2011年中考数学试题分类35 正多边形与圆

合集下载

中考数学第15讲正多边形和圆与圆中的计算复习讲义试题

中考数学第15讲正多边形和圆与圆中的计算复习讲义试题

正多边形和圆与圆中的计算时间:2022.4.12 单位:……*** 创编者:十乙州模块一正多边形和圆正多边形的定义:__________________________________________________。

正多边形的相关概念:⑴正多边形的中心:_______________________________________________。

⑵正多边形的半径:_______________________________________________。

⑶正多边形的中心角:_____________________________________________。

⑷正多边形的边心距:_____________________________________________。

正多边形的性质:⑴______________________________________________________________;⑵______________________________________________________________ ______________________________________________________________。

【例1】⑴小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,……,这样一直走下去,他第一次回到出发点A时,一一共走了_________m。

⑵正二百五十边形的一个内角等于_____,它的中心角等于__________。

⑶正六边形的边长a,半径R,边心距r的比a∶R∶r=__________________。

【例2】(中考)如图,有一个圆O和两个正六边形T1、T2。

T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1、T2分别为圆O的内接正六边形和外切正六边形)。

⑴设T1、T2的边长分别为a、b,圆O的半径为r,求r∶a及r∶b的值;⑵求正六边形T1、T2的面积比S1∶S2的值。

2011年中考数学真题分类汇编之第三十三章直线与圆的位置关系(附参考答案)

2011年中考数学真题分类汇编之第三十三章直线与圆的位置关系(附参考答案)

2011年中考数学真题分类汇编之第三十三章直线与圆的位置关系(附参考答案)D【答案】B3. (2011浙江温州,10,4分)如图,O是正方形ABCD的对角线BD上一点,⊙O边AB,BC都相切,点E,F分别在边AD,DC上.现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是( )A.3 B.4 C.22D.22【答案】C4. (2011浙江丽水,10,3分)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1)【答案】C5. (2011浙江金华,10,3分)如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点(0,3)B .点(2,3)C .点(5,1) D .点(6,1)【答案】C6. (2011山东日照,11,4分)已知AC ⊥BC于C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O的半径为ba ab 的是( )【答案】C7. (2011湖北鄂州,13,3分)如图,AB 为⊙O的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=( )A .30°B .45°C .60°D .67.5°【答案】D 8. (2011 浙江湖州,9,3)如图,已知AB 是⊙O的直径,C 是AB 延长线上一点,BC =OB ,CE 是⊙O 的切线,切点为D ,过点A 作AE ⊥CE ,垂足为E ,则CD :DE 的值是A .12B .1C .2D .3【答案】C9. (2011台湾全区,33)如图(十五),AB 为圆OD AOB 第的直径,在圆O上取异于A、B的一点C,并连接BC、AC.若想在AB上取一点P,使得P与直线BC的距离等于AP长,判断下列四个作法何者正确?A.作AC的中垂线,交AB于P点B.作∠ACB的角平分线,交AB于P点C.作∠ABC的角平分线,交AC于D点,过D作直线BC的并行线,交AB于P点D.过A作圆O的切线,交直线BC于D 点,作∠ADC的角平分线,交AB于P点【答案】D10.(2011甘肃兰州,3,4分)如图,AB是⊙O 的直径,点D在AB的延长线上,DC切⊙O 于点C,若∠A=25°,则∠D等于A .20°B .30°C .40°D .50°【答案】C 11. (2011四川成都,10,3分)已知⊙O 的面积为29cm π,若点0到直线l 的距离为cm π,则直线l 与⊙O 的位置关系是C(A)相交 (B)相切 (C)相离 (D)无法确定【答案】C12. (2011重庆綦江,7,4分) 如图,PA 、PB 是⊙O的切线,切点是A 、B ,已知∠P =60°,OA=3,那么∠AOB 所对弧的长度为( )A .6лB .5лC .3лD .2л【答案】:D13. (2011湖北黄冈,13,3分)如图,AB 为A BD O C⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=( )A .30°B .45°C .60°D .67.5°【答案】D 14. (2011山东东营,12,3分)如图,直线33y x =+与x 轴、y 分别相交与A 、B 两点,圆心P 的坐标为(1,0),圆P 与y 轴相切与点O 。

2011年浙江省宁波市中考数学试卷(含参考答案)

2011年浙江省宁波市中考数学试卷(含参考答案)

2011年宁波市中考数学试卷试 题 卷 Ⅰ一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.下列各数中是正整数的是( )A.1-B. 2C.0.5D.2 2.下列计算正确的是( ) A.632)(a a =B. 422a a a =+C.a a a 6)2()3(=⋅D.33=-a a3.不等式1x >在数轴上表示正确的是( ) A.B.C.D.4.据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为( ) A.5106057.7⨯人 B.6106057.7⨯人C. 7106057.7⨯人D. 71076057.0⨯人5.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是( ) A.)2,3(- B.)2,3(- C.)3,2(- D.)3,2( 6.如图所示的物体的俯视图是( )7.一个多边形的内角和是720°,这个多边形的边数是( ) A.4 B. 5 C. 6 D. 78.如图所示,AB ∥CD ,∠E =37°,∠C =20°,则∠EAB 的度数为( ) A. 57° B. 60° C. 63° D.123°(第6题) A. B. C.D.主视方向9.如图,某游乐场一山顶滑梯的高为h ,滑梯的坡角为α,那么滑梯长l 为( )A.sin h αB.tan h αC.cos hαD.αsin ⋅h10.如图,Rt △ABC 中,∠ACB =90°,22==BC AC ,若把Rt △ABC 绕边AB 所在直线旋转一周,则所得几何体的表面积为( )A.4πB.42πC.8πD.82π11.(2011宁波)如图,⊙O 1 的半径为1,正方形ABCD 的边长为6,点O 2为正方形ABCD 的中心,O 1O 2垂直AB 于P 点,O 1O 2 =8.若将⊙O 1绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O 1与正方形ABCD 的边只有一个公共点的情况一共出现( )A.3次B.5次C.6次D.7次12.(2011宁波)把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )A.4m cmB.4n cmC. 2(m +n ) cmD.4(m -n ) cm试 题 卷 Ⅱ二、填空题(每小题3分,共18分) 13.实数27的立方根是 . 14.因式分解:y xy -= .15.甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:选手 甲 乙 丙 平均数 9.3 9.3 9.3 方差 0.026 0.015 0.032则射击成绩最稳定的选手是 . (填“甲”、“乙”、“丙”中的一个)16.将抛物线2x y =的图象向上平移1个单位,则平移后的抛物线的解析式为 .17.(2011宁波)如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6cm ,DE =2cm ,则BC = cm .18.(2011宁波)如图,正方形1112A B PP 的顶点1P 、2P 在反比例函数2(0)y x x=>的图象上,顶点1A 、1B 分别在x 轴、y 轴的正半轴上,再在其右侧作正方形2232B A P P ,顶点3P 在反比例函数2(0)y x x=>的图象上,顶点2A 在x 轴的正半轴上,则点3P 的坐标为 .三、解答题(本大题有8小题,共66分)19.(本题6分)先化简,再求值:)1()2)(2(a a a a -+-+,其中5=a .20.(本题6分)在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回..,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的概率.21.(本题6分)请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图不能重复)(第21题)图① 图② 图③22.(本题8分)图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部...各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整. (2)商场服装部...5月份的销售额是多少万元? (3)小刚观察图②后认为,5月份商场服装部...的销售额比4月份减少了.你同意他的看法吗?请说明理由.23.(本题8分)如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过A 点作AG ∥BD 交CB 的延长线于点G . (1)求证:DE ∥BF ;(2)若∠G =90°,求证:四边形DEBF 是菱形.ABCDG E F(第23题)22% 17% 14% 12%16%5% 10% 15% 20%25% 123 45月份商场服装部...各月销售额占商场当月销售 总额的百分比统计图百分比 10090658020 40 60 80100 商场各月销售总额统计图12345销售总额(万元) 月份(第22题)图②图①24.(本题10分)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低,并求出最低费用.25.(2011宁波)(本题10分)阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b a,若Rt△ABC是奇异三角形,求::a b c;(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点, C、D在直径AB两侧,若在⊙O内存在点E,使得AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠AOC的度数.26.(2011宁波)(本题12分)如图,平面直角坐标系xOy中,点A的坐标为,点B的坐标为(6,6),抛物线经过A、O、B三点,连结OA、OB、AB,(2,2)线段AB交y轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连结ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;(4)连结AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.2011年宁波市中考数学试卷参考答案及评分标准一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、(2011浙江宁波,1,3)下列各数中是正整数的是( )A 、-1B 、2C 、0.5D 、2【考点】实数。

