高中数学第一章坐标系2.1极坐标系的概念2.2点的极坐标与直角坐标的互化学案北师大版选修4-4
高中数学第一章坐标系1.2.2极坐标与直角坐标的互化教案新人教A版选修4_42017062625
极坐标与直角坐标的互化教学目的:知识目标:掌握极坐标和直角坐标的互化关系式能力目标:会实现极坐标和直角坐标之间的互化德育目标:通过观察、探索、发现的创造性过程,培养创新意识。
教学重点:对极坐标和直角坐标的互化关系式的理解教学难点:互化关系式的掌握授课类型:新授课教学模式:启发、诱导发现教学.教 具:多媒体、实物投影仪教学过程:一、复习引入:情境1:若点作平移变动时,则点的位置采用直角坐标系描述比较方便;情境2:若点作旋转变动时,则点的位置采用极坐标系描述比较方便问题1:如何进行极坐标与直角坐标的互化?问题2:平面内的一个点的直角坐标是)3,1(,这个点如何用极坐标表示?学生回顾理解极坐标的建立及极径和极角的几何意义正确画出点的位置,标出极径和极角,借助几何意义归结到三角形中求解二、讲解新课:直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两坐标系中取相同的长度单位。
平面内任意一点P 的指教坐标与极坐标分别为),(y x 和),(θρ,则由三角函数的定义可以得到如下两组公式:{θρθρsin cos ==y x { x y y x =+=θρtan 222说明1上述公式即为极坐标与直角坐标的互化公式2通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ≤π2。
3互化公式的三个前提条件1. 极点与直角坐标系的原点重合;2. 极轴与直角坐标系的x 轴的正半轴重合;3. 两种坐标系的单位长度相同.三.举例应用:例1.(1)把点M 的极坐标)32,8(π化成直角坐标 (2)把点P 的直角坐标)2,6(-化成极坐标变式训练在极坐标系中,已知),6,2(),6,2(ππ-B A 求A,B 两点的距离例2.若以极点为原点,极轴为x 轴正半轴,建立直角坐标系.(1) 已知A 的极坐标),35,4(π求它的直角坐标, (2) 已知点B 和点C 的直角坐标为)15,0()2,2(--和求它们的极坐标.ρ(>0,0≤θ<2π)变式训练把下列个点的直角坐标化为极坐标(限定ρ>0,0≤θ<π2))4,3(),4,3(),2,0(),1,1(----D C B A例3.在极坐标系中,已知两点)32,6(),6,6(ππB A . 求A,B 中点的极坐标.变式训练在极坐标系中,已知三点)6,32(),0,2(),3,2(ππP N M -.判断P N M ,,三点是否在一条直线上.四、巩固与练习:课后练习五、小结:本节课学习了以下内容:1.极坐标与直角坐标互换的前提条件;2.互换的公式;3.互换的基本方法。
高中数学第一章坐标系2.1极坐标系的概念2.2点的极坐标
π π 1.在极坐标系中,作出以下各点: A(4,0),B3,4 ,C2,2, 7π D3, 4 ;结合图形判断点
B,D 的位置是否具有对称性;并
求出 B, D 关于极点的对称点的极坐标. (限定 ρ≥0, θ∈[0,2π))
解:如图,A,B,C,D 四个点分别是唯一确定的.
2 |MN|= ρ2 + ρ 1 2-2ρ1ρ2cosθ1-θ2,
所以|AB|=
3 +1
2
2
2π π - - -2×3×1×cos =4. 3 3
化直角坐标为极坐标
[ 例 3] 0≤θ<2π).
分别将下列点的直角坐标化为极坐标 (ρ>0 ,
(1)(-1,1),(2)(- 3,-1).
2.1 & 2.2 §2 第 一 章 极 坐 标 系 极坐标 系的概 念 点的极 坐标与 直角坐 标的互 化
理解教 材新知
考点一 把握热 点考向
考点二
考点三
应用创 新演练
§ 2
极坐标系
2.1&2.2 极坐标系的概念 点的极坐标与直角坐标的互化
[自主学习]
1.极坐标系的概念 (1)极坐标系: 在平面内取一个定点 O,叫作 极点 ,自极点 O 引一条 射线 Ox,叫作 极轴;选定一个 单位长度 和角的正方向 (通 常取逆时针方向),这样就建立了一个极坐标系.
3 2 2
= 4+12=4.
1.将极坐标 M(ρ,θ)化为直角坐标(x,y),只需根据公
x=ρcos θ, 式: y=ρsin θ
即可得到;
2.利用两种坐标的互化,可以把不熟悉的极坐标问题转 化为熟悉的直角坐标问题求解.
本例中如何由极坐标直接求 A,B 两点间的距离?
2018-2019学年高中数学 第一讲 坐标系 二 第二课时 极坐标和直角坐标的互化学案 新人教A版选修4-4
第2课时 极坐标和直角坐标的互化学习目标 1.了解极坐标和直角坐标互化的条件.2.掌握极坐标与直角坐标互化的公式,能进行极坐标和直角坐标间的互化.3.掌握极坐标系的简单应用.知识点 极坐标和直角坐标的互化思考1 平面内的一个点M 的坐标既可以用直角坐标表示也可以用极坐标表示,那么这两个坐标之间能否转化? 答案 可以.思考2 要进行极坐标和直角坐标的互化,两个坐标系有什么联系? 答案 ①直角坐标的原点为极点;②x 轴的正半轴为极轴;③单位长度相同. 梳理 互化的条件及互化公式(1)互化的前提条件:①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系取相同的长度单位. (2)互化公式①极坐标化直角坐标:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ.②直角坐标化极坐标:⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).类型一 点的极坐标化直角坐标 例1 把下列点的极坐标化为直角坐标. (1)A ⎝ ⎛⎭⎪⎫2,7π6;(2)B ⎝ ⎛⎭⎪⎫3,-π4;(3)M ⎝⎛⎭⎪⎫6,5π6.解 由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得(1)x =2cos 7π6=-3,y =2sin 7π6=-1,∴点A 的直角坐标为(-3,-1).(2)x =3cos ⎝ ⎛⎭⎪⎫-π4=322,y =3sin ⎝ ⎛⎭⎪⎫-π4=-322,∴点B 的直角坐标为⎝⎛⎭⎪⎫322,-322.(3)x =6cos 5π6=-33,y =6sin 5π6=3,∴点M 的直角坐标为(-33,3).反思与感悟 由极坐标化直角坐标是惟一的.由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ惟一确定.跟踪训练1 已知点的极坐标分别为A ⎝ ⎛⎭⎪⎫2,2π3,B ⎝ ⎛⎭⎪⎫32,π,C ⎝ ⎛⎭⎪⎫-4,π2,求它们的直角坐标.解 根据x =ρcos θ,y =ρsin θ, 得A (-1,3),B ⎝ ⎛⎭⎪⎫-32,0,C (0,-4). 类型二 点的直角坐标化极坐标例2 分别把下列点的直角坐标化为极坐标(限定ρ≥0,0≤θ<2π). (1)(-2,23);(2)(6,-2);(3)⎝⎛⎭⎪⎫3π2,3π2.解 (1)∵ρ=x 2+y 2=(-2)2+(23)2=4, tan θ=y x=-3,θ∈[0,2π). 由于点(-2,23)在第二象限,∴θ=2π3.∴点的直角坐标(-2,23)化为极坐标为⎝⎛⎭⎪⎫4,2π3.(2)∵ρ=x 2+y 2=(6)2+(-2)2=22,tan θ=y x =-33,θ∈[0,2π),由于点(6,-2)在第四象限, ∴θ=11π6.∴点的直角坐标(6,-2)化为极坐标为⎝ ⎛⎭⎪⎫22,11π6.(3)∵ρ=x 2+y 2=⎝ ⎛⎭⎪⎫3π22+⎝ ⎛⎭⎪⎫3π22=32π2,tan θ=y x =1,θ∈[0,2π). 由于点⎝⎛⎭⎪⎫3π2,3π2在第一象限,所以θ=π4. ∴点的直角坐标⎝ ⎛⎭⎪⎫3π2,3π2化为极坐标为⎝ ⎛⎭⎪⎫32π2,π4.引申探究1.若规定θ∈R ,上述点的极坐标还惟一吗?解 (1)⎝ ⎛⎭⎪⎫4,2π3+2k π(k ∈Z ).(2)⎝ ⎛⎭⎪⎫22,11π6+2k π(k ∈Z ). (3)⎝⎛⎭⎪⎫32π2,π4+2k π(k ∈Z ). 极坐标不惟一.2.若点的直角坐标为(1)(0,23),(2)(0,-2),(3)⎝⎛⎭⎪⎫3π2,0化为极坐标(ρ≥0,0≤θ<2π).解 结合坐标系及直角坐标的特点知, (1)⎝ ⎛⎭⎪⎫23,π2.(2)⎝ ⎛⎭⎪⎫2,3π2.(3)⎝ ⎛⎭⎪⎫3π2,0.反思与感悟 (1)将直角坐标(x ,y )化为极坐标(ρ,θ),主要利用公式ρ2=x 2+y 2,tan θ=y x (x ≠0)进行求解,先求极径,再求极角.(2)在[0,2π)范围内,由tan θ=y x(x ≠0)求θ时,要根据直角坐标的符号特征判断出点所在的象限.如果允许θ∈R ,再根据终边相同的角的意义,表示为θ+2k π(k ∈Z )即可.跟踪训练2 在直角坐标系中,求与点M ⎝ ⎛⎭⎪⎫52,-532的距离为1且与原点距离最近的点N 的极坐标.解 把点M 的直角坐标⎝ ⎛⎭⎪⎫52,-532化为极坐标,得ρ=⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫-5322=5,tan θ=-53252=- 3. 因为点M 在第四象限,所以θ=5π3+2k π,k ∈Z ,则点M 的极坐标为⎝ ⎛⎭⎪⎫5,5π3+2k π,k ∈Z .依题意知,M ,N ,O 三点共线,则点N 的极坐标为⎝ ⎛⎭⎪⎫4,5π3+2k π,k ∈Z .类型三 极坐标与直角坐标互化的应用例3 已知A ,B 两点的极坐标为⎝ ⎛⎭⎪⎫6,π3和⎝ ⎛⎭⎪⎫8,4π3,求线段AB 中点的直角坐标.解 因为A 点的极坐标为⎝⎛⎭⎪⎫6,π3,所以x A =6×cos π3=3,y A =6×sin π3=33,所以A (3,33),同理可得B (-4,-43).设线段AB 的中点为M (m ,n ),由线段中点的坐标公式可得⎩⎪⎨⎪⎧m =-4+32=-12,n =-43+332=-32,所以线段AB 中点的直角坐标为⎝ ⎛⎭⎪⎫-12,-32.引申探究1.若本例条件不变,求线段AB 中点的极坐标. 解 由例3知,AB 中点的直角坐标为⎝ ⎛⎭⎪⎫-12,-32,∴ρ2=x 2+y 2=1,∴ρ=1.又tan θ=y x =3,∴θ=4π3,∴极坐标为⎝⎛⎭⎪⎫1,4π3. 2.若本例条件不变,求AB 的直线方程.