⇒sin A =12,但是sin A =12⇒/ A =30°,∴△ABC 中sin A =12是A =30°的必要不充分条件.即p 是q 的必要不充分条件.8.解:①当a =0时,方程为一元一次方程,其根为x =-12,不符合要求;②当a ≠0时,方程ax 2+2x +1=0为一元二次方程,有两个不相等的负实根的充要条件为⎩⎪⎨⎪⎧4-4a >0,-2a <0,1a >0,解得0<a <1.所以ax 2+2x +1=0有两个不相等的负实根的充要条件是0<a <1.课时跟踪训练(三)全称量词与存在量词1.将命题“x2+y2≥2xy”改写成全称命题为()A.对任意x,y∈R,都有x2+y2≥2xy成立B.存在x,y∈R,使x2+y2≥2xy成立C.对任意x>0,y>0,都有x2+y2≥2xy成立D.存在x<0,y<0,使x2+y2≤2xy成立2.“关于x的不等式f(x)>0有解”等价于()A.存在x∈R,使得f(x)>0成立B.存在x∈R,使得f(x)≤0成立C.对任意x∈R,使得f(x)>0成立D.对任意x∈R,f(x)≤0成立3.下列命题为真命题的是()A.对任意x∈R,都有cos x<2成立B.存在x∈Z,使log2(3x-1)<0成立C.对任意x>0,都有3x>3成立D.存在x∈Q,使方程2x-2=0有解4.给出四个命题:①末位数字是偶数的整数能被2整除;②有的菱形是正方形;③存在实数x,使x>0;④对于任意实数x,2x+1都是奇数.下列说法正确的是() A.四个命题都是真命题B.①②是全称命题C.②③是特称命题D.四个命题中有两个假命题5.下列命题中全称命题是__________;特称命题是________.①正方形的四条边相等;②有两个角是45°的三角形是等腰直角三角形;③正数的平方根不等于0;④至少有一个正整数是偶数.6.命题“偶函数的图像关于y轴对称”的否定是_________________________________ ______________________________.7.写出下列命题的否定并判断其真假.(1)有的四边形没有外接圆;(2)某些梯形的对角线互相平分;(3)被8整除的数能被4整除.8.(1)若命题“对于任意实数x ,不等式sin x +cos x >m 恒成立”是真命题,求实数m 的取值范围;(2)若命题“存在实数x ,使不等式sin x +cos x >m 有解”是真命题,求实数m 的取值范围.答 案1.选A 本题中的命题仅保留了结论,省略了条件“任意实数x ,y ”,改成全称命题为:对任意实数x ,y ,都有x 2+y 2≥2xy 成立.2.选A “关于x 的不等式f (x )>0有解”等价于“存在实数x ,使得f (x )>0成立”,故选A.3.选A A 中,由于函数y =cos x 的最大值是1,又1<2,所以A 是真命题;B 中,log 2(3x -1)<0⇔0<3x -1<1⇔13<x <23,所以B 是假命题;C 中,当x =1时,31=3,所以C 是假命题;D 中,2x -2=0⇔x =2∈/ Q ,所以D 是假命题,故选A.4.选C ①④为全称命题;②③为特称命题;①②③为真命题;④为假命题. 5.解析:①③是全称命题,②④是特称命题. 答案:①③ ②④6.解析:本题中的命题是全称命题,省略了全称量词,加上全称量词后该命题可以叙述为:所有偶函数的图像关于y 轴对称.将命题中的全称量词“所有”改为存在量词“有些”,结论“关于y 轴对称”改为“关于y 轴不对称”,所以该命题的否定是“有些偶函数的图像关于y 轴不对称”.答案:有些偶函数的图像关于y 轴不对称7.解:(1)命题的否定:所有的四边形都有外接圆,是假命题. (2)命题的否定:任一个梯形的对角线不互相平分,是真命题. (3)命题的否定:存在一个数能被8整除,但不能被4整除,是假命题. 8.解:(1)令y =sin x +cos x ,x ∈R , ∵y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4≥-2, 又∵任意x ∈R ,sin x +cos x >m 恒成立, ∴只要m <-2即可.∴所求m 的取值范围是(-∞,-2). (2)令y =sin x +cos x ,x ∈R ,∵y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4∈[-2,2]. 又∵存在x ∈R ,使sin x +cos x >m 有解,∴只要m <2即可,∴所求m 的取值范围是(-∞,2).课时跟踪训练(四)逻辑联结词“且”“或”“非”1.已知命题p,q,若命题綈p是假命题,命题p∨q是真命题,则()A.p是真命题,q是真命题B.p是假命题,q是真命题C.p是真命题,q可能是真命题也可能是假命题D.p是假命题,q可能是真命题也可能是假命题2.对命题p:1∈{1},命题q:1∉∅,下列说法正确的是()A.p且q为假命题B.p或q为假命题C.非p为真命题D.非q为假命题3.命题“若a∉A,则b∈B”的否定是()A.若a∉A,则b∉B B.若a∉A,则b∈BC.若a∈A,则b∉B D.若b∉A,则a∈B4.已知命题p:若(x-1)(x-2)≠0,则x≠1且x≠2;命题q:存在实数x,使2x<0.下列选项中为真命题的是()A.綈p B.綈p或qC.綈q 且p D.q5.分别用“p或q”,“p且q”,“非p”填空:(1)命题“非空集A∩B中的元素既是A中的元素,也是B中的元素”是________的形式;(2)命题“非空集A∪B中的元素是A中的元素或B中的元素”是________的形式;(3)命题“非空集∁U A的元素是U中的元素但不是A中的元素”是________的形式.6.已知p:函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,若綈p是假命题,则a的取值范围是______________________.7.在一次模拟打飞机的游戏中,小李接连射击了两次,设命题p是“第一次击中飞机”,命题q是“第二次击中飞机”.试用p,q以及逻辑联结词“或”“且”“非”表示下列命题:(1)命题s:两次都击中飞机;(2)命题r:两次都没击中飞机;(3)命题t:恰有一次击中了飞机;(4)命题u:至少有一次击中了飞机.8.已知p:关于x的方程x2-ax+4=0有实根;q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数.若“p或q”是真命题,“p且q”是假命题,求实数a的取值范围.答案1.选C由于綈p是假命题,所以p是真命题,由于命题p或q一真则真,所以q可能是真命题也可能是假命题,故选C.2.选D由已知易得命题p和q均是真命题,所以p且q为真命题,p或q为真命题,非p为假命题,非q为假命题,故选D.3.选A命题的否定只否定其结论,为:若a∉A,则b∉B.故应选A.4.选C很明显命题p为真命题,所以綈p为假命题;由于函数y=2x,x∈R的值域是(0,+∞),所以q是假命题,所以綈q是真命题.所以綈p或q为假命题,綈q且p为真命题,故选C.5.解析:(1)命题可以写为“非空集A∩B中的元素是A中的元素,且是B中的元素”,故填p且q;(2)“是A中的元素或B中的元素”含有逻辑联结词“或”,故填p或q;(3)“不是A中的元素”暗含逻辑联结词“非”,故填非p.答案:p且q p或q非p6.解析:綈p:函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上不是减函数.∵綈p为假,则p为真,即函数在(-∞,4]上为减函数,∴-(a-1)≥4,即a≤-3,∴a的取值范围是(-∞,-3].答案:(-∞,-3]7.解:(1)两次都击中飞机表示:第一次击中飞机且第二次击中飞机,所以命题s表示为p且q.(2)两次都没击中飞机表示:第一次没有击中飞机且第二次没有击中飞机,所以命题r 表示为綈p且綈q.(3)恰有一次击中了飞机包含两种情况:一是第一次击中飞机且第二次没有击中飞机,此时表示为p且綈q,二是第一次没有击中飞机且第二次击中飞机,此时表示为綈p且q,所以命题t表示为( p且綈q)或(綈p且q).(4)法一:命题u表示:第一次击中飞机或第二次击中飞机,所以命题u表示为p或q.法二:綈u:两次都没击中飞机,即是命题r,所以命题u是綈r,从而命题u表示为綈(綈p且綈q).法三:命题u表示:第一次击中飞机且第二次没有击中飞机,或者第一次没有击中飞机且第二次击中飞机,或者第一次击中飞机且第二次击中飞机,所以命题u表示为(p且綈q)或(綈p且q)或(p且q).8.解:由“p或q”是真命题,“p且q”是假命题可知p,q一真一假.p为真命题时,Δ=a2-16≥0,∴a≥4或a≤-4;q 为真命题时,对称轴x =-a4≤3,∴a ≥-12.当p 真q 假时,⎩⎪⎨⎪⎧a ≥4或a ≤-4,a <-12,得a <-12;当p 假q 真时,⎩⎪⎨⎪⎧-4<a <4,a ≥-12,得-4<a <4.综上所述,a 的取值范围是(-∞,-12)∪(-4,4).课时跟踪训练(五) 从平面向量到空间向量1.空间向量中,下列说法正确的是( )A .如果两个向量的长度相等,那么这两个向量相等B .如果两个向量平行,那么这两个向量的方向相同C .如果两个向量平行, 并且它们的模相等,那么这两个向量相等D .同向且等长的有向线段表示同一向量 2.下列说法中正确的是( )A .若|a |=|b |,则a ,b 的长度相同,方向相同或相反B .若a 是b 的相反向量,则|a |=|b |C .如果两个向量平行,则这两向量相等D .在四边形ABCD 中,AB =DC3.在四边形ABCD 中,若AB =DC ,且|AC |=|BD|,则四边形ABCD 为( ) A .菱形 B .矩形 C .正方形D .不确定4.在正方体ABCD -A 1B 1C 1D 1中,平面ACC 1A 1的法向量是( )A .BDB .1BCC .1BD D .1A B5.