全国181套中考数学试题分类解析汇编 专题36多边形及其内角和

全国181套中考数学试题分类解析汇编 专题36多边形及其内角和

2011年全国181套中考数学试题分类解析汇编专题36:多边形及其内角和一、选择题1.(浙江杭州3分)正多边形的一个内角为135°,则该多边形的边数为A. 9B. 8C. 7D. 4【答案】B。

【考点】正多边形的性质,多边形内角和定理,解一元一次方程。

【分析】由正多边形内角相等的性质,根据多边形内角和定理列出等式求解即可:(n-2)×180°=n×135°,解之得n=8。

故选B。

2.(浙江宁波3分)一个多边形的内角和是720°,这个多边形的边数是(A)4 (B) 5 (C) 6 (D) 7【答案】C。

【考点】多边形的内角和定理。

.【分析】根据内角和定理180°•(n-2)=720°,解之,即得n=6,∴这个多边形的边数是6。

故选C。

3.(浙江省3分)如图,在五边形ABCDE中,∠BAE=120°, ∠B=∠E=90°,AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为A. 100° B.110° C. 120° D. 130°【答案】C。

【考点】等腰直角三角形的性质,三角形内角和定理。

【分析】可证,△AMN的周长最小时,∠NAM=60°,即∠AMN+∠ANM=120°。

故选C。

4.(辽宁抚顺3分)七边形内角和的度数是.A. 1 080°B. 1 260°C. 1 620°D. 900°【答案】D。

【考点】多边形内角和定理。

【分析】根据多边形内角和定理直接计算得出结果:(7-2)×180°=900°。

故选D。

5.(广西百色3分)五边形的外角和等于A.180°B. 360 °C.540°D.720°【答案】B。

中考数学圆与多边形专题含答案

中考数学圆与多边形专题含答案

【知识梳理】正多边形:各边相等、各角也相等的多边形叫做正多边形. 正多边形判定:“各边相等”、“各角相等”必须同时具备,缺一不可. 正多边形与圆的关系:正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.正多边形的中心:正多边形外接圆的圆心叫做正多边形的中心. 正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角. 正多边形的边心距:正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.与正多边形(正n 边形)有关的计算: 边长AB a半径OA R 周长 C=na面积 2AOB nar nS S ==△中心角∠AOBn ︒360 外角n︒360 内角∠CAB(1)180°-n︒360(2)nn ︒-180)2( 内角和︒-180)2(n边心距OH(1)nR OH ︒⨯=180cos(2)22)2(aR OH -=正三角形,正方形,正六边形的内外接圆半径与边长的关系。

正三角形 正方形 正六边形 内接 外接正多边形的边心距(正三角形,正方形,正六边形)【经典例题1】正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。

若等腰直角三角形的外接圆半径的长为 2,则其内切圆半径的长为()A.2B.22-2C.2-2D.2-1 【解析】∵等腰直角三角形外接圆半径为2,∴此直角三角形的斜边长为4,两条直角边分别为22,∴它的内切圆半径为:R=21(22+22−4)=22−2.故选B.练习1-1如图,已知⊙O 的内接正六边形 ABCDEF 的边心距 OM =2,则该圆的内接正三角形 ACE 的面积为( ) A .2 B .4 C .63 D .43【解析】如图所示,连接OC ,OB ,过O 作ON ⊥CE 于N , ∵多边形ABCDEF 是正六边形, ∴∠COB=60°, ∵OC=OB ,∴△COB 是等边三角形, ∴∠OCM=60°, ∴OM=OC•sin ∠OCM , ∴33460sin =︒=OM OC .∵∠OCN=30°, ∴ON=21OC=332,CN=2,∴CE=2CN=4,∴该圆的内接正三角形ACE 的面积=343324213=⨯⨯⨯, 故选:D .练习1-2如图,边长为a 的正方形ABCD 和边长为b 的等边△AEF 均内接于⊙O ,则ab的值是( ) A .2 B .3 C .2 D .62【解析】设其半径是r ,则其正三角形的边长是3r , 正方形的边长是2r ,则它们的比是2:3.则内接正方形的边长与内接正三角形的边长的比为:6:3.即则ab的值=26,故选:D.练习1-3如图,△ABC 是半径为1的⊙O 的内接正三角形,则圆的内接矩形BCDE 的面积为( )A .3B .32C 3D 3【解析】过点O 作OF ⊥BC 于点F ,连结BD 、OC ,∵△ABC 是 O 的内接等边三角形,AB=1,∴BF=21BC=21,∠OBC=30°, ∴OB=︒30cos BF=2321=33,CD=BC•tan30°=33,∴矩形BCDE 的面积=BC•CD=33. 故选C .练习1-4如图,正六边形ABCDEF 内接于☉O ,已知☉O 的半径为4,则这个正六边形的边心距OM 和弧BC 的长分别为 ( )A .2,3π B .23,π C .3,32π D .23,34π 【解析】解:如图所示,连接OC 、OB ∵多边形ABCDEF 是正六边形, ∴∠BOC=60°, ∵OA=OB ,∴△BOC 是等边三角形, ∴∠OBM=60°, ∴OM=OBsin ∠OBM=4×23=23, 弧BC 的长度=ππ34180460=⨯, 故选:A .练习1-5如图,等腰三角形ABC 的内切圆☉O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AB=AC=5,BC=6,则DE 的长是( )A .10103 B .5103 C .553 D .556 【解析】D练习1-6(2019·十堰中考)如图,四边形ABCD 内接于⊙O ,AE ⊥CB 交CB 的延长线于点E ,若BA 平分∠DBE ,AD =5,CE =13,则AE =( )A .3B .3 2C .4 3D .2 3 【解析】如解图,连接AC ,∵BA 平分∠DBE , ∴∠ABE =∠ABD ,∵四边形ABCD 是⊙O 的内接四边形, ∴∠ABC +∠ADC =180°. ∵∠ABC +∠ABE =180°,∴∠ABE =∠ADC ,∴∠ADC =∠ABD , ∵∠ABD =∠ACD ,∴∠ADC =∠ACD ,∴AC =AD =5.∵AE ⊥CE ,CE =13,∴AE =2222)13(5-=-CE AC =23.练习1-7如图,有一个圆O 和两个正六边形T 1,T 2.T 1的6个顶点都在圆周上,T 2的6条边都和圆O 相切(我们称T 1,T 2分别为圆O 的内接正六边形和外切正六边形).(1)设T 1,T 2的边长分别为a ,b ,圆O 的半径为r ,求r ∶a 及r ∶b 的值; (2)求正六边形T 1,T 2的面积比S 1∶S 2的值.T 1T 2O【解析】(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形。