解 因为A 点的极坐标为⎝⎛⎭⎪⎫6,π3,所以x A =6×cos π3=3,y A =6×sin π3=33,所以A (3,33).又因为直线AB 的倾斜角为π3,故斜率k =3,故直线AB 的方程为y -33=3(x -3),即3x -y =0. 反思与感悟 应用点的极坐标与直角坐标互化的策略在解决极坐标平面内较为复杂的图形问题时,若不方便利用极坐标直接解决,可先将极坐标化为直角坐标,利用直角坐标系中的公式、性质解决,再转化为极坐标系中的问题即可.跟踪训练3 在极坐标系中,如果A ⎝⎛⎭⎪⎫2,π4,B ⎝ ⎛⎭⎪⎫2,5π4为等边三角形ABC 的两个顶点,求顶点C 的极坐标(ρ>0,0≤θ<2π). 解 对于点A ⎝ ⎛⎭⎪⎫2,π4有ρ=2,θ=π4,∴x =2cos π4=2,y =2sin π4=2,则A (2,2).对于B ⎝⎛⎭⎪⎫2,5π4有ρ=2,θ=5π4,∴x =2cos 5π4=-2,y =2sin 5π4=-2.∴B (-2,-2).设点C 的坐标为(x ,y ),由于△ABC 为等边三角形, 故|AB |=|BC |=|AC |=4.∴⎩⎨⎧(x -2)2+(y -2)2=16,(x +2)2+(y +2)2=16.解得⎩⎨⎧x =6,y =-6或⎩⎨⎧x =-6,y = 6.∴点C 的坐标为(6,-6)或(-6,6).∴ρ=6+6=23,tan θ=-66=-1或tan θ=6-6=-1,∴θ=7π4或θ=3π4.故点C 的极坐标为⎝⎛⎭⎪⎫23,7π4或⎝ ⎛⎭⎪⎫23,3π4.1.将点M 的极坐标⎝ ⎛⎭⎪⎫10,π3化成直角坐标是( ) A .(5,53)B .(53,5)C .(5,5)D .(-5,-5)答案 A2.点P 的直角坐标为(-2,2),那么它的极坐标可表示为( )A.⎝⎛⎭⎪⎫2,π4 B.⎝ ⎛⎭⎪⎫2,3π4 C.⎝ ⎛⎭⎪⎫2,5π4D.⎝⎛⎭⎪⎫2,7π4答案 B解析 设点P 的极坐标为(ρ,θ), ∵ρ2=x 2+y 2=4,∴ρ=2,又tan θ=y x =-1,且点P 在第二象限,∴θ=3π4.3.若M 点的极坐标为⎝⎛⎭⎪⎫2,5π6,则M 点的直角坐标是( )A .(-3,1)B .(-3,-1)C .(3,-1)D .(3,1) 答案 A解析 由公式可知⎩⎪⎨⎪⎧x =ρcos θ=2cos 5π6=-3,y =ρsin θ=2sin 5π6=1,∴M 点的直角坐标为(-3,1).4.在平面直角坐标系xOy 中,点P 的直角坐标为(1,-3).若以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,则点P 的极坐标可以是( ) A.⎝ ⎛⎭⎪⎫1,-π3B.⎝⎛⎭⎪⎫2,4π3C.⎝ ⎛⎭⎪⎫2,-π3D.⎝⎛⎭⎪⎫2,-4π3 答案 C解析 以原点为极点,x 轴的正半轴为极轴建立极坐标系,则由极坐标与直角坐标的互化公式,得ρ=x 2+y 2=12+(-3)2=2,tan θ=y x =-31=- 3.∵点P 在第四象限,结合选项知,θ可以是-π3,∴点P 的极坐标可以是⎝⎛⎭⎪⎫2,-π3. 5.已知点M 的直角坐标为(-3,-33),若ρ>0,0≤θ<2π,则点M 的极坐标是________.答案 ⎝⎛⎭⎪⎫6,4π3解析 ρ=(-3)2+(-33)2=6, 由6cos θ=-3,得cos θ=-12,又0≤θ<2π,且M (-3,-33)在第三象限, ∴θ=4π3,故点M 的极坐标为⎝⎛⎭⎪⎫6,4π3.极坐标与直角坐标的互化任意角的三角函数的定义及其基本关系式是联系点的极坐标与直角坐标的互化公式的纽带,事实上,若ρ>0,sin θ=y ρ,cos θ=x ρ,所以x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x(x ≠0).一、选择题1.已知点M 的极坐标为⎝ ⎛⎭⎪⎫-5,π3,下列所给出的四个坐标中不能表示点M 的坐标的是( ) A.⎝ ⎛⎭⎪⎫5,π3 B.⎝ ⎛⎭⎪⎫5,4π3 C.⎝ ⎛⎭⎪⎫5,-2π3 D.⎝ ⎛⎭⎪⎫-5,-5π3答案 A2.直角坐标为(-2,2)的点M 的极坐标可以为( ) A.⎝⎛⎭⎪⎫22,π4 B.⎝⎛⎭⎪⎫-22,π4C.⎝ ⎛⎭⎪⎫22,3π4D.⎝⎛⎭⎪⎫22,-π4 答案 C解析 易知ρ=(-2)2+22=22,tan θ=2-2=-1,因为点M 在第二象限,所以可取θ=3π4,则点M 的极坐标可以为⎝⎛⎭⎪⎫22,3π4.3.若点M 的极坐标为(5,θ),且tan θ=-43,π2<θ<π,则点M 的直角坐标为( )A .(3,4)B .(4,3)C .(-4,3)D .(-3,4) 答案 D4.点M 的直角坐标是(3,3),则点M 的极坐标可能为( ) A.⎝⎛⎭⎪⎫23,5π6 B.⎝⎛⎭⎪⎫23,π6C.⎝ ⎛⎭⎪⎫23,-π6D.⎝⎛⎭⎪⎫23,-5π6 答案 B解析 ρ=x 2+y 2=23,tan θ=yx =33, 又θ的终边过点(3,3),所以θ=π6+2k π,k ∈Z ,所以M 的极坐标可能为⎝⎛⎭⎪⎫23,π6. 5.在极坐标系中,已知△OAB 的顶点A 的极坐标为(2,π),AB 边的中点D 的极坐标为⎝⎛⎭⎪⎫4,5π4.若以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,则顶点B 的直角坐标为( ) A .(32,42) B .(-32,42) C .(-32,-42) D .(32,-42)答案 C解析 设顶点B 的直角坐标为(x 0,y 0).把A ,D 两点的极坐标化为直角坐标,得A (-2,0),D (-22,-22),则由中点坐标公式得-2+x 02=-22,0+y 02=-22,解得x 0=-32,y 0=-42,故顶点B 的直角坐标为(-32,-42). 二、填空题6.把点M 的极坐标⎝ ⎛⎭⎪⎫-10,π6化为直角坐标为________.答案 (-53,-5)7.已知两点的极坐标A ⎝⎛⎭⎪⎫3,π2,B ⎝ ⎛⎭⎪⎫3,π6,则直线AB 的倾斜角为________. 答案5π6解析 点A ,B 的直角坐标分别为(0,3),⎝⎛⎭⎪⎫332,32,故k AB =32-3332-0=-33,故直线AB 的倾斜角为5π6.8.将向量OM →=(-1,3)绕原点逆时针旋转120°得到向量的直角坐标为________. 答案 (-1,-3)解析 由于M (-1,3)的极坐标为⎝ ⎛⎭⎪⎫2,2π3,绕极点(即原点)逆时针旋转120°得到的点的极坐标为⎝⎛⎭⎪⎫2,4π3,化为直角坐标为(-1,-3).9.在极坐标系中,O 是极点,点A ⎝ ⎛⎭⎪⎫4,π6,B ⎝ ⎛⎭⎪⎫3,2π3,则点O 到AB 所在直线的距离是________.答案125解析 点A ,B 的直角坐标分别为(23,2),⎝ ⎛⎭⎪⎫-32,332,则直线AB 的方程为y -2332-2=x -23-32-23,即(4-33)x -(43+3)y +24=0,则点O 到直线AB 的距离为24(4-33)2+[-(43+3)]2=125.10.在极轴上与点A ⎝ ⎛⎭⎪⎫42,π4的距离为5的点M 的坐标为________. 答案 (1,0)或(7,0)解析 设M (r,0),因为A ⎝ ⎛⎭⎪⎫42,π4,所以(42)2+r 2-82r ·cos π4=5,即r 2-8r +7=0,解得r =1或r =7.所以M 点的坐标为(1,0)或(7,0). 三、解答题11.若以极点为原点,极轴为x 轴正半轴建立直角坐标系.(1)已知点A 的极坐标为⎝⎛⎭⎪⎫4,5π3,求它的直角坐标;(2)已知点B 和点C 的直角坐标为(2,-2)和(0,-15),求它们的极坐标.(ρ>0,0≤θ<2π)解 (1)∵x =ρcos θ=4cos 5π3=2,y =ρsin θ=4sin5π3=-23, ∴A 点的直角坐标为(2,-23). (2)∵ρ=x 2+y 2=22+(-2)2=22, tan θ=-22=-1,且点B 位于第四象限内,∴θ=7π4,∴点B 的极坐标为⎝ ⎛⎭⎪⎫22,7π4. 又∵x =0,y <0,∴ρ=15,θ=3π2.∴点C 的极坐标为⎝⎛⎭⎪⎫15,3π2. 12.在极坐标系中,已知点A ⎝ ⎛⎭⎪⎫3,π3,B ⎝ ⎛⎭⎪⎫43,7π6.(1)求|AB |的值;(2)求△AOB 的面积(O 为极点). 解 如图所示,(1)∠AOB =7π6-π3=5π6,所以|AB |2=32+(43)2-2×3×43cos 5π6=93,所以|AB |=93.(2)S △AOB =12OA ·OB sin∠AOB =12×3×43×12=3 3.13.在极坐标系中,已知三点M ⎝ ⎛⎭⎪⎫2,-π3,N (2,0),P ⎝ ⎛⎭⎪⎫23,π6.判断M ,N ,P 三点是否共线?说明理由.解 将极坐标M ⎝ ⎛⎭⎪⎫2,-π3,N (2,0),P ⎝⎛⎭⎪⎫23,π6分别化为直角坐标,得M (1,-3),N (2,0),P (3,3).方法一 因为k MN =k PN =3,所以M ,N ,P 三点共线. 方法二 因为MN →=NP →=(1,3),所以MN →∥NP →, 所以M ,N ,P 三点共线.四、探究与拓展14.已知点P 在第三象限的角平分线上,且到横轴的距离为2,则当ρ>0,θ∈[0,2π)时,点P 的极坐标为________.答案 ⎝ ⎛⎭⎪⎫22,54π 解析 ∵点P (x ,y )在第三象限的角平分线上,且到横轴的距离为2,∴x =-2,y =-2,∴ρ=x 2+y 2=2 2. 又tan θ=y x =1,且θ∈[0,2π),∴θ=54π. 因此,点P 的极坐标为⎝⎛⎭⎪⎫22,54π. 15.已知点M 的极坐标为⎝ ⎛⎭⎪⎫4,π6,极点O ′在直角坐标系xOy 中的直角坐标为(2,3),极轴平行于x 轴,极轴的方向与x 轴的正方向相同,两坐标系的长度单位相同,求点M 的直角坐标.解 如图所示.设M 在直角坐标系x ′O ′y ′中的坐标为(x ′,y ′),则x ′=ρcos θ=4cos π6=23,y ′=ρsin θ=4sin π6=2, 又M 在原坐标系中的坐标为(x ,y ),则x =x ′+2=23+2,y =y ′+3=5,∴点M 的直角坐标是(23+2,5).。
极坐标与直角坐标的互化教案
极坐标与直角坐标的互化教案引言坐标系是解析几何与数学中的基础概念之一。
而在坐标系中,极坐标和直角坐标是两种常用的表示方法。