在正方体ABCD -A 1B 1C 1D 1中,以A 1为起点,以正方体的其余顶点为终点的向量中,与向量1BC垂直的向量有________.6.如图正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是AB ,AD ,BC ,CC 1的中点,则〈EF ,GH〉=________.7.如图所示,在平行六面体ABCD -A 1B 1C 1D 1顶点为起点或终点的向量中:(1)写出与1BB相等的向量;(2)写出与BA相反的向量;(3)写出与BA平行的向量.8.如图,在正方体ABCD -A 1B 1C 1D 1中,11A B=a ,11A D =b ,1A A =c ,E ,F ,G ,H ,P ,Q 分别是AB ,BC ,CC 1,C 1D 1,D 1A 1,A 1A 的中点,求〈PQ ,EF 〉,〈PQ ,GH〉,〈GH ,FE 〉.答 案1.选D 只有两个向量方向相同且长度相等,才能为相等向量.故D 正确. 2.选B 模相等的两向量,方向不一定相同或相反;相反向量模相等,方向相反;平行向量并不一定相等;若AB =DC,则四边形ABCD 是平行四边形.3.选B 若AB =DC,则AB =DC ,且AB ∥DC ,∴四边形ABCD 为平行四边形,又|AC |=|BD|,即AC =BD ,∴四边形ABCD 为矩形. 4.选A ∵BD ⊥AC ,BD ⊥AA 1, ∴BD ⊥面ACC 1A 1,故BD为平面ACC 1A 1的法向量.5.解析:A 1B 1⊥面BCC 1B 1,∴11A B ⊥1BC;A 1D ⊥AD 1,而AD 1∥BC 1,∴1A D ⊥1BC.答案:11A B 1A D6.解析:连接DB ,BC 1,DC 1,在正方体ABCD -A 1B 1C 1D 1中, △BDC 1为等边三角形.∵E ,F ,G ,H 分别是AB ,AD ,BC ,CC 1的中点, ∴EF ∥BD ,GH ∥BC 1.∴〈EF ,GH 〉=〈BD ,1BC〉=60°.答案:60°7.解:(1) 1CC ,1DD ,1AA . (2)DC ,11D C ,11A B ,AB .(3)AB ,CD,DC ,11D C ,11C D ,11A B ,11B A .8.解:由题意知,六边形EFGHPQ 为正六边形,所以〈PQ ,EF 〉=∠HPQ =2π3;〈PQ ,GH 〉=∠FGH =2π3;〈GH ,FE 〉等于∠QEF 的补角,即〈GH ,FE 〉=π3.课时跟踪训练(六) 空间向量的运算1.如图,在平行六面体ABCD -A ′B ′C ′D ′中,设AB =a , AD=b ,1AA =c ,则下列与向量A C相等的表达式是( )A .-a +b +cB .-a -b +cC .a -b -cD .a +b -c2.已知i ,j ,k 是两两垂直的单位向量,a =2i -j +k ,b =i +j -3k ,则a·b =( ) A .-2 B .-1 C .±1D .23.如图,已知空间四边形ABCD ,连接AC ,BD .设M ,N 分别是BC ,CD 的中点,则AB +12(BD +BC)=( )A .ANB .CNC .BCD.12BC 4.设A ,B ,C ,D 是空间不共面的四点,且满足AB ·AC =AC ·AD =AB ·AD=0,则△BCD 为( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定5.如图,▱ABCD 的对角线AC 和BD 交于点E ,P 为空间任意一点,若PA +PB +PC +PD =x PE,则x =________.6.设a ,b ,c 满足a +b +c =0,且a ⊥b ,|a |=1,|b |=2,则|c |=________.7.在四面体O -ABC 中,棱OA ,OB ,OC 两两互相垂直,且|OA |=1,|OB |=2,|OC|=3,G 为△ABC 的重心,求OG ·(OA +OB +OC)的值.8.如图,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,将它沿对角线AC 折起,使〈BA ,CD〉=60°,求B ,D 间的距离.答 案1.选D A C ' =A A ' +AB +BC=-c +a +b =a +b -c .2.选A a·b =(2i -j +k )(i +j -3k )=2i 2-j 2-3k 2=-2.3.选A AB +12(BD +BC )=AB +BN =AN .4.选B BD =BA +AD ,BC =BA +AC ,CD =CA +AD,∴cos 〈BD ,BC 〉=(BA +AD )·(BA +AC)|BA+AD |·|BA +AC |=2BA | BA +AD ||BA +AC |>0,∴〈BD ,BC 〉为锐角,同理cos 〈CB ,CD〉>0,∴∠BCD 为锐角,cos 〈DB ,DC〉>0,∴∠BDC 为锐角,即△BCD 为锐角三角形.5.解析:过E 作MN ∥AB 分别交BC ,AD 于点M ,N .∴PA +PB +PC +PD =(PA +PD )+(PB +PC )=2PN +2PM =2(PN+PM )=4PE .答案:46.解析:∵a +b +c =0,∴c =-a -b . ∴|c |=(-a -b )2=a 2+2a ·b +b 2=1+4= 5. 答案: 57.解:∵OG =OA +AG =OA +13(AC +AB)=13(OA+OB +OC ). ∴OG ·(OA +OB +OC )=13(OA +OB +OC )2=13(|OA |2+|OB |2+|OC |2+2OA ·OB +2OA ·OC +2OB ·OC )=13(1+4+9)=143.8.解:∵∠ACD =90°,∴AC ·CD =0.同理,BA ·AC=0.∵BD =BA +AC+CD ,∴BD 2=BA 2+2AC +CD 2+2BA ·AC +2BA ·CD +2AC ·CD =2BA +2AC +2CD +2BA ·CD =3+2×1×1×cos 〈BA ,CD〉=4.∴|BD|=2,即B ,D 间的距离为2.课时跟踪训练(七) 空间向量的标准正交分解与坐标表示空间向量基本定理1.在以下三个命题中,真命题的个数是( )①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面;②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线; ③若a ,b 是两个不共线的向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则a ,b ,c 构成空间的一个基底.A .0个B .1个C .2个D .3个2.如图,已知正方体ABCD -A ′B ′C ′D ′中,E 是平面A ′B ′C ′D ′的中心,a =12AA ,b =12AB ,c =13AD ,AE=x a +y b +z c ,则( )A .x =2,y =1,z =32B .x =2,y =12,z =12C .x =12,y =12,z =1D .x =12,y =12,z =323.如图,在正方体ABCD -A 1B 1C 1D 1中,棱长为1,则1AB 在1CB上的投影为( )A .-22B.22C .- 2 D. 24.如图,在三棱柱ABC -A 1B 1C 1中,D 是面BB 1C 1C 的中心,且1AA=a ,AB=b ,1AC =c ,则1A B =( )A.12a +12b +12c B.12a -12b +12c C.12a +12b -12c D .-12a +12b +12c5.如图,在长方体ABCD -A1B 1C 1D 1中,AB =2,BC =1,CC 1=1,则1AC 在BA上的投影是________.6.在三棱锥O -ABC 中,OA =a ,OB =b ,OC=c ,D 为BC 的中点,E 为AD 的中点,则OE=________(用a ,b ,c 表示).7.已知ABCD -A 1B 1C 1D 1是棱长为1的正方体,建立如图所示的空间直角坐标系,试写出A ,B ,C ,D ,A 1,B 1,C 1,D 1各点的坐标,并写出DA ,DB ,DC ,1DC ,1DD ,1DA,1DB 的坐标表示.8.如右图,已知P A ⊥平面ABCD ,四边形ABCD 为正方形,G 为△PDC的重心,AB =i ,AD =j ,AP=k ,试用基底i ,j ,k 表示向量PG ,BG .答 案1.选C ③中向量a ,b ,c 共面,故a ,b ,c 不能构成空间向量的一个基底,①②均正确.2.选A AE =AA ' +A E ' =AA ' +12(A B '' +A D '' )=2a +b +32c .3.选B ∵正方体ABCD -A 1B 1C 1D 1的棱长为1,∴|1AB |=2,|AC |=2,|1B C|= 2.∴△AB 1C 是等边三角形.∴1AB 在1CB 上的投影为|1AB |cos 〈1AB ,1CB 〉=2×cos 60°=22.4.选D 1A D =11A C +1C D =AC +12(1C C +11C B)=c +12(-1AA +CA +AB )=c -12a +12(-c )+12b=-12a +12b +12c .5.解析:1AC 在BA 上的投影为|1AC |cos 〈1AC ,BA〉,在△ABC 1中,cos ∠BAC 1 =|AB ||AC 1|=222+12+12=26=63, 又|1AC|= 6.∴|1AC |cos 〈1AC ·BA 〉=6×⎝⎛⎭⎫-63=-2. 答案:-26.解析:如图,OE =OA +AE =OA +12AD =OA +14(AB +AC)=OA +14(OB -OA +OC -OA).=12OA+14OB +14OC =12a +14b +14c . 