初中数学知识点:正多边形和圆知识点

初中数学知识点:正多边形和圆知识点

初中数学知识点:正多边形和圆知识点新一轮的中考复习又开始了,本站编辑为此特为大家整理了正多边形和圆知识点,希望可以帮助大家复习,预祝大家取得优异的成绩~正多边形和圆知识点1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。

2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

典型例题粉笔是校园中最常见的必备品.图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为_____mm.(,结果精确到1mm)答案:300解析:把图形中的边长的问题转化为正六边形的边长、边心距之间的计算即可.解:作B′M′∥C′D′,C′M′⊥B′M′于点M′.粉笔的半径是6mm.则边长是6mm.∵∠M′B′C′=60°∴B′M′=B′C′?cos60°=6×=3.边心距C′M′=6sin60°=3mm.则图(2)中,AB=CD=11×3=33mm.AD=BC=5×6+5×12+3=93mm.则周长是:2×33+2×93=66+186≈300mm.故答案是:300mm.同步练习题1判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2填空题:①一个外角等于它的一个内角的正多边形是正____边形.[②正八边形的中心角的度数为 ____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm ,面积是____cm.④面积等于 cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D. :1④正六边形的两条平行边间距离是1,则边长是( )A . B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1: :C. 1: :3D.1:2:四、计算1.已知正方形面积为8cm2,求此正方形边心距 .3.已知圆内接正三角形边心距为 2cm,求它的边长.距长.长.8.已知圆外切正方形边长为2cm ,求该圆外切正三角形半径.10.已知圆内接正方形边长为m,求该圆外切正三角形边长.长.12.已知正方形边长为1cm,求它的外接圆的外切正六边形外接圆的半径.13.已知一个正三角形与一个正六边形面积相等,求两者边长之比.15.已知圆内接正六边形与正方形面积之差为11cm2,求该圆内接正三角形的面积.16.已知圆O内接正n边形边长为an,⊙O半径为R,试用an,R表示此圆外切正n边形边长bn.。

湖北省2011年中考数学试题分类解析11 圆

湖北省2011年中考数学试题分类解析11 圆

2011年中考数学试题分类解析汇编专题11:圆一、选择题1. (佛山3分)若O 的一条弧所对的圆周角为60︒,则这条弧所对的圆心角是A 、30︒B 、60︒C 、120︒D 、以上答案都不对【答案】C 。

【考点】同弧所对圆周角与圆心角的关系。

【分析】根据同弧所对圆周角是圆心角的一半的定理,直接得出结果。

故选C 。

2. (广州3分)如图,AB 切⊙O 于点B ,OA =2AB =3,弦BC ∥OA ,则劣弧BC的弧长为A 3错误!未找到引用源。

B 、错误!2C 、πD 、错误!未找到引用源。

32π【答案】A 。

【考点】弧长的计算,切线的性质,特殊角的三角函数值,平行线的性质。

【分析】要求劣弧 BC的长首先要连接OB ,OC ,由AB 切⊙O 于点B ,根据切线的性质得到OB ⊥AB ,在Rt △OBA 中,OA =2错误!未找到引用源。

,AB =3,利用三角函数求出∠BOA =60°,同时得到OB =12OA =得到∠BOA =∠CBO =60°,于是有∠BOC =60°,最后根据弧长公式计算出劣弧 BC 的长=1803。

故选A 。

3.(茂名3分)如图,⊙O 1、⊙O 2相内切于点A ,其半径分别是8和4,将⊙O 2沿直线O 1O 2平移至两圆相外切时,则点O 2移动的长度是A 、4B 、8C 、16D 、8或16【答案】D 。

【考点】圆与圆的位置关系,平移的性质。

【分析】由题意可知点O 2可能向右移,此时移动的距离为⊙O 2的直径长;如果向左移,则此时移动的距离为⊙O 1的直径长。

∵⊙O 1、⊙O 2相内切于点A ,其半径分别是8和4,如果向右移:则点O 2移动的长度是4×2=8,如果向左移:则点O 2移动的长度是8×2=16.∴点O 2移动的长度8或16。