本教案旨在介绍极坐标和直角坐标之间的相互转化方法,以便学生能够熟练地在两种坐标系中进行转换。
一、极坐标的定义和表示方式极坐标是一种以极径和极角表示点的坐标系。
在极坐标系中,点的位置由它与原点的距离(极径)和与正半轴的夹角(极角)来确定。
一般情况下,极径用正值来表示,极角用弧度制或角度制来表示。
极坐标的表示方式为(r, θ),其中r表示极径,θ表示极角。
极角一般用弧度来表示,但在特定场合下也可以使用角度制表示。
二、直角坐标的定义和表示方式直角坐标是一种以直角坐标轴上的水平距离和垂直距离表示点的坐标系。
在直角坐标系中,点的位置由它在水平轴上的距离(x坐标)和在垂直轴上的距离(y坐标)来确定。
直角坐标的表示方式为(x, y),其中x表示水平距离,y表示垂直距离。
三、极坐标转直角坐标将极坐标(r, θ)转换为直角坐标(x, y)可通过以下公式进行计算:•x = r * cos(θ)•y = r * sin(θ)其中,cos(θ)表示极角θ的余弦值,sin(θ)表示极角θ的正弦值。
在转换过程中,首先根据给定的极径r和极角θ计算出对应的余弦值和正弦值,然后再将其分别乘以极径r,得到直角坐标(x, y)的数值。
四、直角坐标转极坐标将直角坐标(x, y)转换为极坐标(r, θ)可通过以下公式进行计算:•r = sqrt(x^2 + y^2)•θ = arctan(y / x)其中,sqrt()表示平方根运算,arctan()表示反正切运算。
在转换过程中,首先根据给定的直角坐标(x, y)计算出对应点到原点的距离,即极径r,然后根据正切函数计算出该点的极角θ。
需要注意的是,在计算arctan(y / x)时,应考虑点所在象限,以保证得到正确的极角。
五、练习题1.将极坐标(5, π/4)转换为直角坐标。
高中数学第一章坐标系1.2.1极坐标系的的概念教案新人教A版选修4_
极坐标系的的概念教学目的:知识目标:理解极坐标的概念能力目标:能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别.德育目标:通过观察、探索、发现的创造性过程,培养创新意识。
教学重点:理解极坐标的意义教学难点:能够在极坐标系中用极坐标确定点位置授课类型:新授课教学模式:启发、诱导发现教学.教具:多媒体、实物投影仪教学过程:一、复习引入:情境1:军舰巡逻在海面上,发现前方有一群水雷,如何确定它们的位置以便将它们引爆?情境2:如图为某校园的平面示意图,假设某同学在教学楼处。
(1)他向东偏60°方向走120M后到达什么位置?该位置惟一确定吗?(2)如果有人打听体育馆和办公楼的位置,他应如何描述?问题1:为了简便地表示上述问题中点的位置,应创建怎样的坐标系呢?问题2:如何刻画这些点的位置?这一思考,能让学生结合自己熟悉的背景,体会在某些情况下用距离与角度来刻画点的位置的方便性,为引入极坐标提供思维基础.二、讲解新课:从情镜2中探索出:在生活中人们经常用方向和距离来表示一点的位置。
这种用方向和距离表示平面上一点的位置的思想,就是极坐标的基本思想。
1、极坐标系的建立:在平面上取一个定点O,自点O引一条射线OX,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。
(其中O 称为极点,射线OX 称为极轴。
)2、极坐标系内一点的极坐标的规定对于平面上任意一点M ,用 ρ 表示线段OM 的长度,用 θ 表示从OX 到OM 的角度,ρ 叫做点M 的极径, θ叫做点M 的极角,有序数对(ρ,θ)就叫做M 的极坐标。
特别强调:由极径的意义可知ρ≥0;当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)建立一一对应的关系 .们约定,极点的极坐标是极径ρ=0,极角是任意角.3、负极径的规定在极坐标系中,极径ρ允许取负值,极角θ也可以去任意的正角或负角当ρ<0时,点M (ρ,θ)位于极角终边的反向延长线上,且OM=ρ。
高中数学 第1章 坐标系 1.2 极坐标系 1.2.2 点的极坐标与直角坐标的互化学案 北师大版-4
1。
2。
2点的极坐标与直角坐标的互化1。
了解极坐标系与直角坐标系的联系.2.理解在极坐标系和平面直角坐标系中表示点的位置的区别.(易错易混点)3.能进行极坐标和直角坐标的互化。
(重点)教材整理极坐标与直角坐标的互化1.互化的前提条件把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图1。
2.3所示.图1。
232。
互化公式设M是坐标平面内任意一点,它的直角坐标是(x,y),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:点M 直角坐标(x,y)极坐标(ρ,θ)互化公式错误!ρ2=x2+y2tan θ=错误!(x≠0)在一般情况下,由tan θ确定角时,可根据点M所在的象限取最小正角。
把极坐标写成直角坐标,把直角坐标写成极坐标。
(1)错误!________;(2)错误!________;(3)(0,2) ________;(4)错误!________。
【解析】(1)x=2cos 错误!=错误!,y=2sin 错误!=1,∴直角坐标为(错误!,1)。
(2)ρ=错误!=2,tan θ=错误!,∴θ=错误!,∴极坐标为错误!. (3)(0,2)在y 轴上,∴ρ=2,θ=π2,∴极坐标为错误!。
(4)x =4cos 错误!=2,y =4sin 错误!=-2错误!。
∴直角坐标为(2,-23).【答案】 (1)(错误!,1) (2)错误! (3)错误!(4)(2,-2错误!)预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:化极坐标为直角坐标分别把下列点的极坐标化为直角坐标. (1)错误!;(2)错误!;(3)错误!。
【精彩点拨】 错误!―→x =ρcos θ,y =ρsin θ―→错误!【自主解答】 (1)∵x =ρcos θ=3cos π2=0,y =ρsin θ=3sin π2=3.∴点的极坐标错误!化为直角坐标为(0,3). (2)∵x =ρcos θ=4cos 错误!=-2,y =ρsin θ=4sin2π3=2错误!。
高中数学极坐标与直角坐标的互化公开课精品教案教学设计
《极坐标与直角坐标的互化》教学设计一、教材分析《极坐标与直角坐标的互化》是高中新教材人教版选修4-4第一讲第二节的内容,是在学生已经学习过平面极坐标系的前提下,通过生活实例、学生之间相互讨论进行探究,在老师的引导下自主完成极坐标与直角坐标的互化的公式,并进行极坐标与直角坐标的互化.为后面学习简单曲线的极坐标方程及参数方程奠定基础.二、学情分析通过前面对极坐标的学习,学生已经对极坐标系以及点的极坐标表示有了了解.用坐标表示方位的思想已经普遍存在于日常生活中,所以学生对于极坐标与直角坐标的互化学习应该很容易接受.三、教学目标分析1.知识与技能:能够写出极坐标平面内点的极坐标的表示;学生自己探究出平面内一点极坐标与平面直角坐标的互化公式,能够利用互划公式解决相关习题.2.过程与方法:通过自主探究体会数形结合、类比的数学思想方法;通过探究活动培养学生合作、观察、分析、比较和归纳能力.3.情感态度与价值观:通过数学家的浪漫故事引入,提升学生的学习兴趣,通过生活中的具体事例引入极坐标与平面直角坐标的互化,使学生认识极坐标与平面直角坐标的互化来描述实际问题的方便性及实用性,体验数学的实际应用价值.通过对问题的探究使学生享受到成功的喜悦.四、教学重难点:重点:掌握极坐标和直角坐标的互化关系式.难点:实现极坐标和直角坐标之间的互化.五、教学方法:情境引入法,体会数学之美实际问题设问,贴近生活小组合作研究法,解决相关问题谈话式教学法,老师提问学生回答六、教学基本流程七、教学过程1、复习引入:情境1:百岁山矿泉水广告情境2: 17 世纪著名的法国哲数学家笛卡尔,美丽的瑞典公主拉夏贝尔的爱情故事引出心形曲线)sin 1(θρ-=a .师生活动:讲述百岁山矿泉水广告里含有的故事,从而引出心型曲线,如果有学生知道就让学生来讲.设计意图:情境引入,引起学生的兴趣,渗透数学史.情境3:每一年的四月都会在安宁区仁寿山举行“桃花节”,会吸引来自于各地的游客前去观赏,某天,一旅客到达仁寿山顶入口处想去八卦台和寿台游览,但不认识路,刚巧遇到了两个当地人,分别询问了八卦台和寿仙台的位置. 甲回答:从入口处向东走3200米,再向北走200米就到八卦台了.乙回答:从入口处向东偏北︒60方向走400米就到寿仙台了.请问(1)甲、乙两人分别用到了什么数学思想回答旅客的问路?(2)我们如何能知道这名从入口出发游览两处景点后再回到入口共走了多少路程呢? 师生互动:分别请两名同学在黑板上画出直角坐标系下和极坐标系下甲乙两人为游客所指的路,从而引出课题极坐标系和直角坐标系下的坐标互划问题.设计意图:通过现实生活中的实际问题引入问题,引发学生思并引入课题.2、新课探究:探究问题1:(1)极坐标与直角坐标互化时需要满足什么条件?(2)可以有几种方案解决上述问题?请你给出具体的解题过程.(3)请你总结出第一象限点的直角坐标和极坐标的互划公式.结论:直角坐标系的原点0为极点,x 轴的正半轴为极轴,且在两坐标系中取相同的长度单位.平面内任意一点P 的直角坐标与极坐标分别为),(y x 和),(θρ,则由三角函数的定义可以得到如下两组公式:{θρθρsin cos ==y x { x y y x =+=θρtan 222说明(1)上述公式即为极坐标与直角坐标的互化公式(2)通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ≤π2.(3)互化公式的三个前提条件(1)极点与直角坐标系的原点重合;(2)极轴与直角坐标系的x 轴的正半轴重合;(3)两种坐标系的单位长度相同.设计意图:通过引例中的问题的探究让同学们感受到直角坐标和极坐标的不同,具体解决问题中需要统一形式,从而引发学生研究解决问题的兴趣,小组合作学习提高学习效率,能很好的提升学习效果,解决问题的过程中培养和提高学生的发现能力和总结归纳能力.探究问题2:上面推导出来的公式是否适合平面内任意一个位置的点呢?师生互动:教师提问,学生小组讨论回答.。
高中数学北师大版选修4-4教师用书第1章 2 2.2 点的极坐标与直角坐标的互化 Word版含答案
点的极坐标与直角坐标的互化
.了解极坐标系与直角坐标系的联系.