答案:12a +14b +14c7.解:∵正方体ABCD -A 1B 1C 1D 1的棱长为1,∴A (1,0,0), B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),B 1(1,1,1),C 1(0,1,1),D 1(0,0,1).∴DA =(1,0,0),DB =(1,1,0),DC =(0,1,0),1DC=(0,1,1),1DD =(0,0,1),1DA =(1,0,1),1DB=(1,1,1).8.解:∵G 是△PDC 的重心,∴PG =23PN =13(PD +PC )=13(PA+AD +PA +AB +BC ) =13(-k +j -k +i +j )=13i +23j -23k , BG =BA +AP +PG=-i +k +13i +23j -23k=-23i +23j +13k .课时跟踪训练(八) 空间向量运算的坐标表示1.下列各组向量中不平行的是( ) A .a =(1,2,-2),b =(-2,-4,4) B .c =(1,0,0),d =(-3,0,0) C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,-24,40)2.已知a =(2,-1,3),b =(-4,2,x ),c =(1,-x,2),若(a +b )⊥c ,则x =( ) A .4 B .-4 C.12D .-63.若a =(1,λ,-1),b =(2,-1,2),且a 与b 的夹角的余弦为19,则|a |=( )A.94B.102C.32D. 64.如图,在空间直角坐标系中有四棱锥P -ABCD ,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且P A =2,E 为PD 的中点,则|BE|=( )A .2 B. 5 C. 6 D .2 25.已知向量a =(-1,0,1),b =(1,2,3),k ∈R ,若k a -b 与b 垂直,则k =________. 6.若空间三点A (1,5,-2),B (2,4,1),C (p,3,q +2)共线, 则p =________,q =________.7.已知A (1,0,0),B (0,1,0),C (0,0,2),问是否存在实数x ,y ,使得AC =x AB+y BC 成立?若存在,求x ,y 的值.8.如图,在长方体OABC -O 1A 1B 1C 1中,|OA |=2,|AB|=3,|1AA|=2,E 为BC 的中点.(1)求1AO 与1B E所成角的余弦值;(2)作O 1D ⊥AC 于D ,求O 1D 的长.答 案1.选D 对D 中向量g ,h ,16-2=-243≠405,故g ,h 不平行.2.选B ∵a +b =(-2,1,3+x )且(a +b )⊥c , ∴-2-x +6+2x =0,∴x =-4.3.选C 因为a·b =1×2+λ×(-1)+(-1)×2=-λ,又因为a·b =|a||b |·cos 〈a ,b 〉=2+λ2×9×19=132+λ2,所以132+λ2=-λ.解得λ2=14,所以|a |=1+14+1=32. 4.选C 由题意可得B (2,0,0),E (0,1,1),则BE =(-2,1,1),|BE|= 6.5.解析:因为(k a -b )⊥b , 所以(k a -b )·b =0, 所以k a·b -|b |2=0,所以k (-1×1+0×2+1×3)-(12+22+32)2=0, 解得k =7. 答案:76.解析:由A ,B ,C 三点共线,则有AB 与AC 共线,即AB=λAC .又AB=(1,-1,3),AC =(p -1,-2,q +4),所以⎩⎪⎨⎪⎧1=λ(p -1),-1=-2λ,3=λ(q +4).所以⎩⎪⎨⎪⎧λ=12,p =3,q =2.答案:3 27.解:∵AB=(-1,1,0),AC =(-1,0,2),BC =(0,-1,2).假设存在x ,y ∈R 满足条件,由已知得(-1,0,2)=x (-1,1,0)+y (0,-1,2),即(-1,0,2)=(-x ,x,0)+(0,-y,2y )=(-x ,x -y,2y ),∴⎩⎪⎨⎪⎧-1=-x ,0=x -y ,2=2y⇒⎩⎪⎨⎪⎧x =1,y =1.即存在实数x =1,y =1使结论成立. 8.解:建立如图所示的空间直角坐标系.(1)由已知得A (2,0,0),O 1(0,0,2),B 1(2,3,2),E (1,3,0),所以1AO =(-2,0,2),1B E=(-1,0,-2),所以cos 〈1AO ,1B E 〉=1AO ·1B E|1AO ||1B E |=-2210=-1010.(2)因为1O D ⊥AC,AD ∥AC ,而C (0,3,0),设D (x ,y,0),则1O D=(x ,y ,-2),AD =(x -2,y,0),AC =(-2,3,0),所以⎩⎪⎨⎪⎧-2x +3y =0,x -2-2=y 3⇒⎩⎨⎧x =1813,y =1213.所以D ⎝⎛⎭⎫1813,1213,0,所以O 1D =|1O D |=228613.课时跟踪训练(九) 空间向量与平行关系1.已知向量a =(2,4,5),b =(3,x ,y )分别是直线l 1,l 2的方向向量,若l 1∥l 2,则( ) A .x =6,y =15 B .x =3,y =152C .x =3,y =15D .x =6,y =1522.已知l ∥π,且l 的方向向量为(2,m,1),平面π的法向量为⎝⎛⎭⎫1,12,2,则m =( ) A .-8 B .-5 C .5D .83.若两个不同平面π1,π2的法向量分别为n 1=(1,2,-2),n 2=(-3,-6,6),则( ) A .π1∥π2B .π1⊥π2C .π1,π2相交但不垂直D .以上均不正确4.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,则λ的值是( )A .-103B .6C .-6D.1035.已知两直线l 1与l 2的方向向量分别为v 1=(1,-3,-2),v 2=(-3,9,6),则l 1与l 2的位置关系是________.6.若平面π1的一个法向量为n 1=(-3,y,2),平面π2的一个法向量为n 2=(6,-2,z ),且π1∥π2,则y +z =________.7.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC=π4,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点. 证明:直线MN ∥平面OCD .8.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.答 案1.选D ∵l 1∥l 2,设a =λb , ∴(2,4,5)=λ(3,x ,y ), ∴x =6,y =152.2.选A ∵l ∥π,∴直线l 的方向向量与平面π的法向量垂直. ∴2+m2+2=0,m =-8.3.选A ∵n 1=-13n 2,∴n 1∥n 2,∴π1∥π2.4.选B ∵α∥β,∴α的法向量与β的法向量也互相平行, ∴24=3λ=-1-2,∴λ=6. 5.解析:∵v 2=-3v 1, ∴l 1∥l 2或l 1与l 2重合. 答案:平行或重合6.解析:∵π1∥π2,∴n 1∥n 2.∴-36=y -2=2z.∴y =1,z =-4. ∴y +z =-3. 答案:-37.证明:作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.则A (0,0,0),B (1,0,0),P⎝⎛⎭⎫0,22,0,D ⎝⎛⎭⎫-22,22,0,O (0,0,2),M (0,0,1),N ⎝⎛⎭⎫1-24,24,0. MN =⎝⎛⎭⎫1-24,24,-1,OP =⎝⎛⎭⎫0,22,-2,OD =⎝⎛⎭⎫-22,22,-2.设平面OCD 的法向量为n =(x ,y ,z ),则n ·OP =0,n ·OD =0.即⎩⎨⎧22y -2z =0,-22x +22y -2z =0,取z =2,解得n =(0,4,2).∵MN ·n =(1-24,24,-1)·(0,4,2)=0,∴MN ⊥n .又MN ⃘平面OCD ,∴MN ∥平面OCD .8.解:依题意,建立如图所示的空间直角坐标系,设正方体ABCD -A 1B 1C 1D 1的棱长为1,则A 1(0,0,1),B (1,0,0),B 1(1,0,1),E ⎝⎛⎭⎫0,1,12, 1BA =(-1,0,1),BE =⎝⎛⎭⎫-1,1,12.设n =(x ,y ,z )是平面A 1BE 的一个法向量,则由n ·1BA=0,n ·BE =0,得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0. 所以x =z ,y =12z .取z =2,得n =(2,1,2).设棱C 1D 1上存在点F (t,1,1)(0≤t ≤1)满足条件,又B 1(1,0,1),所以1B F =(t -1,1,0).而B 1F ⃘平面A 1BE ,于是B 1F ∥平面A 1BE ⇔1B F·n=0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为C 1D 1的中点.这说明在棱C 1D 1上存在点F (C 1D 1的中点),使B 1F ∥平面A 1BE .课时跟踪训练(十) 空间向量与垂直关系1.若直线l 1,l 2的方向向量分别为a =(1,2,-2),b =(-2,3,2),则( ) A .l 1∥l 2 B .l 1⊥l 2 C .l 1与l 2相交但不垂直D .不确定2.若直线l 的方向向量为a =(1,0,2),平面π的法向量为n =(-3,0,-6),则( ) A .l ∥π B .l ⊥π C .l πD .l 与π斜交3.