专题二 高考三角函数与平面向量命题动向
高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-
专题二 三角函数、三角变换、解三角形、平面向量第一讲 三角函数的图象与性质1.角的概念.(1)终边相同的角不一定相等,相等的角终边一定相同(填“一定”或“不一定”). (2)确定角α所在的象限,只要把角α表示为α=2k π+α0[k ∈Z,α0∈[0,2π)],判断出α0所在的象限,即为α所在象限.2.诱导公式.诱导公式是求三角函数值、化简三角函数的重要依据,其记忆口诀为:奇变偶不变,符号看象限.1.三角函数的定义:设α是一个任意大小的角,角α的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx.2.同角三角函数的基本关系. (1)sin 2α+cos 2α=1. (2)tan α=sin αcos α.判断下面结论是否正确(请在括号中打“√”或“×”).(1)角α终边上点P 的坐标为⎝ ⎛⎭⎪⎫-12,32,那么sin α=32,cos α=-12;同理角α终边上点Q 的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.(×)(2)锐角是第一象限角,反之亦然.(×) (3)终边相同的角的同一三角函数值相等.(√)(4)常函数f (x )=a 是周期函数,它没有最小正周期.(√) (5)y =cos x 在第一、二象限上是减函数.(×) (6)y =tan x 在整个定义域上是增函数.(×)1.(2015·某某卷)若sin α=-513,且α为第四象限角,则tan α的值等于(D )A.125 B .-125 C.512 D .-512解析:解法一:因为α为第四象限的角,故cos α=1-sin 2α=1-(-513)2=1213,所以tan α=sin αcos α=-5131213=-512. 解法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=y x =-512.故选D.2.已知α的终边经过点A (5a ,-12a ),其中a <0,则sin α的值为(B ) A .-1213 B.1213 C.513 D .-5133.(2014·新课标Ⅰ卷)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎪⎫2x +π6,④y=tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为(A ) A .①②③ B .①③④C .②④D .①③解析:①中函数是一个偶函数,其周期与y =cos 2x 相同,T =2π2=π;②中函数y =|cos x |的周期是函数y =cos x 周期的一半,即T =π;③T =2π2=π;④T =π2.故选A.4.(2015·某某卷)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin(π6x +φ)+k .据此函数可知,这段时间水深(单位:m)的最大值为(C )A .5B .6C .8D .10解析:根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.一、选择题1.若sin(α-π)=35,α为第四象限角,则tan α=(A )A .-34B .-43C.34D.43 解析:∵sin(α-π)=35,∴-sin α=35,sin α=-35.又∵α为第四象限角, ∴cos α= 1-sin 2α= 1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-3545=-34.2. 定义在R 上的周期函数f (x ),周期T =2,直线x =2是它的图象的一条对称轴,且f (x )在[-3,-2]上是减函数,如果A ,B 是锐角三角形的两个内角,则(A )A .f (sin A )>f (cosB ) B .f (cos B )>f (sin A )C .f (sin A )>f (sin B )D .f (cos B )>f (cos A )解析:由题意知:周期函数f (x )在[-1,0]上是减函数,在[0,1]上是增函数.又因为A ,B 是锐角三角形的两个内角,A +B >π2,得:sin A >cos B ,故f (sin A )>f (cos B ).综上知选A.3.函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为(A )A .2- 3B .0C .-1D .-1- 3解析:用五点作图法画出函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的图象,注意0≤x ≤9知,函数的最大值为2,最小值为- 3.故选A.4. 把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是(A )解析:y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的解析式为y =cos (x +1).故选A.5.(2015·新课标Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为(D )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 解析:由图象知周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z.故选D.6.已知函数f (x )=A sin(ωx +φ)(x ∈R,A >0,ω>0,|φ|<π2)的图象(部分)如图所示,则f (x )的解析式是(A )A .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6(x ∈R)B .f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π6(x ∈R)C .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π3(x ∈R)D .f (x )=2sin ⎝⎛⎭⎪⎫2πx +π3(x ∈R) 解析:由图象可知其周期为:4⎝ ⎛⎭⎪⎫56-13=2,∵2πω=2,得ω=π,故只可能在A ,C 中选一个,又因为x =13时达到最大值,用待定系数法知φ=π6.二、填空题7.若sin θ=-45,tan θ>0,则cos θ=-35.8.已知角α的终边经过点(-4,3),则cos α=-45.解析:由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.三、解答题9. (2014·某某卷)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.思路二 先应用和差倍半的三角函数公式化简函数f (x )=2sin x cos x +2cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算;(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.解析:解法一 (1)f ⎝⎛⎭⎪⎫5π4=2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4=-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.解法二 因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.10.函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6+1(A >0,ω>0)的最大值为3, 其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;word(2)设α∈⎝ ⎛⎭⎪⎫0,π2,则f ⎝ ⎛⎭⎪⎫α2=2,求α的值. 解析:(1)∵函数f (x )的最大值为3,∴A +1=3,即A =2.∵函数图象的相邻两条对称轴之间的距离为π2, ∴最小正周期为 T =π,∴ω=2,故函数f (x )的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x -π6+1. (2)∵f ⎝ ⎛⎭⎪⎫α2=2sin ⎝⎛⎭⎪⎫α-π6+1=2, 即sin ⎝⎛⎭⎪⎫α-π6=12, ∵0<α<π2,∴-π6<α-π6<π3. ∴α-π6=π6,故α=π3. 11.(2015·卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解析:(1)由题意得f (x )=22sin x -22(1-cos x )=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22.。
专题突破2高考中三角函数与平面向量问题的求解策略
服/务/教/师
免/费/馈/赠
高三一轮总复习· 理科数学
π (2)由(1)知 A=B= , 6 2 ∴AC=b=a,且 C=3π. 又 AM 是△ABC 中 BC 边上的中线, 1 1 ∴MC= BC= a. 2 2 在△AMC 中,AM= 7,由余弦定理得 AM2=AC2+MC2-2AC· MC· cos C, ∴7=a
服/务/教/师 免/费/馈/赠
高三一轮总复习· 理科数学
(2)由(1)知 f(x)=
π 2sin x+4+1.
π π 5π 因为 x∈[0,π],所以4≤x+4≤ 4 , 当 当
π sinx+ =1,即 4 π sinx+4=-
π x= 时,f(x)max= 2+1; 4
服/务/教/师
免/费/馈/赠
高三一轮总复习· 理科数学
【典例 1】 (2015· 济南质检)已知函数 f(x)=sin ωx· cos ωx 3 + 3cos ωx- 2 (ω>0),直线 x=x1,x=x2 是 y=f(x)图象的任
2
π 意两条对称轴,且|x1-x2|的最小值为4. (1)求 f(x)的表达式;
π π (2)将 f(x)的图象向右平移8个单位后,得到 y=sin4x-6的
图象,再将所得图象所有点的横坐标伸长到原来的 2 倍,纵坐 标不变,得到 所以
π y=sin2x-6的图象.
π g(x)=sin2x-6.
π 令 2x-6=t,
服/务/教/师
服/务/教/师 免/费/馈/赠
高三一轮总复习· 理科数学
【反思启迪】 1.解答本题时,利用三角恒等变换得到 f(x)
π =sin2ωx+3是解题的关键所在,应确保化简的准确性.