.理解在极坐标系和平面直角坐标系中表示点的位置的区别.(易错易混点)
.能进行极坐标和直角坐标的互化.(重点)
教材整理极坐标与直角坐标的互化
.互化的前提条件
极点
把直角坐标系的原点作为
长度
,轴的正半轴作为
极轴
,并在两种坐标系中取相同的
单位
,如图
.
所示
图
.互化公式
设是坐标平面内任意一点,它的直角坐标是(,),极坐标是(ρ,θ)(ρ≥),于是极坐
标与直角坐标的互化公式如下表:
把极坐标写成直角坐标,把直角坐标写成极坐标.
();() ;
()() ;() .
【解析】()==,==,∴直角坐标为(,).
()ρ==,θ=,∴θ=,∴极坐标为.
()()在轴上,∴ρ=,θ=,∴极坐标为.
()==,==-.
∴直角坐标为(,-).
【答案】()(,) () ()()(,-)
预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:
疑问:
解惑:
疑问:
解惑:
疑问:
解惑:
();();().
【精彩点拨】―→
θ,=ρθ)―→
【自主解答】()∵=ρθ==,
=ρθ==.
∴点的极坐标化为直角坐标为().
()∵=ρθ==-,
=ρθ==.
∴点的极坐标化为直角坐标为(-).
()∵===,
===,
∴=ρθ===+,。
高中数学《极坐标与直角坐标的互化》教案
《极坐标与直角坐标的互化》教学设计一、教材分析《极坐标与直角坐标的互化》是高中新教材人教版选修4-4第一讲第二节的内容,是在学生已经学习过平面极坐标系的前提下,通过生活实例、学生之间相互讨论进行探究,在老师的引导下自主完成极坐标与直角坐标的互化的公式,并进行极坐标与直角坐标的互化.为后面学习简单曲线的极坐标方程及参数方程奠定基础.二、学情分析通过前面对极坐标的学习,学生已经对极坐标系以及点的极坐标表示有了了解.用坐标表示方位的思想已经普遍存在于日常生活中,所以学生对于极坐标与直角坐标的互化学习应该很容易接受.三、教学目标分析1.知识与技能:能够写出极坐标平面内点的极坐标的表示;学生自己探究出平面内一点极坐标与平面直角坐标的互化公式,能够利用互划公式解决相关习题.2.过程与方法:通过自主探究体会数形结合、类比的数学思想方法;通过探究活动培养学生合作、观察、分析、比较和归纳能力.3.情感态度与价值观:通过数学家的浪漫故事引入,提升学生的学习兴趣,通过生活中的具体事例引入极坐标与平面直角坐标的互化,使学生认识极坐标与平面直角坐标的互化来描述实际问题的方便性及实用性,体验数学的实际应用价值.通过对问题的探究使学生享受到成功的喜悦.四、教学重难点:重点:掌握极坐标和直角坐标的互化关系式.难点:实现极坐标和直角坐标之间的互化.五、教学方法:情境引入法,体会数学之美实际问题设问,贴近生活小组合作研究法,解决相关问题谈话式教学法,老师提问学生回答六、教学基本流程七、教学过程1、复习引入:情境1:百岁山矿泉水广告情境2: 17 世纪著名的法国哲数学家笛卡尔,美丽的瑞典公主拉夏贝尔的爱情故事引出心形曲线)sin 1(θρ-=a .师生活动:讲述百岁山矿泉水广告里含有的故事,从而引出心型曲线,如果有学生知道就让学生来讲.设计意图:情境引入,引起学生的兴趣,渗透数学史.情境3:每一年的四月都会在安宁区仁寿山举行“桃花节”,会吸引来自于各地的游客前去观赏,某天,一旅客到达仁寿山顶入口处想去八卦台和寿台游览,但不认识路,刚巧遇到了两个当地人,分别询问了八卦台和寿仙台的位置. 甲回答:从入口处向东走3200米,再向北走200米就到八卦台了.乙回答:从入口处向东偏北︒60方向走400米就到寿仙台了.请问(1)甲、乙两人分别用到了什么数学思想回答旅客的问路?(2)我们如何能知道这名从入口出发游览两处景点后再回到入口共走了多少路程呢?师生互动:分别请两名同学在黑板上画出直角坐标系下和极坐标系下甲乙两人为游客所指的路,从而引出课题极坐标系和直角坐标系下的坐标互划问题.设计意图:通过现实生活中的实际问题引入问题,引发学生思并引入课题.2、新课探究:探究问题1:(1)极坐标与直角坐标互化时需要满足什么条件?(2)可以有几种方案解决上述问题?请你给出具体的解题过程.(3)请你总结出第一象限点的直角坐标和极坐标的互划公式.结论:直角坐标系的原点0为极点,x 轴的正半轴为极轴,且在两坐标系中取相同的长度单位.平面内任意一点P 的直角坐标与极坐标分别为),(y x 和),(θρ,则由三角函数的定义可以得到如下两组公式: {θρθρsin cos ==y x { x y y x =+=θρtan 222说明(1)上述公式即为极坐标与直角坐标的互化公式(2)通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ≤π2.(3)互化公式的三个前提条件(1)极点与直角坐标系的原点重合;(2)极轴与直角坐标系的x 轴的正半轴重合;(3)两种坐标系的单位长度相同.设计意图:通过引例中的问题的探究让同学们感受到直角坐标和极坐标的不同,具体解决问题中需要统一形式,从而引发学生研究解决问题的兴趣,小组合作学习提高学习效率,能很好的提升学习效果,解决问题的过程中培养和提高学生的发现能力和总结归纳能力.探究问题2:上面推导出来的公式是否适合平面内任意一个位置的点呢?师生互动:教师提问,学生小组讨论回答.设计意图:利用类比的思想将公式推广平面内任意的点.在活动中培养学生小组互动探究学习的合作精神.3.举例应用:例1、【课本P10页例2题】把M 的极坐标)32,5(π化成直角坐标.例2、【课本P11页例3】已知M 的直角坐标)1,3(--化成极坐标.师生互动:学生板演,教师针对问题讲评.设计意图:本环节设计帮助学生更好的理解点的极坐标和直角坐标互划公式,在具体的操作中体会数形结合的思想、在板演中规范学生的答题格式.4.课堂练习:课本练习4、5师生互动:学生完成课本练习并回答,教师做出相应的点评.设计意图:学生练习,熟悉并记忆公式.5.拓展提高:在极坐标系中,已知三点)6,32(),0,2(),3,2(ππP N M -.判断P N M ,,三点是否在一条直线上. 师生互动:学生完成并回答,教师做出相应的点评.设计意图:学生练习,树立一题多解的解题模式.6.当堂小结:(1)极坐标与直角坐标互换的前提条件;(2)互换的公式;(3)互换的基本方法.7.课后作业:(1)课本P 12页习题1.2 第4、5题(2)ρ=2表示什么图形?(3)课后思考题:我们之前已经学习了圆的直角坐标方程,圆有极坐标方程么?是什么样的呢?7.板书设计:《极坐标与直角坐标互划》点评一、本节课能够体现先进的教育教学思想、教育观念。
高中数学第一章坐标系1.2.2点的极坐标与直角坐标的互化备课资料北师大版选修44
高中数学第一章坐标系1.2.2点的极坐标与直角坐标的互化备课资料北师大版选修44教学建议1.将极坐标系与直角坐标系建在一起,通过例题分析,让学生弄清两者之间的转化关系.2.借助于例题讲解和易错辨析,使学生明确点的极坐标的不唯一性.3.引入极坐标系的原因.我们描述一个人所走的方向和路程,经常这样说:从A点出发向北偏东60°方向走了一段距离到B点,再从B点向南偏西15°方向行走;我们描述某飞机的位置:飞行高度1200米,从飞机上看地平面控制点B的俯角α=16°31'.这种位置的刻画能够给我们一个很直观的形象.因此,使用极坐标是我们生产生活的需要.4.极坐标与直角坐标的相同点和不同点极坐标系是用距离和角度来表示平面上的点的位置的坐标系,它由极点O与极轴Ox组成.对于平面内任一点P,若|OP|=ρ(ρ≥0),以Ox为始边,OP为终边的角为θ,则点P可用有序实数对(ρ,θ)表示.直角坐标系是在数轴的基础上发展起来的,首先定义原点,接着用两条互相垂直的直线分别构成x轴和y轴.点的位置用有序实数对(x,y)来表示.在平面直角坐标系内,点与有序实数对即坐标(x,y)是一一对应的,但在极坐标系内,虽然一个有序实数对(ρ,θ)只能与一个点P对应,但一个点P却可以与无数多个有序实数对(ρ,θ)对应.也就是说平面上一点的极坐标是不唯一的.极坐标系中的点与有序实数对(ρ,θ)不是一一对应的.备选习题1.已知极点在点(2,-2)处,极轴方向与x轴正方向相同的极坐标系中,点M的极坐标为,求点M在直角坐标系中的坐标.解:设M(x,y),则x-2=ρcosθ=4cos=2,∴x=2+2,y-(-2)=ρsinθ=4sin=2.∴y=2-2=0.∴点M的直角坐标为(2+2,0).2.已知∠AOB=,点P在OA上,点Q在OB上,M是PQ的中点,且△POQ的面积为8,试问能否确定OM的最小值?若能,求出其最小值;若不能,请说明理由.解:以O为极点,OB为极轴建立极坐标系,如图并设P,Q(ρ2,0),则由题意,有ρ1ρ2sin=8,即ρ1ρ2=.又因为S△POM=ρρ1sin=4,S△QOM=ρρ2sinθ=4,所以两式相乘,得ρ2·ρ1ρ2sin sinθ=64.所以ρ2=,从而当且仅当cos=1,即θ=时,ρ2取到最小值8,故|OM|取到最小值2.。