如图,P A ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 等于( )A .1∶2B .1∶1C .3∶1D .2∶14.已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP=(x -1,y ,-3),且BP⊥平面ABC ,则向量BP=( )A.⎝⎛⎭⎫337,-157,-3 B.⎝⎛⎭⎫407,-157,-3 C.⎝⎛⎭⎫407,-2,-3D.⎝⎛⎭⎫4,407,-3 5.已知a =(1,2,3),b =(1,0,1),c =a -2b ,d =m a -b ,若c ⊥d ,则m =________. 6.在直角坐标系O -xyz 中,已知点P (2cos x +1,2cos 2x +2,0)和点Q (cos x ,-1,3),其中x ∈[0,π],若直线OP 与直线OQ 垂直,则x 的值为________.7.如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 于点F .(1)证明:P A ∥平面EDB ; (2)证明:PB ⊥平面EFD .8.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC =90°,A 1A ⊥平面ABC .A 1A =3,AB =AC =2A 1C 1=2,D 为BC 中点.求证:平面A 1AD ⊥平面BCC 1B 1.答 案1.选B ∵直线l 1,l 2的方向向量分别为a =(1,2,-2),b =(-2,3,2), ∴a·b =(1,2,-2)·(-2,3,2)=1×(-2)+2×3+(-2)×2=0. ∴a ⊥b ,∴l 1⊥l 2.2.选B a =-13n ,∴a ∥n ,∴l ⊥π.3.选B 建立如图所示的空间直角坐标系,设正方形边长为1,P A =a .则B (1,0,0),E ⎝⎛⎭⎫12,1,0,P (0,0,a ). 设点F 的坐标为(0,y,0),则BF =(-1,y,0),PE =⎝⎛⎭⎫12,1,-a .∵BF ⊥PE ,∴BF ·PE =0,解得y =12,则F 点坐标为⎝⎛⎭⎫0,12,0, ∴F 为AD 中点,∴AF ∶FD =1∶1.4.选A AB ·BC =3+5-2z =0,故z =4,由BP ·AB =x -1+5y +6=0,且BP ·BC=3(x -1)+y -12=0,得x =407,y =-157.BP=⎝⎛⎭⎫337,-157,-3. 5.解析:∵c =a -2b ,∴c =(1,2,3)-2(1,0,1)=(-1,2,1), ∵d =m a -b ,∴d =m (1,2,3)-(1,0,1)=(m -1,2m,3m -1). 又c ⊥d ,∴c ·d =0,即(-1,2,1)·(m -1,2m,3m -1)=0, 即1-m +4m +3m -1=0,∴m =0. 答案:06.解析:由OP ⊥OQ ,得OP ·OQ=0.即(2cos x +1)·cos x +(2cos 2x +2)·(-1)=0. ∴cos x =0或cos x =12.∵x ∈[0,π],∴x =π2或x =π3.答案:π2或π37.证明:如图所示,建立空间直角坐标系,D 是坐标原点,设DC =a .(1)连接AC ,AC 交BD 于G ,连接EG .依题意得A (a,0,0),P (0,0,a ),E ⎝⎛⎭⎫0,a 2,a2. ∵底面ABCD 是正方形, ∴G 是此正方形的中心. 故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,且PA =()a ,0,-a ,EG =⎝⎛⎭⎫a 2,0,-a2. ∴PA=2EG ,则P A ∥EG .又EG 平面EDB 且P A ⃘平面EDB . ∴P A ∥平面EDB .(2)依题意得B (a ,a,0),PB=(a ,a ,-a ), DE =⎝⎛⎭⎫0,a 2,a2, 故PB ·DE =0+a 22-a 22=0.∴PB ⊥DE ,又EF ⊥PB ,且EF ∩DE =E , ∴PB ⊥平面EFD .8.证明:如图,建立空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,2,0),A 1(0,0,3),C 1(0,1,3), ∵D 为BC 的中点, ∴D 点坐标为(1,1,0).∴1AA=(0,0,3),AD =(1,1,0), BC =(-2,2,0),1CC=(0,-1,3).设平面A 1AD 的法向量n 1=(x 1,y 1,z 1), 平面BCC 1B 1的法向量为n 2=(x 2,y 2,z 2).由⎩⎪⎨⎪⎧ n 1·1AA =0,n 1·AD=0, 得⎩⎨⎧3z 1=0,x 1+y 1=0.令y 1=-1,则x 1=1,z 1=0, ∴n 1=(1,-1,0).由⎩⎪⎨⎪⎧n 2·BC =0,n 2·1CC =0, 得⎩⎨⎧-2x 2+2y 2=0,-y 2+3z 2=0.令y 2=1,则x 2=1,z 2=33, ∴n 2=⎝⎛⎭⎫1,1,33. ∵n 1·n 2=1-1+0=0,∴n 1⊥n 2. ∴平面A 1AD ⊥平面BCC 1B 1.。
2017-2018学年高中数学北师大版选修2-2同步配套课时跟踪训练:(三) 反 证 法 Word版含解析
课时跟踪训练(三) 反 证 法1.三人同行,一人道:“三人行,必有我师”,另一人想表示反对,他该怎么说?( )A .三人行,必无我师B .三人行,均为我师C .三人行,未尝有我师D .三人行,至多一人为我师2.(山东高考)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根3.若a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0;②a >b 与a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立.其中判断正确的个数是( )A .0B .1C .2D .34.已知x >0,y >0,z >0,a =x +1y ,b =y +1z ,c =z +1x,则a ,b ,c 三个数( ) A .至少有一个不大于2B .都小于2C .至少有一个不小于2D .都大于25.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a ,b 为实数)”,其反设为____________________.6.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误. ②所以一个三角形不能有两个直角.③假设△ABC 中有两个直角,不妨设∠A =90°,∠B =90°.上述步骤的正确顺序为________.7.如果非零实数a ,b ,c 两两不相等,且2b =a +c ,证明:2b =1a +1c不成立.8.已知函数f (x )=a x +x -2x +1(a >1). (1)求证:函数f (x )在(-1,+∞)上为增函数.(2)用反证法证明方程f (x )=0没有负数根.答 案1.选C “必有”意思为“一定有”,其否定应该是“不一定有”,故选C.2.选A 至少有一个实根的否定是没有实根,故要做的假设是“方程x 3+ax +b =0没有实根”.3.选C 因为a ,b ,c 不全相等,所以①正确;②显然正确,③中的a ≠c ,b ≠c ,a ≠b 可以同时成立,所以③错,故选C.4.选C 假设a ,b ,c 都小于2,则a +b +c <6.而事实上a +b +c =x +1x +y +1y +z +1z≥2+2+2=6,与假设矛盾,所以a ,b ,c 中至少有一个不小于2.5.解析:“a ,b 全为0”即是“a =0且b =0”,因此它的反设为“a ≠0或b ≠0”,即a ,b 不全为0.答案:a ,b 不全为06.解析:由反证法的一般步骤可知,正确的顺序应为③①②.答案:③①②7.证明:假设2b =1a +1c 成立,则2b =a +c ac =2b ac, 故b 2=ac ,又b =a +c 2, 所以⎝⎛⎭⎫a +c 22=ac ,即(a -c )2=0,a =c . 这与a ,b ,c 两两不相等矛盾.因此2b =1a +1c不成立.8.证明:(1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,由于a >1,故y =a x 为增函数,∴ax 1<ax 2,∴ax 2-ax 1>0.又∵x 1+1>0,x 2+1>0,∴x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1)=3(x 2-x 1)(x 1+1)(x 2+1)>0, 于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 即f (x 2)>f (x 1),故函数f (x )在(-1,+∞)上为增函数.(2)法一:假设存在x 0<0(x 0≠-1)满足f (x 0)=0,即ax 0+x 0-2x 0+1=0,则ax 0=-x 0-2x 0+1. ∵a >1,当x 0<0时,0<ax 0<1.∴0<-x 0-2x 0+1<1,即12<x 0<2, 与假设x 0<0相矛盾,故方程f (x )=0没有负数根.法二:假设存在x 0<0(x 0≠-1)满足f (x 0)=0,①若-1<x 0<0,则x 0-2x 0+1<-2,而0<ax 0<1, ∴f (x 0)<-1,与f (x 0)=0矛盾.②若x 0<-1,则x 0-2x 0+1>0,0<ax 0<1, ∴f (x 0)>0,与f (x 0)=0矛盾,故方程f (x )=0没有负数根.。