名师专题讲座2-三角函数、平面向量的高考解答题型及求解策略
名师专题讲座(二)三角函数、平面向量的高考解答题型及求解策略专题概述高考对本部分内容的考查主要有:三角恒等变换与三角函数图象和性质结合,解三角形与恒等变换、平面向量的综合,难度属于中低档题,但考生得分不高,其主要原因是公式不熟导致运算错误.考生在复习时,要熟练掌握三角公式,特别是二倍角的余弦公式,在此基础上掌握一些三角恒等变换.要注意公式的多样性和灵活性,注意题目中隐含的各种限制条件,选择合理的解决方法,灵活地实现问题的转化.题型一 三角函数的图象与性质题型概览:(1)三角函数的性质问题,往往都要先化成f (x )=A sin(ωx +φ)的形式再求解.要注意在进行此步骤之前,如果函数解析式中出现α及其二倍角、半角或函数值的平方,应根据变换的难易程度去化简,往往要利用到二倍角公式、升幂或降幂公式,把解析式统一化成关于同一个角的三角函数式.(2)要正确理解三角函数的性质,关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的单调性、最值与周期.(2018·合肥模拟)已知函数f (x )=(23·cos ωx +sin ωx )sin ωx -sin 2⎝ ⎛⎭⎪⎫π2+ωx (ω>0),且函数y =f (x )图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值和函数f (x )的单调递增区间;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域. [审题程序]第一步:化简f (x )为“一角一函数”形式;第二步:求ω和单调递增区间;第三步:求f (x )在给定区间上的值域.[规范解答] (1)f (x )=23cos ωx sin ωx +sin 2ωx -cos 2ωx =3sin2ωx -cos2ωx =2sin ⎝⎛⎭⎪⎫2ωx -π6.由函数f (x )的图象的一个对称中心到最近的对称轴的距离为π4, 得14T =14·2π2ω=π4,即ω=1,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6. 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,解得k π-π6≤x ≤k π+π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π6+k π,π3+k π,k ∈Z . (2)因为0≤x ≤π2,所以-π6≤2x -π6≤5π6,所以-12≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1,所以-1≤f (x )≤2, 所以函数f (x )的值域为[-1,2].[解题反思] 此类题目是三角函数问题中的典型题型,该题综合考查了三角函数的诱导公式、由三角函数值求参数、三角函数的周期、三角函数在指定区间上的最值等,考查考生的运算求解能力、逻辑推理能力以及转化与化归思想、应用意识等.该题的亮点有二:一是第(1)问,由f (x )的图象的一个对称中心到最近的对称轴的距离得出f (x )的周期从而求出ω,求出f (x )的单调递增区间,经典而又不失新意;二是第(2)问考查函数f (x )在给定区间上的最值问题.需结合y =sin x的图象及自变量的变化求解,否则容易出现-12≤sin ⎝ ⎛⎭⎪⎫2x -π6≤12,从而出现f (x )∈[-1,1]的错误.[答题模板] 解决这类问题的答题模板如下:[题型专练]1.设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. [解] (1)f (x )=32-3sin 2ωx -sin ωx cos ωx=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx =-sin ⎝ ⎛⎭⎪⎫2ωx -π3. 因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.设t =2x -π3,则函数f (x )可转化为y =-sin t .当π≤x ≤3π2时,5π3≤t =2x -π3≤8π3,如图所示,作出函数y =sin t 在⎣⎢⎡⎦⎥⎤5π3,8π3上的图象. 由图象可知,当t ∈⎣⎢⎡⎦⎥⎤5π3,8π3时, sin t ∈⎣⎢⎡⎦⎥⎤-32,1, 故-1≤-sin t ≤32,因此-1≤f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3≤32.故f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1. 题型二 解三角形应用题型概览:(1)已知两角A ,B 与一边a ,由A +B +C =π及a sin A =b sin B =c sin C ,可先求出角C 及b ,再求出c .(2)已知两边b ,c 及其夹角A ,由a 2=b 2+c 2-2bc cos A ,先求出a ,再求出角B ,C .(3)已知三边a ,b ,c ,由余弦定理可求出角A ,B ,C .(4)已知两边a ,b 及其中一边的对角A ,由正弦定理a sin A =b sin B 可求出另一边b 的对角B ,由C =π-(A +B ),可求出角C ,再由a sin A =c sin C 可求出c ,而通过a sin A =bsin B 求角B 时,可能有一解或两解或无解的情况.(2017·湖南五市十校3月联考)在△ABC 中,内角A 、B 、C 的对边分别为a ,b ,c ,若b 2+c 2-a 2=bc .(1)求角A 的大小;(2)若a =3,求BC 边上的中线AM 的最大值.[审题程序]第一步:依据余弦定理角化边;第二步:依据余弦定理求cos B 及AM ;第三步:由余弦定理和重要不等式求AM 的最大值.[规范解答] (1)∵b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12.又0<A <π,∴A =π3.(2)在△ABC 中,A =π3,a =3,由余弦定理a 2=b 2+c 2-2bc cos A 得b 2+c 2=bc +3.则b 2+c 2=bc+3≥2bc ,得bc ≤3(当且仅当b =c 时取等号).在△ABC 中,由余弦定理,得cos B =a 2+c 2-b 22ac .在△ABM 中,由余弦定理,得AM 2=AB 2+BM 2-2·AB ·BM ·cos B =c 2+a 24-2·c ·12a ·a 2+c 2-b 22ac =2c 2+2b 2-a 24=2bc +34≤94, ∴AM ≤32.∴AM 的最大值是32.[解题反思] 三角形中的边角关系的转化往往通过正余弦定理.求解与三角形有关的最值问题时,常利用余弦定理和基本不等式构造不等关系.[答题模板] 解决这类问题的答题模板如下:[题型专练]2.(2018·宁波统考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且c sin C -b sin B =(a -b )sin A .(1)求角C ;(2)若c =5,求△ABC 的面积的最大值.[解] (1)由c sin C -b sin B =(a -b )sin A 及正弦定理,得a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12又C ∈(0,π),∴C =π3.(2)∵c =5,由(1)知C =π3,∴a 2+b 2-25=ab ,又a 2+b 2≥2ab (当且仅当a =b 时,等号成立),∴a 2+b 2-25=ab ≥2ab -25,即ab ≤25,∴△ABC 的面积S △ABC =12ab sin C ≤12×25×32=2534.当且仅当a =b =c =5,即△ABC 为等边三角形时,面积取得最大值2534.题型三 三角函数、解三角形与平面向量的综合应用 题型概览:(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响.已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x 4. (1)若m ·n =1,求cos ⎝ ⎛⎭⎪⎫2π3-x 的值; (2)记f (x )=m ·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数 f (A )的取值范围.[审题程序]第一步:化简m ·n =1;第二步:应用三角函数诱导公式求cos ⎝ ⎛⎭⎪⎫2π3-x ; 第三步:由正弦定理求角;第四步:求三角函数的值域.[规范解答] (1)m ·n =3sin x 4·cos x 4+cos 2x 4 =32sin x 2+1+cos x 22=sin ⎝ ⎛⎭⎪⎫x 2+π6+12, ∵m ·n =1,∴sin ⎝ ⎛⎭⎪⎫x 2+π6=12. ∵cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12, ∴cos ⎝ ⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C ,∴2sin A cos B -sin C cos B =sin B cos C .∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴sin(B +C )=sin A ≠0.∴cos B =12,∵0<B <π,∴B =π3.∴0<A <2π3.∴π6<A 2+π6<π2,sin ⎝ ⎛⎭⎪⎫A 2+π6∈⎝ ⎛⎭⎪⎫12,1. 又∵f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6+12. ∴f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12. 故函数f (A )的取值范围是⎝⎛⎭⎪⎫1,32. [解题反思] 本例将平面向量的坐标运算、三角恒等变换、解三角形等知识综合考查.有一定难度.无论(1)还是(2)通过三角恒等变换转化为“一角一函数”的形式都是高考的重点.在(2)中利用正余弦定理转化为给定区间上的最值问题也是热点问题,考查了三角函数的性质.[答题模板] 解决这类问题的答题模板如下:[题型专练]3.(2017·山东淄博3月模拟)已知函数f (x )=3sin ωx cos ωx -sin 2ωx +1(ω>0)的图象中相邻两条对称轴之间的距离为π2.(1)求ω的值及函数f (x )的单调递减区间;(2)已知a ,b ,c 分别为△ABC 中角A ,B ,C 的对边,且满足a =3,f (A )=1,求△ABC 面积S 的最大值.[解] (1)f (x )=32sin2ωx -1-cos2ωx 2+1=sin ⎝ ⎛⎭⎪⎫2ωx +π6+12.因为函数f (x )的图象中相邻两条对称轴之间的距离为π2,所以T=π,即2π2ω=π,所以ω=1.所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6+12. 令π2+2k π≤2x +π6≤3π2+2k π(k ∈Z ),解得π6+k π≤x ≤2π3+k π(k ∈Z ).所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ). (2)由f (A )=1得sin ⎝ ⎛⎭⎪⎫2A +π6=12.因为2A +π6∈⎝ ⎛⎭⎪⎫π6,13π6, 所以2A +π6=5π6,得A =π3.由余弦定理得a 2=b 2+c 2-2bc cos A ,即(3)2=b 2+c 2-2bc cos π3,所以bc +3=b 2+c 2≥2bc ,解得bc ≤3,当且仅当b =c 时等号成立.所以S △ABC =12bc sin A ≤12×3×32=334.。
高考热点专题(三角函数与平面向量应用)
4 42
所以 ( , 3),所以2从而(c,o3s),2θ=
24
2
4 2, 9
所以tan 2θ= 7 2 .