高中数学 第一章 坐标系 1.2 极坐标系 1.2.1 极坐标系的概念 1.2.2 点的极坐标与直角
极坐标系的概念、点的极坐标与直角坐标的互化练习1点P 的直角坐标为(,那么它的极坐标可表示为( ).A .π2,4⎛⎫ ⎪⎝⎭B .3π2,4⎛⎫⎪⎝⎭ C .5π2,4⎛⎫ ⎪⎝⎭ D .7π2,4⎛⎫ ⎪⎝⎭2在极坐标系中,与点π8,6⎛⎫- ⎪⎝⎭关于极点对称的点的一个坐标是( ).A .π8,6⎛⎫ ⎪⎝⎭B .58,π6⎛⎫- ⎪⎝⎭C .58,π6⎛⎫- ⎪⎝⎭D .π8,6⎛⎫-- ⎪⎝⎭3在极坐标系中,若等边△ABC 的两个顶点是A π2,4⎛⎫ ⎪⎝⎭,B 5π2,4⎛⎫⎪⎝⎭,那么可能是顶点C的坐标的是( ).A .3π4,4⎛⎫ ⎪⎝⎭ B .3π4⎛⎫ ⎪⎝⎭C .π)D .(3,π)4在极坐标系中,极坐标5π4⎫⎪⎭化为直角坐标为( ).A .(1,1)B .(-1,1)C .(1,-1)D .(-1,-1) 5直线l 过点A π7,3⎛⎫ ⎪⎝⎭,B π7,6⎛⎫ ⎪⎝⎭,则直线l 与极轴所在直线的夹角等于________. 6点A π5,3⎛⎫⎪⎝⎭在条件: (1)ρ>0,θ∈(-2π,0)下的极坐标是__________; (2)ρ<0,θ∈(2π,4π)下的极坐标是__________. 7将下列极坐标化成直角坐标.(1)π4⎫⎪⎭; (2)π6,3⎛⎫- ⎪⎝⎭;(3)(5,π).8已知极点在点(2,-2)处,极轴方向与x 轴正方向相同的极坐标系中,点M 的极坐标为π4,6⎛⎫⎪⎝⎭,求点M 在直角坐标系中的坐标.参考答案1 答案:B ρ2,tan θ=-1, ∵点P 在第二象限,∴最小正角3π=4θ. 2 答案:A 点(ρ,θ)关于极点对称的点为(ρ,π+θ), 故π8,6⎛⎫- ⎪⎝⎭关于极点对称的点的一个坐标为78,π6⎛⎫- ⎪⎝⎭,即π8,6⎛⎫⎪⎝⎭.3答案:B 如图,由题设,可知A ,B 两点关于极点O 对称,即O 是AB 的中点.又|AB |=4,△ABC 为正三角形, ∴|OC |=AOC =π2,点C 的极角ππ3π==424θ+或5ππ7π=424+, 即点C的极坐标为⎛⎝或7π4⎛⎫ ⎪⎝⎭.4答案:D x =ρcos θ5π=142⎛⎫-- ⎪ ⎪⎝⎭, y =ρsin θ5π=142⎛⎫-- ⎪ ⎪⎝⎭, 故所求直角坐标为(-1,-1). 5答案:π4如图所示,先在图形中找到直线l 与极轴夹角(要注意夹角是个锐角),然后根据点A ,B 的位置分析夹角大小.因为|AO |=|BO |=7,∠AOB =πππ=366-, 所以ππ5π6==212OAB -∠. 所以π5ππ=π=3124ACO ∠--.6 答案:(1)55,π3⎛⎫-⎪⎝⎭ (2)105,π3⎛⎫- ⎪⎝⎭ (1)当ρ>0时,点A 的极坐标形式为π5,2π+3k ⎛⎫ ⎪⎝⎭(k ∈Z ),∵θ∈(-2π,0).令k =-1,点A 的极坐标为55,π3⎛⎫-⎪⎝⎭,符合题意. (2)当ρ<0时,π5,3⎛⎫ ⎪⎝⎭的极坐标的一般形式是π5,21π+3k ⎛⎫-(+) ⎪⎝⎭(k ∈Z ).∵θ∈(2π,4π),当k =1时,点A 的极坐标为105,π3⎛⎫- ⎪⎝⎭,符合题意.7 答案:解:(1)πcos =14x ,πsin =14y ,所以点π4⎫⎪⎭的直角坐标为(1,1).(2)x =6·πcos 3⎛⎫- ⎪⎝⎭=3,y =6·πsin =3⎛⎫-- ⎪⎝⎭.所以点π6,3⎛⎫- ⎪⎝⎭的直角坐标为(3,-.(3)x =5·cos π=-5,y =5·sin π=0, 所以点(5,π)的直角坐标为(-5,0).8 答案:解:设M (x ,y ),则x -2=ρcos θ=π4cos 6,∴x =2+y -(-2)=ρsin θ=π4sin 6=2. ∴y =2-2=0.∴点M 的直角坐标为(2+0).。
2021-2022年高中数学第一讲坐标系二极坐标系学案含解析新人教A版
2021-2022年高中数学第一讲坐标系二极坐标系学案含解析新人教A 版1.极坐标系的概念(1)极坐标系的建立:在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系内一点的极坐标的规定:设M 是平面内一点,极点O 与M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)就叫做点M 的极坐标,记为M (ρ,θ).2.极坐标和直角坐标的互化(1)互化的前提条件:①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系取相同的长度单位.(2)互化公式⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎨⎧ρ2=x 2+y 2,tan θ=yx x ≠0.求点的极坐标(1)点P 是点Q 关于极点O 的对称点; (2)点P 是点Q 关于直线θ=π2的对称点.确定一点的极坐标关键是确定它的极径和极角两个量,为此应明确它们的含义. (1)由于P ,Q 关于极点对称,得极径|OP |=|OQ |,极角相差(2k +1)π(k ∈Z).所以,点P 的极坐标为(ρ,(2k +1)π+θ)(k ∈Z)或(-ρ,2k π+θ)(k ∈Z).(2)由P ,Q 关于直线θ=π2对称,得它们的极径|OP |=|OQ |,点P 的极角θ′满足θ′=π-θ+2k π(k ∈Z), 所以点P 的坐标为(ρ,(2k +1)π-θ) 或(-ρ,2k π-θ)(k ∈Z).设点M 的极坐标是(ρ,θ),则M 点关于极点的对称点的极坐标是(-ρ,θ)或(ρ,θ+π);M 点关于极轴的对称点的极坐标是(ρ,-θ);M 点关于过极点且垂直于极轴的直线的对称点的极坐标是(ρ,π-θ)或(-ρ,-θ).另外要注意,平面上的点与这一点的极坐标不是一一对应的.1.设点A ⎝⎛⎭⎪⎫1,π3,直线l 为过极点且垂直于极轴的直线,分别求:(1)点A 关于极轴的对称点; (2)点A 关于直线l 的对称点;(3)点A 关于极点的对称点.(规定ρ>0,-π<θ≤π). 解:如图所示:(1)点A 关于极轴的对称点为B ⎝ ⎛⎭⎪⎫1,-π3.(2)点A 关于直线l 的对称点为C ⎝⎛⎭⎪⎫1,2π3. (3)点A 关于极点O 的对称点为D ⎝⎛⎭⎪⎫1,-2π3. 2.在极坐标系中,点A 的极坐标是⎝ ⎛⎭⎪⎫3,π6,求点A 关于直线θ=π2的对称点的极坐标(规定ρ>0,θ∈).解:作出图形,可知A ⎝ ⎛⎭⎪⎫3,π6关于直线θ=π2的对称点是⎝⎛⎭⎪⎫3,5π6.点的极坐标与直角坐标的互化(1)把点A 的极坐标⎝⎛⎭⎪⎫2,7π6化成直角坐标;(2)把点P 的直角坐标(1,-3)化成极坐标.(ρ>0,0≤θ<2π). 依据极坐标与直角坐标互化的公式解题. (1)x =2cos 7π6=-3,y =2sin 7π6=-1,故点A 的直角坐标为(-3,-1). (2)ρ=12+-32=2,tan θ=-31=- 3.又因为点P 在第四象限且0≤θ<2π,得θ=5π3.因此点P 的极坐标是⎝⎛⎭⎪⎫2,5π3.(1)极坐标和直角坐标互化的前提条件有三,即极点与原点重合,极轴与x 轴正半轴重合,有相同的长度单位,三者缺一不可.(2)熟记互化公式,必要时可画图来分析.3.点P 的直角坐标为(-2,2),那么它的极坐标可表示为( )A.⎝ ⎛⎭⎪⎫2,π4B.⎝ ⎛⎭⎪⎫2,3π4C.⎝ ⎛⎭⎪⎫2,5π4D.⎝⎛⎭⎪⎫2,7π4解析:选B 点P (-2,2)在第二象限,与原点的距离为2,且与极轴的夹角为3π4.4.若以极点为原点,极轴为x 轴正半轴建立直角坐标系.(1)已知点A 的极坐标⎝⎛⎭⎪⎫4,5π3,求它的直角坐标;(2)已知点B 和点C 的直角坐标为(2,-2)和(0,-15),求它们的极坐标.(ρ>0,0≤θ<2π)解:(1)∵x =ρcos θ=4cos 5π3=2.y =ρsin θ=4sin5π3=-2 3. ∴A 点的直角坐标为(2,-23). (2)∵ρ=x 2+y 2=22+-22=22,tan θ=-22=-1.且点B 位于第四象限内, ∴θ=7π4,∴点B 的极坐标为⎝ ⎛⎭⎪⎫22,7π4. 又∵x =0,y <0, ∴ρ=15,θ=3 π2.∴点C 的极坐标为⎝⎛⎭⎪⎫15,3π2. 课时跟踪检测(二)一、选择题1.