2013高考数学(理)二轮复习配套作业(解析版):专题限时集训(十)
2013高考数学(理)二轮复习配套作业(解析版):专题限时集训(一)A(江西省专用)
专题限时集训(一)A[第1讲 集合与常用逻辑用语](时间:30分钟)1.已知集合P ={-1,m},Q =⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x<34,若P∩Q≠∅,则整数m 的值为( ) A .0 B .1C .2D .42.设全集U ={x ∈Z|-1≤x≤3},A ={x ∈Z|-1<x<3},B ={x ∈Z|x2-x -2≤0},则(∁UA )∩B =( )A .{-1}B .{-1,2}C .{x|-1<x<2}D .{x|-1≤x≤2}3.对于函数f(x)=3sinx +c osx ,下列命题中正确的是( )A .任意x ∈R ,f(x)=2B .存在x ∈R ,f(x)=2C .任意x ∈R ,f(x)>2D .存在x ∈R ,f(x)>24.命题p :若a·b>0,则a 与b 的夹角为锐角;命题q :若函数f(x)在(-∞,0]及(0,+∞)上都是减函数,则f(x)在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p 或q”是真命题B .“p 或q”是假命题C .綈p 为假命题D .綈q 为假命题5.命题“存在x ∈Z ,x2+2x +m≤0”的否定是( )A .存在x ∈Z ,x2+2x +m>0B .不存在x ∈Z ,x2+2x +m>0C .对任意x ∈Z ,x2+2x +m≤0D .对任意x ∈Z ,x2+2x +m>06.已知集合A ={x|y =log2(x2-1)},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =⎝⎛⎭⎫12x -1,则A∩B 等于( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪12<x<1 B .{x|1<x<2} C .{x|x>0} D .{x|x>1}7.命题“存在x ∈R ,使x2+ax -4a<0”为假命题是命题“-16≤a≤0”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件8.已知向量a =(1,2),b =(2,3),则λ<-4是向量m =λa +b 与向量n =(3,-1)的夹角为钝角的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件9.给出下列说法:①命题“若α=π6,则sin α=12”的否命题是假命题; ②p :存在x ∈R ,使sinx>1,则綈p :对任意x ∈R ,sinx ≤1;③“φ=π2+2k π(k ∈Z)”是“函数y =sin(2x +φ)为偶函数”的充要条件; ④命题p :“存在x ∈⎝⎛⎭⎫0,π2,使sinx +cosx =12”,命题q :“在△ABC 中,若sinA>sinB ,则A>B”,那么命题綈p 且q 为真命题.其中正确的个数是( )A .4B .3C .2D .110.用含有逻辑联结词的命题表示命题“若xy =0,则x =0且y =0”的否定是________________________________________________________________________.11.已知A ,B 均为集合U ={1,2,3,4,5,6}的子集,且A∩B ={3},(∁UB )∩A ={1},(∁UA )∩(∁UB)={2,4},则B ∩(∁UA)=________.12.若“对任意x ∈R ,ax2+2ax +1>0”为真命题,则实数a 的取值范围是________.。
2013高考数学(文)二轮复习配套作业(解析版):专题限时集训(六)B(江西省专用)
