初一数学绝对值综合专题讲义
绝对值专题--讲义
【知识点整理】绝对值的几何意义:一个数a的绝对值就是数轴上表示数a的点和原点的距离.数a的绝对值记作a.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5.求字母a的绝对值:①(0)0(0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩②(0)(0)a aaa a≥⎧=⎨-<⎩③(0)(0)a aaa a>⎧=⎨-≤⎩利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c++=,则0a=,0b=,0c=绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a≥,且a a≥-;(2)若a b=,则a b=或a b=-;(3)ab a b=⋅;aab b=(0)b≠;(4)222||||a a a==;a的几何意义:在数轴上,表示这个数的点离开原点的距离.a b-的几何意义:在数轴上,表示数a.b对应数轴上两点间的距离.【例题精讲】模块一、绝对值的性质【例1】到数轴原点的距离是2的点表示的数是()A.±2 B.2 C.-2 D.4【例2】下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A.②④⑤⑥B.③⑤C.③④⑤D.③⑤⑥【例3】如果a的绝对值是2,那么a是()A.2 B.-2 C.±2 D.1 2±【例4】若a<0,则4a+7|a|等于()绝对值专题讲义A .11aB .-11aC .-3aD .3a【例5】一个数和这个数的绝对值相等,那么这个数是( )A .1,0B .正数C .非正数D .非负数【例6】已知|x |=5,|y |=2,且xy >0,则x -y 的值等于( )A .7或-7B .7或3C .3或-3D .-7或-3【例7】若1-=x x,则x 是( )A .正数B .负数C .非负数D .非正数【例8】已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( )A .1-b >-b >1+a >aB .1+a >a >1-b >-bC .1+a >1-b >a >-bD .1-b >1+a >-b >a【例9】已知a .b 互为相反数,且|a -b |=6,则|b -1|的值为( )A .2B .2或3C .4D .2或4【例10】a <0,ab <0,计算|b -a +1|-|a -b -5|,结果为( )A .6B .-4C .-2a +2b +6D .2a-2b-6【例11】若|x +y |=y -x ,则有( )A .y >0,x <0B .y <0,x >0C .y <0,x <0D .x =0,y ≥0或y =0,x ≤0【例12】已知:x <0<z ,xy >0,且|y |>|z |>|x |,那么|x +z |+|y +z |-|x -y |的值( )A .是正数B .是负数C .是零D .不能确定符号【例13】给出下面说法:(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m |>m ,则m <0; (4)若|a |>|b |,则a >b ,其中正确的有( )A .(1)(2)(3)B .(1)(2)(4)C .(1)(3)(4)D .(2)(3)(4)【例14】已知a ,b ,c 为三个有理数,它们在数轴上的对应位置如图所示,则|c -b |-|b -a |-|a -c |= _________c ba 0-11 【巩固】2abcd +++=已知、、、都是整数,且a+b b+c c+d d+a ,则=a+d 。
绝对值专题 讲义
模块一、绝对值的性质
【例1】到数轴原点的距离就是2的点表示的数就是( )
A.±2B.2C.-2D.4
【例2】下列说法正确的有()
①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.
A.负数B.负数或零C.零D.正数
3.如果|x-1|=1-x,那么()
A.x<1B.x>1C.x≤1D.x≥1
4.若|a-3|=2,则a+3的值为()
A.5 B.8 C.5或1 D.8或4
5.若x<2,则|x-2|+|2+x|=_______________
6.绝对值小于6的所有整数的与与积分别就是__________
A.7或-7 B.7或3 C.3或-3 D.-7或-3
【例7】若 ,则x就是()
A.正数B.负数C.非负数D.非正数
【例8】已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的就是()
A.1-b>-b>1+a>a
B.1+a>a>1-b>-b
C.1+a>1-b>a>-b
D.1-b>1+a>-b>a
⑴当 时,原式
⑵当 时,原式
⑶当 时,原式
综上讨论,原式
通过阅读上面的文字,请您解决下列的问题:
(1)别求出 与 的零点值
(2)化简代数式
【巩固】化简
【巩固】化简 的值
【巩固】(1)化简 .
【课堂训练1】
1.若a的绝对值就是 ,则a的值就是()
A.2 B.-2 C. D.
《绝对值》 讲义
《绝对值》讲义一、引入在数学的世界里,绝对值是一个非常重要的概念。
它看似简单,却有着广泛的应用,能帮助我们解决许多数学问题。
那么,什么是绝对值呢?二、绝对值的定义绝对值指的是一个数在数轴上所对应点到原点的距离。
用符号“||”来表示。
例如,数字 5 的绝对值表示为|5|,数字-5 的绝对值表示为|-5|。
需要注意的是,绝对值总是非负的。
也就是说,对于任意实数 a,其绝对值|a| 总是大于或等于 0。
三、绝对值的性质1、正数的绝对值是它本身比如,|3| = 3 ,因为 3 是正数,它的绝对值就是它本身。
2、 0 的绝对值是 0即|0| = 0 ,这是很明确的。
3、负数的绝对值是它的相反数例如,|-7| = 7 ,因为-7 是负数,它的绝对值是它的相反数 7 。
4、互为相反数的两个数的绝对值相等若 a 和 a 互为相反数,那么|a| =|a| 。
5、绝对值具有非负性即|a| ≥ 0 ,这是绝对值非常重要的一个性质。
四、绝对值的计算计算绝对值时,我们只需要判断这个数的正负。
如果是正数,绝对值就是它本身;如果是 0,绝对值就是 0;如果是负数,绝对值就是它的相反数。
例如,计算|8| ,因为 8 是正数,所以|8| = 8 。
计算|-12| ,因为-12 是负数,所以|-12| = 12 。
再比如,计算|0| ,结果就是 0 。
五、绝对值方程在数学中,我们还会遇到绝对值方程,例如|x 3| = 5 。
要解决这样的方程,我们需要分情况讨论:当x 3 ≥ 0 时,即x ≥ 3 ,方程变为 x 3 = 5 ,解得 x = 8 。
当 x 3 < 0 时,即 x < 3 ,方程变为(x 3) = 5 ,即 x + 3 = 5 ,解得 x =-2 。
所以,方程|x 3| = 5 的解为 x = 8 或 x =-2 。
六、绝对值不等式绝对值不等式也是常见的数学问题,比如|x| < 5 。
这意味着 x 到原点的距离小于 5 ,所以-5 < x < 5 。
七年级绝对值专题讲义
绝对值专题绝对值性质,绝对值化简、绝对值方程一站到底1、绝对值等于本身的数是正数答案:绝对值等于本身的数是非负数2、绝对值等于本身的数是负数答案:绝对值等于本身的数是非负数(或绝对值等于其相反数的数是非正数)3、若a>0,则|a|=a4、若a<0,则|a|=-a5、若|a|=a,则a>0答案:若|a|=a,则a≥06、若|a|=-a,则a≤0答案:若|a|=-a,则a≤07、绝对值好难啊,难到怀疑人生模块一绝对值的非负性绝对值的非负性定义:|a|表示数轴上表示a的点到原点的距离.|a|≥0(非负性)|a|+|b|=0(24(1)3′)解:∵|a|≥0,|b|≥0,∴|a|+|b|≥0.又∵|a|+|b|=0,∴|a|=0,|b|=0.∴a=0,b=0.例1(1)若|x|+|y-3|=0,则x+y=________;答案:3(2)若2|x+5|+3y2=0,则xy=________;答案:0(3)若12(x-1)2与35|y-2|互为相反数,则x-y=________;答案:-1(4)若4|x+3|=-5|y-1.5|,则xy=________;答案:-2(5)若12|a-1|+3|b+4|=-2(c-2)2,则b-2a+3c的相反数是________.答案:0解:∵12|a-1|+3|b+4|=-2(c-2)2,∴12|a-1|+3|b+4|+2(c-2)2=0.又∵12|a-1|≥0,3|b+4|≥0,2(c-2)2≥0,∴12|a-1|=0,3|b+4|=0,2(c-2)2=0.∴a=1,b=-4,c=2.∴b-2a+3c=0.∴b-2a+3c的相反数是0.例2(1)若|x|+|y-2|=x,则y=________.答案:2(2)若|x-1|+|y+2|+|z-3|=y+2,求x-z的值.答案:解:∵|x-1|≥0,|y+2|≥0,|z-3|≥0,∴|x-1|+|y+2|+|z-3|≥0.∵|x-1|+|y+2|+|z-3|=y+2,∴y+2≥0.∴|y+2|=y+2.∴|x-1|+|z-3|=0.∴x=1,z=3.∴x-z=-2.练2若2|a+1|+|b|+3(c-2)2=b,求aca c-的值.答案:解:∵2|a+1|≥0,|b|≥0,3(c-2)2≥0,∴2|a+1|+|b|+3(c-2)2≥0.∵2|a+1|+|b|+3(c-2)2=b,∴b≥0.∴|b|=b.∴2|a+1|+3(c-2)2=0.∴a=-1,c=2.∴aca c-=1212-⨯--=23.模块二已知范围的化简已知范围的绝对值的化简(不重不漏)①|a|=00a aaa a⎧⎪=⎨⎪-⎩><②|a|=a aa a⎧⎨-⎩≥<③|a|=a aa a⎧⎨-⎩>≤⎧⎨⎩①给范围②给数轴答题器:请问|a|=________A.a B.-a C.以上都错答案:C例3(1)若a≥1,则|a-1|=________;若x>-1,则|x+1|=________;若a≤2,则|a-4|=________;若x<3,则|3-x|=________;若x≥-12,则|2x+1|=________.答案:a-1,x+1,-a+4,3-x,2x+1k(2)|12018-12017|+|12017-12016|+|12016-12015|-|12015-12018|=________.