在极坐标平面内,点M ⎝ ⎛⎭⎪⎫π3,200π,N ⎝ ⎛⎭⎪⎫-π3,201π),G ⎝ ⎛⎭⎪⎫-π3,-200π,H ⎝⎛⎭⎪⎫2π+π3,200π中互相重合的两个点是( ) A .M 和N B .M 和G C .M 和H D .N 和H解析:选A 由极坐标的定义知,M ,N 表示同一个点. 2.将点M 的极坐标⎝ ⎛⎭⎪⎫10,π3化成直角坐标是( ) A .(5,53) B .(53,5) C .(5,5) D .(-5,-5)解析:选A x =ρcos θ=10cos π3=5,y =ρsin θ=10sin π3=5 3.3.在极坐标系中,ρ1=ρ2且θ1=θ2是两点M (ρ1,θ1)和N (ρ2,θ2)重合的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:选A 前者显然能推出后者,但后者不一定推出前者,因为θ1与θ2可相差2π的整数倍.4.若ρ1+ρ2=0,θ1+θ2=π,则点M 1(ρ1,θ1)与点M 2(ρ2,θ2)的位置关系是( ) A .关于极轴所在直线对称 B .关于极点对称C .关于过极点垂直于极轴的直线对称D .两点重合解析:选A 因为点(ρ,θ)关于极轴所在直线对称的点为(-ρ,π-θ).由此可知点(ρ1,θ1)和(ρ2,θ2)满足ρ1+ρ2=0,θ1+θ2=π,关于极轴所在直线对称.二、填空题5.点⎝ ⎛⎭⎪⎫2,π6关于极点的对称点为________.解析:如图,易知对称点为⎝ ⎛⎭⎪⎫2,76π.答案:⎝ ⎛⎭⎪⎫2,76π 6.在极坐标系中,已知A ⎝⎛⎭⎪⎫1,3π4,B ⎝ ⎛⎭⎪⎫2,π4两点,则|AB |=________.解析:|AB |=12+22-2×1×2co s ⎝ ⎛⎭⎪⎫3π4-π4= 5.答案: 57.直线l 过点A ⎝ ⎛⎭⎪⎫3,π3,B ⎝⎛⎭⎪⎫3,π6,则直线l 与极轴的夹角等于________.解析:如图所示,先在图形中找到直线l 与极轴夹角(要注意夹角是个锐角),然后根据点A ,B 的位置分析夹角大小.因为|AO |=|BO |=3, ∠AOB =π3-π6=π6,所以∠OAB =π-π62=5π12,所以∠ACO =π-π3-5π12=π4.答案:π4三、解答题8.在极轴上求与点A ⎝ ⎛⎭⎪⎫42,π4的距离为5的点M 的坐标. 解:设M (r,0),因为A ⎝ ⎛⎭⎪⎫42,π4, 所以422+r 2-82r cos π4=5,即r 2-8r +7=0. 解得r =1或r =7.所以M 点的坐标为(1,0)或(7,0).9.将下列各点的直角坐标化为极坐标(ρ>0,0≤θ<2π). (1)(3,3);(2)(-1,-1);(3)(-3,0). 解:(1)ρ=32+32=2 3.tan θ=33= 3.又因为点在第一象限, 所以θ=π3.所以点(3,3)的极坐标为⎝ ⎛⎭⎪⎫23,π3. (2)ρ=-12+-12=2,tan θ=1.又因为点在第三象限, 所以θ=5π4.所以点(-1,-1)的极坐标为⎝⎛⎭⎪⎫2,5π4. (3)ρ=-32+02=3,画图可知极角为π,所以点(-3,0)的极坐标为(3,π).10.已知定点P ⎝⎛⎭⎪⎫4,π3.(1)将极点移至O ′⎝ ⎛⎭⎪⎫23,π6处极轴方向不变,求P 点的新坐标;(2)极点不变,将极轴顺时针转动π6角,求P 点的新坐标.解:(1)设点P 新坐标为(ρ,θ),如图所示,由题意可知|OO ′|=23,|OP |=4,∠POx =π3,∠O ′Ox =π6, ∴∠POO ′=π6.在△POO ′中,ρ2=42+(23)2-2·4·23·cos π6=16+12-24=4,∴ρ=2.又∵sin ∠OPO ′23=sin ∠POO ′2,∴sin ∠OPO ′=sinπ62·23=32,∴∠OPO ′=π3.∴∠OP ′P =π-π3-π3=π3,∴∠PP ′x =2π3.∴∠PO ′x ′=2π3.∴P 点的新坐标为⎝⎛⎭⎪⎫2,2π3.(2)如图,设P 点新坐标为(ρ,θ), 则ρ=4,θ=π3+π6=π2.∴P 点的新坐标为⎝⎛⎭⎪⎫4,π2.30393 76B9 皹KY27799 6C97 沗36282 8DBA 趺Y20570 505A 做 m4K=L23334 5B26 嬦,。
高中数学第一讲坐标系二极坐标系互动课堂学案
二极坐标系互动课堂重难突破一、极坐标的概念1.在生活中,如台风预报、地震预报、测量、航空、航海中等,我们经常用距离和方向来表示一点的位置.用距离和方向表示平面上一点的位置,就是极坐标.2.如图,极坐标系内一点的极坐标的规定:对于平面上任意一点M,用ρ表示线段OM的长度,用θ表示从Ox到OM的角度,ρ叫做M的极径,θ叫做点M的极角,有序数对(ρ,θ)就叫做M的极坐标.把定义弄清楚,我们就会用极坐标确定点的位置特别注意:(1)①极点,②极轴,③长度单位,④角度单位和它的正方向构成了极坐标系的四要素,缺一不可(2)特别地,当M在极点时,它的极坐标ρ=0,θ可以取任意值.极点O的坐标为(0,θ)(θ∈R(3)一般地,不作特殊说明时,ρ≥0,θ可取任意实数.3.建立极坐标系后,给定ρ(ρ≥0)和θ,就可以在平面内唯一确定点M.确定的方法是(1)由θ定射线.根据θ角确定点M所在的射线OM(2)由ρ取点.在射线OM上取|OM|=ρ,点M的位置即可确定.4.给定平面内任意一点M,也可以找到它的极坐标(ρ,θ)(ρ特别注意:(1)一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一个点.和直角坐标不同,平面内一个点的极坐标有无数种表示(2)如果规定ρ≥0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.5.为完整起见,现作一补充:若ρ<0,则-ρ>0,我们规定点M(ρ,θ)与点P(-ρ,θ)关于极点对称.点M(ρ,θ)(ρ<0)的位置的确定方法是:(1)由θ定射线.先找出θ角的终边所在的射线,确定其反向延长线OM(2)由ρ取点.在射线OM上取|OM|=-ρ,点M的位置即可确定,如图进一步可以得出,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)(-ρ,θ+π+2kπ)(k∈Z)表示同一点.应当指出,若ρ<0,应有说明;否则,可认为ρ≥0.二、极坐标和直角坐标的互化平面内的一个点既可以用直角坐标表示,也可以用极坐标表示.我们要理解极坐标的概念,会正确进行点的极坐标与直角坐标的互化,利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题.1.互化的前提条件:①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系中取相同的长度单位.2.极坐标与直角坐标的互化公式3.极坐标与直角坐标的互化,常用方法有代入法、平方法等,还经常用到同乘以(或除以)ρ等技巧.4.由直角坐标化成极坐标时,要注意点所在象限,从而确定极角θ 试一试:(1)已知点A 的极坐标(-4,3π5),求它的直角坐标; (2)已知点B 、C 、D 的直角坐标为(2,-2),(0,-15),(-12,5),求它的极坐标(ρ>0,0≤θ<2π). 解:(1)点A 的直角坐标为(-2,23(2)∵ρ=,22)2(22222=-+=y x +tan θ=22-=-1,且点位于第四象限,(注意!) ∴θ=47π,点B 的极坐标为(22,47π又∵x =0,y <0,ρ=15,∴点C 的极坐标为(15,43π对于D (-12,5),ρ=13,tan θ=-125.∵D 在第二象限内,∴θ=π-arctan 125∴D 点坐标为(13,π-arctan 125).活学巧用【例1】 已知两点的极坐标A (3,2π)、B (3,6π),则|AB |=________,AB 与极轴正方向所成的角为________.解析:如图,根据极坐标的定义可得|A O |=|B O |=3,∠A O B=60°,即△A O B 为正三角形答案:365π点评:在极坐标系中,点P 1(ρ1,θ1)、P 2(ρ2,θ2)(ρ1、ρ2>0),则P 1P 2两点距离|P 1P 2|=.)cos(212212221θθρρρρ--+请同学们推导一下. 【例2】在极坐标系中,若等边△ABC 的两个顶点是A (2,4π)、B (2,45π),那么顶点C 的坐标可能是( )A.(4,43π) B.(23,43π)C.(23,π)D.(3,π)解析:如图,由题设可知A 、B 两点关于极点O 对称,即O 是AB 的中点又|AB |=4,△ABC 为正三角形,|OC |=23,∠AOC =2π,C 对应的极角θ=4π+2π=43π或θ=4π-2π=-4π,即C 点极坐标为(23,43π)或(23,-4π).答案:B点评:在找点的极坐标时,把图形画出来,可以帮助我们解决问题,从图形中很容易找到极角和极径.