专题限时集训(六)B[第6讲 三角恒等变换与三角函数](时间:45分钟)1.在△ABC 中,条件甲:A<B ;条件乙:cos2A>cos2B ,则甲是乙的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件2.若函数y =sinx +f(x)在⎣⎡⎦⎤-π4,3π4上单调递增,则函数f(x)可以是( )A .1B .cosxC .sinxD .-cosx3.已知锐角α的终边上一点P(sin40°,1+cos40°),则锐角α=( )A .80°B .70°C .20°D .10°4.函数y =1-2sin2x -π4是( ) A .最小正周期为π的偶函数B .最小正周期为π的奇函数C .最小正周期为π2的偶函数 D .最小正周期为π2的奇函数5.已知sin θ=45,且sin θ-cos θ>1,则sin2θ=( ) A .-2425 B .-1225C .-45 D.24256.若将函数y =Acosx -π6sin ωx +π6(A>0,ω>0)的图像向左平移π6个单位后得到的图像关于原点对称,则ω的值可能为( )A .2B .3C .4D .57.已知f(x)=sinx ,x ∈R ,g(x)的图像与f(x)的图像关于点π4,0对称,则在区间[0,2π]上满足f(x)≤g(x)的x 的取值范围是( )A.⎣⎡⎦⎤π4,3π4 B.⎣⎡⎦⎤3π4,7π4 C.⎣⎡⎦⎤π2,3π2 D.⎣⎡⎦⎤3π4,3π2 8.设函数f(x)=sin (ωx +φ)+cos (ωx +φ)ω>0,|φ|<π2的最小正周期为π,且f(-x)=f(x),则( )A .f(x)在0,π2 B .f(x)在π4,3π4上单调递减 C .f(x)在0,π2上单调递增 D .f(x)在π4,3π4上单调递增 9.函数y =sin(πx +φ)(φ>0)的部分图像如图6-3所示,设P 是图像的最高点,A ,B 是图像与x 轴的交点,则tan ∠APB =( )图6-3A .8 B.18 C.87 D.7810.已知m sin α=n cos α,cos2αm2+sin2αn2=10cos2α3n2,则sin2α-cos2α的值为________. 11.已知π2<β<α<3π4,cos (α-β)=1213,sin (α+β)=-35sin α+cos α=________. 12.若2sin2α+sin2β=3sin α,则sin2α+sin2β的取值范围为________.13.已知函数f(x)=sin2x +π4cos φ+cos2x +π4sin φ(其中x ∈R ,0<φ<π)的图像关于直线x =π6对称. (1)求φ的值; (2)求函数f(x)在区间⎣⎡⎦⎤-π2,0上的最小值.14.已知向量p =(-cos2x ,a),q =(a ,2-3sin2x),函数f(x)=p·q -5(a ∈R ,a≠0).(1)求函数f(x)(x ∈R)的值域;(2)当a =2时,若对任意的t ∈R ,函数y =f(x),x ∈(t ,t +b]的图像与直线y =-1有且仅有两个不同的交点,试确定b 的值(不必证明),并求函数y =f(x)在[0,b]上的单调递增区间.15.已知函数f(x)=2cosx +π3sinx +π3-3cosx +π3. (1)求f(x)的值域和最小正周期; (2)若对任意x ∈⎣⎡⎦⎤0,π6,m []f (x )+3+2=0恒成立,求实数m 的取值范围.。
2013高考数学(文)二轮复习配套作业(解析版):作业解析(湖南省专用)
专题限时集训(一)A【基础演练】1.A [解析] 依题意得P ={x ∈Z|x2<2}={-1,0,1},故∁UP ={2}. 2.D [解析] 依题意得A ={-1,0,1},因此集合A 的子集个数是23=8. 3.B [解析] 根据特称命题的否定得命题綈p 应为:任意x ∈0,π2,sinx ≠12.4.B [解析] 因为当a·b>0时,a 与b 的夹角为锐角或零度角,所以命题p 是假命题;又命题q 是假命题,例如f(x)=⎩⎪⎨⎪⎧-x +1,x≤0,-x +2,x>0.综上可知,“p 或q”是假命题.【提升训练】5.B [解析] 由x -2x +3<0得-3<x<2,即M ={x|-3<x<2};由|x -1|≤2得-1≤x≤3,即N ={x|-1≤x≤3}.所以M∩N =[-1,2).6.B [解析] 依题意p 且q 为真命题,则p ,q 都为真命题.若p 为真命题,则m<0;若q 为真命题,则m≥-2.所以p 且q 为真命题,则实数m 的取值范围为[-2,0).7.B [解析] 当c =-1时,由函数f(x)=⎩⎪⎨⎪⎧log2x ,x≥1,x -1,x<1的图像可以得出其是增函数;反之,不一定成立,如取c =-2.所以“c =-1”是“f(x)在R 上单调递增”的充分不必要条件.8.A [解析] 由“lgy 为lgx ,lgz 的等差中项”得2lgy =lgx +lgz ,则有y2=xz(x>0,y>0,z>0),y 是x ,z 的等比中项;反过来,由“y 是x ,z 的等比中项”不能得到“lgy 为lgx ,lgz 的等差中项”,例如y =1,x =z =-1.