8
【加固训练】设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c= (cosβ,-4sinβ). (1)若a与b-2c垂直,求tan(α+β)的值. (2)求|b+c|的最大值. (3)若tanαtanβ=16,求证:a∥b.
【典例2】(2019·沈阳模拟)已知向量m=(sinx,-1),n=(cosx, 3 ),
2
f(x)=(m+n)·m.
(1)求f(x)的最小正周期及单调递增区间.
(2)当x∈[0, ]时,求f(x)的值域.
2
(3)将f(x)的图象左移 3 个单位后得g(x)的图象,求g(x)在 [ , ]
8
33
【变式训练】(2019·合肥模拟)已知a=(cos(θ- ),1),b=(3,0),
4
其中θ∈( , 5),若a·b=1.
24
(1)求sin θ的值.
(2)求tan 2θ的值.
【解析】(1)由已知得:cos( ) 1 ,sin( ) 2 2 ,
43
43
sin [sin( ) ] 44
(2)因为b+c=(sinβ+cosβ,4cosβ-4sinβ), 所以|b+c|= (sin cos)2 (4cos 4sin)2 = 1 2sincos 16 32cossin 17 15sin 2, 所以当sin2β=-1时,|b+c|取最大值,且最大值为
32 4 2.
(3)因为tanαtanβ=16, 所以 sin s=in16,
专题讲座二三角函数、解三角形与平面向量在高考中的常见题型与求解策略
专题讲座二 三角函数、解三角形与平面向量在高考中的常见题型与求解策略考情概述 从近几年高考看,高考对本部分内容的考查主要有:三角恒等变换与三角函数图象和性质结合,解三角形与恒等变换、平面向量、数列、不等式的综合,难度属于中低档题,但考生得分不高,其主要原因是公式不熟导致运算错误.考生在复习时,要熟练掌握三角公式,特别是二倍角的余弦公式,在此基础上掌握一些三角恒等变换,如变换角的技巧、变换函数名称的技巧等.专题一 三角函数的图象与性质[学生用书P92](2015·高考重庆卷)已知函数f (x )=12sin 2x -3cos 2x .(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象.当x ∈⎣⎡⎦⎤π2,π时,求g (x )的值域.[解] (1)f (x )=12sin 2x -3cos 2x =12sin 2x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32,因此f (x )的最小正周期为π,最小值为-2+32.(2)由条件可知g (x )=sin ⎝⎛⎭⎫x -π3-32.当x ∈⎣⎡⎦⎤π2,π时,有x -π3∈⎣⎡⎦⎤π6,2π3,从而y =sin ⎝⎛⎭⎫x -π3的值域为⎣⎡⎦⎤12,1, 那么y =sin ⎝⎛⎭⎫x -π3-32的值域为⎣⎢⎡⎦⎥⎤1-32,2-32.故g (x )在区间⎣⎡⎦⎤π2,π上的值域是⎣⎢⎡⎦⎥⎤1-32,2-32.解决三角函数的图象和性质的综合问题,一般先由图象或三角公式确定三角函数y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b 等)的解析式.研究三角函数性质时,需把ωx +φ看成一个整体.1.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π6+sin ⎝⎛⎭⎫ωx -π6-2cos 2ωx 2,x ∈R ,ω>0.(1)求函数f (x )的值域;(2)若函数y =f (x )的图象与直线y =-1的两个相邻交点间的距离为π2,求函数y =f (x )的单调增区间.解:(1)f (x )=32sin ωx +12cos ωx +32sin ωx -12cos ωx -(cos ωx +1)=2⎝⎛⎭⎫32sin ωx -12cos ωx -1=2sin ⎝⎛⎭⎫ωx -π6-1.由-1≤sin ⎝⎛⎭⎫ωx -π6≤1,得-3≤2sin ⎝⎛⎭⎫ωx -π6-1≤1,所以函数f (x )的值域为[-3,1].(2)由题设条件及三角函数图象和性质可知,y =f (x )的周期为π,所以2πω=π,即ω=2. 所以f (x )=2sin ⎝⎛⎭⎫2x -π6-1,再由2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ).所以函数y =f (x )的单调增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ).专题二 解三角形[学生用书P93](2016·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cosC (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.[解] (1)由已知及正弦定理得,2cos C (sin A cos B +sin B cos A )=sin C ,2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332.又C =π3,所以ab =6.由已知及余弦定理得,a 2+b 2-2ab cos C =7, 故a 2+b 2=13,从而(a +b )2=25. 所以△ABC 的周长为5+7.在解决三角形与三角恒等变换综合问题时,一般先利用正、余弦定理,边角相互转化,求解三角函数值时通常利用三角恒等变换化成一个角的三角函数求解.2.(2016·郑州第一次质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足a 2-b 2-c 2+3bc =0,2b sin A =a ,BC 边上中线AM 的长为14.(1)求角A 和角B 的大小;(2)求△ABC 的面积.解:(1)由a 2-b 2-c 2+3bc =0得a 2-b 2-c 2=-3bc ,所以cos A =b 2+c 2-a 22bc =32,A =π6.由2b sin A =a ,得sin B =12,故B =π6.(2)设AC =BC =x ,得AM 2=x 2+x 24-2x ·x 2·⎝⎛⎭⎫-12=(14)2, 解得x =22,故S △ABC =12×22×22×32=2 3.专题三 三角函数、解三角形与平面向量的综合应用[学生用书P93](2014·高考辽宁卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c ,已知BA →·BC →=2,cos B =13,b =3,求:(1)a 和c 的值; (2)cos(B -C )的值.[解] (1)由BA →·BC →=2得c ·a cos B =2.又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B .又b =3,所以a 2+c 2=9+2×6×13=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2. 因为a >c ,所以a =3,c =2. (2)在△ABC 中,sin B =1-cos 2 B =1-⎝⎛⎭⎫132=223,由正弦定理,得sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79.于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响.3.已知f (x )=a·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x ,1)(x ∈R ).(1)求f (x )的最小正周期和单调递减区间;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,f (A )=-1,a =7,AB →·AC →=3,求边长b 和c 的值(b >c ).解:(1)由题意知,f (x )=2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝⎛⎭⎫2x +π3,所以f (x )的最小正周期T =π,因为y =cos x 在[2k π,2k π+π](k ∈Z )上单调递减,所以令2k π≤2x +π3≤2k π+π,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,所以f (x )的单调递减区间为⎣⎡⎦⎤k π-π6,k π+π3,k ∈Z .(2)因为f (A )=1+2cos ⎝⎛⎭⎫2A +π3=-1,所以cos ⎝⎛⎭⎫2A +π3=-1.又π3<2A +π3<7π3, 所以2A +π3=π.所以A =π3.因为AB →·AC →=3,即bc =6,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc , 7=(b +c )2-18,b +c =5, 又b >c ,所以b =3,c =2.1.