2017-2018学年高中数学北师大版选修2-1同步配套课时跟
课时跟踪训练(十) 空间向量与垂直关系1.若直线l 1,l 2的方向向量分别为a =(1,2,-2),b =(-2,3,2),则( )A .l 1∥l 2B .l 1⊥l 2C .l 1与l 2相交但不垂直D .不确定2.若直线l 的方向向量为a =(1,0,2),平面π的法向量为n =(-3,0,-6),则( )A .l ∥πB .l ⊥πC .l πD .l 与π斜交3.如图,P A ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 等于( )A .1∶2B .1∶1C .3∶1D .2∶14.已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP =(x -1,y ,-3),且BP ⊥平面ABC ,则向量BP =( )A.⎝⎛⎭⎫337,-157,-3 B.⎝⎛⎭⎫407,-157,-3 C.⎝⎛⎭⎫407,-2,-3 D.⎝⎛⎭⎫4,407,-3 5.已知a =(1,2,3),b =(1,0,1),c =a -2b ,d =m a -b ,若c ⊥d ,则m =________.6.在直角坐标系O -xyz 中,已知点P (2cos x +1,2cos 2x +2,0)和点Q (cos x ,-1,3),其中x ∈[0,π],若直线OP 与直线OQ 垂直,则x 的值为________.7.如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 于点F .(1)证明:P A ∥平面EDB ;(2)证明:PB ⊥平面EFD .8.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC =90°,A 1A ⊥平面ABC .A 1A =3,AB =AC =2A 1C 1=2,D 为BC 中点.求证:平面A 1AD ⊥平面BCC 1B 1.答 案1.选B ∵直线l 1,l 2的方向向量分别为a =(1,2,-2),b =(-2,3,2), ∴a·b =(1,2,-2)·(-2,3,2)=1×(-2)+2×3+(-2)×2=0. ∴a ⊥b ,∴l 1⊥l 2.2.选B a =-13n ,∴a ∥n ,∴l ⊥π. 3.选B 建立如图所示的空间直角坐标系,设正方形边长为1,P A =a .则B (1,0,0),E ⎝⎛⎭⎫12,1,0,P (0,0,a ). 设点F 的坐标为(0,y,0),则BF =(-1,y,0),PE =⎝⎛⎭⎫12,1,-a .∵BF ⊥PE ,∴BF ·PE =0,解得y =12,则F 点坐标为⎝⎛⎭⎫0,12,0, ∴F 为AD 中点,∴AF ∶FD =1∶1.4.选A AB ·BC =3+5-2z =0,故z =4,由BP ·AB =x -1+5y +6=0,且BP ·BC=3(x -1)+y -12=0,得x =407,y =-157.BP =⎝⎛⎭⎫337,-157,-3. 5.解析:∵c =a -2b ,∴c =(1,2,3)-2(1,0,1)=(-1,2,1),∵d =m a -b ,∴d =m (1,2,3)-(1,0,1)=(m -1,2m,3m -1).又c ⊥d ,∴c ·d =0,即(-1,2,1)·(m -1,2m,3m -1)=0,即1-m +4m +3m -1=0,∴m =0.答案:06.解析:由OP ⊥OQ ,得OP ·OQ =0.即(2cos x +1)·cos x +(2cos 2x +2)·(-1)=0.∴cos x =0或cos x =12.∵x ∈[0,π],∴x =π2或x =π3.答案:π2或π37.证明:如图所示,建立空间直角坐标系,D 是坐标原点,设DC =a .(1)连接AC ,AC 交BD 于G ,连接EG .依题意得A (a,0,0),P (0,0,a ),E ⎝⎛⎭⎫0,a 2,a 2.∵底面ABCD 是正方形,∴G 是此正方形的中心.故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,且PA =()a ,0,-a ,EG =⎝⎛⎭⎫a 2,0,-a 2.∴PA =2EG ,则P A ∥EG .又EG 平面EDB 且P A 平面EDB .∴P A ∥平面EDB .(2)依题意得B (a ,a,0),PB =(a ,a ,-a ), DE =⎝⎛⎭⎫0,a 2,a 2,故PB ·DE =0+a 22-a 22=0.∴PB ⊥DE ,又EF ⊥PB ,且EF ∩DE =E ,∴PB ⊥平面EFD .8.证明:如图,建立空间直角坐标系, 则A (0,0,0),B (2,0,0),C (0,2,0),A 1(0,0,3),C 1(0,1,3),∵D 为BC 的中点,∴D 点坐标为(1,1,0).∴1AA =(0,0,3),AD =(1,1,0), BC =(-2,2,0),1CC =(0,-1,3). 设平面A 1AD 的法向量n 1=(x 1,y 1,z 1), 平面BCC 1B 1的法向量为n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧n 1·1AA =0,n 1·AD =0,得⎩⎨⎧3z 1=0,x 1+y 1=0.令y 1=-1,则x 1=1,z 1=0,∴n 1=(1,-1,0).由⎩⎪⎨⎪⎧n 2·BC =0,n 2·1CC =0,得⎩⎨⎧ -2x 2+2y 2=0,-y 2+3z 2=0.令y 2=1,则x 2=1,z 2=33,∴n 2=⎝⎛⎭⎫1,1,33.∵n 1·n 2=1-1+0=0,∴n 1⊥n 2.∴平面A 1AD ⊥平面BCC 1B 1.。
2017-2018学年高中数学课时跟踪训练(二十)曲线与方程北师大版选修2_1
课时追踪训练 ( 二十 )曲线与方程1.下边四组方程表示同一条曲线的一组是()2A.y=x与y=xB.y=lg x2与 y=2lg xy+1C. x-2= 1 与 lg( y+ 1) =lg( x- 2)D.x2+y2=1 与 | y| = 1-x22.已知两定点A( - 2,0), B(1,0),假如动点 P 知足| PA|=2| PB|,则点 P 知足的方程的曲线所围成的图形的面积为()A.πB. 4πC. 8πD. 9π3.方程x2+xy=x的曲线是 ()A.一个点B.一个点和一条直线C.一条直线D.两条直线4.已知点A(0 ,- 1) ,点B是抛物线y= 2x2+ 1 上的一动点,则线段AB的中点 M知足的方程为 ()A.y=2x2B.y= 4x2C.y=6x2D.y= 8x25.在△ABC中,已知A(2,0), B(-1,2),点 C 在直线2x+ y-3=0上挪动.则△ ABC 的重心 G知足的方程为________.x2y26.方程4-k+k-1= 1 表示的曲线为C,给出以下四个命题:①曲线 C不行能是圆;②若 1<k<4,则曲线C为椭圆;③若曲线 C为双曲线,则k<1或 k>4;5④若曲线 C表示焦点在x 轴上的椭圆,则1<k<2.此中正确的命题是________.7.已知直角三角形ABC,∠ C为直角, A(-1,0),B(1,0),求知足条件的点C的轨迹方程.8.设F(1,0) ,M点在x轴上,P点在y轴上,且MN =2 MP , PM ⊥ PF .当点P在 y 轴上运动时,求N点的轨迹C的方程.答案1.选 D观察每一组曲线方程中x 和 y 的取值范围,不难发现A,B,C 中各对曲线的x 与 y 的取值范围不一致.2.选 B 设P为 ( x,y) ,由 | PA| =2| PB| ,得x+2+ y2=2x-2+ y2,即 ( x-2) 2+y2= 4,∴点P知足的方程的曲线是以 2 为半径的圆,其面积为4π .223.选 D x + xy=x,即 x +xy- x=0,∴ x( x+ y-1)=0,∴ x=0或 x+ y-1=0.4.选 B设B(x0,y0),M(x,y).∵ M是 AB的中点,x0+00 -1∴ x=, y=y,得 x =2x, y =2y+1.220022又∵ B( x , y )在抛物线 y=2x +1上,∴ y =2x +1,0000即 2y+ 1= 2(2 x) 2+1,所以y= 4x2,故M知足的方程为y=4x2.5.分析:设△ABC的重心 G的坐标为( x, y),点 C的坐标为( x0,y0),则x =2+ -+ x 03,y = 0+ 2+y 0 ,3x 0=3x - 1,∴y = 3y - 2,∵ 点 C 在直线 2x + y - 3= 0 上,故有 6x + 3y - 7= 0,35又∵重心 G 不在 AB 上,故 x ≠ 4, y ≠ 6,∴重心 G 知足的方程为36x + 3y - 7= 0( x ≠ ) .43答案: 6x + 3y -7= 0( x ≠ 4)5 5 ,∴命6.分析:当 4-k = k - 1,即 k = 时表示圆,命题①不正确;明显k = ∈ (1,4)22题②不正确;若曲线 C 为双曲线,则有 (4 - k ) ·(k - 1)<0 ,即 k <1 或 k >4,故命题③正确;5若曲线 C 表示焦点在 x 轴上的椭圆,则4- k >k - 1>0,解得 1<k <2,命题④正确.答案:③④7.解:设 C ( x , y ) ,则 AC = ( x +1, y ) , BC = ( x - 1,y ) . ∵∠ C 为直角,∴ AC ⊥BC ,即 AC ·BC =0,即 ( x +1)( x - 1) + y 2= 0. 化简得 x 2+ y 2= 1.∵ A , B , C 三点要组成三角形,∴ A , B , C 不共线,∴ y ≠0,∴ C 的轨迹方程为 x 2+ y 2= 1( y ≠0) .8.解:∵MN = 2 MP ,故 P 为 MN 中点.又∵ PM ⊥ PF , P 在 y 轴上, F 为 (1,0) .故在 x 轴的负方向上,设 ( , )( x >0) ,MN x y则 M ( - x, 0) , P (0 , y) ,2y∴ PM =(-x,-2),yPF =(1,-2).又∵PM ⊥PF ,故 PM ·PF =0,y22即- x+4=0,∴ y =4x( x>0).即 N点的轨迹 C的方程为 y2=4x( x>0).。