故选D 。

4.(清远3分)如图,点A 、B 、C 在⊙O 上,若∠BAC =20º,则∠BOC 的度数为A .20ºB .30ºC .40ºD .70º【答案】C 。

全国中考数学试卷解析分类汇编 正多边形与圆

全国中考数学试卷解析分类汇编  正多边形与圆

正多边形与圆一.选择题1.(2015•广东广州,第9题3分)已知圆的半径是2,则该圆的内接正六边形的面积是( )A . 3B . 9C . 18D . 36考点: 正多边形和圆. 分析:解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.解答: 解:连接正六边形的中心与各个顶点,得到六个等边三角形, 等边三角形的边长是2,高为3,因而等边三角形的面积是3,∴正六边形的面积=18,故选C . 点评:本题考查了正多边形和圆,正六边形被它的半径分成六个全等的等边三角形,这是需要熟记的内容.2. (2015•浙江金华,第10题3分)如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EFGH的值是【 】A .26B . 2C .3 D . 2【答案】C .【考点】正方形和等边三角形的性质;圆周角定理;锐角三角函数定义;特殊角的三角函数值;等腰直角三角形的判定和性质,特殊元素法的应用.【分析】如答图,连接AC,EC ,AC 与EF 交于点M .则根据对称性质,AC 经过圆心O ,∴AC 垂直 平分EF ,01EAC FAC EAF 302∠=∠=∠=. 不妨设正方形ABCD 的边长为2,则AC 22=. ∵AC 是⊙O 的直径,∴0AEC 90∠=.在Rt ACE ∆中,3AE AC cos EAC 2262=⋅∠=⋅=, 1CE AC sin EAC 2222=⋅∠=⋅=.在Rt MCE ∆中,∵0FEC FAC 30∠=∠=,∴12CM CE sin EAC 222=⋅∠=⋅=.易知GCH ∆是等腰直角三角形,∴GF 2CM 2==.又∵A EF ∆是等边三角形,∴EF AE 6==.∴EF 63GH 2==. 故选C .3. (2015山东济宁,7,3分)只用下列哪一种正多边形,可以进行平面镶嵌( )A .正五边形B .正六边形C .正八边形D .正十边形 【答案】B考点:正多边形的内角,平面镶嵌4. (2015•四川成都,第10题3分)如图,正六边形ABCDEF 内接于圆O ,半径为4,则这个正六边形的边心距OM 和弧BC 的长分别为(A )2、3π(B )32、π(C )3、23π (D )32、43π【答案】:D【解析】:在正六边形中,我们连接OB 、OC 可以得到OBC ∆为等边三角形,边长等于半径4。

苏教版数学中考复习:正多边形与圆、弧长与扇形的面积、圆锥的侧面积与全面积课件

苏教版数学中考复习:正多边形与圆、弧长与扇形的面积、圆锥的侧面积与全面积课件

C B
例8、已知:在RtΔABC,
∠C=90°, AB=13 cm, BC=5 cm
求以AB为轴旋转一周所得到的几何体的全面积。 解:过C点作 CD AB ,垂足为 D点
AC BC 5 12 60 所以 CD AB 13 13
A
60 120 底面周长为 2 13 13
6.将一个正五边形绕它的中心旋转,至少要旋转 72 _______度,才能与原来的图形位置重合. 7.两个正三角形的内切圆的半径分别为12和18, 2﹕3 4﹕9 则它们的周长之比为______,面积之比为____。
知识回顾
一、圆的周长公式
C=2πr
S= π r2 二、圆的面积公式
n nr 三、弧长的计算公式 l 2r 360 180
4 . 3
4 2、已知扇形面积为 3 ,圆心角为120°,则
2 这个扇形的半径R=____.
4 3、已知半径为2cm的扇形,其弧长为 3 , 4 3 则这个扇形的面积,S =______

4. (2006,武汉)如图,⊙A、⊙B、⊙C、⊙D相互 外离,它们的半径都是1,顺次连接四个圆心得到 四边形ABCD,则图形中四个扇形(空白部分)的面 积之和是___________.
小结:此类问题可直接运 用公式,但是扇形中的弧 长与母线、半径之间的关 系一定要清晰,不能混淆.
.9cm
例6:如图所示的扇形中,半径R=10,圆心 角θ=144°用这个扇形围成一个圆锥的侧面.
(1)求这个圆锥的底面半径r;
(2)求这个圆锥的高.
A
C O
r
B
nR 分析:此题把公式 180 2r进行灵活运用,n、 R、r中知道两个就能求出另外一个。

2011年浙江省杭州市中考数学试卷-含答案详解

2011年浙江省杭州市中考数学试卷-含答案详解

杭州市2011年各类高中招生文化考试一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列各式中.正确的是( )A. B. C. D.2. 正方形纸片折一次,沿折痕剪开,能剪得的图形是( )A. 锐角三角形B. 钝角三角形C. 梯形D. 菱形3. (2×106)3=( )A. 6×109B. 8×109C. 2×1018D. 8×10184. 正多边形的一个内角为135°,则该正多边形的边数为( )A. 9B. 8C. 7D. 45. 在平面直角坐标系xOy中,以点(−3,4)为圆心,4为半径的圆( )A. 与x轴相交,与y轴相切B. 与x轴相离,与y轴相交C. 与x轴相切,与y轴相交D. 与x轴相切,与y轴相离6. 如图,函数y 1=x−1和函数的图象相交于点M(2,m),N(−1,n),若y 1>y 2,则x的取值范围是( )A. x<−1或0<x<2B. x<−1或x>2C. −1<x<0或0<x<2D. −1<x<0或x>27. —个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是( )A. B.C. D.8. 如图是一个正六棱柱的主视图和左视图,则图中的a=( )A. B. C. 2 D. 19. 若a+b=−2,且a≥2b,则( )A. 有最大值B. 有最大值1C. 有最大值2D. 有最大值10. 在矩形ABCD中,有一个菱形BFDE(点E,F分别在线段AB,CD上),记它们的面积分别为S ABCD和S BFDE.现给出下列命题:①若,则;②若DE 2=BD·EF,则DF=2AD.则( )A. ①是真命题,②是真命题B. ①是真命题,②是假命题C. ①是假命题,②是真命题D. ①是假命题,②是假命题二、填空题(本大题共6小题,共24.0分)11. 写出一个比−4大的负无理数.12. 当x=−7时,代数式(2x+5)(x+1)−(x−3)(x+1)的值为_____.13. 数据9.30,9.05,9.10,9.40,9.20,9.10的众数是_____;中位数是_____.14. 如图,点A,B,C,D都在O上,的度数等于84°,CA是∠OCD的平分线,则∠ABD+∠CAO=_____。

山东省17市2011年中考数学试题分类解析汇编 专题11 圆

山东省17市2011年中考数学试题分类解析汇编 专题11 圆

山东17市2011年中考数学试题分类解析汇编专题11:圆一. 选择题1.(日照4分)已知AC⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O 的半径为aba b+的是【答案】D 。

