同增异减 内偶则偶 内奇同外

合集下载

高中数学40条秒杀公式

高中数学40条秒杀公式

高中数学40条秒杀公式401.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个):(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3.关于对称问题(无数人搞不懂的问题)总结如下:(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4.函数奇偶性:(1)对于属于R上的奇函数有f(0)=0(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5.数列爆强定律:1.等差数列中:S奇=na中,例如S13=13a72.等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3.等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4.等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6.数列的终极利器,特征根方程。

(如果看不懂就算了)。

首先介绍公式:对于a n+1=pa n+q,a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

2020年高中数学知识点口诀

2020年高中数学知识点口诀

高考数学必考知识点口诀一、《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。

?nbsp;变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

函数增减性与奇偶性的快速判断方法

函数增减性与奇偶性的快速判断方法

一复合函数
1.增减性
对于 F(x)=f[g(x)] 的复合函数,其增减性满足乘法定则
同增异减
2.奇偶性
对于F(x)=f[g(x)] 的复合函数,其实只要掌握好奇偶函数的定义,自己推一下是非常容易的。

记F(x)=f[g(x)]——复合函数,则F(-x)=f[g(-x)]
如果g(x)是奇函数,即g(-x)=-g(x) ==> F(-x)=f[-g(x)],
则当f(x)是奇函数时,F(-x)=-f[g(x)]=-F(x),F(x)是奇函数;
当f(x)是偶函数时,F(-x)=f[g(x)]=F(x),F(x)是偶函数。

如果g(x)是偶函数,即g(-x)=g(x) ==> F(-x)=f[g(x)]=F(x),F(x)是偶函数。

所以由两个函数复合而成的复合函数,当里层的函数是偶函数时,复合函数是偶函数,不论外层是怎样的函数;当里层的函数是奇函数、外层的函数也是奇函数时,复合函数是奇函数,当里层的函数是奇函数、外层的函数是偶函数时,复合函数是偶函数。

在其它的场合,就不能如此单纯地判断复合函数的奇偶性了。

二加减函数
1.增减性
对于F(x)=g(x)+f(x) ,增+增=增,减+减=减,减+增则无定则
2.奇偶性
对于F(x)=g(x)+f(x) ,
奇+奇=奇, 奇-奇=奇, 偶+偶=偶 ,偶-偶=偶.奇+偶无定则
三相乘函数
1.增减性
对于F(x)=g(x)*f(x)
举个例子:f(x)=g(x)=-x ,都是减函数,而F(x)=x^2,有增有减.
2.奇偶性
对于F(x)=g(x)*f(x), 即奇*偶=奇 ,偶*偶=偶 ,奇*奇=偶。

高三数学公式归纳大全

高三数学公式归纳大全

数学考试主要考察大家的公式运用情况,所以要想数学考出好成绩,一定要牢牢记住数学公式。

今天老师就给大家总结了整个高中都会用到的数学公式,一共有五十条,大家一定要熟背哦~1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

高考数学必备50条公式和结论

高考数学必备50条公式和结论

1,适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2,函数的周期性问题(记忆三个):1、若f(x)=-f(x+k),则T=2k;2、若f(x)=m/(x+k)(m不为0),则T=2k;3、若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3,关于对称问题(无数人搞不懂的问题)总结如下:1,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;2、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;3、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4,函数奇偶性:1、对于属于R上的奇函数有f(0)=0;2、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项3,奇偶性作用不大,一般用于选择填空5,数列爆强定律:1,等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);2等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6,数列的终极利器,特征根方程。

(如果看不懂就算了)。

首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

高中(必修一)数学口诀

高中(必修一)数学口诀

高中数学口诀人教A 版必修一第一章 集合篇1、集合三个特性:确定性、互异性、无序性(互异性:求出答案记得带回去检验看是否出现重复)2、常见数集表示方法:(1)、N ——自然数数集(自然的英语nature) (2)、Z ——整数集(拼音zheng )(3)、Q ——有理数集 (4)、R ——实数集3、一个集合有n 个元素,则其子集的个数为n 2,真子集个数为12-n ,非空子集个数为12-n ,非空真子集个数为22-n .4、元素与集合之间用∉∈或,集合于集合之间用⊆。

5、空集是任何集合的子集,是任何非空集合的真子集。

6、口诀:看到子集,首先考虑空集,然后才是画数轴列不等式。

7、两个重要公式:∁U (A ∪B )=(∁U A )∩(∁U B );∁U (A ∩B )=(∁U A )∪(∁U B ).(口诀:拆开变号)人教A 版必修一第一章 函数篇1、区间是一种特殊的数集表达形式,只能用于表示数集,而且不管开闭,必须左小右大。