精选2017_2018学年高中数学课时跟踪训练十六回归分析北师大版选修2_3
课时跟踪训练(十六) 回归分析1.(湖北高考)四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423; ②y 与x 负相关且y ^=-3.476x +5.648; ③y 与x 正相关且y ^=5.437x +8.493; ④y 与x 正相关且y ^=-4.326x -4.578. 其中一定不正确的结论的序号是( ) A .①② B .②③ C .③④D .①④2.(湖北高考)根据如下样本数据得到的回归方程为y ^=bx +a ,则( ) A .a >0,b >0 B .a >0,b <0 C .a <0,b >0D .a <0,b <03.(湖南高考)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x -85.71,则下列结论中不正确...的是( ) A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 4.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得线性回归方程y =bx +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( )A.63.6万元B.65.5万元C.67.7万元D.72.0万元5.下表是降耗技术改造后,生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,得到y关于x的线性回归方程为y=0.7x +0.35,那么表中m的值为________.6.某商场为了了解某品牌羽绒服的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,数据如下表:约为6℃,据此估计,该商场下个月羽绒服的销售量的件数约为________件.7.某种产品的广告费用支出x与销售额y之间有如下的对应数据(单位:万元).(1)(2)求回归方程;(3)据此估计广告费用支出为10万元时,销售额y的值.8.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =bx +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)答案1.选D 并能判断正相关和负相关.①中y 与x 负相关而斜率为正,不正确;④中y 与x 正相关而斜率为负,不正确.2.选B 由表中数据画出散点图,如图,由散点图可知b <0,a >0,选B.3.选D 由于回归直线的斜率为正值,故y 与x 具有正的线性相关关系,选项A 中的结论正确;回归直线过样本点的中心,选项B 中的结论正确;根据回归直线斜率的意义易知选项C 中的结论正确;由于回归分析得出的是估计值,故选项D 中的结论不正确.4.选B 样本中心点是(3.5,42), 则a =y -b x =42-9.4×3.5=9.1, 所以回归直线方程是y =9.4x +9.1, 把x =6代入,得y =65.5. 5.解析:x =3+4+5+64=4.5,y =2.5+m +4+4.54=m +114,又(x ,y )在线性回归方程上, ∴m +114=0.7×4.5+0.35,∴m =3.答案:36.解析:x -=14(17+13+8+2)=10,y -=14(24+33+40+55)=38.由线性回归方程过(x -,y -)知, 38=a +-2×10,∴a =58.∴y =58+-2x ,∴当x =6时,y =46. 答案:467.解:(1)作出散点图如下图.(2)由散点图可知,样本点近似地分布在一条直线附近,因此,x ,y 之间具有线性相关关系.由表中的数据可知,x -=15×(2+4+5+6+8)=5,y -=15×(30+40+60+50+70)=50.所以b =∑i =15x i -x-y i -y-∑i =15x i -x-2=6.5,a =y --b x -=50-6.5×5=17.5,因此线性回归方程为y =17.5+6.5x .(3)x =10时,y =17.5+10×6.5=82.5(万元). 即当支出广告费用10万元时,销售额为82.5万元. 8.解:(1)由于x =16(x 1+x 2+x 3+x 4+x 5+x 6)=8.5,y =16(y 1+y 2+y 3+y 4+y 5+y 6)=80.所以a =y -b x =80+20×8.5=250,从而回归直线方程为y =-20x +250. (2)设工厂获得的利润为L 元,依题意得L =x (-20x +250)-4(-20x +250)=-20x 2+330x -1 000=-20⎝⎛⎭⎪⎫x -3342+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润.。
[K12配套]2017_2018学年高中数学课时跟踪训练五组合的应用北师大版选修2_3
课时跟踪训练(五) 组合的应用1.9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品,抽出产品中至少有2件一等品的抽法种数为( )A.81 B.60C.6 D.112.以一个正三棱柱的顶点为顶点的四面体有( )A.6个B.12个C.18个D.30个3.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )A.85 B.56C.49 D.284.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )A.10 B.11C.12 D.155.(大纲全国卷)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有________种.(用数字作答)6.某校开设9门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门.学校规定,每位同学选修4门,共有________种不同选修方案.(用数字作答) 7.12件产品中,有10件正品,2件次品,从这12件产品中任意抽出3件.(1)共有多少种不同的抽法?(2)抽出的3件中恰好有1件次品的抽法有多少种?(3)抽出的3件中至少有1件次品的抽法有多少种?8.10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现如下结果:(1)4只鞋子没有成双的;(2)4只鞋子恰成两双;(3)4只鞋中有2只成双,另2只不成双.答案1.选A 分三类:恰有2件一等品,有C24C25=60种取法;恰有3件一等品,有C34C15=20种取法;恰有4件一等品,有C44=1种取法.∴抽法种数为60+20+1=81.2.选B 从6个顶点中任取4个有C46=15种取法,其中四点共面的有3种.所以满足题意的四面体有15-3=12个.3.选C 由条件可分为两类:一类是甲、乙两人只有一人入选,有C12·C27=42种不同选法,另一类是甲、乙都入选,有C22·C17=7种不同选法,所以共有42+7=49种不同选法.4.选B 与信息0110至多有两个位置上的数字对应相同的信息包括三类:第一类:与信息0110只有两个对应位置上的数字相同有C24=6个;第二类:与信息0110只有一个对应位置上的数字相同有C14=4个;第三类:与信息0110没有一个对应位置上的数字相同有C04=1个.∴与信息0110至多有两个对应位置上的数字相同的信息有6+4+1=11个.5.解析:第一步决出一等奖1名有C16种情况,第二步决出二等奖2名有C25种情况,第三步决出三等奖3名有C33种情况,故可能的决赛结果共有C16C25C33=60种情况.答案:606.解析:分两类完成:第一类,A,B,C三门课程都不选,有C46种不同的选修方案;第二类,A,B,C三门课程恰好选修一门,有C13·C36种不同选修方案.故共有C46+C13·C36=75种不同的选修方案.答案:757.解:(1)有C312=220种抽法.(2)分两步:先从2件次品中抽出1件有C12种方法;再从10件正品中抽出2件有C210种方法,所以共有C12C210=90种抽法.(3)法一(直接法):分两类:即包括恰有1件次品和恰有2件次品两种情况,与(2)小题类似共有C12C210+C22C110=100种抽法.法二(间接法):从12件产品中任意抽出3件有C312种方法,其中抽出的3件全是正品的抽法有C310种方法,所以共有C312-C310=100种抽法.8.解:(1)从10双鞋子中选取4双,有C410种不同选法,每双鞋子中各取一只,分别有2种取法,根据分步乘法计数原理,选取种数为N=C410·24=3 360(种).即4只鞋子没有成双有3 360种不同取法.(2)从10双鞋子中选取2双有C210种取法,所以选取种数为N=C210=45(种),即4只鞋子恰成双有45种不同取法.(3)先选取一双有C110种选法,再从9双鞋中选取2双有C29种选法,每双鞋只取一只各有2种取法.根据分步乘法计数原理,不同取法为N=C110C29·22=1 440(种).。
2017_2018学年高中数学课时跟踪训练十七独立性查验北师大版选修2_3
月收入低于5 500元
总计
赞成
不赞成
总计
(2)假设从月收入在[55,65)的被调查对象中随机选取两人进行调查,求至少有一人不同意“楼市限购政策”的概率.