答案:0练3(1)若a≤-5,则|a+1|=________;若x>-1.5,则|x+4|=________;若a≥12,则|13-2a|=________;若x<-2,则|1-2x|=________.答案:-a-1,x+4,2a-13,1-2x(2)已知1<a<3,化简|a-1|-|3-a|.答案:解:∵1<a<3,∴a-1>0,3-a>0.∴|a-1|=a-1,|3-a|=3-a.∴原式=a-1-(3-a)=2a-4.拓展3(1)若a+b<0,则|2a+2b-1|-2|3-a-b|=________.答案:-5(2)若|a|=-a,b与a互为相反数,那么|b-a+1|-|a-b-5|=________.答案:-4课间小游戏猜谜语谜题:再见吧,妈妈(数学名词)分母谜题:1000×10=10000(成语)成千上万谜题:考试不作弊(数学名词)真分数谜题:朱元璋登基(数学名词)消元谜题:员(数学名词)圆心谜题:风筝跑了(数学名词)线段例4(1)已知有理数a、b、c在数轴上的位置如图所示:|b +c |=________;|a +c |=________;|b -c |=________;|a -b |=________. 答案:b +c ,-a -c ,-b +c ,-a +b(2)已知有理数a 、b 、c 在数轴上的位置如图所示,化简:2|a |+|b |+4|a +b |-3|b -c |.答案:解:由题意,得a <0,b >0,a +b >0,b -c <0,∴|a |=-a ,|b |=b ,|a +b |=a +b ,|b -c |=-b +c .∴原式=-2a +b +4(a +b )-3(-b +c )=-2a +b +4a +4b +3b -3c =2a +8b -3c . 练4 (1)(2017-2018外校七上期中)有理数a 、b 、c 在数轴上的位置如图所示,则|a -c |-|a -b |-|b -c |=________.答案:2a -2b(2)a 、b 、c 在数轴上的位置如图,若x =|a +b |-|b -1|-|a -c |-|1-c |,则1008x =________.答案:-2 例5 (1)(2017-2018武昌区七上期中)如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .a +b >0B .ab >0C .1a +1b>0 D .1a -1b<0 答案:C (2)(2017-2018二中七上期中)如图,a 、b 、c 在数轴上的位置如图所示,则下列结论正确的是( )A .abc >0B .(c -a )b <0C .c (a -b )<0D .(b +c )a >0答案:BC 练5(2017-2018江汉区七上期中)数m 、n 在数轴上的大致位置如图所示,下列判断正确的是( )A .m -n >0B .m +n >0C .mn >0D .|m |-|n |>0 答案:A 拓展5已知x <0<z ,xy >0,|y |>|z |>|x |,那么|x +z |+|y +z |-|x -y |的值是( )ba01-1BAA.是正数B.是负数C.是零D.不能确定符号答案:C模块三绝对值方程绝对值方程(整体)|x|=1 |x|=0 |x|=-1解:x=1或x=-1 解:x=0 解:方程无解|x+1|=1 |x+1|=0 |x+1|=-1解:x+1=1或x+1=-1 解:x+1=0 解:方程无解x=0或x=-2 x=-1|3x-2|=1 |3x-2|=0 |3x-2|=-1例6解下列绝对值方程:若|x|=2,则x=________;若|x|=-2,则________;若|x+1|=0,则x=________;若|2x-1|=0,则x=________;若|x+1|=2,则x=________;若|2x-1|=2,则x=________.答案:±2,方程无解,-1,12,1或-3,32或-12练6解下列绝对值方程:|2x-3|=5 |13x+2|=1 |5x-3|=8答案:x=4或-1,x=-3或-9,x=115或-1拓展6解下列关于x的绝对值方程:1 2|x+1|+2=7-13|x+1|答案:解:12|x+1|+13|x+1|=5 56|x+1|=5|x+1|=6x+1=6或-6x=5或-711x--=1 11x--=0 11x--=-1 解:|x-1|-1=1或|x-1|-1=-1 解:|x-1|-1=0 解:方程无解|x-1|=2或|x-1|=0 |x-1|=1x-1=2或x-1=-2或x-1=0 x-1=1或x-1=-1x=3或x=-1或x=1 x=2或x=0例7解下列绝对值方程:①12x+-=0;②12x+-=1;解:|x+1|-2=0 解:|x+1|-2=1或|x+1|-2=-1 |x+1|=2 |x+1|=3或|x+1|=1x+1=2或x+1=-2 x+1=3或x+1=-3或x+1=1或x+1=-1 x=1或-3 x=2或-4或0或-2③12x+-=2;④12x+-=3.解:|x+1|-2=2或|x+1|-2=-2 解:|x+1|-2=3或|x+1|-2=-3 |x+1|=4或|x+1|=0 |x+1|=5或|x+1|=-1x+1=4或x+1=-4或x+1=0 x+1=5或x+1=-5或方程无解x=3或-5或-1 x=4或-6练7解方程:321x--=2答案:解:3-|2x-1|=2或3-|2x-1|=-2|2x-1|=1或|2x-1|=52x-1=1或2x-1=-1或2x-1=5或2x-1=-5x=1或0或3或-2拓展7已知关于x的方程12x+-=a有三个解,则a=________.解:①a=0时,|x+1|=2(舍)②a>0时,|x+1|-2=a或|x+1|-2=-a|x+1|=a+2或|x+1|=2-a∵a>0,∴a+2>0.∴|x+1|=2-a有一个解.∴2-a=0.∴a=2.例8已知整数x、y满足|x|+|y|=1,求x、y的值.答案:解:∵|x|,|y|为非负整数,∴1xy⎧=⎪⎨=⎪⎩或1xy⎧=⎪⎨=⎪⎩.∴1xy=⎧⎨=⎩或1xy=-⎧⎨=⎩或1xy=⎧⎨=⎩或1xy=⎧⎨=-⎩.练8已知整数a、b满足|a+1|+|b-2|=2,求a、b的值.答案:解:∵|a+1|,|b-2|为非负整数,∴1022ab⎧+=⎪⎨-=⎪⎩或1121ab⎧+=⎪⎨-=⎪⎩或1220ab⎧+=⎪⎨-=⎪⎩.∴14ab=-⎧⎨=⎩或1ab=-⎧⎨=⎩或3ab=⎧⎨=⎩或1ab=⎧⎨=⎩或23ab=-⎧⎨=⎩或21ab=-⎧⎨=⎩或2ab=⎧⎨=⎩或42ab=-⎧⎨=⎩.。
绝对值讲义
绝对值讲义
六、绝对值
几何定义:一个数的绝对值就是数轴上表示数的点与原点的距离,数的绝对值记作“”。
代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
用字母表示为:
求有理数的绝对值,一般用代数定义解。
首先判断这个数是正数还是负数。
※绝对值的重要性质:非负性。
即。
※当。
※绝对值等于0的数,只有一个,就是0;
※绝对值等于一个正数的数有两个,这两个数互为相反数;
※互为相反数的绝对值相等。
(相反数定义进一步理解:符号相反,绝对值相等的两个数是互为相反数)
※若
※若
有理数大小的比较法则:
正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小。
(利用绝对值,不必利用数轴来比较两个有理数的大小了)。
做差法:
做商法:
考点:(1)利用定义求一个数或一个整式的绝对值;(2)非负性的应用;(3)比较两个负数的大小。
中考热点
题型:选择、填空、解答及与其他知识综合命题考查。
例一:已知,求和的值。
解:
又。
例二:计算:(1) (2)
解:
例三:已知则的取值范围是_____。
例四:求代数式的值。
例五:若则
例六:的大小关系(用“<”号连接=。
例七:。
初一数学绝对值综合专题课件
绝对值综合专题讲义绝对值的定义:绝对值的性质:(1) 绝对值的非负性,可以用下式表示(2) |a|=(3) 若|a|=a ,则 ;若|a|=-a ,则 ;任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,(4) 若|a|=|b|,则(5) |a+b| |a|+|b| |a-b| ||a|-|b|||a|+|b| |a+b| |a|+|b| |a-b|【例1】(1) 绝对值大于2.1而小于4.2的整数有多少个?(2) 若ab<|ab|,则下列结论正确的是( )A.a <0,b <0B.a >0,b <0C.a <0,b >0D.ab <0(3) 下列各组判断中,正确的是( )A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >bC. 若|a|>b ,则一定有|a|>|b|D.若|a|=b ,则一定有a 2=(-b) 2(4) 设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少?(5) 若3|x-2|+|y+3|=0,则x y 的值是多少?(6) 若|x+3|+(y-1)2=0,求n xy )4(--的值【巩固】1、绝对值小于3.1的整数有哪些?它们的和为多少?2、有理数a 与b 满足|a|>|b|,则下面哪个答案正确( )A.a >bB.a=bC.a<bD.无法确定3、若|x-3|=3-x ,则x 的取值范围是____________4、若a >b ,且|a|<|b|,则下面判断正确的是( )A.a <0B.a >0C.b <0D.b >05、设b a ,是有理数,则||8b a ---是有最大值还是最小值?其值是多少?小知识点汇总:若(x-a)2+(x-b)2=0,则 ;若|x-a|+(x-b)2=0,则 ;若|x-a|+|x-b|=0,则 ;【例2】(1) 已知x 是有理数,且|x|=|-4|,那么x=____(2) 已知x 是有理数,且-|x|=-|2|,那么x=____(3) 已知x 是有理数,且-|-x|=-|2|,那么x=____(4) 如果x ,y 表示有理数,且x ,y 满足条件|x|=5,|y|=2,|x-y|=y-x ,那么x+y的值是多少?