若向量a ,b ,c 均为单位向量,且a ⊥b ,则|a -b -c |的最小值为( ) A.2-1 B .1 C.2+1 D . 2 解析:选A.因为a ,b ,c 均为单位向量,且a ⊥b ,所以a·b =0,所以|a -b |=(a -b )2=a 2+b 2-2a·b =2,所以|a -b -c |≥||a -b |-|c ||=2-1.2.(2016·郑州第一次质量预测)已知函数f (x )=A sin(πx +φ)的部分图象如图所示,点B ,C是该图象与x 轴的交点,过点C 的直线与该图象交于D ,E 两点,则(BD →+BE →)·(BE →-CE →)的值为( )A .-1B .-12C.12D .2 解析:选D.注意到函数f (x )的图象关于点C 对称,因此C 是线段DE 的中点,BD →+BE→=2BC →.又BE →-CE →=BE →+EC →=BC →,且|BC →|=12T =12×2ππ=1,因此(BD →+BE →)·(BE →-CE →)=2BC→2=2.3.(2015·高考重庆卷)在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________.解析:如图,在△ABD 中,由正弦定理,得 AD sin B =ABsin ∠ADB, 所以sin ∠ADB =22.所以∠ADB =45°,所以∠BAD =180°-45°-120°=15°.所以∠BAC =30°,∠C =30°,所以BC =AB = 2.在△ABC 中,由正弦定理,得AC sin B=BCsin ∠BAC ,所以AC = 6.答案: 6 4.(2015·高考天津卷)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.解析:f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,所以ω2=π4,所以ω=π2.答案:π25.已知函数f (x )=A sin (ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2,x ∈R的图象的一部分如图所示.(1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-6,-23时, 求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值. 解:(1)由题图知A =2,T =8, 因为T =2π=8,所以ω=π4.又图象经过点(-1,0),所以2sin ⎝⎛⎭⎫-π4+φ=0.因为|φ|<π2,所以φ=π4.所以f (x )=2sin ⎝⎛⎭⎫π4x +π4.(2)y =f (x )+f (x +2)=2sin ⎝⎛⎭⎫π4x +π4+2sin ⎝⎛⎭⎫π4x +π2+π4=22sin ⎝⎛⎭⎫π4x +π2=22cos π4x .因为x ∈⎣⎡⎦⎤-6,-23,所以-3π2≤π4x ≤-π6. 所以当π4x =-π6,即x =-23时,y =f (x )+f (x +2)取得最大值6;当π4x =-π,即x =-4时,y =f (x )+f (x +2)取得最小值-2 2. 6.(2015·高考陕西卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a ,3b )与n =(cos A ,sin B )平行.(1)求A ;(2)若a =7,b =2,求△ABC 的面积.解:(1)因为m ∥n ,所以a sin B -3b cos A =0, 由正弦定理,得sin A sin B -3sin B cos A =0, 又sin B ≠0,从而tan A = 3.由于0<A <π,所以A =π3.(2)法一:由余弦定理,得 a 2=b 2+c 2-2bc cos A ,而a =7,b =2,A =π3,得7=4+c 2-2c ,即c 2-2c -3=0. 因为c >0,所以c =3.故△ABC 的面积为12bc sin A =332.法二:由正弦定理,得7sinπ3=2sin B ,从而sin B =217.又由a >b ,知A >B ,所以cos B =277.故sin C =sin(A +B )=sin ⎝⎛⎭⎫B +π3=sin B cos π3+cos B sin π3=32114.所以△ABC 的面积为12ab sin C =332.1.已知函数f (x )=2cos 2x +23sin x cos x (x ∈R ).(1)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的单调递增区间;(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c =3,f (C )=2,若向量m =(1,sin A )与向量n =(2,sin B )共线,求a ,b 的值.解:(1)f (x )=2cos 2x +3sin 2x =cos 2x +3sin 2x +1=2sin ⎝⎛⎭⎫2x +π6+1,令-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,解得k π-π3≤x ≤k π+π6,k ∈Z ,因为x ∈⎣⎡⎦⎤0,π2,所以f (x )的单调递增区间为⎣⎡⎦⎤0,π6.(2)由f (C )=2sin ⎝⎛⎭⎫2C +π6+1=2,得sin ⎝⎛⎭⎫2C +π6=12,而C ∈(0,π),所以2C +π6∈⎝⎛⎭⎫π6,13π6,所以2C +π6=56π,解得C =π3.因为向量m =(1,sin A )与向量n =(2,sin B )共线,所以sin A sin B =12.由正弦定理得a b =12,①由余弦定理得c 2=a 2+b 2-2ab cos π3,即a 2+b 2-ab =9.②联立①②,解得a =3,b =2 3. 2.(2016·河南省六市第一次联考)已知函数f (x )=23sin x cos x -3sin 2x -cos 2x +2.(1)当x ∈⎣⎡⎦⎤0,π2时,求f (x )的值域;(2)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足ba =3,sin (2A +C )sin A=2+2cos(A +C ),求f (B )的值.解:(1)因为f (x )=23sin x cos x -3sin 2x -cos 2x +2 =3sin 2x -2sin 2x +1=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6.因为x ∈⎣⎡⎦⎤0,π2,所以2x +π6∈⎣⎡⎦⎤π6,7π6,sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, 所以f (x )在x ∈⎣⎡⎦⎤0,π2上的值域是[-1,2].(2)因为sin[A +(A +C )]=2sin A +2sin A cos(A +C ), 即sin A cos(A +C )+cos A sin(A +C ) =2sin A +2sin A cos(A +C ), 化简可得sin C =2sin A , 由正弦定理可得c =2a , 因为b =3a ,所以cos B =a 2+c 2-b 22ac =a 2+4a 2-3a 22a ·2a=12,因为0<B <π,所以B =π3.所以f (B )=1.。
2019版高考数学一轮回顾 专题二 三角函数与平面向量配套教案 理
例 1:(2015 年北京)已知函数 f(x)=sin x-2 3sin22x. (1)求 f(x)的最小正周期; (2)求 f(x)在区间0,23π上的最小值.
解:(1)f(x)=sin x-2
3
sin2
x 2
=
sin
x+
3 cos
x-
3=
2sinx+π3- 3,所以 f(x)的最小正周期为 2π.
解:(1)在△ABC 中,因为 a>b, 所以由 sin B=35,可得 cos B=45. 由已知及余弦定理,有 b2=a2+c2-2accos B=13, 所以 b= 13. 由正弦定理sina A=sinb B,得 sin A=asibn B=31313. 所以 b 的值为 13,sin A 的值为31313.
【规律方法】(1)本题考查向量的平行和向量的数量积以及 三角函数的化简和三角函数的性质,属于基础题.
(2)高考中经常将三角变换与解三角形知识综合起来命题, 其中关键是三角变换,而三角变换中主要是“变角、变函数名 和变运算形式”,其中的核心是 “变角”,即注意角之间的结 构差异,弥补这种结构差异的依据就是三角公式.
(2)由(1)的计算结果知,f(x)= 2sin2x+π4+1. 当 x∈0,π2 时,2x+π4∈π4,54π. 由正弦函数 y=sin x 在π4,54π上的图象知, 当 2x+π4=π2,即 x=π8时,f(x)取最大值 2+1; 当 2x+π4=54π,即 x=π2时,f(x)取最小值 0. 综上所述,f(x)在0,π2上的最大值为 2+1,最小值为 0.