【考点】三角形的内切圆与内心,切线的性质,正方形的判定和性质,解一元一次方程,相似三角形的判定和性质。

【分析】设圆的半径是r 。

A 、设圆切BC 于D ,切AC 于E ,切AB 于F ,连接OD ,OE ,OF ,如图,根据切线的性质可得到正方形OECD ,AE =AF ,BD =BF ,则a -r +b -r =c ,∴r=2a b c+-,故本选项错误;B 、设圆切AB 于F ,连接OF ,如图,则OF =r ,AO =b -r ,△BCA∽△OFA,∴OF AOCB AB =,即r rb a c-=,∴r=aba c+,故本选项错误;C 、连接OE 、OD ,根据AC 、BC 分别切圆O 于E 、D ,如图,根据切线的性质可得到正方形OECD ,则OE =r ,AE =b -r ,△BCA∽△OEA,∴OE AEBC AC=,即r rb a b-=,∴r=ab a b +,故本选项正确;D 、设圆切BC 于D ,连接OD ,OA ,则BD =a +r ,由BA =BD 得c =a +r ,即r =c -a ,故本选项错误。

故选C 。

2.(滨州3分)如图,在平面直角坐标系中,正方形ABCO 的顶点A 、C 分别在y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切.若点A 的坐标为(0,8),则圆心M 的坐标为A 、(﹣4,5)B 、(﹣5,4)C 、(5,﹣4)D 、(4,﹣5)【答案】D 。

【考点】垂径定理,勾股定理,正方形的性质。

【分析】过点M 作MD⊥AB 于D ,交OC 于点E ,连接AM 。

设⊙M 的半径为r .∵以边AB 为弦的⊙M 与x 轴相切,AB∥OC,∴DE⊥CO。

∴DE 是⊙M 直径的一部分。

(9月最新修订版)2011全国各地中考数学试题分类汇编考点38_正多边形、扇形和圆锥侧面展开图(含答

(9月最新修订版)2011全国各地中考数学试题分类汇编考点38_正多边形、扇形和圆锥侧面展开图(含答

(9月最新修订版)2011全国各地中考数学试题分类汇编考点38_正多边形、扇形和圆锥侧面展开图(含答案)22011中考数学试题分类--正多边形、扇形和圆锥侧面展开图一、选择题1. (2011广州)如图,AB 切⊙O 于点B ,OA =23,AB =3,弦BC ∥OA ,则劣弧⌒BC的弧长为( ).A .33πB .32π C .πD .32π(第1题)2. (2011滨州)如图.在△ABC 中,∠B=90°,∠A=30°,AC=4cm ,将△ABC 绕顶点C 顺时针方向旋转至△A′B′C′的位置,且A 、C 、C B A OB′A′CBA(第2题)(第4题)剪B′三点在同一条直线上,则点A所经过的最短路线的长为( )A.43cmB. 8cmC. 163cm πD. 83cm π3. (2011德州)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为1a,2a,3a,4a,则下列关系中正确的是A.4a>2a>1a B.4a>3a>2a C.1a>2a>3a D.2a>3a>4a4. (2011济宁)如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cm B.35C.8cm D.53345. (2011泰安)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是( ) A.5π B. 4π C.3π D.2π6. (2011烟台)如图,六边形ABCDEF 是正六边形,曲线FK 1K 2K 3K 4K 5K 6K 7…… 叫做“正六边形的渐开线”,其中1FK ,12K K ,23K K ,34K K ,45K K ,56K K ,……的圆心依次按点A ,B ,C ,D ,E ,F 循环,其弧长分别记为l 1,l 2,l 3,l 4,l 5,l 6,…….当AB =1时,l 2 011等于( )A.20112πB. 20113π C.20114π D.20116π(第8题)(第6A B CD E F K 1KKK 4K 5K 6K 757. (2011宁波)Rt ∆ABC 中,∠ACB =90°,AC =BC =22, 若把Rt ∆ABC 绕边AB 所在直线旋转一周则所得的几何体得表面积为A . 4πB . 42πC . 8πD . 82π8. (2011衢州)如图,一张半径为1的圆形纸片在边长为(3)a a ≥的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是( ) A.2aπ- B.2(4)a π- C. πD.4π-9. (2011肇庆)已知正六边形的边心距为3,则它的周长是A .6B .12C .36D .312 10.(2011台湾台北)如图(十一)为ABC ∆与圆O的重迭情形,其中BC 为圆O 之直径。

2011年广东省各地中考数学试题特点分析

2011年广东省各地中考数学试题特点分析

2011年广东省各地中考试题特点分析2011年广东省各地中考试题考查的知识点、难易程度、分值设置整体上都是大同小异的:知识点包括数与式、方程、不等式、函数、三角形、多边形等。

分值设置比较合理。

大体上,代数占57分,几何占53分,统计与概率占10分。

在代数中,数与式占29分,方程与不等式组占13分,函数占15分;几何中三角形占29分,四边形占14分,圆占10分。

难易度与梯度明显。

试卷前面是基础题,后面是中档题和爬坡题呈递进状态。

其中基础题和常规题占80分左右,其余为中高档题。

珠海市中考数学试题特点分析:2011年数学试题大体上基础知识考查地比较好,着重联系实际和生活,让学生从生活中寻找与知识的交汇点去解决问题,这样有利于学生从实际出发,提高联系实践的能力,并感受数学与生活的渊源,它反映着实践,用于实践,服务于实践的理念。

(2011·12·珠海)(本题满分6分)某校为了调查学生视力变化情况,从该校2008年入校学生中抽取部分学生进行连续三年的视力跟踪调查,将所得数据处理,制成拆线统计图和扇形统计图,如图所示:(1)该校被抽查的学生共有多少名?(2)现规定视力5.1及以上为合格,若被抽查年级共有600名学生,估计该年级在2010年有多少名学生视力合格.本题从调查学生视力的情况入手,紧密联系实际,展开问题,凸显实际性,考查了统计的基本知识,具有一般性。

)被抽取学生视力在5.0以下人数变化情况统计图 被抽取学生视力在2010的视力分布情况统计图视力分组说明: A :5.0以下 B :5.0~5.1 C :5.2~5.2 D :5.2以上 每组数据只含最低值,不含最高值.广东省中考数学试题特点分析:2011年广东省中考数学试题出现从图形、数字中找规律的规律型问题。

考查的数学思想方法主要涉及到数形结合思想,相似变换思想,分类讨论思想等。

以下举两例说明: (2011·10·广东)(本题4分)如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为_________________.很显然,此题是考查了相似变换思想,要求学生运用相似三角形和比例的性质解决问题,属于中等题。

浙江省2011年中考数学试题分类解析汇编专题11 圆

浙江省2011年中考数学试题分类解析汇编专题11 圆

某某2011年中考数学试题分类解析汇编专题11:圆一、选择题1.(某某某某、某某3分)如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为(A )6 (B )8 (C )10 (D )12【答案】A 。