(5) 解方程05|5|23=-+x(6) 解方程|4x+8|=12(7) 若已知a 与b 互为相反数,且|a-b|=4,求12+++-ab a b ab a 的值【巩固】1、巩固|x|=4,|y|=6,求代数式|x+y|的值2、解方程 |3x+2|=-13、已知|x-1|=2,|y|=3,且x 与y 互为相反数,求y xy x 4312--的值【例3】(1) 已知a=-21,b=-31,求||32|34|2|2|4)2(|42|2--+-+-++a b b a b a b a 的值 (2) 若|a|=b ,求|a+b|的值(3) 化简:|a-b|(4) 有理数a ,b ,c 在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b|【巩固】1、化简:(1)|3.14-π| (2)|8-x|(x ≥8)C B 0 A2、已知a ,b ,c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|3、数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||【例4】(1)若a<-b 且0>b a ,化简|a|-|b|+|a+b|+|ab|(2)若-2≤a ≤0,化简|a+2|+|a-2|(3)已知x<0<z,xy>0,|y|>|z|>|x|,求|x+z|+|y+z|-|x-y|的值(4)已知x<-3,化简|3+|2-|1+x|||(5)化简|x+5|+|2x-3|(6)若a<0,试化简||3|||3|2a a a a --(7)若abc ≠0,则||||||c c b b a a ++的所有可能值【巩固】 1、如果0<m<10并且m ≤x ≤10,化简|x-m|+|x-10|+|x-m-10|2、有理数a ,b ,c ,d ,满足1||-=abcd abcd ,求dd c c b b a a ||||||||+++的值3、化简:|2x-1|4、求|m|+|m-1+|m-2|的值|a|的几何意义: ;|a-b|的几何意义:【例5】求|x-3|+|x-5|+|x-2|+|x+1|+|x+7|的最小值【巩固】1、如图,在接到上有A、B、C、D、E五栋居民楼,现在设立一个邮筒,为使五栋楼的居民到邮筒的就努力之和最短,邮局应立于何处?2、设a1、a2、a3、a4、a5为五个有理数,满足a1< a2< a3< a4< a5,求|x- a1|+|x- a2|+|x- a3|+|x-a 4|+|x- a5|的最小值3、设a<b<c<d,求y=|x-a|+|x-b|+|x-c|+|x-d|的最小值,并求出此时x的取值题后小结论:求|x-a1|+|x-a2|+…+|x-an|的最小值:【例1】若|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b-c=______【例2】已知(a+b)2+|b+5|=b+5,且|2a-b-1|=0,那么ab=______【例3】对于|m-1|,下列结论正确的是()A.|m-1|≥|m|B.|m-1|≤|m|C. |m-1|≥|m|-1D. |m-1|≤|m|-1A B C D E【例4】设a ,b ,c 为实数,且|a|+a=0,|ab|=ab ,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|【例5】化简:||x-1|-2|+|x+1|【例6】已知有理数a ,b ,c 满足1||||||=++c c b b a a ,求abc abc ||的值【例7】若a ,b ,c ,d 为互不相等的有理数,且|a-c|=|b-c|=|d-b|=1,求|a-d|1、当b 为何值时,5-12-b 有最大值,最大值是多少?2、已知a 是最小的正整数,b 、c 是有理数,并且有|2+b |+(3a +2c )2=0.求式子4422++-+c a c ab 的值.3、|m+3 |+|n-27|+|2p-1|=0,求p+2m+3n 的值4、若a ,b ,c 为整数,且|a-b |19+|c-a |99=1,试计算|c-a |+|a-b |+|b-c |的值5、(1)已知|x|=2,|y|=3且x-y>0,则x+y 的值为多少?(2)解方程:|4x-5|=86、(1)有理数a ,b ,c 在数轴上对应点如图所示,化简|a-b|-|a+b|+|b-c|-|c|(2)若a <b ,求|b-a+1|-|a-b-5|的值(3)若a <0,化简|a-|-a||7、已知a 是非零有理数,求||||||3322a a a a a a ++的值8、化简|x-1|-|x-3|9、6、设a <b <c ,求当x 取何值时|x-a|+|x-b|+|x-c|的最小值10、若3+-y x 与1999-+y x 互为相反数,求yx y x -+2的值11、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值。
(完整word)初一数学绝对值综合专题讲义
绝对值综合专题讲义绝对值的定义及性质绝对值的定义: ________________________________________________绝对值的性质:(1)绝对值的非负性,可以用下式表示f(2)|a|=《___________________________L ~(3)若|a|=a,则;若|a|=-a,则;任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,(4)若|a|=|b|,则(5)|a+b| |a|+|b| |a-b|||a|-|b|||a|+|b|a+b| |a|+|b||a-b|【例1】(1)绝对值大于2.1而小于4.2的整数有多少个?(2)若ab<|ab|,则下列结论正确的是( )A.a v 0, bv 0B.a> 0, b v 0C.a v 0, b> 0D.ab v 0(3)下列各组判断中,正确的是( )A.若|a|=b,则一定有a=bB.若|a|>|b|,则一定有a>bC.若|a|>b,则一定有|a|>|b|D.若|a|=b,则一定有a2 =(-b) 2(4)设a, b是有理数,则|a+b|+9有最小值还是最大值?其值是多少?(5)若3|x-2|+|y+3|=0,则翌的值是多少?x(6)若|x+3|+(y-1) 2=0,求(― )n的值y x【巩固】1、绝对值小于3.1的整数有哪些?它们的和为多少?2、有理数a与b满足|a|>|b|,则下面哪个答案正确( )A.a> bB.a=bC.a<bD.无法确定3、若|x-3|=3-x,贝U x的取值范围是4、若a> b,且|a|<|b|,则下面判断正确的是( )A.av 0B.a> 0C.bv 0D.b >05、设a,b是有理数,则8 |a b |是有最大值还是最小值?其值是多少?小知识点汇总:若(x-a)2 +(x-b) 2 =0,贝U; 若|x-a|+(x-b) 2=0,贝(]若|x-a|+|x-b|=0,贝U;【例2】(1)已知x是有理数,且|x|=|-4|,那么x=(2)已知x是有理数,且-|x|=-|2|,那么x=(3)已知x是有理数,且-|-x|=-|2|,那么x=(4)如果x, y表示有理数,且x, y满足条件|x|=5, |y|=2, |x-y|=y-x,那么x+y的值是多少?、一3 一—一—- (5)解方程-|x 5| 5 02(6)解方程|4x+8|=12(7) 若已知a 与b 互为相反数,且|a-b|=4,求 【巩固】1、巩固|x|=4 , |y|=6,求代数式|x+y|的值2、解方程 |3x+2|=-1.化简绝对式 ]【例3】(1) 已知 a=-1 , b=-1 ,求 | 2a 4b 2| —4一 -------------------- 2----------- 的值 2 3 (a 2b) |a 2b | 14b 3 12a 3||(2)若 |a|=b ,求 |a+b| 的值 (3) 化简:|a-b|(4) 有理数a, b, c 在数轴上对应点如图所示,化简 |b+a|+|a+c|+|c-b|_j ___________ LJ ______ l *C B 0 A【巩固】1、化简:(1) |3.14-兀 | (2) |8-x| (x>8)a ab b 皿,士----- 的值ab 13、已知|x-1|=2 , |y|=3,且x 与y 互为相反数,求 xy 4y 的值2、已知a, b, c在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|a 0 cb >3、数a, b在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||a 0 ba【例4】(1)右a<-b 且一0 ,化间|a|-|b|+|a+b|+|ab|b(2)若-2w a< 0,化简|a+2|+|a-2|(3)已知x<0<z,xy>0,|y|>|z|>|x|,求|x+z|+|y+z|-|x-y| 的值(4)已知x<-3,化简|3+|2-|1+x|||(5)化简|x+5|+|2x-3|2a |3a| (6)若a<0,试化简||3a| a|.. a b c ,(7)右abc 乒0,贝U —— —— ——的所有可能值|a| |b| |c| 【巩固】1、如果 0<m<10 并且 mV x< 10,化简 |x-m|+|x-10|+|x-m-10|2、 有理数a, b, c, d,满足些! 1,求回凹凹回的值abcd a b c d3、 化简:|2x-1|4、 求 |m|+|m-1+|m-2| 的值【例 5】求 |x-3|+|x-5|+|x-2|+|x+1|+|x+7| 的最小值|a 的几何意义: __________________________ ; |a-b|的几何意义: ____________________【巩固】1、如图,在接到上有A、B、C、D、E五栋居民楼,现在设立一个邮筒,为使五栋楼的居民到邮筒的就努力之和最短,邮局应立于何处?I II IIA B C D E2、设a1、a2、a3、a4、a5为五个有理数,满足a1< a 2 < a 3 < a4 < a 5,求|x- a1 |+|x- a 2 |+|x- a 3 |+|x- a4 |+|x- a51的最小值3、设a<b<c<d,求y=|x-a|+|x-b|+|x-c|+|x-d|的最小值,并求出此时x的取值题后小结论:求|x-a1 |+|x-a2]+••• + |x-a n |的最小值:附加例题【例1】若|a|=1, |b|=2, |c|=3,且a>b>c,那么a+b-c=【例2】已知(a+b)2+|b+5|=b+5,且|2a-b-1|=0,那么ab=【例3】对于|m-1|,下列结论正确的是( )A.|m-1| > |m|B.|m-1|< |m|C. |m-1| > |m|-1D. |m-1| < |m|-1【例 4】 设 a, b, c 为实数,且 |a|+a=O, |ab|=ab, |c|-c=0,化简 |b|-|a+b|-|c-b|+|a-c|【例 5】 化简:||x-1|-2|+|x+1|【例6】 已知有理数a, b, c 满足 也J 凹 1£1 1,求但竺|的值a b c abc【例7】 若a, b, c, d 为互不相等的有理数,且|a-c|=|b-c|=|d-b|=1,求|a-d| 家庭作业b 、c 是有理数,并且有|2+ b|+(3 a+2c) 2=0.-的值.43、|m+3 |+|n-2 |+|2p-1|=0,求 p+2m+3n 的值4、若 a, b, c 为整数,且 | a-b | 19+ I c-a | 99=1,试计算 | c-a | + | a-b | + | b-c | 的值5、 ( 1)已知|x|=2, |y|=3且x-y>0,则x+y 的值为多少?(2)解方程:|4x-5|=81、当b 为何值时,5-2b1有最大值,最大值是多少?2、已知a 是最小的正整数,(1)有理数a, b, c 在数轴上对应点如图所示,化简 |a-b|-|a+b|+|b-c|-|c|(2)若 av b,求 |b-a+1|-|a-b-51的值(3)右 av 0 , 化简 |a-|-a||8、化简 |x-1|-|x-3|9、6、设av bv c,求当x 取何值时|x-a|+|x-b|+|x-c|的最小值10、若x y 3与x y 1999互为相反数,求-— 的值11、若2x+ | 4-5x | + | 1-3x | +4的值恒为常数,求 x 该满足的条件及此常数的值。