答案
1.选C 因为χ2=7.8>6.635,因此有99%以上的把握以为有关.
2.选Ca=73-21=52,b=100-46=54,应选C.
答案:5.333
7.解:由公式求得χ2= ≈38.459.
∵38.459>6.635,
∴有99%的把握以为数学成绩的好坏与对学习数学的爱好有关.
8.解:(1)由题意得2×2列联表:
月收入不低于5 500元
月收入低于5 500元
总计
赞成
3
29
32
不赞成
7
11
18
总计
10
40
50
假设月收入以5 500元为分界点时,该市的工薪阶级对“楼市限购政策”的态度没有不同,依照列联表中的数据,取得:
课时跟踪训练(十七) 独立性查验
1.通过随机询问110名性别不同的大学生是不是爱好某项运动,取得下表:
男
女
0
30
50
总计
60
50
110
由χ2= 算得,
χ2= ≈7.8.
附表:
P(χ2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
参照附表,取得的正确结论是( )
①有95%的把握以为二者有关;
②约有95%的打鼾者患心脏病;
③有99%的把握以为二者有关;
④约有99%的打鼾者患心脏病.
2017_2018学年高中数学课时跟踪训练十五正态散布北师大版选修2_3
课时跟踪训练(十五) 正态散布1.设两个正态散布N(μ1,σ21)(σ1>0)和N(μ2,σ22)(σ2>0)的密度函数图像如下图,那么有( )A.μ1<μ2,σ1<σ2B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2D.μ1>μ2,σ1>σ22.已知X~N(0,62),且P(-2≤X≤0)=0.4,则P(X>2)等于( )A.0.1 B.0.2C.0.6 D.0.83.在正常情形下,工厂生产的零件尺寸服从正态散布N(μ,σ2).在一次正常的实验中,取10 000个零件时,不属于(μ-3σ,μ+3σ)那个尺寸范围的零件个数可能为( )A.70个B.100个C.30个D.60个4.若是随机变量X~N(μ,σ2),且EX=3,DX=1,那么P(0<X≤1)等于( )A.0.021 5 B.0.723C.0.215 D.0.645.假设随机变量X~N(2,100),假设X落在区间(-∞,k)和(k,+∞)内的概率是相等的,那么k等于________.6.已知随机变量X服从正态散布N(0,σ2),P(X>2)=0.023,那么P(-2≤X≤2)=________.7.设X~N(0,1).(1)求P(-1<X≤1);(2)求P(0<X≤2).8.某厂生产的T 型零件的外直径X ~N (10,0.22),一天从该厂上午、下午生产的T 型零件中随机掏出一个,测得其外直径别离为9.52和9.98.试分析该厂这一天的生产状况是不是正常.答案1.选A 依照正态散布的性质:对称轴方程x =μ,σ表示整体散布的分散与集中.由图可得,μ1<μ2,σ1<σ2.2.选A 由正态散布曲线的性质知P (0≤X ≤2)=0.4,∴P (-2≤X ≤2)=0.8,∴P (X >2)=12(1-0.8)=0.1. 3.选C 正态整体N (μ,σ2)落在(μ-3σ,μ+3σ)内的概率为0.997,因此不属于(μ-3σ,μ+3σ)的概率为0.003,因此在一次正常的实验中,取10 000个零件时.不属于(μ-3σ,μ+3σ)那个尺寸范围的零件个数可能为30个左右.4.选A 由EX =μ=3,DX =σ2=1,∴X ~N (3,1).P (μ-3σ<X <μ+3σ)=P (0<X <6)=0.997,P (μ-2σ<X <μ+2σ)=P (1<X <5)=0.954,P (0<X <6)-P (1<X <5)=2P (0<X ≤1)=0.043.∴P (0<X ≤1)=0.021 5.5.解析:由于X 的取值落在(-∞,k )和(k ,+∞)内的概率是相等的,因此正态曲线在直线x =k 的左侧和右边与x 轴围成的面积应该相等,于是正态曲线关于直线x =k 对称,即μ=k ,而μ=2.因此k =2.答案:26.解析:∵P (X >2)=0.023,∴P (X <-2)=0.023,故P (-2≤X ≤2)=1-P (X >2)-P (X <-2)=0.954.答案:0.9547.解:(1)X ~N (0,1)时,μ-σ=-1,μ+σ=1,因此P (-1<X ≤1)=0.683.(2)μ-2σ=-2,μ+2σ=2,正态曲线f (x )关于直线x =0对称,因此P (0<X ≤2)=12P (-2<X ≤2)=12×0.954=0.477. 8.解:∵X ~N (10,0.22),∴μ=10,σ=0.2.∴μ-3σ=10-3×0.2=9.4,μ+3σ=10+3×0.2=10.6.∵9.52∈(9.4,10.6),9.98∈(9.4,10.6), ∴该厂全天的生产状况是正常的.。
2017_2018学年高中数学课时跟踪训练七二项式定理北师大版选修2_3
课时跟踪训练(七) 二项式定理1.(x -2y )7的展开式中的第4项为( ) A .-280x 4y 3 B .280x 4y 3C .-35x 4y 3D .35x 4y 32.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610 B .27C 410 C .-9C 610D .9C 4103.(大纲全国卷)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ) A .56 B .84 C .112D .1684.已知⎝⎛⎭⎪⎫2x 3+1x n的展开式中的常数项是第7项,则正整数n 的值为( )A .7B .8C .9D .105.(安徽高考)若⎝⎛⎭⎪⎪⎫x +a 3x 8的展开式中x 4的系数为7,则实数a =________. 6.(浙江高考)设二项式⎝ ⎛⎭⎪⎪⎫x -13x 5的展开式中常数项为A ,则A =________. 7.⎝⎛⎭⎪⎪⎫x +23x n 展开式第9项与第10项二项式系数相等,求x 的一次项系数.8.在⎝⎛⎭⎪⎪⎫2x 2-13x 8的展开式中,求: (1)第5项的二项式系数及第5项的系数; (2)倒数第3项.答案1.选A (x -2y )7的展开式中的第4项为T 4=C 37x 4(-2y )3=(-2)3C 37x 4y 3=-280x 4y 3. 2.选D T k +1=C k 10·x 10-k(-3)k ,令10-k =6,知k =4,∴T 5=C 410x 6(-3)4,即x6的系数为9C 410.3.选D 在(1+x )8展开式中含x 2的项为C 28x 2=28x 2,(1+y )4展开式中含y 2的项为C 24y 2=6y 2,所以x 2y 2的系数为28×6=168,故选D.4.选B ⎝⎛⎭⎪⎫2x 3+1x n 的展开式的通项T r +1=C r n 2n -r x 3n -4r,由r =6时,3n -4r =0.得n =8.5.解析:二项式⎝ ⎛⎭⎪⎪⎫x +a 3x 8展开式的通项为T r +1=C r 8a r x 8-43r ,令8-43r =4,可得r =3,故C 38a 3=7,易得a =12.答案:126.解析:T r +1=(-1)r C r 5x 15-5r 6,令15-5r =0,得r =3,故常数项A =(-1)3C 35=-10.答案:-107.