【考点】垂径定理,勾股定理。

【分析】要求弦心距,即要作出它并把它放到三角形中求解。

故作辅助线:过O 作OD⊥AB 于D ,则OD 是弦AB 的弦心距,连接OB ,根据垂径定理求出BD=AD=8,在Rt△OBD中,根据勾股定理即可求出OD :2222OD OB BD 1086=-=-=。

故选A 。

2.(某某某某4分)已知线段AB=7cm ,现以点A 为圆心,2cm 为半径画⊙A;再以点B 为圆心,3cm 为半径画⊙B,则⊙A 和⊙B 的位置关系A 、内含B 、相交C 、外切D 、外离【答案】D 。

【考点】圆与圆的位置关系。

【分析】据两圆的位置关系的判定:相切(两圆圆心距离等于两圆半径之和或两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。

由两圆半径之和为3+2=5,圆心距为7,可知两圆外离。

故选D 。

3.(某某某某4分)如图,AB 为⊙O 的直径,点C 在⊙O 上.若∠C=16°,则∠BOC 的度数是A 、74° B、48° C、32° D 、16°【答案】C 。

【考点】圆周角定理,等腰三角形的性质。

【分析】根据等腰三角形等边对等角的性质,得∠A=∠C=16°;又根据同弧所对的圆周角等于圆心角一半的性质,得∠BOC=2∠A =32°。

故选C 。

4.(某某某某4分)一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是A 、16B 、10C 、8D 、6【答案】A 。

初中数学中考正多边形与圆的关系(含答案解析)

初中数学中考正多边形与圆的关系(含答案解析)

正多边形与圆的关系一、选择题(本大题共10小题,共30.0分)1.半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A. a<b<cB. b<a<cC. a<c<bD. c<b<a2.若正方形的外接圆半径为2,则其内切圆半径为()A. √2B. 2√2C. √22D. 13.一个正方形的边长为a,则它的内切圆的面积为()A. 34a2π B. 14a2π C. 32a2π D. a2π4.若一个正多边形的边长与半径相等,则这个正多边形的中心角是()A. 45°B. 60°C. 72°D. 90°5.有下列四个命题:①各边相等的圆内接多边形是正多边形;②各边相等的圆外切多边形是正多边形;③各角相等的圆内接多边形是正多边形;④各角相等的圆外切多边形是正多边形.其中正确的个数为()A. 1B. 2C. 3D. 46.下列正多边形,通过直尺和圆规不能作出的是()A. 正三角形B. 正四边形C. 正五边形D. 正六边形7.正六边形的半径与边心距之比为()A. 1:√3B. √3:1C. √3:2D. 2:√38.若正六边形的边长为4,则它的外接圆的半径为().A. 4√3B. 4C. 2√3D. 29.正四边形的边心距为1,则它的半径是A. 2√2B. √2C. 2D. 110.如图,五边形ABCDE是⊙O的内接正五边形,则∠OCD的度数是()A. 60°B. 54∘C. 76°D. 72°二、填空题(本大题共10小题,共30.0分)11.若点O是正六边形ABCDEF的中心,∠MON=120°且角的两边分别交六边形的边AB、EF于M、N两点。