绝对值专题讲义
【知识点整理】绝对值的几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.数a的绝对值记作a.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5.求字母a的绝对值:①(0)0(0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩②(0)(0)a aaa a≥⎧=⎨-<⎩③(0)(0)a aaa a>⎧=⎨-≤⎩利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c++=,则0a=,0b=,0c=绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a≥,且a a≥-;(2)若a b=,则a b=或a b=-;(3)ab a b=⋅;aab b=(0)b≠;(4)222||||a a a==;a的几何意义:在数轴上,表示这个数的点离开原点的距离.a b-的几何意义:在数轴上,表示数a.b对应数轴上两点间的距离.【例题精讲】模块一、绝对值的性质【例1】到数轴原点的距离是2的点表示的数是()A.±2 B.2 C.-2 D.4【例2】下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A.②④⑤⑥B.③⑤C.③④⑤D.③⑤⑥绝对值专题讲义【例3】如果a 的绝对值是2,那么a 是( )A .2B .-2C .±2D .12±【例4】若a <0,则4a +7|a |等于( )A .11aB .-11aC .-3aD .3a【例5】一个数与这个数的绝对值相等,那么这个数是( )A .1,0B .正数C .非正数D .非负数【例6】已知|x |=5,|y |=2,且xy >0,则x -y 的值等于( )A .7或-7B .7或3C .3或-3D .-7或-3【例7】若1-=x x,则x 是( )A .正数B .负数C .非负数D .非正数【例8】已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( )A .1-b >-b >1+a >aB .1+a >a >1-b >-bC .1+a >1-b >a >-bD .1-b >1+a >-b >a【例9】已知a .b 互为相反数,且|a -b |=6,则|b -1|的值为( )A .2B .2或3C .4D .2或4【例10】a <0,ab <0,计算|b -a +1|-|a -b -5|,结果为( )A .6B .-4C .-2a +2b +6D .2a-2b-6【例11】若|x +y |=y -x ,则有( )A .y >0,x <0B .y <0,x >0C .y <0,x <0D .x =0,y ≥0或y =0,x ≤0【例12】已知:x <0<z ,xy >0,且|y |>|z |>|x |,那么|x +z |+|y +z |-|x -y |的值() A .是正数 B .是负数 C .是零 D .不能确定符号【巩固】2a b c d +++=已知、、、都是整数,且a+b b+c c+d d+a ,则=a+d 。
绝对值不等式讲义
【知识点梳理】一、绝对值的相关概念与性质:绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5.求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b =(0)b ≠; (4)222||||a a a ==;(5)a b a b a b -≤+≤+, 对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立; 对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立.(5).对一切实数x ,都有||||x x x -≤≤.(6):123||a a a ++≤123||||||a a a ++;||21n a a a +++ ≤||||||21n a a a +++ .(7):||||||||||b a b a b a +≤-≤-. 加强:||||||||||a b a b a b -≤-≤+.绝对值几何意义当x a =时,0x a -=,此时a 是x a -的零点值.零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值. a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.二、含绝对值方程(不等式、代数式)的化简三、绝对值方程的解法四、含绝对值的恒成立问题五、含绝对值的参数范围求解问题六、含绝对值的求值问题七、含绝对值的最值问题八、绝对值不等式的解法1、同解原理2、平方法3、图像法4、数形结合法5、零点分段讨论法九、绝对值不等式的证明方法1.||||x a a x a x a x a x a≤⇔-≤≤≥⇔≥≤-或; 0a >时,|()|()()f x a f x a f x a >⇔><-或;|()|()f x a a f x a <⇔-<<;2.利用三角不等式、加糖不等式或其他基本不等式3.反客为主4.分段讨论【典型例题】1:解不等式:⑴ |4x-3|<2x+1 ; ⑵ |3-4x|>2x+1 。
初一数学绝对值综合专题讲义
初一数学绝对值综合专题讲义-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN绝对值综合专题讲义绝对值的定义:绝对值的性质:(1) 绝对值的非负性,可以用下式表示(2) |a|=(3) 若|a|=a ,则 ;若|a|=-a ,则 ;任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,(4) 若|a|=|b|,则(5) |a+b| |a|+|b| |a-b| ||a|-|b|||a|+|b| |a+b| |a|+|b| |a-b|【例1】(1) 绝对值大于2.1而小于4.2的整数有多少个?(2) 若ab<|ab|,则下列结论正确的是( )A.a <0,b <0B.a >0,b <0C.a <0,b >0D.ab <0(3) 下列各组判断中,正确的是( )A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >bC. 若|a|>b ,则一定有|a|>|b|D.若|a|=b ,则一定有a 2=(-b) 2(4) 设a ,b 是有理数,则|a+b|+9有最小值还是最大值其值是多少(5)(6) 若3|x-2|+|y+3|=0,则xy 的值是多少?(7)(8) 若|x+3|+(y-1)2=0,求n xy )4(--的值【巩固】1、绝对值小于3.1的整数有哪些它们的和为多少2、有理数a 与b 满足|a|>|b|,则下面哪个答案正确( )A.a >bB.a=bC.a<bD.无法确定3、若|x-3|=3-x ,则x 的取值范围是____________4、若a >b ,且|a|<|b|,则下面判断正确的是( )A.a <0B.a >0C.b <0D.b >05、设b a ,是有理数,则||8b a ---是有最大值还是最小值其值是多少小知识点汇总:若(x-a)2+(x-b)2=0,则 ;若|x-a|+(x-b)2=0,则 ;若|x-a|+|x-b|=0,则 ;【例2】(1) 已知x 是有理数,且|x|=|-4|,那么x=____(2) 已知x 是有理数,且-|x|=-|2|,那么x=____(3) 已知x 是有理数,且-|-x|=-|2|,那么x=____(4) 如果x ,y 表示有理数,且x ,y 满足条件|x|=5,|y|=2,|x-y|=y-x ,那么x+y 的值是多少?