2、形成函数的三个要求:每一性、唯一性、允许多对一不能一对多。

3、函数三要素:定义域、值域和对应关系(函数问题,不管啥题定义域优先)4、函数的表示方法:解析法、图像法、列表法5、判断两个函数是否相等只需要判断定义域和对应关系是否相等即可。

6、求定义域口诀(1)、先求定义域再化简; (2)、分式要求分母不为0.(3)、偶次根式要求被开方数≥0; (4)、0次方和负数次方要求底数不为0;(5)、指数要求底数>0且≠1; (6)、对数(log )要求真数>0,底数>0且≠1;(7)、复合函数定义域的求法:(口诀:简单算复杂“放”,复杂算简单“代”。

) 若()x f 定义域为[]b a , ,则复合函数()[]x g f 定义域由()b x g a ≤≤解出; 若()[]x g f 定义域为[]b a , ,则()x f 定义域相当于[]b a x ,∈时()x g 的值域.7、函数值域的求法(求值域也要先求定义域)(1)、图像法:能画图的坚决画图(2)、单调性法:有增减就可以代两端求最值得到值域;(3)、换元法:(口诀:次方出现两倍关系就可以使用换元法,设低次为t )操作步骤:第一步:求定义域并设t ; 第二步:马上求出t 的范围;第三步:用t 表示出x ; 第四步:求出新函数值域即为原函数的值域。

高考理科数学必考知识内容

高考理科数学必考知识内容

高考理科数学必考知识内容(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高考理科数学必考知识内容高考理科数学必考知识内容大全高考数学作为高考考试中的一个大科目,也是难倒众人的一门科目,高考中数学必考哪些内容呢?下面是本店铺为大家整理的关于高考理科数学必考知识内容,欢迎大家来阅读。

高中数学快速答题公式方法及实用技巧

高中数学快速答题公式方法及实用技巧

高中数学快速做题公式方法及实用技巧1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

高中数学:52种快速做题方法,公式定理结合

高中数学:52种快速做题方法,公式定理结合

高中数学:52种快速做题方法,公式定理结合1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x 为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

高考数学命题点及答题技巧

高考数学命题点及答题技巧

高考数学命题点及答题技巧1、选择题高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查三基为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大。

选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面。

解答选择题的基本策略是:要充分利用题设和选择支两方面提供的信息作出判断。

一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接解;对于明显可以否定的选择支应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。

解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。

从考试的角度来看,解选择题只要选对就行,至于用什么策略手段都是无关紧要的,所以人称可以不择手段。

但平时做题时要尽量弄清每一个选择支正确的理由与错误的原因。

另外,在解答一道选择题时,往往需要同时采用几种方法进行分析、推理,只有这样,才会在高考时充分利用题目自身提供的信息,化常规为特殊,避免小题大作,真正做到准确和快速。

总之,解答选择题既要看到各类常规题的解题思想原则上都可以指导选择题的解答,但更应该充分挖掘题目的个性,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。

这样不但可以迅速、准确地获取正确答案,还可以提高解题速度,为后续解题节省时间。

2、填空题填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。

不过填空题和选择题也有质的区别。

首先,表现为填空题没有备选项。

因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些,长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。

高考数学19条“秒杀公式

高考数学19条“秒杀公式

掌握高中数学这19条“秒杀公式”,高考数学轻松130+!数学公式是高考中最重要的,也是想考高分必须记住的。

那么数学如此多的公式和推导公式该如何记忆呢?今天学习哥整理了高考数学19条秒杀公式供同学们快速解题参考。

1.函数的周期性问题:①若f(x)=-f(x+k),则T=2k;②若f(x)=m/(x+k)(m不为0),则T=2k;若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数。

③关于对称问题若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。

2.函数奇偶性。

①对于属于R上的奇函数有f(0)=0;②对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项3.函数单调性:若函数在区间D上单调,则函数值随着自变量的增大(减小)而增大(减小)。

4.函数对称性:①若f(x)满足f(a+x)+f(b-x)=c则函数关于(a+b/2,c/2)成中心对称。

②若f(x)满足f(a+x)=f(b-x)则函数关于直线x=a+b/2成轴对称。

5.函数y=(sinx)/x是偶函数。

在(0,π)上单调递减,(-π,0)上单调递增。

利用上述性质可以比较大小。

6.函数y=(lnx)/x在(0,e)上单调递增,在(e,+∞)上单调递减。

另外y=x²(1/x)与该函数的单调性一致。

7.复合函数。

(1)复合函数奇偶性:内偶则偶,内奇同外。

(2)复合函数单调性:同增异减。

8.数列定律。

等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差。

9.隔项相消。

对于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/*n(n+2)+=1/2*1+1/2-1/(n+1)-1/(n+2)]注:隔项相加保留四项,即首两项,尾两项。