这一点跟直角坐标系中的方法是一致的,数形结合. 【例3】在极坐标系中与点A (3,-3π)关于极轴所在的直线对称的点的极坐标是( ) A.(3,32π) B.(3,3π)C.(3,34π)D.(3,65π)解析:极坐标中的点(ρ,θ)关于极轴所在的直线对称的点的极坐标为(ρ,2k π-θ)(k ∈Z ),利用这一规律即可. 答案:B点评:一般地,在极坐标系中点(ρ,θ)关于极轴所在的直线对称的点的极坐标为(ρ,2k π-θ)(k ∈Z );点(ρ,θ)关于极点对称的点的极坐标为(ρ,2k π+π+θ)(k ∈Z);点(ρ,θ)关于过极点且垂直于极轴的直线对称的点的极坐标为(ρ,2k π+π-θ)(k ∈Z ).【例4】(1)θ=43π的直角坐标方程是________; (2)极坐标方程ρ=sin θ+2cos θ所表示的曲线是解析:(1)根据极坐标的定义,∵tan θ=xy ,∴tan 43π=x y ,即y =-x (x ≤0).(2)将极坐标方程化为直角坐标方程即可判断曲线的形状,因为给定的ρ不恒等于零,用ρ同乘方程的两边得ρ2=ρsin θ+2ρcos θ. 化成直角坐标方程为x 2+y 2=y +2x ,即(x -1)2+(y -21)2=45,这是以点(1,21)为圆心,半径为25的圆.答案:(1)y =-x (x ≤0) (2)以点(1,21)为圆心,半径为25的圆 点评:当极坐标方程中含有sin θ、cos θ时,可将方程两边同乘以ρ,凑成含有ρsin θ、ρcos θ的项,然后再代入互化公式便可化为直角坐标方程,此法是常用技巧. 【例5】 进行直角坐标方程与极坐标方程的互化.(1)y 2=4x ;(2)y 2+x 2-2x -1=0;(3)θ=3π;(4)ρcos 22θ=1;(5)ρ2cos2θ=4;(6)ρ=θcos 21-.解:(1)将x =ρcos θ,y =ρsin θ代入y 2=4x ,得(ρsin θ)2=4ρcos θ,化简得ρsin 2θ=4cos θ.(2)将x =ρcos θ,y =ρsin θ代入y 2+x 2-2x -1=0,得(ρsin θ)2+(ρcos θ)2-2ρcos θ-1=0,化简得ρ2-2ρcos θ-1=0.(3)tan θ=xy ,∴tan 3π=x y=3,化简得y =3x (x ≥0).(4)∵ρcos 22θ =1,∴ρ2cos 1θ+=1,即ρ+ρcos θ=2. ∴22y x ++x =2,化简得y 2=-4(x -1).(5)∵ρ2cos2θ=4,∴ρ2cos 2θ-ρ2sin 2θ=4,即x 2-y 2=4. (6)∵ρ=θcos 21-,∴2ρ-ρcos θ=1.∴222y x +,化简得3x 2+4y 2-2x -1=0.点评:在进行两种坐标间的互化时,我们要注意:(1)互化公式是有三个前提条件的,极点与直角坐标系的原点重合;极轴与直角坐标系的横轴的正半轴重合;两种坐标系的单位长度相同(2)由直角坐标求极坐标时,理论上不是唯一的,但这里约定只在0≤θ<2π范围内求值. (3)由直角坐标方程化为极坐标方程,最后要化简.(4)由极坐标方程化为直角坐标方程时要注意变形的等价性,通常总要用ρ去乘方程的两端,应该检查极点是否在曲线上,若在,是等价变形,否则,不是等价变形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1&2.2 极坐标系的概念 点的极坐标与直角坐标的互化[对应学生用书P5][自主学习]1.极坐标系的概念(1)极坐标系:单;选定一个极轴,叫作Ox 引一条射线O ,自极点极点,叫作O 在平面内取一个定点,这样就建立了一个极坐标系.)通常取逆时针方向(正方向和角的位长度 为Ox 表示以θ,用的长OM 线段表示ρ,用M 点的极坐标:对于平面上任意一点(2))θ,ρ(,有序实数对极角的M 叫作点θ,极径的M 叫作点ρ为终边的角度,OM 始边,就叫作点M 的极坐标,记作M (ρ,θ).可以取任意值;θ,极角0=ρ在极点时,它的极径M 特别地,当点① ,)θ,ρ(时,Z ∈k ,当无数对点与极坐标的关系:平面内一点的极坐标可以有②或者<2πθ0≤>0,ρ表示同一个点,如果规定1)π)+k (2+θ,ρ-(,π)k 2+θ,ρ(外,平面内的点和极坐标就一一对应了.极点,那么除≤πθπ<- 2.点的极坐标与直角坐标的互化(1)互化的前提条件:①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合; ③两种坐标系取相同的长度单位. (2)极坐标与直角坐标的互化:.⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ的关系式为)y ,x (化为直角坐标)θ,ρ(的极坐标M 将点① 的关系式为)θ,ρ(化为极坐标)y ,[合作探究]x (将点的直角坐标②.⎩⎪⎨⎪⎧ρ2=x2+y2,tan θ=y x x≠01.极坐标系与平面直角坐标系有什么区别和联系?提示:区别:平面直角坐标系以互相垂直的两条数轴为几何背景,而极坐标以角和距离为背景.联系:二者都是平面坐标系,用来研究平面内点与距离等有关问题.2.点M (ρ,θ)关于极轴、极点以及过极点且垂直于极轴的直线的对称点的坐标各为什么?提示:(ρ,2π-θ),(ρ,π+θ),(ρ,π-θ).3.把直角坐标转化为极坐标时,表示方法唯一吗? 提示:通常有不同的表示法.(极角相差2π的整数倍)[对应学生用书P6]由极坐标确定点的位置[例1] 在极坐标系中,画出点A ⎝ ⎛⎭⎪⎫1,π4,B ⎝ ⎛⎭⎪⎫2,3π2,C ⎝ ⎛⎭⎪⎫3,-π4,D ⎝ ⎛⎭⎪⎫4,9π4.[思路点拨] 本题考查极坐标系以及极坐标的概念,同时考查数形结合思想,解答此题需要先建立极坐标系,再作出极角的终边,然后以极点O 为圆心,极径为半径分别画弧,从而得到点的位置.[精解详析] 在极坐标系中先作出π4线,再在π4线上截取|OA |=1,这样可得到点A ⎝ ⎛⎭⎪⎫1,π4.同样可作出点B ⎝ ⎛⎭⎪⎫2,3π2,C ⎝ ⎛⎭⎪⎫3,-π4,D ⎝⎛⎭⎪⎫4,9π4,如图所示.由极坐标确定点的位置的步骤(1)取定极点O ;(2)作方向为水平向右的射线Ox 为极轴;(3)以极点O 为顶点,以极轴Ox 为始边,通常按逆时针方向旋转极轴Ox 确定出极角的终边;(4)以极点O 为圆心,以极径为半径画弧,弧与极角终边的交点即是所求点的位置.;结合⎝⎛⎭⎪⎫3,7π4D ,⎝ ⎛⎭⎪⎫2,π2C ,⎝ ⎛⎭⎪⎫3,π4B ,(4,0)A .在极坐标系中,作出以下各点:1图形判断点B ,D 的位置是否具有对称性;并求出B ,D 关于极点的对称点的极坐标.(限定ρ≥0,θ∈[0,2π))解:如图,A ,B ,C ,D 四个点分别是唯一确定的.由图形知B ,D 两点关于极轴对称,且B ,D 关于极点的对称点的极坐标分别为.⎝ ⎛⎭⎪⎫3,3π4,⎝⎛⎭⎪⎫3,5π4化极坐标为直角坐标[例2] 已知A ⎝ ⎭⎪⎫3,-3,B ⎝ ⎭⎪⎫1,3,将A ,B 坐标化为直角坐标,并求A ,B 两点间的距离.[思路点拨] 本题考查如何将极坐标化为直角坐标,解答此题需要利用互化公式先将极坐标化为直角坐标,再由两点间的距离公式得结果.[精解详析] 将A ⎝⎛⎭⎪⎫3,-π3,B ⎝ ⎛⎭⎪⎫1,2π3由极坐标化为直角坐标, 对于点A ,有x =3cos ⎝ ⎛⎭⎪⎫-π3=32,y =3sin ⎝ ⎛⎭⎪⎫-π3=-332,∴A ⎝ ⎛⎭⎪⎫32,-332. 对于点B ,有x =1×cos 2π3=-12,y =1×sin 2π3=32,∴B (-12,32).∴|AB |=⎝ ⎛⎭⎪⎫32+122+⎝ ⎛⎭⎪⎫-332-32 2 =4+12=4.即⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ需根据公式:,只)y ,x (化为直角坐标)θ,ρ(M .将极坐标1可得到;2.利用两种坐标的互化,可以把不熟悉的极坐标问题转化为熟悉的直角坐标问题求解.本例中如何由极坐标直接求A ,B 两点间的距离? ,则由余弦定理得:)2θ,2ρ(N ,)1θ,1ρ(M 解:根据 ,ρ21+ρ2-2ρ1ρ2cos θ1-θ2=|MN | 4.=32+12-2×3×1×co s ⎣⎢⎡⎦⎥⎤2π3-⎝ ⎛⎭⎪⎫-π3 =|AB |所以化直角坐标为极坐标[例3] 分别将下列点的直角坐标化为极坐标(ρ>0,0≤θ<2π). (1)(-1,1),(2)(-3,-1).[思路点拨] 本题考查如何将直角坐标化为极坐标,同时考查三角函数中由值求角问题,解答此题利用互化公式即可,但要注意点所在象限.