(5) 解方程05|5|23=-+x(6) 解方程|4x+8|=12(7) 若已知a 与b 互为相反数,且|a-b|=4,求12+++-ab a b ab a 的值【巩固】1、巩固|x|=4,|y|=6,求代数式|x+y|的值2、解方程 |3x+2|=-13、已知|x-1|=2,|y|=3,且x 与y 互为相反数,求y xy x 4312--的值【例3】(1) 已知a=-21,b=-31,求||32|34|2|2|4)2(|42|2--+-+-++a b b a b a b a 的值(2) 若|a|=b ,求|a+b|的值(3) 化简:|a-b|(4)|b+a|+|a+c|+|c-b|【巩固】1、化简:(1)|3.14-π| (2)|8-x|(x ≥8)2、已知a ,b ,c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|3、数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||【例4】(1)若a<-b 且0 ba ,化简|a|-|b|+|a+b|+|ab|(2)若-2≤a ≤0,化简|a+2|+|a-2|(3)已知x<0<z,xy>0,|y|>|z|>|x|,求|x+z|+|y+z|-|x-y|的值(4)已知x<-3,化简|3+|2-|1+x|||(5)化简|x+5|+|2x-3|(6)若a<0,试化简||3|||3|2a a a a -- (7)若abc ≠0,则||||||c c b b a a ++的所有可能值【巩固】 1、如果0<m<10并且m ≤x ≤10,化简|x-m|+|x-10|+|x-m-10|2、有理数a ,b ,c ,d ,满足1||-=abcd abcd ,求dd c c b b a a ||||||||+++的值3、化简:|2x-1|4、求|m|+|m-1+|m-2|的值|a|的几何意义:;|a-b|的几何意义:【例5】求|x-3|+|x-5|+|x-2|+|x+1|+|x+7|的最小值【巩固】1、如图,在接到上有A、B、C、D、E五栋居民楼,现在设立一个邮筒,为使五栋楼的居民到邮筒的就努力之和最短,邮局应立于何处?2、设a1、a2、a3、a4、a5为五个有理数,满足a1< a2< a3< a4< a5,求|x-a 1|+|x- a2|+|x- a3|+|x- a4|+|x- a5|的最小值A B C D E3、设a<b<c<d,求y=|x-a|+|x-b|+|x-c|+|x-d|的最小值,并求出此时x的取值题后小结论:求|x-a1|+|x-a2|+…+|x-an|的最小值:【例1】若|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b-c=______【例2】已知(a+b)2+|b+5|=b+5,且|2a-b-1|=0,那么ab=______【例3】对于|m-1|,下列结论正确的是()A.|m-1|≥|m|B.|m-1|≤|m|C. |m-1|≥|m|-1D. |m-1|≤|m|-1【例4】设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|【例5】化简:||x-1|-2|+|x+1|【例6】 已知有理数a ,b ,c 满足1||||||=++cc b b a a ,求abc abc ||的值【例7】 若a ,b ,c ,d 为互不相等的有理数,且|a-c|=|b-c|=|d-b|=1,求|a-d|1、当b 为何值时,5-12-b 有最大值,最大值是多少?2、3、已知a 是最小的正整数,b 、c 是有理数,并且有|2+b |+(3a +2c )2=0.求式子4422++-+c a c ab 的值.4、|m+3 |+|n-27|+|2p-1|=0,求p+2m+3n 的值5、若a ,b ,c 为整数,且|a-b |19+|c-a |99=1,试计算|c-a |+|a-b |+|b-c |的值6、(1)已知|x|=2,|y|=3且x-y>0,则x+y 的值为多少?(2)解方程:|4x-5|=87、(1)有理数a ,b ,c 在数轴上对应点如图所示,化简|a-b|-|a+b|+|b-c|-|c|(2)若a <b ,求|b-a+1|-|a-b-5|的值(3)若a <0,化简|a-|-a||8、已知a 是非零有理数,求||||||3322a a a a a a ++的值9、化简|x-1|-|x-3|10、6、设a <b <c ,求当x 取何值时|x-a|+|x-b|+|x-c|的最小值11、若3+-y x 与1999-+y x 互为相反数,求y x y x -+2的值12、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值。
2019-七年级数学上《绝对值综合》专题复习讲义
专题:绝对值综合2019-2020 年七年级数学上《绝对值综合》专题复习讲义例题 1题面:设 a 是有理数,则|a| a 的值()A. 可以是负数B. 不可以能是负数C.必是正数D. 可以是正数,也可以是负数去绝对值的分类谈论例题 2题面:已知 |ab 2|与 |b+1 |互为相反数,试求代数式a2b 2ab+b201 3的值.绝对值的非负性例题 3题面:数轴上一个点到有理数 a 表示的点的距离为 2, a 到原点的距离为 3,求这个点所表示的有理数.绝对值的几何意义金题精讲题一题面:以下说法正确的选项是()A. 若是|a|>|b|,则 a>bB. 若是 a>b,则|a|>|b|C.若是 a=b,则|a |=|b|D. 若是|a|=|b|,则 a=b绝对值和数值之间的关系题二题面:已知 |a+3 b|+|b 5|+|c|=c,求a和b的值.绝对值的非负性题三题面: (1) 已知,|m|= m,化简|m 1| |m 3|;(2)已知, 1<x<1 ,化简|x +1| |x 1|.去绝对值题四题面:化简:|2x+1| |x 3|.零点分段法思想拓展题一题面:已知 a 为有理数,且|5+a|=|2a 3|,求 a 的值 .绝对值相等两数的关系讲义参照答案重难点易错点剖析例题 1答案: B .例题 2答案:9.例题 3答案:± 1,± 5.金题精讲题一答案: C.题二答案: a= 15,b=5 .题三答案:2; 2x.题四答案: x≤ 1/2, x 4; 1/2< x≤ 3, 3x 2; x>3, x+4.思想拓展答案:8 或 2/3.。
绝对值专题 讲义
【知识点整理】绝对值的几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.数a的绝对值记作a.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5.求字母a的绝对值:①(0)0(0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩②(0)(0)a aaa a≥⎧=⎨-<⎩③(0)(0)a aaa a>⎧=⎨-≤⎩利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c++=,则0a=,0b=,0c=绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a≥,且a a≥-;(2)若a b=,则a b=或a b=-;(3)ab a b=⋅;aab b=(0)b≠;(4)222||||a a a==;a的几何意义:在数轴上,表示这个数的点离开原点的距离.a b-的几何意义:在数轴上,表示数a.b对应数轴上两点间的距离.【例题精讲】模块一、绝对值的性质【例1】到数轴原点的距离是2的点表示的数是()A.±2 B.2 C.-2 D.4【例2】下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A.②④⑤⑥B.③⑤C.③④⑤D.③⑤⑥绝对值专题讲义【例3】如果a 的绝对值是2,那么a 是( )A .2B .-2C .±2D .12±【例4】若a <0,则4a +7|a |等于( )A .11aB .-11aC .-3aD .3a【例5】一个数与这个数的绝对值相等,那么这个数是( )A .1,0B .正数C .非正数D .非负数【例6】已知|x |=5,|y |=2,且xy >0,则x -y 的值等于( )A .7或-7B .7或3C .3或-3D .-7或-3【例7】若1-=x x,则x 是( )A .正数B .负数C .非负数D .非正数【例8】已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( )A .1-b >-b >1+a >aB .1+a >a >1-b >-bC .1+a >1-b >a >-bD .1-b >1+a >-b >a【例9】已知a .b 互为相反数,且|a -b |=6,则|b -1|的值为( )A .2B .2或3C .4D .2或4【例10】a <0,ab <0,计算|b -a +1|-|a -b -5|,结果为( )A .6B .-4C .-2a +2b +6D .2a-2b-6【例11】若|x +y |=y -x ,则有( )A .y >0,x <0B .y <0,x >0C .y <0,x <0D .x =0,y ≥0或y =0,x ≤0【例12】已知:x <0<z ,xy >0,且|y |>|z |>|x |,那么|x +z |+|y +z |-|x -y |的值()A .是正数B .是负数C .是零D .不能确定符号【巩固】2a b c d +++=已知、、、都是整数,且a+b b+c c+d d+a ,则=a+d 。
绝对值专题讲义
绝对值专题讲义(总8页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除【知识点整理】绝对值的几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.数a的绝对值记作a.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5.求字母a的绝对值:①(0)0(0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩②(0)(0)a aaa a≥⎧=⎨-<⎩③(0)(0)a aaa a>⎧=⎨-≤⎩利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c++=,则0a=,0b=,0c=绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a≥,且a a≥-;(2)若a b=,则a b=或a b=-;(3)ab a b=⋅;aab b=(0)b≠;(4)222||||a a a==;a的几何意义:在数轴上,表示这个数的点离开原点的距离.a b-的几何意义:在数轴上,表示数a.b对应数轴上两点间的距离.【例题精讲】模块一、绝对值的性质【例1】到数轴原点的距离是2的点表示的数是()A.±2 B.2 C.-2 D.4绝对值专题讲义【例2】下列说法正确的有( )①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A .②④⑤⑥B .③⑤C .③④⑤D .③⑤⑥【例3】如果a 的绝对值是2,那么a 是( )A .2B .-2C .±2D .12±【例4】若a <0,则4a +7|a |等于( )A .11aB .-11aC .-3aD .3a【例5】一个数与这个数的绝对值相等,那么这个数是( )A .1,0B .正数C .非正数D .非负数【例6】已知|x |=5,|y |=2,且xy >0,则x -y 的值等于( )A .7或-7B .7或3C .3或-3D .-7或-3【例7】若1-=x x,则x 是( ) A .正数 B .负数 C .非负数 D .非正数【例8】已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( )A .1-b >-b >1+a >aB .1+a >a >1-b >-bC .1+a >1-b >a >-bD .1-b >1+a >-b >a【例9】已知a .b 互为相反数,且|a -b |=6,则|b -1|的值为( )A .2B .2或3C .4D .2或4【例10】a <0,ab <0,计算|b -a +1|-|a -b -5|,结果为( )A .6B .-4C .-2a +2b +6D .2a-2b-6【例11】若|x +y |=y -x ,则有( )A .y >0,x <0B .y <0,x >0C .y <0,x <0D .x =0,y ≥0或y =0,x ≤0【例12】已知:x <0<z ,xy >0,且|y |>|z |>|x |,那么|x +z |+|y +z |-|x -y |的值( )A .是正数B .是负数C .是零D .不能确定符号【巩固】2a b c d +++=已知、、、都是整数,且a+b b+c c+d d+a ,则=a+d 。