若多边形AMONF的面积为2√3,则正六边形ABCDEF的边长是____.12.半径为2的圆内接正六边形的边心距等于_____.13.圆内接正六边形的边长为10cm,它的边心距等于__________cm.14.正六边形的半径为1,则正六边形的面积为____________________;15.如图,点O为正六边形ABCDEF的中心,连接EA,则∠AED=____度;若OA=4,则该正六边形的面积为__________.16.半径为4的正n边形边心距为2√3,则此正n边形的边数为_____.17.已知一个正六边形的外接圆半径为2,则这个正六边形的周长为________.18.如图,⊙O是正五边形ABCDE的外接圆,则∠ADC的度数是________.19.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是______°.20.半径为3的圆的内接正方形的边长是________.答案和解析1.【答案】A【解析】【分析】此题主要考查了正多边形和圆的性质,解决本题的关键是构造直角三角形,得到用半径表示的边心距;注意:正多边形的计算一般要转化为解直角三角形的问题来解决.根据三角函数即可求解.【解答】解:设圆的半径为R,则正三角形的边心距为a=R×cos60°=12R.四边形的边心距为b=R×cos45°=√22R,正六边形的边心距为c=R×cos30°=√32R.∵12R<√22R<√32R,∴a<b<c,故选:A.2.【答案】A【解析】【分析】本题考查的是正方形和圆、等腰直角三角形的性质等知识,解题的关键是根据题意画出图形,属于中考常考题型.根据题意画出图形,再由正方形及等腰直角三角形的性质求解即可.【解答】解:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,AE2+OE2=AO2,∴OE=√22OA=√2.故选:A.3.【答案】B【解析】【分析】本题考查了正多边形与圆的关系,知道正方形的内切圆的直径等于正方形的边长是解题的关键.根据正方形的内切圆的直径等于正方形的边长求得圆的半径,最后再求出圆的面积即可.【解答】解:因为正方形的内切圆的直径等于正方形的边长,所以r=a2,所以正方形的内切圆的面积为πr2=π(a2)2=14a2π,故选B.4.【答案】B【解析】【分析】本题考查正多边形与圆的关系、等边三角形的判定与性质;解题的关键是作辅助线,灵活运用等边三角形的判定与性质来分析、解答.如图,作辅助线,由题意可得OA=OB= AB,从而得出△OAB是等边三角形,进而求出∠AOB的度数,问题即可解决.【解答】解:如图,连接OA、OB;AB为⊙O的内接正多边形的一边,∵正多边形的边长与半径相等,∴OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,即这个正多边形的中心角为60°.故选B.5.【答案】B【解析】【分析】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题,经过推理论证的真命题称为定理.根据命题的“真”“假”进行判断即可.【解答】解:①各边相等的圆内接多边形是正多边形,正确;②各边相等的圆外切多边形不一定正多边形,比如菱形,所以错误;③各角相等的圆内接多边形不一定是正多边形,比如长方形,所以错误;④各角相等的圆外切多边形是正多边形,正确.故选B.6.【答案】C【解析】【分析】本题主要考查作图−复杂作图,解题的关键是熟练掌握圆上等分点的尺规作图.根据尺规作图取圆的等分点的作法即可得出答案.【解答】解:取圆上一点为圆心,相同的长度为半径画弧,重复此种作法可得到圆的六等分点,据此可得圆的内接正六边形;在以上所得六等分点中,间隔取点,首尾连接可得圆的内接正三角形;由于圆的直径可以将圆二等分、两条互相垂直的直径可以将圆四等分,据此可作出圆的内接正四边形;综上可知,不可以用尺规作图作出的是圆的内接正五边形,故选C.7.【答案】D【解析】【试题解析】【分析】此题主要考查正多边形与圆的知识,等边三角形高的计算,要求学生熟练掌握应用.可设正六边形的半径为R,欲求半径与边心距之比,我们画出图形,通过构造直角三角形,解直角三角形即可得出.解:如图所示,设正六边形的半径为R,又该多边形为正六边形,故∠OBA=60°,R,在Rt△BOG中,OG=√32∴边心距r=√3R2即半径与边心距之比2:√3,故选D.8.【答案】B【解析】【分析】本题考查正多边形与圆,用到的知识点为:n边形的中心角为360÷n,有一个角是60°的等腰三角形是等边三角形.根据正六边形的边长等于正六边形的半径,即可求解.【解答】解:正六边形的中心角为360°÷6=60°.那么外接圆的半径和正六边形的边长将组成一个等边三角形.∴它的外接圆半径是4.故选B.9.【答案】B【解析】【分析】本题考查了正多边形和圆的知识,解题的关键是正确的构造如图所示的直角三角形并求解.利用正四边形的外接圆的半径是边心距的√2倍计算.【解答】解:如图,∵正四边形的边心距为1,∴OB=1,∵∠OAB=45°,∴OA=√2OB=√2,故选:B.10.【答案】B【解析】【分析】是解题的关键.本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360°n根据正多边形的中心角的计算公式:360°计算出∠COD,再由等腰三角形的性质可得.n【解答】解:∵五边形ABCDE是⊙O的内接正五边形,=72°,∴五边形ABCDE的中心角∠COD的度数为360°5∵OC=OD,∴∠OCD=∠ODC,∴∠OCD=(180°−72°)÷2=54°.故选B.11.【答案】2【解析】略12.【答案】√3【解析】【分析】此题主要考查了正多边形和圆、解直角三角形,正确掌握正六边形的性质是解题关键.构建直角三角形,利用直角三角形的边角关系即可求出.【解答】解:连接OA,作OM⊥AB,得到∠AOM=30°,AB=2,则AM=1,∴OM=OA⋅cos30°=√3∴正六边形的边心距是√3.故答案为√3.13.【答案】5√3【解析】【分析】本题考查的是正多边形与圆,熟知正六边形的性质是解答此题的关键.根据题意画出图形,利用等边三角形的性质及勾股定理直接计算即可.【解答】解:如图所示,连接OB、OC,过O作OG⊥BC于G,∵此多边形是正六边形,∴△OBC是等边三角形,∴∠OBG=60°,∴BG=5cm,OB=10cm,根据勾股定理可得:边心距OG=5√3cm;故答案为:5√3.14.【答案】3√32【解析】略15.【答案】90°;24√3【解析】【试题解析】【分析】本题考查了正多边形的性质,勾股定理的应用,等腰三角形的性质,属于中档题.六边形ABCDEF为正六边形,可得出∠AFE和∠FED的度数,进而得出∠AEF的度数,从而得出∠AED;连接OA,OF,过O作OG⊥AF于点G,先得出△AOF的面积,再乘以6,即可得出该正六边形的面积.【解答】解:∵六边形ABCDEF为正六边形,∴AF=FE,且∠AFE=∠FED=(6−2)×180°=120°,6=30°,则∠AEF=180°−120°2∴∠AED=∠FED−∠AEF=120°−30°=90°,连接OA,OF,过O作OG⊥AF于点G,∵点O为正六边形ABCDEF的中心,∴∠OAF=60°,则△AOF为等边三角形,∠AOG=30°,(三线合一)在Rt△OGA中,GA=12OA=12×4=2,则OG=√OA2−AG2=√42−22=2√3,故该正六边形的面积为:6S△AOF=6×12×4×2√3=24√3.故答案为90°;24√3.16.【答案】6【解析】【分析】此题主要考查了正多边形和圆的有关计算,根据已知得出中心角∠AOB=60°是解题关键.由三角函数求出∠DAO=60°,得出∠AOD=30°,求出中心角∠AOB=60°,即可得出答案.【解答】解:如图所示AB为正n边形的边长,OA为半径,OD为边心距,∵半径为4的正n边形边心距为2√3,∴sin∠DAO=DO AO =2√34=√32,∴∠DAO=60°,∴∠AOD=30°,∴∠AOB=60°,∴n=360°60°=6故答案为6.17.【答案】12【解析】解:∵l正六边形的半径等于边长,∴正六边形的边长a=2,正六边形的周长=6a=12,故答案为12.根据正六边形的半径等于边长进行解答即可.本题考查的是正六边形的性质,解答此题的关键是熟知正六边形的边长等于半径.18.【答案】72°【解析】【分析】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用由正五边形的性质得出∠CDE=(5−2)×180°÷5=108°,AE=AB=BC,得出AE⏜= AB⏜=BC⏜,由圆周角定理即可得出答案.【解答】解:∵⊙O是正五边形ABCDE的外接圆,∴∠CDE=(5−2)×180°÷5=108°,AE=AB=BC,∴AE⏜=AB⏜=BC⏜,×108°=72°;∴∠ADC=23故答案为72°.19.【答案】54【解析】【分析】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C= 108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF 是⊙O 的直径,∴∠ADF =90°,∵五边形ABCDE 是⊙O 的内接正五边形,∴∠ABC =∠C =108°,∵BC =CD ,,∴∠ABD =72°,∴∠F =∠ABD =72°,∴∠FAD =18°,∴∠CDF =∠DAF =18°,∴∠BDF =36°+18°=54°,故答案为54.20.【答案】3√2 【解析】 【分析】该题主要考查了正多边形和圆,解直角三角形,正方形的性质,正确的理解题意是解题的关键.画出图形,先根据题意首先求出BE 的长,即可解决问题.【解答】解:如图,∵四边形ABCD 是⊙O 的内接正方形,∴∠OBE =45°;∵OE ⊥BC ,∴BE =CE ;又OB =3,∴sin45°=OE OB ,cos45°=BE OB ,∴OE =3√22,即BE =3√22,∴BC=3√2,故答案为3√2.。