高中数学干货:必背的48条秒杀型公式和学习方法

高中数学干货:必背的48条秒杀型公式和学习方法

高中数学干货:必背的48条秒杀型公式和学习方法除了课本上的常规公式之外,掌握一些必备的秒杀型公式能够帮你在考试的时候节省大量的时间,这次的分享就是48条爆强的秒杀公式,直接往下看!1、适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2、函数的周期性问题(记忆三个):(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3、关于对称问题(无数人搞不懂的问题)总结如下:(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4、函数奇偶性:(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5、数列爆强定律:(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q2mS (n)可以迅速求q6、数列的终极利器,特征根方程。

函数单调性、奇偶性总结

函数单调性、奇偶性总结

(一)函数单调性 1.增函数、减函数如果对于定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数; 如果对于定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数. 注意:求函数的单调区间,必须先求函数的定义域. 2、增、减函数的性质:增函数: 12x x <⇔12()()f x f x < 减函数: 12x x <⇔12()()f x f x <式子的变形:设[]2121,,x x b a x x ≠∈⋅那么 []1212()()()0x x f x f x -->⇔[]ba x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x xf x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. 3、判断函数单调性的方法步骤:利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤:1)、取值: 设任意两个实数12,x x 有, 12,x x ∈D ,且12x x <;2)、作差:)()(21x f x f -;3)、变形:通常方法:因式分解;配方;分母有理化; 4)、定号:即判断差)()(21x f x f -的正负;5)、下结论:即指出函数f(x)在给定的区间D 上的单调性. 取值→作差→变形→定号→下结论例:证明函数 在R 上是增函数.xx x f +=3)(一些重要函数的单调性:1、一次函数的图象y=kx+b 的单调性:(1)当k>0时,函数在R 上是增函数 (2)当k<0时,函数在R 上是减函数 2、反比例函数的图象)0(≠=k xky 的单调性: (1)当k>0时,函数在()()+∞∞-,0,0,上是减函数 (2)当k<0时,函数在()()+∞∞-,0,0,上是增函数 3、二次函数的图象)0(2≠++=a c bx ax y 的单调性 (1)当a>0时,函数在⎪⎭⎫ ⎝⎛-∞-a b 2,上是减函数, 在⎪⎭⎫⎝⎛+∞-,2a b 上是增函数 (2)当a<0时,函数在⎪⎭⎫ ⎝⎛-∞-a b 2,上是增函数,在⎪⎭⎫⎝⎛+∞-,2a b 上是减函数 例题:已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是: ()变式:二次函数的基本性质例1、函数2()2f x x t x =-+在[1,2]上是单调递增函数,则实数t的取值范围是_________二、两个函数和差乘除单调性和复合函数的单调性1、如果函数f(x)在区间D 上是增(减)函数,函数g(x)在区间D 上是增(减)函数;函数F(x)=f(x)+g(x)在D 上为增(减)函数。

高中数学48条秒杀公式

高中数学48条秒杀公式

高中数学48条秒杀公式1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个):(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限 b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3.关于对称问题(无数人搞不懂的问题)总结如下:(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4.函数奇偶性:(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5.数列爆强定律:(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6.数列的终极利器,特征根方程。

(如果看不懂就算了)。

首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

高中数学快速做题公式方法与解答攻略

高中数学快速做题公式方法与解答攻略

高中数学快速做题公式方法与解答攻略1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

高中数学52种快速做题方法

高中数学52种快速做题方法

高中数学52种快速做题方法1、适用条件[直线过焦点],必有ecosA=(x-1)/(x 1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x 1)/(x-1),其他不变。

2、函数的周期性问题(记忆三个)(1)若f(x)=-f(x k),则T=2k;(2)若f(x)=m/(x k)(m不为0),则T=2k;(3)若f(x)=f(x k) f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3、关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a x)=f(b-x)恒成立,对称轴为x=(a b)/2(2)函数y=f(a x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a x) f(a-x)=2b,则f(x)图像关于(a,b)中心对称4、函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5、数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n m)=S(m) q mS(n)可以迅速求q6、数列的终极利器,特征根方程首先介绍公式:对于an 1=pan q(n 1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p (n-1) x,这是一阶特征根方程的运用。