初一数学绝对值综合专题课件
绝对值综合专题讲义绝对值的定义:绝对值的性质:(1) 绝对值的非负性,可以用下式表示(2) |a|=(3) 若|a|=a ,则 ;若|a|=-a ,则 ;任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,(4) 若|a|=|b|,则(5) |a+b| |a|+|b| |a-b| ||a|-|b|||a|+|b| |a+b| |a|+|b| |a-b|【例1】(1) 绝对值大于2.1而小于4.2的整数有多少个?(2) 若ab<|ab|,则下列结论正确的是( )A.a <0,b <0B.a >0,b <0C.a <0,b >0D.ab <0(3) 下列各组判断中,正确的是( )A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >bC. 若|a|>b ,则一定有|a|>|b|D.若|a|=b ,则一定有a 2=(-b) 2(4) 设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少?(5) 若3|x-2|+|y+3|=0,则x y 的值是多少?(6) 若|x+3|+(y-1)2=0,求n xy )4(--的值【巩固】1、绝对值小于3.1的整数有哪些?它们的和为多少?2、有理数a 与b 满足|a|>|b|,则下面哪个答案正确( )A.a >bB.a=bC.a<bD.无法确定3、若|x-3|=3-x ,则x 的取值范围是____________4、若a >b ,且|a|<|b|,则下面判断正确的是( )A.a <0B.a >0C.b <0D.b >05、设b a ,是有理数,则||8b a ---是有最大值还是最小值?其值是多少?小知识点汇总:若(x-a)2+(x-b)2=0,则 ;若|x-a|+(x-b)2=0,则 ;若|x-a|+|x-b|=0,则 ;【例2】(1) 已知x 是有理数,且|x|=|-4|,那么x=____(2) 已知x 是有理数,且-|x|=-|2|,那么x=____(3) 已知x 是有理数,且-|-x|=-|2|,那么x=____(4) 如果x ,y 表示有理数,且x ,y 满足条件|x|=5,|y|=2,|x-y|=y-x ,那么x+y的值是多少?(5) 解方程05|5|23=-+x(6) 解方程|4x+8|=12(7) 若已知a 与b 互为相反数,且|a-b|=4,求12+++-ab a b ab a 的值【巩固】1、巩固|x|=4,|y|=6,求代数式|x+y|的值2、解方程 |3x+2|=-13、已知|x-1|=2,|y|=3,且x 与y 互为相反数,求y xy x 4312--的值【例3】(1) 已知a=-21,b=-31,求||32|34|2|2|4)2(|42|2--+-+-++a b b a b a b a 的值 (2) 若|a|=b ,求|a+b|的值(3) 化简:|a-b|(4) 有理数a ,b ,c 在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b|【巩固】1、化简:(1)|3.14-π| (2)|8-x|(x ≥8)C B 0 A2、已知a ,b ,c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|3、数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||【例4】(1)若a<-b 且0>b a ,化简|a|-|b|+|a+b|+|ab|(2)若-2≤a ≤0,化简|a+2|+|a-2|(3)已知x<0<z,xy>0,|y|>|z|>|x|,求|x+z|+|y+z|-|x-y|的值(4)已知x<-3,化简|3+|2-|1+x|||(5)化简|x+5|+|2x-3|(6)若a<0,试化简||3|||3|2a a a a --(7)若abc ≠0,则||||||c c b b a a ++的所有可能值【巩固】 1、如果0<m<10并且m ≤x ≤10,化简|x-m|+|x-10|+|x-m-10|2、有理数a ,b ,c ,d ,满足1||-=abcd abcd ,求dd c c b b a a ||||||||+++的值3、化简:|2x-1|4、求|m|+|m-1+|m-2|的值|a|的几何意义: ;|a-b|的几何意义:【例5】求|x-3|+|x-5|+|x-2|+|x+1|+|x+7|的最小值【巩固】1、如图,在接到上有A、B、C、D、E五栋居民楼,现在设立一个邮筒,为使五栋楼的居民到邮筒的就努力之和最短,邮局应立于何处?2、设a1、a2、a3、a4、a5为五个有理数,满足a1< a2< a3< a4< a5,求|x- a1|+|x- a2|+|x- a3|+|x-a 4|+|x- a5|的最小值3、设a<b<c<d,求y=|x-a|+|x-b|+|x-c|+|x-d|的最小值,并求出此时x的取值题后小结论:求|x-a1|+|x-a2|+…+|x-an|的最小值:【例1】若|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b-c=______【例2】已知(a+b)2+|b+5|=b+5,且|2a-b-1|=0,那么ab=______【例3】对于|m-1|,下列结论正确的是()A.|m-1|≥|m|B.|m-1|≤|m|C. |m-1|≥|m|-1D. |m-1|≤|m|-1A B C D E【例4】设a ,b ,c 为实数,且|a|+a=0,|ab|=ab ,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|【例5】化简:||x-1|-2|+|x+1|【例6】已知有理数a ,b ,c 满足1||||||=++c c b b a a ,求abc abc ||的值【例7】若a ,b ,c ,d 为互不相等的有理数,且|a-c|=|b-c|=|d-b|=1,求|a-d|1、当b 为何值时,5-12-b 有最大值,最大值是多少?2、已知a 是最小的正整数,b 、c 是有理数,并且有|2+b |+(3a +2c )2=0.求式子4422++-+c a c ab 的值.3、|m+3 |+|n-27|+|2p-1|=0,求p+2m+3n 的值4、若a ,b ,c 为整数,且|a-b |19+|c-a |99=1,试计算|c-a |+|a-b |+|b-c |的值5、(1)已知|x|=2,|y|=3且x-y>0,则x+y 的值为多少?(2)解方程:|4x-5|=86、(1)有理数a ,b ,c 在数轴上对应点如图所示,化简|a-b|-|a+b|+|b-c|-|c|(2)若a <b ,求|b-a+1|-|a-b-5|的值(3)若a <0,化简|a-|-a||7、已知a 是非零有理数,求||||||3322a a a a a a ++的值8、化简|x-1|-|x-3|9、6、设a <b <c ,求当x 取何值时|x-a|+|x-b|+|x-c|的最小值10、若3+-y x 与1999-+y x 互为相反数,求yx y x -+2的值11、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值。
《绝对值》 讲义
《绝对值》讲义一、什么是绝对值在数学中,绝对值是一个非常重要的概念。
绝对值指的是一个数在数轴上所对应点到原点的距离,用“||”来表示。
例如,数字 5 的绝对值是 5,记作|5| = 5;数字-5 的绝对值也是5,记作|-5| = 5。
从几何意义上来说,绝对值就是一个数到原点 0 的距离。
距离是没有方向的,所以绝对值一定是非负的。
二、绝对值的性质1、非负性绝对值的结果总是非负的,即对于任意实数 a,有|a| ≥ 0。
2、互为相反数的两个数的绝对值相等如果 a 和 a 互为相反数,那么|a| =|a|。
3、若|a| = a,则a ≥ 0;若|a| = a,则a ≤ 0这意味着当绝对值符号内的数为非负数时,去掉绝对值符号后,数不变;当绝对值符号内的数为负数时,去掉绝对值符号后,要在数前加上负号。
三、绝对值的计算1、正数的绝对值是它本身例如,|7| = 72、负数的绝对值是它的相反数例如,|-8| = 83、 0 的绝对值是 0即|0| = 04、多个数的运算当计算包含绝对值的式子时,需要先根据绝对值的性质去掉绝对值符号,再进行运算。
例如,计算|3 5|,先计算 3 5 =-2,因为-2 是负数,所以|3 5| =|-2| = 2。
四、绝对值方程1、形如|x| = a (a ≥ 0)的方程当a ≥ 0 时,方程|x| = a 的解为 x = ±a。
例如,|x| = 5,那么 x = 5 或 x =-5。
2、形如|ax + b| = c (c ≥ 0)的方程先将方程变形为 ax + b = ±c,然后分别解这两个方程。
例如,|2x 1| = 3,可变形为 2x 1 = 3 或 2x 1 =-3,分别解得x = 2 或 x =-1。
五、绝对值不等式1、形如|x| < a (a > 0)的不等式其解集为 a < x < a。
例如,|x| < 3,解集为-3 < x < 3。
2、形如|x| > a (a > 0)的不等式其解集为 x < a 或 x > a。
(2021年整理)初一数学绝对值综合专题讲义