[精解详析] (1)∵ρ=-12+12=2,tan θ=-1,θ∈[0,2π), 又点(-1,1)在第二象限, ∴θ=3π4.∴直角坐标(-1,1)化为极坐标为⎝⎛⎭⎪⎫2,3π4. (2)ρ=-32+-12=2,tan θ=-1-3=33,θ∈[0,2π),∵点(-3,-1)在第三象限, ∴θ=76π.∴直角坐标(-3,-1)化为极坐标为⎝⎛⎭⎪⎫2,7π6.即⎩⎪⎨⎪⎧ρ=x2+y2,tan θ=yx x≠0时,运用公式)θ,ρ(化为极坐标)y ,x (将点的直角坐标时,要根据直角坐标的符号特征,判断θ求≠0)x (yx =θtan 范围内,由[0,2π)可,在出点所在象限,如果允许θ∈R ,再根据终边相同的角的意义,表示为θ+2k π,k ∈Z 即可.2.将下列各点由直角坐标化为极径ρ是正值,极角在0到2π之间的极坐标..)32,-2-(2)(;)3,(1)(3 ,33=y x =θtan ,32=32+32=ρ(1)解: .π6=θ在第一象限,所以)3,(3又点 .π6,32的极坐标为)3,(3所以点 ,4=-22+-232=ρ(2) ,3=-23-2=y x =θtan .4π3=θ在第三象限,所以)32,-2-(又点 .⎝⎛⎭⎪⎫4,4π3的极坐标为)32,-2-(所以点本课时常考查极坐标的确定及点的直角坐标与极坐标的互化,特别是直角坐标化为极坐标常与三角知识交汇命题,更成为命题专家的新宠.[考题印证])(的极坐标为P ,则点)3,-(1的直角坐标为P 点⎝⎛⎭⎪⎫2,π3A.⎝⎛⎭⎪⎫2,4π3B.⎝⎛⎭⎪⎫2,-π3C. ⎝⎛⎭⎪⎫2,-4π3D. [命题立意] 本题主要考查点的极坐标与直角坐标 的互化,同时还考查了三角知识及运算解题能力. [自主尝试],3=--31=θtan ,2=12+-32=ρ 的一个极坐标为P ,故点5π3轴所成的角为x 与OP 在第四象限,所以)3,-(1又点所表示的点在第⎝⎛⎭⎪⎫2,-4π3,所以极坐标π23=2π+π43选项.又-B ,A ,排除⎝ ⎛⎭⎪⎫2,5π3π.53=2π+π3不正确,而-D 二象限,故 [答案] C[对应学生用书P8]一、选择题)(,那么它的极坐标可表示为)2,2-(的直角坐标为P .点1⎝⎛⎭⎪⎫2,π4A.⎝ ⎛⎭⎪⎫2,3π4B.⎝⎛⎭⎪⎫2,5π4C. ⎝⎛⎭⎪⎫2,7π4D. ,2=-22+22=ρ B 解析:选 ,1=-2-2=θtan ∵点P 在第二象限, .3π4=θ正角最小∴ ) (关于极轴所在的直线对称的点的极坐标是⎝⎛⎭⎪⎫3,-π3A .在极坐标系中与点2⎝⎛⎭⎪⎫3,2π3A.⎝ ⎛⎭⎪⎫3,π3B.⎝⎛⎭⎪⎫3,4π3C.⎝⎛⎭⎪⎫3,5π6D. 关于极轴所在直线的对称的点的极坐标可以表示为⎝⎛⎭⎪⎫3,-π3A 与点B 解析:选满足条件.B ,这时只有选项)Z ∈k (⎝⎛⎭⎪⎫3,2kπ+π3 ,那么可能是顶⎝⎛⎭⎪⎫2,5π4B ,⎝ ⎛⎭⎪⎫2,π4A 的两个顶点是ABC △.在极坐标系中,若等边3点C 的坐标的是( )⎝⎛⎭⎪⎫4,3π4A.⎝ ⎛⎭⎪⎫23,3π4B.()23,πC.()3,πD. 解析:选B 如图,由题设,可知A ,B 两点关于极点O 对称,即O 是AB 的中点.又|AB |=4,△ABC 为正三角形,π2+5π4或3π4=π2+π4=θ的极角C ,点π2=AOC ∠,32=|OC |∴,7π4= .⎝ ⎛⎭⎪⎫23,7π4或⎝⎛⎭⎪⎫23,3π4的极坐标为C 即点 的位置关系是)2θ,2ρ(2M 与点)1θ,1ρ(1M ,则点π=2θ+1θ,0=2ρ+1ρ.若4( )A .关于极轴所在直线对称B .关于极点对称C .关于过极点垂直于极轴的直线对称D .两点重合解析:选 A 因为点(ρ,θ)关于极轴所在直线对称的点为(-ρ,π-θ).由此可,是关于极轴所在直线对称.π=2θ+1θ,0=2ρ+1ρ满足)2θ,2ρ(和)1θ,1ρ(知点 二、填空题,则2=|OM |,使M 上取点OP ,在OP 得到射线π6绕极点顺时针方向旋转Ox .将极轴5ρ>0,θ∈[0,2π)时点M 的极坐标为________,它关于极轴的对称点的极坐标为________(ρ>0,θ∈[0,2π)).解析:ρ=|OM |=2,.)Z ∈k π(k 2+π6终边相同的角为-OP 与 .⎝ ⎛⎭⎪⎫2,11π6M ∴.11π6=θ,1=k ∴,[0,2π)∈θ∵ .)π6,(2关于极轴的对称点为M ∴ ⎝ ⎛⎭⎪⎫2,π6⎝ ⎛⎭⎪⎫2,11π6答案: 在条件:⎝⎛⎭⎪⎫5,π3A .点6 (1)ρ>0,θ∈(-2π,0)下的极坐标是________; (2)ρ<0,θ∈(2π,4π)下的极坐标是________.,)Z ∈k (⎝ ⎛⎭⎪⎫5,2kπ+π3的极坐标形式为A 时,点>0ρ当(1)解析: ,符合题意.⎝ ⎛⎭⎪⎫5,-5π3的极坐标为A ,点1=-k .令0),2π-(∈θ∵ .)Z ∈k (⎝⎛⎭⎪⎫-5,2k +1π+π3的极坐标的一般形式是⎝ ⎛⎭⎪⎫5,π3时,<0ρ当(2) ,符合题意.⎝ ⎛⎭⎪⎫-5,10π3标为的极坐A 时,点1=k ,当4π),(2π∈θ∵ ⎝ ⎛⎭⎪⎫-5,10π3(2) ⎝ ⎛⎭⎪⎫5,-5π3答案: .________与极轴所在直线的夹角等于l ,则直线⎝⎛⎭⎪⎫7,π6B ,⎝ ⎛⎭⎪⎫7,π3A 过点l .直线7 解析:如图所示,先在图形中找到直线l 与极轴夹角(要注意夹角是个锐角),然后根据点A ,B 的位置分析夹角大小. ,π6=π6-π3=AOB ∠,7=|BO |=|AO |因为 .5π12=π-π62=OAB ∠所以 .π4=5π12-π3-π=ACO ∠所以 π4答案:中点的一个极坐标是AB ,则⎝⎛⎭⎪⎫-8,π12B ,⎝ ⎛⎭⎪⎫3,π12A .已知两点的极坐标是8________.示意图,A ,B 与极点O 共线,解析:画出,52=-8) -(312=ρ∴.π12=θ .⎝ ⎛⎭⎪⎫-52,π12中点的一个极坐标为AB 故 ⎝ ⎛⎭⎪⎫-52,π12答案: 三、解答题9.设有一颗彗星,围绕地球沿一抛物线轨道运行,地球恰好位于该抛物线的焦点处,当此彗星离地球30万千米时,经过地球和彗星的直线与抛物线对称轴的夹角为30°,试建立适当的极坐标系,写出彗星此时的极坐标.解:如图所示,建立极坐标系,使极点O 位于抛物线的焦点处,极轴Ox 过抛物线的对称轴,由题设可得下列4种情形:①当θ=30°时,ρ=30(万千米); ②当θ=150°时,ρ=30(万千米); ③当θ=210°时,ρ=30(万千米); ④当θ=330°时,ρ=30(万千米).∴彗星此时的极坐标有4种情形:(30,30°),(30,150°),(30,210°),(30,330°).为极点.O ,(3,0)和⎝⎛⎭⎪⎫2,π3的极坐标分别为B 和点A .在极坐标系中,点10 .AOB △S 求(2);|AB |求(1) ρ21+ρ2-2ρ1ρ2cos θ1-θ2=|AB |解: 22+32-2×2×3×co s ⎝ ⎛⎭⎪⎫π3-0=.7=4+9-6=AOB∠|·sin OB |·|OA |12=AOB △S ⎝ ⎛⎭⎪⎫π3-0×2×3×sin 12= .332= 的两个顶点,求顶点ABC 为等边三角形⎝ ⎛⎭⎪⎫2,5π4B ,⎝⎛⎭⎪⎫2,π4A .在极坐标系中,如果11C 的极坐标.,π4=θ,2=ρ有⎝⎛⎭⎪⎫2,π4A 解:法一:对于 ,2=π42cos =θcos ρ=x ∴ .2=π42sin =θsin ρ=y .)2,2(A ∴ π.54=θ,2=ρ有⎝⎛⎭⎪⎫2,5π4B 对于 ,2=-5π42cos =x ∴ .2=-5π42sin =y .)2,-2-(B ∴ 设C 点的坐标为(x ,y ),由于△ABC 为等边三角形,故有|AB |=|BC |=|AC |.2)2-y (+2)2-x (=2)2+y (+2)2+x (有∴ .2)2+2(+2)2+2(= ⎩⎨⎧ x -22+y -22=16,x +22+y +22=16.有∴ ⎩⎨⎧x =-6,y = 6.或⎩⎨⎧x =6,y =-6,解之得 .)6,6-(或)6,-6(点的坐标为C ∴ 1.=--66=θtan ,32=6+6=ρ∴11 / 11 .3π4=θ或7π4=θ∴ .⎝ ⎛⎭⎪⎫23,3π4或⎝⎛⎭⎪⎫23,7π4的极坐标为C 点∴ 法二:设C 点的极坐标为(ρ,θ)(0≤θ<2π,ρ>0).则有|AB |=|BC |=|AC |.⎩⎪⎨⎪⎧ ρ2+22-2×2ρco s ⎝ ⎛⎭⎪⎫θ-π4=22+22-2×2×2cos π,ρ2+22-2×2ρ co s ⎝⎛⎭⎪⎫θ-5π4=22+22-2×22cos π.∴ ⎩⎪⎨⎪⎧ ρ=23,θ=7π4.或⎩⎪⎨⎪⎧ ρ=23,θ=3π4解之得 .⎝ ⎛⎭⎪⎫23,7π4,⎝⎛⎭⎪⎫23,3π4的极坐标为C 点∴。