解:由题意知,C 8n =C 9n . ∴n =17. ∴T r +1=C r17x 17-r 2·2r ·x -r 3=C r 17·2r·x 17-r 2-r 3. ∴17-r 2-r3=1. 解得r =9.∴T r +1=C 917·x 4·29·x -3, 即T 10=C 917·29·x . 其一次项系数为C 917·29.8.解:法一:利用二项式的展开式解决.(1)⎝ ⎛⎭⎪⎪⎫2x 2-13x 8=(2x 2)8-C 18(2x 2)7·13x+C 28(2x 2)6·⎝ ⎛⎭⎪⎪⎫13x 2-C 38(2x 2)5·⎝ ⎛⎭⎪⎪⎫13x 3+C 48(2x 2)4·⎝ ⎛⎭⎪⎪⎫13x 4-C 58(2x 2)3·⎝ ⎛⎭⎪⎪⎫13x 5+C 68(2x 2)2·⎝ ⎛⎭⎪⎪⎫13x 6-C 78(2x 2)·⎝ ⎛⎭⎪⎪⎫13x 7+C 88⎝ ⎛⎭⎪⎪⎫13x 8, 则第5项的二项式系数为C 48=70,第5项的系数C 48·24=1 120.(2)由(1)中⎝ ⎛⎭⎪⎪⎫2x 2-13x 8的展开式可知倒数第3项为C 68·(2x 2)2·⎝ ⎛⎭⎪⎪⎫13x 6=112x 2. 法二:利用二项展开式的通项公式.(1)T 5=C 48(2x 2)8-4·⎝⎛⎭⎪⎪⎫-13x 4=C 48·24·x 203,则第5项的二项式系数是C 48=70, 第5项的系数是C 48·24=1 120. (2)展开式中的倒数第3项即为第7项,T 7=C 68·(2x 2)8-6·⎝⎛⎭⎪⎪⎫-13x 6=112x 2.。
2017_2018学年高中数学课时跟踪训练十一条件概率与独立事件北师大版选修2_3
(1)从1号箱中掏出的是红球的条件下,从2号箱掏出红球的概率是多少?
(2)从2号箱掏出红球的概率是多少?
8.一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一名数字.求:
(1)任意按最后一名数字,不超过2次就按对密码的概率;
(2)若是他记得密码的最后一名数字是偶数,不超过2次就按对密码的概率.
答案
1.选BA={2,4,6},B={3,6},A∩B={6},因此P(A)= ,P(B)= ,P(AB)= = × ,因此A与B是彼此独立事件.
2.选B 由题意知:P(AB)= ,P(B|A)= ,
A. B.
C. D.
5.有一个数学难题,在半小时内,甲能解决的概率是 ,乙能解决的概率是 ,两人试图独立地在半小时内解决它,那么两人都未解决的概率为________,问题取得解决的概率为________.
6.从编号为1,2,…,10的10个大小相同的球中任取4个,已知选出4号球的条件下,选出球的最大号码为6的概率为________.
A. B.
C. D.
3.某农业科技站对一批新水稻种子进行实验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地掏出一粒,那么这粒水稻种子发芽能成长为幼苗的概率为( )
A.0.02B.0.08
C.0.18D.0.72
4.从某地域的儿童中挑选体操学员,已知儿童体型合格的概率为 ,躯体关节构造合格的概率为 ,从中任挑一儿童,这两项至少有一项合格的概率是(假定体型与躯体关节构造合格与否彼此之间没有阻碍)( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪训练(三)全称量词与存在量词
1.将命题“x2+y2≥2xy”改写成全称命题为()
A.对任意x,y∈R,都有x2+y2≥2xy成立
B.存在x,y∈R,使x2+y2≥2xy成立
C.对任意x>0,y>0,都有x2+y2≥2xy成立
D.存在x<0,y<0,使x2+y2≤2xy成立
2.“关于x的不等式f(x)>0有解”等价于()
A.存在x∈R,使得f(x)>0成立
B.存在x∈R,使得f(x)≤0成立
C.对任意x∈R,使得f(x)>0成立
D.对任意x∈R,f(x)≤0成立
3.下列命题为真命题的是()
A.对任意x∈R,都有cos x<2成立
B.存在x∈Z,使log2(3x-1)<0成立
C.对任意x>0,都有3x>3成立
D.存在x∈Q,使方程2x-2=0有解
4.给出四个命题:①末位数字是偶数的整数能被2整除;②有的菱形是正方形;③存在实数x,使x>0;④对于任意实数x,2x+1都是奇数.下列说法正确的是() A.四个命题都是真命题
B.①②是全称命题
C.②③是特称命题
D.四个命题中有两个假命题
5.下列命题中全称命题是__________;特称命题是________.
①正方形的四条边相等;
②有两个角是45°的三角形是等腰直角三角形;
③正数的平方根不等于0;
④至少有一个正整数是偶数.
6.命题“偶函数的图像关于y轴对称”的否定是_________________________________ ______________________________.
7.写出下列命题的否定并判断其真假.
(1)有的四边形没有外接圆;
(2)某些梯形的对角线互相平分;
(3)被8整除的数能被4整除.
8.(1)若命题“对于任意实数x ,不等式sin x +cos x >m 恒成立”是真命题,求实数m 的取值范围;
(2)若命题“存在实数x ,使不等式sin x +cos x >m 有解”是真命题,求实数m 的取值范围.
答 案
1.选A 本题中的命题仅保留了结论,省略了条件“任意实数x ,y ”,改成全称命题为:对任意实数x ,y ,都有x 2+y 2≥2xy 成立.
2.选A “关于x 的不等式f (x )>0有解”等价于“存在实数x ,使得f (x )>0成立”,故选A.
3.选A A 中,由于函数y =cos x 的最大值是1,又1<2,所以A 是真命题;B 中,
log 2(3x -1)<0⇔0<3x -1<1⇔13<x <23
,所以B 是假命题;C 中,当x =1时,31=3,所以C 是假命题;D 中,2x -2=0⇔x =2∈/ Q ,所以D 是假命题,故选A.
4.选C ①④为全称命题;②③为特称命题;①②③为真命题;④为假命题.
5.解析:①③是全称命题,②④是特称命题.
答案:①③ ②④
6.解析:本题中的命题是全称命题,省略了全称量词,加上全称量词后该命题可以叙述为:所有偶函数的图像关于y 轴对称.将命题中的全称量词“所有”改为存在量词“有些”,结论“关于y 轴对称”改为“关于y 轴不对称”,所以该命题的否定是“有些偶函数的图像关于y 轴不对称”.
答案:有些偶函数的图像关于y 轴不对称
7.解:(1)命题的否定:所有的四边形都有外接圆,是假命题.
(2)命题的否定:任一个梯形的对角线不互相平分,是真命题.
(3)命题的否定:存在一个数能被8整除,但不能被4整除,是假命题.
8.解:(1)令y =sin x +cos x ,x ∈R ,
∵y =sin x +cos x =2sin ⎝⎛⎭
⎫x +π4≥-2, 又∵任意x ∈R ,sin x +cos x >m 恒成立,
∴只要m <-2即可.
∴所求m 的取值范围是(-∞,-2).
(2)令y =sin x +cos x ,x ∈R ,
∵y =sin x +cos x =2sin ⎝⎛⎭
⎫x +π4∈[-2,2]. 又∵存在x ∈R ,使sin x +cos x >m 有解,
∴只要m <2即可,∴所求m 的取值范围是(-∞,2).。