初一数学绝对值综合专题讲义编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初一数学绝对值综合专题讲义)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初一数学绝对值综合专题讲义的全部内容。
绝对值综合专题讲义绝对值的定义:绝对值的性质:(1)绝对值的非负性,可以用下式表示(2)|a|=(3)若|a|=a,则;若|a|=—a,则 ;任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,(4)若|a|=|b|,则(5)|a+b| |a|+|b| |a-b| ||a|—|b|| |a|+|b| |a+b| |a|+|b||a—b|【例1】(1)绝对值大于2.1而小于4。
2的整数有多少个?(2)若ab〈|ab|,则下列结论正确的是()A。
a<0,b<0 B。
a>0,b<0 C.a<0,b>0 D。
ab<0(3)下列各组判断中,正确的是()A.若|a|=b,则一定有a=b B。
若|a|>|b|,则一定有a>bC。
若|a|>b,则一定有|a|>|b| D。
若|a|=b,则一定有a2=(-b) 2(4)设a,b是有理数,则|a+b|+9有最小值还是最大值?其值是多少?(5) 若3|x —2|+|y+3|=0,则xy的值是多少?(6) 若|x+3|+(y —1)2=0,求nxy )4(--的值【巩固】1、绝对值小于3.1的整数有哪些?它们的和为多少?2、有理数a 与b 满足|a|〉|b |,则下面哪个答案正确( ) A.a >b B.a=b C 。
a<b D 。
无法确定3、若|x-3|=3-x ,则x 的取值范围是____________4、若a >b,且|a|〈|b|,则下面判断正确的是( ) A 。
初一数学绝对值综合专题讲义之欧阳理创编
绝对值综合专题讲义绝对值的定义:绝对值的性质:(1)绝对值的非负性,可以用下式表示(2)|a|=(3)若|a|=a,则;若|a|=-a,则;任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,(4)若|a|=|b|,则(5)|a+b||a|+|b| |a-b|||a|-|b|||a|+|b||a+b| |a|+|b||a-b|【例1】(1)绝对值大于2.1而小于4.2的整数有多少个?(2)若ab<|ab|,则下列结论正确的是()A.a<0,b<0B.a>0,b<0C.a<0,b>0D.ab<0(3)下列各组判断中,正确的是()A.若|a|=b,则一定有a=b B.若|a|>|b|,则一定有a>bC. 若|a|>b ,则一定有|a|>|b|D.若|a|=b ,则一定有a 2=(-b)2(4)设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少?(5)若3|x-2|+|y+3|=0,则xy 的值是多少? (6)若|x+3|+(y-1)2=0,求nx y )4(--的值【巩固】1、绝对值小于3.1的整数有哪些?它们的和为多少?2、有理数a 与b 满足|a|>|b|,则下面哪个答案正确( ) A.a >b B.a=b C.a<b D.无法确定3、若|x-3|=3-x ,则x 的取值范围是____________4、若a >b ,且|a|<|b|,则下面判断正确的是( ) A.a <0 B.a >0 C.b <0 D.b >05、设b a ,是有理数,则||8b a ---是有最大值还是最小值?其值是多少? 小知识点汇总:若(x-a)2+(x-b)2=0,则;若|x-a|+(x-b)2=0,则; 若|x-a|+|x-b|=0,则;(1) 已知x 是有理数,且|x|=|-4|,那么x=____ (2)已知x 是有理数,且-|x|=-|2|,那么x=____(3)已知x 是有理数,且-|-x|=-|2|,那么x=____(4)如果x ,y 表示有理数,且x ,y 满足条件|x|=5,|y|=2,|x-y|=y-x ,那么x+y 的值是多少?(5) 解方程05|5|23=-+x(6) 解方程|4x+8|=12(7)若已知a 与b 互为相反数,且|a-b|=4,求12+++-ab a bab a 的值【巩固】1、巩固|x|=4,|y|=6,求代数式|x+y|的值2、解方程 |3x+2|=-13、已知|x-1|=2,|y|=3,且x 与y 互为相反数,求y xy x 4312--的值(1)已知a=-21,b=-31,求||32|34|2|2|4)2(|42|2--+-+-++a b b a b a b a 的值(2) 若|a|=b ,求|a+b|的值 (3) 化简:|a-b|(4)简|b+a|+|a+c|+|c-b| 【巩固】1、化简:(1)|3.14-π| (2)|8-x|(x ≥8)2、已知a ,b ,c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|3、数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||【例4】(1)若a<-b 且0>b a,化简|a|-|b|+|a+b|+|ab|(2)若-2≤a ≤0,化简|a+2|+|a-2|(3)已知x<0<z,xy>0,|y|>|z|>|x|,求|x+z|+|y+z|-|x-y|的值(4)已知x<-3,化简|3+|2-|1+x||| (5)化简|x+5|+|2x-3|C B 0 A(6)若a<0,试化简||3|||3|2a a a a --(7)若abc ≠0,则||||||c c b b a a ++的所有可能值【巩固】1、如果0<m<10并且m ≤x ≤10,化简|x-m|+|x-10|+|x-m-10|2、有理数a ,b ,c ,d ,满足1||-=abcdabcd ,求d d c c b b a a ||||||||+++的值3、化简:|2x-1|4、求|m|+|m-1+|m-2|的值|a|的几何意义:;|a-b|的几何意义:【例5】求|x-3|+|x-5|+|x-2|+|x+1|+|x+7|的最小值 【巩固】1、如图,在接到上有A 、B 、C 、D 、E 五栋居民楼,现在设立一个邮筒,为使五栋楼的居民到邮筒的就努力之和最短,邮局应立于何处?2、设a 1、a 2、a3、a4、a 5为五个有理数,满足a 1< a 2< a 3< a 4< a 5,求|x- a 1|+|x- a 2|+|x- a 3|+|x- a 4|+|x- a 5|的最小值 3、设a<b<c<d,求y=|x-a|+|x-b|+|x-c|+|x-d|的最小值,并求AB CDE出此时x 的取值题后小结论:求|x-a 1|+|x-a 2|+…+|x-a n |的最小值:【例1】若|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b-c=______【例2】已知(a+b)2+|b+5|=b+5,且|2a-b-1|=0,那么ab=______【例3】对于|m-1|,下列结论正确的是( )A.|m-1|≥|m|B.|m-1|≤|m|C. |m-1|≥|m|-1D. |m-1|≤|m|-1【例4】设a ,b ,c 为实数,且|a|+a=0,|ab|=ab ,|c|-c=0,化简|b|-|a+b|-|c-b|+|a-c|【例5】化简:||x-1|-2|+|x+1| 【例6】已知有理数a ,b ,c满足1||||||=++c c b b a a ,求abc abc ||的值【例7】若a ,b ,c ,d 为互不相等的有理数,且|a-c|=|b-c|=|d-b|=1,求|a-d|1、当b 为何值时,5-12-b 有最大值,最大值是多少?2、已知a 是最小的正整数,b 、c 是有理数,并且有|2+b |+(3a +2c )2=0.求式子4422++-+c a c ab 的值.3、|m+3 |+|n-27|+|2p-1|=0,求p+2m+3n 的值4、若a ,b ,c 为整数,且|a-b |19+|c-a |99=1,试计算|c-a |+|a-b |+|b-c |的值5、(1)已知|x|=2,|y|=3且x-y>0,则x+y 的值为多少?(2)解方程:|4x-5|=86、(1)有理数a ,b ,c 在数轴上对应点如图所示,化简|a-b|-|a+b|+|b-c|-|c|(2)若a <b ,求|b-a+1|-|a-b-5|的值 (3)若a <0,化简|a-|-a||7、已知a 是非零有理数,求||||||3322a a a a a a ++的值8、化简|x-1|-|x-3| 9、6、设a <b <c ,求当x 取何值时|x-a|+|x-b|+|x-c|的最小值10、若3+-y x 与1999-+y x 互为相反数,求y x yx -+2的值11、若2x+|4-5x |+|1-3x |+4的值恒为常数,求x 该满足的条件及此常数的值。
绝对值(第一二课时)讲义人教版七年级数学上册
绝对值(第一、二课时)一、知识点由绝对值的定义可知:一个正数的绝对是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;一个数的绝对值一定是非负数;一个数的绝对值表示离开原点距离.用式子表示就是:1.当a 是正数(即a >0)时,|a |= ; 2.当a 是负数(即a <0)时,|a |= ;3.当a =0时,|a |= .4.若|a |=a ,则a 0;若|a |=-a 则a 0.数的大小比较:在数轴上表示的两个数,右边的数总要大于左边的数.也就是:(1)正数大于0,负数小于0,正数大于负数;(2)两个负数,绝对值大的反而小.二、讲例1.在数轴上表示-5的点到原点的距离是 ,-5的绝对值是 .2.⑴若|x |=3,则x = .⑵若a ≥b ,则|a-b |= .3.|-5|= ; -|312|= ;|-2.31|= ; |+π|= .4.判断下列结论是否正确,并说明为什么:(1)若|a |=|b |, 则a =b ;(2)若|a |>|b |,则a >b .5.已知有理数a 、b 、c 在数轴上的位置如图,(1)化简|a |+|b |+|c |;(2)化简|a b c +-|.6.若|2a -|+|1b -|=0,求a ,,b 的值.7.填空:(1) 若|a |=a ,则a 0;(2) 若|a |=-a ,则a 0;(3) 若|a |+a =0,则a 0;(4) 若1-=a a,则a 0.8. 满足|x |=-x 的数有( )A .1个B .2个C .3个D .无数个9.化简:-|-5|= ;|-(-5 )|= ;|-(+12)|= . 10.