故 sin(2B-A)=sin 2Bcos A-cos 2Bsin A
=45×- 55-35×2 5 5=-2 5 5.
新高考数学通用版总复习一轮课件专题二三角函数与平面向量
【互动探究】
1.(2020 年天津)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c.已知 a=2 2,b=5,c= 13.
(1)求角 C 的大小; (2)求 sin A 的值; (3)求 sin2A+π4的值.
解:(1)在△ABC 中,由 a=2 2,b=5,c= 13及余弦定
理,
得 cos C=a2+2ba2b-c2=28×+225-2×135= 22,
∴-1≤cosx+π6≤
3 2.
于是当 x+π6=π6,即 x=0 时,f(x)取到最大值 3;
当 x+π6=π,即 x=56π时,f(x)取到最小值-2 3.
【规律方法】三角函数和平面向量的结合主要体现在以下
两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、
垂直、求模或求数量积得到三角函数解析式.
又 A∈(0,π),∴A=23π.
(2)在△ABC 中,由余弦定理得 a2=b2+c2-2bc·cos A,
又 a= 7,b=1,A=23π,∴c2+cC 中,由正弦定理得 sin B= 1241, 又 a>b,∴B 为锐角,∴cos B= 1-sin2B=5147, 在 Rt△ABD 中,BADB=cos B,
解:(1)∵向量 a=(cos x, sin x),b=(3,- 3),a∥b,
∴- 3cos x=3sin x. 若 cos x=0,则 sin x=0,与 sin2x+cos2x=1 矛盾, 故 cos x≠0. 于是 tan x=- 33,又 x∈[0,π],∴x=56π. (2)f(x)=a·b=3cos x- 3sin x=2 3cosx+π6. ∵x∈[0,π],∴x+π6∈π6,76π.
3 2 sin
高考二轮复习 三角函数与平面向量的题型与方法(第1课时)
专题二 三角函数与平面向量的题型与方法(第1课时)一、 高考考情追踪纵观近几年高考关于三角函数与平面向量部分的命题可以看出,三角函数的试题一般是一小题一大题。
平面向量的试题一般是一小题,多以选择题或填空题的形式出现。
在解答题中对平面向量的考查,都不是以独立的试题形式出现,而是把平面向量作为解题的工具,渗透于解答题,如三角函数、圆锥曲线、数列等问题中。
三角函数的解答题一般都为基础题,而三角函数与平面向量的小题一般都属中低档题,不会太难。
三角函数的图像和性质,如周期、最值、单调性、图像变换、特征分析(对称轴、对称中心);三角函数式的恒等变形,如利用公式求值和简单的综合问题都是考查的热点;平面向量主要以考查共线(垂直)向量的充要条件、向量的数量积与夹角为主。
二、必备知识(一)三角函数的图像1、正切、余弦、正切函数的图像.2sin()(0,0).y A x A ωϕω=+>>、图像及变换3、不论是由解析式作图像还是由图像求解析式,一般都采用“五点法”.(二)三角函数的性质(定义域、值域、最值、单调性、奇偶性、周期性、对称性)2sin(),,=,=,2sin cos .cos()()y A x T x k k Z x x k k Z y A x y A x y A x x πωϕωπωϕπωϕπωϕπωϕ=+=++∈+∈=±=±=++ 三角函数周期其对称轴是函数取得最大值或最小值所对应的直线,可由求出;其对称中心是函数图像与轴的交点,可由求出;只有当其可化为或时才具有奇偶性类似地,可得到的图像与性质. 对于y=tan 的图像与性质,需注意的是:(1)周期T=;(2),0,.2k k Z ωπ∈其图像只有对称中心没有对称轴,并且对称中心为()三、热点突破类型一 三角函数的图像与性质2112cos 2.32623663115 f(x)1212123.x x B C ππππππππππππ-例()函数f(x)=cos 的一个单调增区间是( )A.(,) (,) C.(0,) D.(-,)(2)函数f(x)=3sin(2x-)的图像为C.①图像C 关于直线x=对称; ②函数在区间(-,)③由y=3sin2x 的图像向右平移个单位长度可以得到图像以上三个结论,正确结________.论的是443sin cos (,0,)y434323.2 sin a x b x a b a b R C y πππππππ-≠∈=()已知函数f(x)=为常数,在x=处取得最小值,则函数=f(-x)是( )A.偶函数且它的图像关于点(,0)对称 B.偶函数且它的图像关于点(,0)对称奇函数且它的图像关于点(,0)对称 D.奇函数且它的图像关于点(,0)对称(4)下列五个命题:①函数x-cos x 的最小正周期是;②终边{=,}23sin 2362________.k y k Z y x πααππππ∈=在轴上的角的集合是;③在同一坐标系中,函数y=sinx 的图像和y=x 的图像有三个公共点;④把函数y=3sin(2x+)的图像向右平移个单位长度可以得到的图像;⑤函数y=sin(x-)在[0,]上是减函数.其中真命题的序号是答案:(1)A (2)C (3)D (4)①④ 2212sin cos cos sin sin x b x c y a x b x c a x b a y c x d ωϕ++=+++=+【方法总结】()本大题题后三个题的设置使得每题中含有多个小问题,知识覆盖面广,信息量大,这是近年来备受命题者青睐的。
高考数学一轮复习课件-专题二三角函数与平面向量广东版
∵B 为锐角,∴2B∈(0,π),
∴2B=23π,即 B=π3. 方法二,由 m∥n 得 3cos 2B=-2sin Bcos B,
即 3cos 2B=-sin 2B, ∴sin 2B+ 3cos 2B=0,即 2sin2B+π3=0, ∴2B+π3=kπ,k∈Z,即 B=-π6+k2π,k∈Z, ∵B 为锐角,∴B=π3.
题型一 三角函数和解三角形 有关三角函数与解三角形的综合是全国各地的高考题中的 一种重要题型,对于这类题,通常是先利用正弦定理或者余弦 定理,将边的关系转化为只含有角的关系,再利用三角函数知 识来处理.
[例 1]在△ABC 中,角 A,B,C 的对边分别为 a,b,c,在 ①bcos Acos C=asin Bsin C-12b;②bsin Bcos C+12csin 2B=
即 cos(A+C)=-12, 因为 B=π-(A+C),所以 cos(A+C)=-cos B=-12, 即 cos B=12, 因为 0<B<π,所以 B=π3. 若选择②,由正弦定理得
sin2Bcos C+12sin Csin 2B= 3sin Acos B, 即 sin2Bcos C+sin Csin Bcos B= 3sin Acos B,
∴BD=4 5 7,AD=BD·sin B=4 5 7× 1241=2 5 3,
∴△ABD 的周长为 2+2 5 3+4 5 7=10+2
3+4 5
7 .
题型四 三角中的范围问题 [例 4](202X 年浙江)在锐角△ABC 中,角 A,B,C 的对边 分别为 a,b,c,且 2bsin A= 3 a. (1)求角 B; (2)求 cos A+cos B+cos C 的取值范围.
【规律方法】利用向量的运算性质将向量间关系化为三角 形中的边角关系是解题关键.