专题2.8 正多边形和圆【十一大题型】-九年级数学上册举一反三系列

专题2.8 正多边形和圆【十一大题型】-九年级数学上册举一反三系列

专题2.8正多边形和圆【十一大题型】【苏科版】【题型1求正多边形中心角】【知识点正多边形和圆】n【题型2求正多边形的边数】【例2】(2023秋·河北唐山·九年级统考期末)5.如图,点A、B、C、D边数为()A.10B.【变式2-1】(2023秋·湖北十堰·九年级统考期末)AB BC和AC分别为6.如图,,A.六【变式2-2】A.22.5︒B.【变式3-1】(2023秋·浙江嘉兴·九年级统考期末)10.如图,正六边形ABCDEFA.15︒【变式3-2】(2023秋·江苏南京·11.如图,正五边形度数为°.【变式3-3】(2023春·辽宁沈阳·九年级统考期末)12.如图所示,在正五边形∠的度数为长最小时,EGD【题型4正多边形与圆中求面积】【例4】(2023春·河北衡水·九年级校考期中)13.如图,已知正六边形S S-的值为()积差12A.0B.【变式4-1】(2023秋·山东滨州·九年级统考期中)14.如图,在拧开一个边长为A.2253mm B.75【变式4-2】(2023秋·福建宁德·九年级统考期末)15.将三个正六边形按如图方式摆放,若小正六边形的面积是【变式4-3】(2023秋·广东湛江·九年级校考期末)的内接正六边形16.如图,在O【题型5正多边形与圆中求周长】【例5】(2023秋·四川广安·九年级统考期末)A.63B.【变式5-1】(2023秋·江苏南京·九年级校联考期末)18.如图,BF、CE是正六边形周长是.(用含a的代数式表示)【变式5-2】(2023春·浙江台州·九年级校考期中)19.李老师带领班级同学进行拓广探索,通过此次探索让同学们更深刻的了解(1)[定义]我们将正n边形的周长L与正多边形对应的内切圆的周长图,正三角形ABC的边长为1,求得其内切圆的半径为、;(2)[探索]分别求出正方形和正六边形的“正圆度”k kA.2【变式6-1】(2023秋·青海海东22.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为【变式6-2】(2023秋·河南许昌23.若正方形的外接圆的半径为【变式6-3】(2023秋·天津红桥A.313-A.1B.【变式7-2】(2023秋·山东东营·九年级东营市胜利第一初级中学校考期末)27.圆内接正六边形与圆外切正三角形的边长之比为【变式7-3】(2023秋·山东济宁·九年级校考期末)28.如图,在圆内接正六边形【题型8正多边形与圆中求最值】【例8】(2023秋·新疆阿克苏·九年级统考期末)【变式8-1】(2023秋·浙江杭州·九年级期末)30.如图所示,已知边长为【例9】(2023·全国·九年级专题练习)33.已如:⊙O 与⊙O 上的一点A(1)求作:⊙O 的内接正六边形ABCDEF ;(要求:尺规作图,不写作法但保留作图痕迹)(2)连接CE ,BF ,判断四边形BCEF 是否为矩形,并说明理由.【变式9-1】(2023·江苏·九年级假期作业)34.如图,已知AC 为O 的直径.请用尺规作图法,作出O 的内接正方形ABCD .(保留作图痕迹.不写作法)【变式10-1】(2023秋·九年级单元测试)38.李老师带领班级同学进行拓广探索,通过此次探索让同学们更深刻的了解(1)[定义]我们将正n边形的周长L与正多边形对应的内切圆的周长图,正三角形ABC的边长为1,求得其内切圆的半径为、;(2)[探索]分别求出正方形和正六边形的“正圆度”k k(3)[总结]随着n的增大,n k【变式10-3】(2023秋·北京海淀·九年级期末)40.已知O 的半径为a ,按照下列步骤作图:内接圆,再作较小圆的内接正方形1111D C B A (如图(如图3);…;依次作下去,则正方形n A 【题型11多边形与圆中的证明】【例11】(2023秋·陕西渭南·九年级校考期中)41.如图,已知AB 、BC 、CD 是O 的内接正十边形的边,连接【变式11-1】(2023春·九年级课时练习)42.如图,已知l 是O 的切线,切点为A ,点B 在O 上,BC 交O 于E ,交直线l 于C ,OC 交O 于F ,且==AB AO AC .一同学通过测量猜测,EF 为O 的内接正二十四边形的一边,你认为他的猜测正确,请你证明;若你认为他的猜测不正确,请说明理由.【变式11-2】(2023秋·九年级课时练习)。

2011年中考数学试题分类35 正多边形与圆

2011年中考数学试题分类35 正多边形与圆

第35章正多边形与圆
24.(2011广东中山,5,3分)正八边形的每个内角为()
A.120°B.135°C.140°D.144°
【答案】B
12. (2011江苏南通,24,8分)(本小题满分8分)
比较正五边形与正六边形,可以发现它们的相同点与不同点.
例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.
它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.
相同点:(1)▲
(2)▲
不同点:(1)▲
(2)▲
【答案】相同点(1)每个内角都相等(或每个外角都相等或对角线都相等…);
(2)都是轴对称图形(或都有外接圆和内切圆…);.
不同点(1)正五边形的每个内角是108°,正六边形的每个内角是120°(或…);
(2)正五边形的对称轴是5条,正六边形的对称轴是6条(或…).。

西北5省自治区2011年中考数学试题分类解析汇编 专题11 圆

西北5省自治区2011年中考数学试题分类解析汇编 专题11 圆

西北5省自治区2011年中考数学试题分类解析汇编专题11:圆一、选择题1. (某某省3分)同一平面内的两个圆,他们的半径分别为2和3,圆心距为d,当1<d<5时,两圆的位置关系是A、外离B、相交C、内切或外切D、内含【答案】B。

【考点】圆与圆的位置关系。

【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。

∵他们的半径分别为2和3,圆心距为d,当1<d<5时,∴两圆的位置关系是相交。

故选B。

2.(某某自治区3分)已知⊙O1、⊙O2的半径分别是r1=3、r2=5.若两圆相切,则圆心距O1O2的值是A、2或4B、6或8C、2或8D、4或6【答案】C。

【考点】圆与圆的位置关系。

【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。

∵⊙O1、⊙O2的半径分别是r1=3、r2=5,∴若两圆内切,则圆心距O1O2的值是:5-3=2;若两圆外切,则圆心距O1O2的值是:3+5=8。

∴圆心距O1O2的值是:2或8。

故选C。

3.(某某某某4分)如果两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是A、B、C、D、【答案】B。

【考点】圆与圆的位置关系。

【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。

∵两圆的半径分别为2和1,圆心距为3,又∵2+1=3,∴这两圆位置关系外切。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第35章正多边形与圆
24.(2011广东中山,5,3分)正八边形的每个内角为()
A.120°B.135°C.140°D.144°
【答案】B
12. (2011江苏南通,24,8分)(本小题满分8分)
比较正五边形与正六边形,可以发现它们的相同点与不同点
.
例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.
它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.
相同点:(1)▲
(2)▲
不同点:(1)▲
(2)▲
【答案】相同点(1)每个内角都相等(或每个外角都相等或对角线都相等…);
(2)都是轴对称图形(或都有外接圆和内切圆…);.
不同点(1)正五边形的每个内角是108°,正六边形的每个内角是120°(或…);
(2)正五边形的对称轴是5条,正六边形的对称轴是6条(或…).。

相关文档
最新文档