高中数学怎么才能开窍

高中数学怎么才能开窍

高中数学怎么才能开窍高中数学开窍的方法有哪些第一,要掌握各种应试技巧。

其实高考数学题型每年就考那几种,只要你掌握了这几类题的应试技巧,基本很难不涨分的。

第二,总结高考常见题型。

在网上把本省份近5年的高考真题下载下来,然后仔细深刻的研究。

举个例子,线性规划问题,基本年年都考,这类题有没有一些特殊方法呢,能够快速解题呢,当然是有的。

这就需要你去研究去总结了。

第三,吃好睡好。

每晚睡觉不要超过11点,不要相信高中数学能凭一股蛮力就能学好,那是初中数学。

既然如此,莫不如早点休息睡好觉,然后第二天精精神神的学习。

吃饭一定要吃好,这个不解释,我们啥时候都要吃好,因为民以食为天。

高考提高数学成绩的方法有哪些1、课前预习是很多高中学生在学习数学过程中,容易忽视的环节。

如果高中生在课前预习了,上课时老师讲的很多东西都是会有印象的。

2、如果你在预习过程中有什么不懂的问题,在上课听讲的过程中也能一个个解开,而高中生也会顺着老师的思路一直听下去。

如果你的问题,课上没有解决,那么,在课下的时候一定要第一时间找老师或是同学询问解惑。

3、还有,上课的时候一定要打起全部的精神来听课,课上认真的听讲10分钟,会比自己课下学习一个小时效果还要好。

所以一定要认真听老师讲课,另外,不要对老师抱有偏见,如果你讨厌这个老师,那么,你是学不好数学的。

4、如果高中生课前预习了,课上也认真听课了,那么,最后需要做的就是课后复习了。

很多高中生感觉课上自己什么都会,但是一做题就错误百出,这就是没有课后复习的结果。

在课后,高中生要把当天学习的公式和定义都复习一遍,这样有利于巩固数学基础知识。

高考数学冲刺注意事项重视新增内容考查,新课标高考对新增内容的考查比例远远超出它们在教材中占有的比例。

例如:三视图、茎叶图、定积分、正态分布、统计案例等。

立足基础,强调通性通法,增大覆盖面。

从历年高考试题看,高考数学命题都把重点放在高中数学课程中最基础、最核心的内容上,即关注学生在学习数学和应用数学解决问题的过程中最为重要的、必须掌握的核心观念、思想方法、基本概念和常用技能,紧紧地围绕“双基”对数学的核心内容与基本能力进行重点考查。

[全]高考高中数学必考52种快速做题方法-公式定理结合

[全]高考高中数学必考52种快速做题方法-公式定理结合

高中数学必考52种快速做题方法,公式定理结合1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、同增异减:
比如函数g(x)单调递增,所以g(x)随x的增大而增大
又对于函数f(x),若它是递减函数
那么对于复合函数f(x)=f[g(x)](这是注意g(x)又是f(x)的自变量),
因为g(x)随x的增大而增大,又f(x)是减函数,
所以f[g(x)]随x的增大而减小,这就是所谓的同增异减。

例题:
Y=log2(X² - 2x)
首先要使函数有意义,有:x²-2x >0, 即:(x -2)x>0,即: x >2或x <0
又y=x² -2x的对称轴是x=1,
所以y=x² -2x的增区间是x>2,减区间是x<0
又y=log2x为单调增函数。

故:Y=log2(X² - 2x)单调增区间是 x>2
Y=log2(X² - 2x)单调减区间是 x <0
参考:假设:
(1)复合函数为两个增函数复合:那么随着自变量X的增大,Y值也在不断的增大;(2)复合函数为两个减函数的复合:那么随着内层函数自变量X的增大,内层函数的Y 值就在不断的减小,而内层函数的Y值就是整个复合函数的自变量X。

因此,即当内层函数自变量X的增大时,内层函数的Y值就在不断的减小,即整个复合函数的自变量X不断减小,又因为外层函数也为减函数,所以整个复合函数的Y值就在增大。

因此可得“同增”
若复合函数为一增一减两个函数复合:假设:内层函数为增函数,则若随着内层函数自变量X的增大,内层函数的Y值也在不断的增大,即整个复合函数的自变量X不断增大,又因为外层函数为减函数,所以整个复合函数的Y值就在减小。

反之亦然,因此可得“异减”。

2、内偶则偶,内奇同外:
这说的是,如果g(x)是偶函数,f(g(x))必然是偶函数,这个很容易理解
如果g(x)是奇函数,则复合函数的奇偶性和f(x)相同,如果f(x)为奇函数则f(g (x))也是奇函数,如果f(x)是偶函数则f(g(x))也是偶函数
注意:
复合函数要考虑定义域的变化,首先要保证x在g(x)的定义域以内,又必须保证g(x)的值全部在f(x)的定义域之内。

相关文档
最新文档