三角函数专题与平面向量的解题技巧
专题 三角函数专题【命题趋向】该专题的内容包括三角函数的图象与性质、平面向量、简单的三角恒等变换、解三角形.高考在该部分的选择和填空题,一般有两个试题。
一个试题是,如果在解答题部分没有涉及到正、余弦定理的考查,会有一个与正余弦定理有关的题目,如果在解答题中涉及到了正、余弦定理,可能是一个和解答题相互补充的三角函数图象、性质、恒等变换的题目;一个试题是以考查平面向量为主的试题,这个试题的主要命题方向是(1)以平面向量基本定理、共线向量定理为主,(2)以数量积的运算为主;三角函数解答题的主要命题方向有三个:(1)以三角函数的图象和性质为主体的解答题,往往和平面向量相结合;(2)以三角形中的三角恒等变换为主题,综合考查三角函数的性质等;(3)以实际应用题的形式考查正余弦定理、三角函数知识的实际应用.【考点透析】该专题的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用.【例题解析】题型1 三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题.例 1 若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( )A .1-BC .12-D .12+分析:三角形的最小内角是不大于3π的,而()2sin cos 12sin cos x x x x +=+,换元解决.解析:由03x π<≤,令sin cos sin(),4t x x x π=++而74412x πππ<+≤,得1t <≤.又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=.选择答案D . 点评:涉及到sin cos x x ±与sin cos x x 的问题时,通常用换元解决.解法二:1sin cos sin cos sin 242y x x x x x x π⎛⎫=++=++ ⎪⎝⎭,当4x π=时,max 12y =,选D 。
高三数学 二轮专题复习 专题2 三角函数与平面向量 第4讲 平面向量课件 文
=
1 2
|
A→B
||
A→C
|
=
20,
∴
|
A→B
|·| A→C
|
=
40,
∴
|
B→C
|2
≥
40,|B→C|≥2 10, ∴|B→C|的最小值为 2 10.
【点评】在平面向量与三角函数的综合问题中,一 方面用平面向量的语言表述三角函数中的问题,如利 用向量平行、垂直的条件表述三角函数式之间的关系, 利用向量模表述三角函数之间的关系等;另一方面可 以利用三角函数的知识解决平面向量问题.在解决此类 问题的过程中,只要根据题目的具体要求,在向量和三 角函数之间建立起联系,就可以根据向量或者三角函 数的知识解决问题.
【点评】在平面向量与解析几何的综合问题中,难 点是如何把向量表示的解析几何问题转化为纯粹的解 析几何问题,破解难点的方法是先根据平面向量知识 把向量表述的解析几何问题的几何意义弄明白,再根 据这个几何意义用代数的方法研究解决.
(2)已知向量 a,b 满足|a|=2|b|≠0,且关于 x 的函数
f(x)=-2x3+3|a|x2+6a·bx+5 在 R 上单调递减,则向量
30°), 即 C32, 23. ∵∠BOA=120°,∴A( 3cos 120°, 3sin 120°),
即
A-
23,32.又
B(
3,0), O→C=λO→A+μO→B.
∴32, 23=λ- 23,32+μ( 3,0).
∴32=- 23λ+
23=32λ
3μ
λ=
,解得
3 3
μ=2 3 3
∴λ+μ=
θ=2 5 5, 所以A→B在A→C方向上的投影为|A→B|cos θ=2.
高考数学文科生高效提分热点解读之三角函数与平面向量
高考数学文科生高效提分热点解读之三角函数与平面向量佚名高考是人一辈子的一种经历,一次考查,更是一次锤炼。
不是有人说,没有历通过高考的人一辈子是不完整的人一辈子。
在高考中,要取得理想的成绩,其数学成绩起到关键的作用。
距离高考还有不到40天了,那个时候是冲刺的黄金时期。
如何抓好那个时刻段的复习至关重要,针对大多数文科考生来说,毋容置疑,其薄弱环节确实是数学。
那么作为文科生考前数学应如何样复习?考前提分的关键又何在?热点二三角函数与平面向量三角函数与平面向量在高考中的题量大致是三小一大,分值约为28分。
从近几年的高考来看,三角函数小题的命题热点有:一是利用诱导公式、同角三角函数的差不多关系及专门角的三角函数值的求值问题(容易题);二是利用两角和与差的三角函数公式求值或化简三角函数式后求周期、单调区间、对称轴或对称中心(中档题);三是三角函数的图像和性质的综合应用(属于中档偏难题)。
平面向量的命题热点是:一为向量的坐标运算(容易题);二为向量的几何运算(中档题);三为向量与函数、三角函数、不等式的综合题(属于中档偏难题)。
在复习中要多加注意三角函数公式与正余弦定理、三角形面积公式的联系及变形技巧,重视三角函数式中角与角的差异,考虑函数名称间的差异,通过分析化异为同,要能熟练作出三角函数的图像,同时关注数形结合的思想在解题中的作用。
以及通过建立直角坐标系将向量的几何运算代数化,而利用三角形法则和平行四边形法则将平面向量的代数运算用几何形式来表达。
考点1三角函数的图像与性质三角函数的图像与性质是高考考查的重点,三角函数的图像是解决三角问题的重要工具,正确利用“五点法”(三个平稳点,两个最值点)作出三角函数的简图是解题的关键,函数f(x)=Asin(ωx+φ)、f(x)=Acos (ωx+φ)及f(x)=Atan(ωx+φ)可通过“五点法”来决定A,ω,φ的值。
考点2三角恒等变换三角恒等变换的差不多公式是诱导公式、同角三角函数的差不多关系、两角和与差的三角函数公式、二倍角的三角函数公式,其中同角三角函数的差不多关系和二倍角的三角函数公式的变形式的运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二高考三角函数与平面向量命题动向高考命题分析纵观近年各省的高考数学试题,出现了一些富有时代气息的三角函数与平面向量考题,它们形式独特、背景鲜明、结构新颖,主要考查学生分析问题、解决问题的能力和处理交汇性问题的能力.在新课标高考试卷中一般有2~4题,分值约占全卷的14%~20%,因此,加强这些试题的命题动向研究,对指导高考复习无疑有十分重要的意义.现聚焦高考三角函数与平面向量试题,揭秘三角函数与平面向量高考命题动向,挖掘三角函数与平面向量常见的考点及其求解策略,希望能给考生带来帮助和启示.高考命题特点新课标高考涉及三角函数与平面向量的考题可以说是精彩纷呈,奇花斗艳,其特点如下:(1)考小题,重基础:有关三角函数的小题其考查重点在于基础知识:解析式;图象与图象变换;两域(定义域、值域);四性(单调性、奇偶性、对称性、周期性);简单的三角变换(求值、化简及比较大小).有关向量的考查主要是向量的线性运算以及向量的数量积等知识.(2)考大题,难度明显降低:有关三角函数的大题即解答题,通过公式变形转换来考查思维能力的题目已经很少,而着重考查基础知识和基本技能与方法的题目却在增加.大题中的向量,主要是作为工具来考查的,多与三角、圆锥曲线相结合.(3)考应用,融入三角形与解析几何之中:既能考查解三角形、圆锥曲线的知识与方法,又能考查运用三角公式进行恒等变换的技能,深受命题者的青睐.主要解法是充分利用三角形内角和定理、正、余弦定理、面积公式、向量夹角公式、向量平行与垂直的充要条件,向量的数量积等.(4)考综合,体现三角的工具作用:由于近几年高考试题突出能力立意,加强对知识性和应用性的考查,故常常在知识交汇点处命题,而三角知识是基础中的基础,故考查与立体几何、解析几何、导数等综合性问题时突出三角与向量的工具性作用.高考动向透视考查三角函数的概念及同角三角函数的基本关系高考对本部分内容的考查主要以小题的形式出现,即利用三角函数的定义、诱导公式及同角三角函数的关系进行求值、变形,或是利用三角函数的图象及其性质进行求值、求参数的值、求值域、求单调区间及图象判断等,而大题常常在综合性问题中涉及三角函数的定义、图象、诱导公式及同角三角函数的关系的应用等,在这类问题的求解中,常常使用的方法技巧是“平方法”,“齐次化切”等.【示例1】►(2011·福建)若α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于 ( ). A.22 B.33 C. 2 D. 3解析 由二倍角公式可得sin 2α+1-2sin 2α=14,即-sin 2α=-34,sin 2α=34,又因为α∈⎝ ⎛⎭⎪⎫0,π2,所以sin α=32,即α=π3,所以tan α=tan π3=3,故选D. 答案 D本题考查了三角恒等变换中二倍角公式的灵活运用.