比较下列各对数的大小:-(-1) -(+2 ); 218-73-;3.0(--31; --(-2 ). 11.将下列各数从小到大排列-0.5,2-,23-,32,41-,0,1.25,0.5.12、若|a |=4,|b |=7,则a = ;b = .13.已知a =+12,b =-7,c =-(|-19|-|-8|),求a +|-c |+|b |的值.三、练习:1.523-的绝对值是______;绝对值等于523的数是 ,它们互为________.2.在数轴上,绝对值为4,且在原点左边的点表示的有理数为________.3.如果3-=a ,则|-a |= ,|a |= .4.当|a |=-a 时,a 是________数,当|a |=a 时,a 是________数.5.已知|a |=2,|b |=3,a >b ,则a =_____,b =_____.6.(1)|x |=7,则x = ;|-x |=7,则x = .(2).如果a >3,则|a -3|= ,|3-a |=______.7.下列说法中,错误的是( )A .一个数的绝对值一定是正数B .互为相反数的两个数的绝对值相等C .绝对值最小的数是0D .绝对值等于它本身的数是非负数8.下列说法中正确的是( )A .-|a |一定是负数B .只有两个数相等时它们的绝对值才相等C .若|a |=|b |,则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数9.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有( )A .0个B .1个C .2个D .3个10.下列结论中,正确的有( )①符号相反且绝对值相等的数互为相反数;②一个数的绝对值越大,表示它的点在数轴上离原点越远;③两个负数,绝对值大的反而小;④正数大于一切负数;⑤在数轴上,右边的数总大于左边的数.A .2个B .3个C .4个D .5个11.绝对值不大于11.1的整数有( )A .11个B .12个C .22个D .23个12.在数轴上点A 在原点的左侧,点A 表示有理数a ,求点A 到原点的距离.13.已知:|x-4|+|y-2|=0,求2x-|y|的值.14.大家知道|5|=|5-0|,它在数轴上的意义表示5的点与原点之间的距离;又如|5-3|,它在数轴上的意义表示5的点与表示3的点之间的距离.(1)|5+3|在数轴上的意义是:_______________;(2)当|x+6|=5时,x=;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值综合专题讲义
绝对值的定义:
绝对值的性质:
(1) 绝对值的非负性,可以用下式表示
(2) |a|=
(3) 若|a|=a ,则 ;若|a|=-a ,则 ;任何一个数的绝对值都不
小于这个数,也不小于这个数的相反数,
(4) 若|a|=|b|,则
(5) |a+b| |a|+|b| |a-b| ||a|-|b|| |a|+|b| |a+b| |a|+|b| |a-b|
【例1】
(1) 绝对值大于2.1而小于4.2的整数有多少个?
(2) 若ab<|ab|,则下列结论正确的是( )
A.a <0,b <0
B.a >0,b <0
C.a <0,b >0
D.ab <0
(3) 下列各组判断中,正确的是( )
A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b
C. 若|a|>b ,则一定有|a|>|b|
D.若|a|=b ,则一定有a 2=(-b) 2
(4) 设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少?
(5) 若3|x-2|+|y+3|=0,则
x y 的值是多少?
(6) 若|x+3|+(y-1)2=0,求n x
y )4(
--的值
【巩固】
1、绝对值小于3.1的整数有哪些?它们的和为多少?
2、有理数a 与b 满足|a|>|b|,则下面哪个答案正确( )
A.a >b
B.a=b
C.a<b
D.无法确定
3、若|x-3|=3-x ,则x 的取值范围是____________
4、若a >b ,且|a|<|b|,则下面判断正确的是( )
A.a <0
B.a >0
C.b <0
D.b >0
5、设b a ,是有理数,则||8b a ---是有最大值还是最小值?其值是多少?
小知识点汇总:
若(x-a)2+(x-b)2=0,则 ;若|x-a|+(x-b)2=0,则 ; 若|x-a|+|x-b|=0,则 ;
【例2】
(1) 已知x 是有理数,且|x|=|-4|,那么x=____
(2) 已知x 是有理数,且-|x|=-|2|,那么x=____
(3) 已知x 是有理数,且-|-x|=-|2|,那么x=____
(4) 如果x ,y 表示有理数,且x ,y 满足条件|x|=5,|y|=2,|x-y|=y-x ,那么
x+y 的值是多少?
(5) 解方程
05|5|2
3=-+x
(6) 解方程|4x+8|=12
(7) 若已知a 与b 互为相反数,且|a-b|=4,求
12+++-ab a b ab a 的值
【巩固】
1、巩固|x|=4,|y|=6,求代数式|x+y|的值
2、解方程 |3x+2|=-1
3、已知|x-1|=2,|y|=3,且x 与y 互为相反数,求
y xy x 4312--的值
【例3】
(
1) 已知a=-2
1,b=-31,求||32|34|2|2|4)2(|42|2--+-+-++a b b a b a b a 的值 (2) 若|a|=b ,求|a+b|的值
(3) 化简:|a-b|
(4) 有理数a ,b ,c 在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b|
【巩固】
1、化简:(1)|3.14-π| (2)|8-x|(x ≥8)
C B 0 A
2、已知a ,b ,c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|
3、数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||
【例4】(1)若a<-b 且
0>b a ,化简|a|-|b|+|a+b|+|ab|
(2)若-2≤a ≤0,化简|a+2|+|a-2|
(3)已知x<0<z,xy>0,|y|>|z|>|x|,求|x+z|+|y+z|-|x-y|的值
(4)已知x<-3,化简|3+|2-|1+x|||
(5)化简|x+5|+|2x-3|
(6)若a<0,试化简|
|3|||3|2a a a a --
(7)若abc ≠0,则
|
|||||c c b b a a ++的所有可能值
【巩固】 1、如果0<m<10并且m ≤x ≤10,化简|x-m|+|x-10|+|x-m-10|
2、有理数a ,b ,c ,d ,满足
1||-=abcd abcd ,求d
d c c b b a a ||||||||+++的值
3、化简:|2x-1|
4、求|m|+|m-1+|m-2|的值
|a|的几何意义: ;|a-b|的几何意义:
【例5】求|x-3|+|x-5|+|x-2|+|x+1|+|x+7|的最小值
【巩固】
1、如图,在接到上有A、B、C、D、E五栋居民楼,现在设立一个邮筒,为使五栋楼的居
民到邮筒的就努力之和最短,邮局应立于何处?
2、设a
1、a
2
、a
3
、a
4
、a
5
为五个有理数,满足a
1
< a
2
< a
3
< a
4
< a
5
,求|x- a
1
|+|x- a
2
|+|x-
a 3|+|x- a
4
|+|x- a
5
|的最小值
3、设a<b<c<d,求y=|x-a|+|x-b|+|x-c|+|x-d|的最小值,并求出此时x的取值题后小结论:
求|x-a
1|+|x-a
2
|+…+|x-a
n
|的最小值:
【例1】若|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b-c=______
【例2】已知(a+b)2+|b+5|=b+5,且|2a-b-1|=0,那么ab=______
【例3】对于|m-1|,下列结论正确的是()
A.|m-1|≥|m|
B.|m-1|≤|m|
C. |m-1|≥|m|-1
D. |m-1|≤
|m|-1
A B C D E
【例4】 设a ,b ,c 为实数,且|a|+a=0,|ab|=ab ,|c|-c=0,化简
|b|-|a+b|-|c-b|+|a-c|
【例5】
化简:||x-1|-2|+|x+1|
【例6】
已知有理数a ,b ,c 满足1||||||=++c c b b a a ,求abc abc ||的值
【例7】
若a ,b ,c ,d 为互不相等的有理数,且|a-c|=|b-c|=|d-b|=1,求|a-d|
1、当b 为何值时,5-12-b 有最大值,最大值是多少?
2、已知a 是最小的正整数,b 、c 是有理数,并且有|2+b |+(3a +2c )2=0.
求式子
4422++-+c a c ab 的值.
3、|m+3 |+|n-
2
7|+|2p-1|=0,求p+2m+3n 的值
4、若a ,b ,c 为整数,且|a-b |19+|c-a |99=1,试计算|c-a |+|a-b |+|b-c |的值
5、(1)已知|x|=2,|y|=3且x-y>0,则x+y 的值为多少?
(2)解方程:|4x-5|=8
6、(1)有理数a ,b ,c 在数轴上对应点如图所示,化简|a-b|-|a+b|+|b-c|-|c|
(2)若a <b ,求|b-a+1|-|a-b-5|的值
(3)若a <0,化简|a-|-a||
7、已知a 是非零有理数,求|
|||||33
22a a a a a a ++的值
8、化简|x-1|-|x-3|
9、6、设a <b <c ,求当x 取何值时|x-a|+|x-b|+|x-c|的最小值
10、若3+-y x 与1999-+y x 互为相反数,求
y
x y x -+2的值
11、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值。
12、不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为( ).
(1)在A,C点的右边;(2)在A,C点的左边;
(3)在A,C点之间; (4)以上三种情况都有可能
13、设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x来说,T 的最小值是多少?。