考查三角函数的图象及其性质)三角函数的图象与性质主要包括:正弦(型)函数、余弦(型)函数、正切(型)函数的单调性、奇偶性、周期性、最值、图象的变换等五大块内容,在近年全国各地的高考试卷中都有考查三角函数的图象与性质的试题,而且对三角函数的图象与性质的考查不但有客观题,还有主观题,客观题常以选择题的形式出现,往往结合集合、函数与导数考查图象的相关性质;解答题主要在与三角恒等变换、不等式等知识点的交汇处命题,难度中等偏下.【示例2】►(2011·浙江)已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫π3x +φ,x ∈R ,A >0,0<φ<π2,y =f (x )的部分图象如图所示,P ,Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ).(1)求f (x )的最小正周期及φ的值; (2)若点R 的坐标为(1,0),∠PRQ =2π3,求A 的值.解 (1)由题意得,T =2ππ3=6.因为P (1,A )在y =A sin ⎝ ⎛⎭⎪⎫π3x +φ的图象上, 所以sin ⎝ ⎛⎭⎪⎫π3+φ=1. 又因为0<φ<π2,所以φ=π6.(2)设点Q 的坐标为(x 0,-A ),由题意可知π3x 0+π6=3π2,得x 0=4,所以Q (4,-A ),如图,连接PQ ,在△PRQ中,∠PRQ =2π3,由余弦定理得cos ∠PRQ =RP 2+RQ 2-PQ 22RP ·RQ=A 2+9+A 2-(9+4A 2)2A ·9+A2=-12,解得A 2=3.又A >0,所以A = 3. 本题主要考查三角函数的图象与性质、三角运算等基础知识.求单调区间高考对三角函数的单调性考查,常以小题形式呈现,有时也会出现在大题的某一小问中,属中档题.对于形如y =A sin(ωx +φ)(或y =A cos(ωx +φ)),Aω≠0的单调区间的求法是:先考虑A ,ω的符号,再将ωx +φ视为一个整体,利用y =sin x 的单调区间,整体运算,解出x 的范围即可.【示例3】►(2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( ). A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 解析 因为当x ∈R 时,f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6恒成立,所以f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫π3+φ=±1,可得φ=2k π+π6或φ=2k π-5π6.因为f ⎝ ⎛⎭⎪⎫π2=sin(π+φ)=-sin φ>f (π)=sin(2π+φ)=sin φ,故sin φ<0,所以φ=2k π-5π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x -5π6,所以由-π2+2k π≤2x -5π6≤π2+2k π得,函数的单调递增区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ). 答案 C本题的亮点是引入参数φ与不等式恒成立问题,求解此类问题的关键是:利用隐蔽条件“正弦函数的有界性”,把不等式恒成立问题转化为含参数φ的方程,求出参数φ的值,注意利用已知条件剔除增根;求出函数的解析式即可求其单调递增区间,熟悉正弦函数的单调性可加快求解此类问题的速度.【训练】 (2011·新课标全国)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( ).A .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递减 B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递减 C .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递增 D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递增解析 f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,由最小正周期为π得ω=2,又由f (-x )=f (x )可知f (x )为偶函数,|φ|<π2可得φ=π4,所以f (x )=2cos 2x在⎝ ⎛⎭⎪⎫0,π2单调递减. 答案 A求最值高考对三角函数最值的考查,常以小题形式呈现,属中档题.有时也在大题中的某一步呈现,属中档偏难题,高考常考查以下两种类型:①化成y =A sin(ωx +φ)的形式后利用正弦函数的单调性求其最值;②化成二次函数形式后利用配方法求其最值.【示例4】►(2011·重庆)设a ∈R ,f (x )=cos x (a sin x -cos x )+cos 2⎝ ⎛⎭⎪⎫π2-x 满足f ⎝ ⎛⎭⎪⎫-π3=f (0),求函数f (x )在⎣⎢⎡⎦⎥⎤π4,11π24上的最大值和最小值. 解 f (x )=a sin x cos x -cos 2x +sin 2 x =a 2sin 2x -cos 2x .由f ⎝ ⎛⎭⎪⎫-π3=f (0)得-32·a 2+12=-1,解得a =2 3. 因此f (x )=3sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6. 当x ∈⎣⎢⎡⎦⎥⎤π4,π3时,2x -π6∈⎣⎢⎡⎦⎥⎤π3,π2,f (x )为增函数, 当x ∈⎣⎢⎡⎦⎥⎤π3,11π24时,2x -π6∈⎣⎢⎡⎦⎥⎤π2,3π4,f (x )为减函数, 所以f (x )在⎣⎢⎡⎦⎥⎤π4,11π24上的最大值为f ⎝ ⎛⎭⎪⎫π3=2. 又因为f ⎝ ⎛⎭⎪⎫π4=3,f ⎝ ⎛⎭⎪⎫11π24=2, 故f (x )在⎣⎢⎡⎦⎥⎤π4,11π24上的最小值为f ⎝ ⎛⎭⎪⎫11π24= 2.本小题主要考查基本三角函数公式,以及运用三角函数公式对相关函数的解析式进行化简的能力,同时考查数形结合思想.【训练】 (2011·上海)函数y =2sin x -cos x 的最大值为________.解析 注意到y =5⎝ ⎛⎭⎪⎫25sin x -15cos x =5sin(x -θ).其中cos θ=25,sin θ=15,因此函数y =2sin x -cos x 的最大值是 5. 答案 5利用三角恒等变换求三角函数值三角恒等变换是研究三角函数的图象与性质,解三角形的基础,在前几年的高考中单独命题的情况很少,但在今年的高考中加强了对三角恒等变换的考查,大多是结合三角函数的图象与性质,解三角形进行命题,但有的省份对三角恒等变换进行了单独命题,由此可见,高考加大了对三角恒等变换的考查力度,高考命题考查的重点性质是公式,同角三角函数基本关系,两角和与差的正弦、余弦、正切公式以及二倍角公式.【示例5】►(2011·天津)已知函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π4. (1)求f (x )的定义域与最小正周期;(2)设α∈⎝ ⎛⎭⎪⎫0,π4,若f ⎝ ⎛⎭⎪⎫α2=2cos 2α,求α的大小. 解 (1)由2x +π4≠π2+k π,k ∈Z ,得x ≠π8+k π2,k ∈Z ,所以f (x )的定义域为⎩⎨⎧⎭⎬⎫x ∈R |x ≠π8+k π2,k ∈Z ,f (x )的最小正周期为π2. (2)由f ⎝ ⎛⎭⎪⎫α2=2cos 2α,得tan ⎝ ⎛⎭⎪⎫α+π4=2cos 2α, sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=2(cos 2α-sin 2α), 整理得sin α+cos αcos α-sin α=2(cos α+sin α)(cos α-sin α). 因为α∈⎝ ⎛⎭⎪⎫0,π4,所以sin α+cos α≠0. 因此(cos α-sin α)2=12,即sin 2α=12.由α∈⎝ ⎛⎭⎪⎫0,π4,得2α∈⎝ ⎛⎭⎪⎫0,π2.所以2α=π6,即α=π12.本小题主要考查两角和的正弦、余弦、正切公式,同角三角函数的基本关系,二倍角的正弦、余弦公式,正切函数的性质等基础知识,考查基本运算能力.【训练】 (2011·浙江)若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2=( ). A.33 B .-33 C.539 D .-69解析 对于cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2,而⎝ ⎛⎭⎪⎫π4+α∈⎝ ⎛⎭⎪⎫π4,3π4,⎝ ⎛⎭⎪⎫π4-β2∈⎝ ⎛⎭⎪⎫π4,π2. 因此sin ⎝ ⎛⎭⎪⎫π4+α=223,sin ⎝ ⎛⎭⎪⎫π4-β2=63, 则cos ⎝ ⎛⎭⎪⎫α+β2=13×33+223×63=539.故选C. 答案 C三角函数的综合应用三角函数的综合应用是历年来高考考查的重点、热点问题,新课标高考更加注重对知识点的综合应用意识的考查,而且新课标高考在考查的内容以及形式上不断推陈出新,三角函数不仅可以与集合、函数与方程、不等式等结合命题,而且还可以结合线性规划知识命题,给今后的命题提出了新的挑战.【示例6】►设函数f (θ)=3sin θ+cos θ,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P (x ,y ),且0≤θ≤π.(1)若点P 的坐标为⎝ ⎛⎭⎪⎫12,32,求f (θ)的值; (2)若点P (x ,y )为平面区域Ω⎩⎨⎧ x +y ≥1,x ≤1,y ≤1上的一个动点,试确定角θ的取值范围,并求函数f (θ)的最小值和最大值.解 (1)由点P 的坐标和三角函数的定义可得⎩⎪⎨⎪⎧ sin θ=32,cos θ=12.于是f (θ)=3sin θ+cos θ=3×32+12=2.(2)作出平面区域Ω(即三角区域ABC )如图所示,其中A (1,0),B (1,1),C (0,1).于是0≤θ≤π2.又f (θ)=3sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π6,且π6≤θ+π6≤2π3, 故当θ+π6=π2,即θ=π3时,f (θ)取得最大值,且最大值等于2;当θ+π6=π6,即θ=0时,f (θ)取得最小值,且最小值等于1.本小题主要考查三角函数、不等式等基础知识,考查运算求解能力. 有关解三角形的考查新课标高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主,在解题时,要分析清楚题目条件,利用正弦定理、余弦定理转化为三角形中各边之间的关系或各角之间的关系,并结合三角形的内角和为180°,诱导公式,同角三角函数基本关系,两角和与差的正弦、余弦、正切公式进行化简求值.在近几年的高考中,对解三角形的考查力度有所加强,而且更加注重知识点的综合运用,没有怪题、偏题.下面我们就高考试题研究一下解三角形的问题.【示例7】►(2011·江苏)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若sin ⎝ ⎛⎭⎪⎫A +π6=2cos A ,求A 的值; (2)若cos A =13,b =3c ,求sin C 的值.解 (1)由题设知sin A cos π6+cos A sin π6=2cos A .从而sin A =3cos A ,所以cosA ≠0,tan A = 3.因为0<A <π,所以A =π3.(2)由cos A=13,b=3c及a2=b2+c2-2bc cos A,得a2=b2-c2.故△ABC是直角三角形,且B=π2.所以sin C=cos A=1 3.本小题主要考查三角函数的基本关系式、两角和的正弦公式、解三角形,考查运算求解能力.【训练】(2011·天津)在△ABC中,内角A,B,C的对边分别为a,b,c.已知B =C,2b=3a.(1)求cos A的值;(2)求cos⎝⎛⎭⎪⎫2A+π4的值.解(1)由B=C,2b=3a,可得c=b=32a.所以cos A=b2+c2-a22bc=34a2+34a2-a22×32a×32a=13.(2)因为cos A=13,A∈(0,π),所以sin A=1-cos2A=223,cos 2A=2cos2A-1=-79.故sin 2A=2sin A cos A=429.所以cos⎝⎛⎭⎪⎫2A+π4=cos 2A cosπ4-sin 2A sinπ4=⎝⎛⎭⎪⎫-79×22-429×22=-8+7218.平面向量共线与垂直高考对平面向量共线与垂直的考查,常以小题形式出现,属中档题,有时也在大题的条件中出现,属中档偏难题.平面向量的坐标表示可使平面向量运算完全代数化,从而使得我们可以利用“方程的思想”破解向量共线与垂直的问题.【示例8】►(2011·江苏)已知e1,e2是夹角为2π3的两个单位向量,a=e1-2e2,b =k e1+e2,若a·b=0,则实数k的值为________.解析 由题意知:a ·b =(e 1-2e 2)·(k e 1+e 2)=0,即k e 21+e 1e 2-2k e 1e 2-2e 22=0,即k +cos 2π3-2k cos 2π3-2=0,化简可求得k =54.答案 54本题从向量数量积为0入手,转化为关于两单位向量数量积的关系式,再利用两向量数量积定义,转化为含k 的方程,即可求出k 的值.【训练】 (2011·广东)若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c ·(a +2b )=( ).A .4B .3C .2D .0解析 由a ∥b 及a ⊥c ,得b ⊥c ,则c ·(a +2b )=c ·a +2c ·b =0.故选D.答案 D平面向量夹角高考对平面向量夹角的考查,常以小题形式出现,属中档题.有时也在大题中出现,属中档题.两向量夹角公式其实是平面向量数量积公式的变形和应用、有关两向量夹角问题的考查,常见类型:①依条件等式,运算求夹角,此类问题求解过程中应关注夹角取值范围;②依已知图形求两向量夹角,此类题求解过程应抓住“两向量共起点”,便可避开陷阱,顺利求解.【示例9】►(2011·新课标全国)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题:p 1:|a +b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3; p 2:|a +b |>1⇔θ∈⎝ ⎛⎦⎥⎤2π3,π; p 3:|a -b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3; p 4:|a -b |>1⇔θ∈⎝ ⎛⎦⎥⎤π3,π. 其中的真命题是( ).A .p 1,p 4B .p 1,p 3C .p 2,p 3D .p 2,p 4解析 由|a +b |=a 2+2a ·b +b 2=2+2cos θ>1,得2+2cos θ>1,∴cos θ>-12,∴0≤θ<2π3.由|a -b |=a 2-2a ·b +b 2=2-2cos θ>1,得2-2cos θ>1,∴cos θ<12,∴π3<θ<π.∴p 1,p 4正确.答案 A此题考查向量的运算、向量的模及向量的夹角.平面向量的模高考对平面向量的模的考查,常以小题形式出现,属中档题,常考查类型:①把向量放在适当的坐标系中,给有关向量赋予具体坐标求向量的模,如向量a =(x ,y ),求向量a 的模只需利用公式|a |=x 2+y 2即可求解.②不把向量放在坐标系中研究,求解此类问题的通常做法是利用向量运算法则及其几何意义或应用向量的数量积公式,关键是会把向量a 的模进行如下转化:|a |=a 2.【示例10】►(2011·辽宁)若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( ). A.2-1 B .1 C. 2 D .2解析 由已知条件,向量a ,b ,c 都是单位向量可以求出,a 2=1,b 2=1,c 2=1,由a ·b =0,及(a -c )·(b -c )≤0,可以知道,(a +b )·c ≥c 2=1,因为|a +b -c |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c ,所以有|a +b -c |2=3-2(a ·c +b ·c )≤1,故|a +b -c |≤1.故选B.答案 B本小题主要考查了平面向量数量积的运算及应用它解决向量模的问题.【训练】 (2011·全国)设向量a ,b 满足|a |=|b |=1,a ·b =-12,则|a +2b |=( ). A. 2 B. 3 C. 5 D.7解析 依题意得(a +2b )2=a 2+4b 2+4a ·b =5+4×⎝ ⎛⎭⎪⎫-12=3,则|a +2b |=3,故选B.答案 B向量的应用近年的新课标高考,对于平面向量的应用的考查不仅体现在力学中,还渗透到中学学科的各个分支,但不论题型如何变化,都是把向量作为工具进行考查的,解题的关键是把这些以向量形式出现的条件还其本来面目.【示例11】►(2011·湖北)已知向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于( ).A .-π4 B.π6 C.π4 D.3π4解析 2a +b =(3,3),a -b =(0,3),则cos 〈2a +b ,a -b 〉=(2a +b )·(a -b )|2a +b |·|a -b |=932×3=22,故夹角为π4,选C. 答案 C本题主要考查了向量的坐标运算及数量积运算.。