于是,“lgy 为lgx ,lgz 的等差中项”是“y 是x ,z 的等比中项”的充分不必要条件.9.C [解析] 命题p 等价于Δ=a2-16≥0,即a≤-4或a≥4;命题q 等价于-a4≤3,即a≥-12.由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假.若p 真q 假,则a<-12;若p 假q 真,则-4<a<4.故实数a 的取值范围是(-∞,-12)∪(-4,4).10.任意x ∈R ,x>1且x2≤4 [解析] 因为特称命题p :存在x0∈M ,p(x0)的否定为綈p :任意x ∈M ,綈p(x),所以题中命题的否定为“任意x ∈R ,x>1且x2≤4”.11.{5,6} [解析] 依题意作出满足条件的韦恩图,可得B ∩(∁UA)={5,6}.12.①④ [解析] 对于①,“存在x0∈R ,2x0>3”的否定是“任意x ∈R ,2x ≤3”,所以①正确;对于②,注意到sin π6-2x =cos2x +π3,因此函数y =sin2x +π3sin π6-2x =sin2x +π3²cos2x +π3=12sin4x +2π3,其最小正周期为2π4=π2,所以②不正确;对于③,注意到命题“函数f(x)在x =x0处有极值,则f′(x 0)=0”的否命题是“若函数f(x)在x =x0处无极值,则f′(x 0)≠0”,容易知该命题不正确,如取f(x)=x3,f(x)无极值但当x0=0时,f′(x 0)=0,故③不正确;对于④,依题意知,当x<0时,-x>0,f(x)=-f(-x)=-2-x ,所以④正确.综上所述,其中正确的说法是①④. 专题限时集训(一)B 【基础演练】1.C [解析] 依题意得∁RA ={x|-1≤x≤1},B ={y|y≥0},所以(∁R A)∩B ={x|0≤x≤1}. 2.A [解析] 依题意得M ={x|x≥-a},N ={x|1<x<3},则∁UN ={x|x≤1,或x≥3}.又M∩(∁UN)={x|x =1,或x≥3}, 所以-a =1,求得a =-1.3.C [解析] 由p ∨q 为真,得p ,q 至少一个为真,此时不能得綈p 为假;由綈p 为假,得p 为真,此时p ∨q 为真.因此“p ∨q 为真”是“綈p 为假”的必要不充分条件.故选C. 4.D [解析] 对于A ,命题“若x2=1,则x =1”的否命题为“若x2≠1,则x≠1”,因此选项A 不正确;对于B ,由x =-1得x2-5x -6=0,因此“x =-1”是“x 2-5x -6=0”的充分条件,选项B 不正确;对于C ,命题“存在x0∈R ,使得x20+x0-1<0”的否定是:“任意x ∈R ,使得x2+x -1≥0”,因此选项C 不正确;对于D ,命题“若x =y ,则sinx =siny ”是真命题,因此它的逆否命题也为真命题,选项D 正确. 【提升训练】5.A [解析] 依题意得A ={x|-5<x<6}.由cos πx 3=12得πx 3=2k π±π3,即x =6k±1,k∈Z.令-5<6k +1<6得-1<k<56.又k ∈Z ,则k =0,故x =1;令-5<6k -1<6得-23<k<76,又k∈Z ,则k =0或k =1,故x =-1或x =5.于是,A∩B ={-1,1,5}.6.D [解析] 因为任意x ∈R ,2x2+2x +12=2x +122≥0,所以p 为假命题;当x =3π4时,sin 3π4-cos 3π4=22+22=2,所以q 为真命题,则綈q 是假命题.7.C [解析] 依题意得f(x)=a2x2+2(a·b)x +b2,由函数f(x)是偶函数,得a·b =0,又a ,b 为非零向量,所以a ⊥b ;反过来,由a ⊥b 得a·b =0,f(x)=a2x2+b2,函数f(x)是偶函数.综上所述,“函数f(x)=(ax +b)2为偶函数”是“a ⊥b”的充要条件.8.B [解析] 注意到⊙O1与⊙O4无公共点,⊙O2与⊙O3无公共点,则满足题意的“有序集合对”(A ,B)的个数是4.9.C [解析] 依题意得f(4+x)=f(x)=f(-x),即函数f(x)是以4为周期的函数.因此,当f(0)<0时,不能得到函数f(x)在区间[0,6]上有3个零点;反过来,当函数f(x)在区间[0,6]上有3个零点时,结合该函数的性质分析其图像可知,此时f(0)<0.综上所述,f(0)<0是函数f(x)在区间[0,6]上有3个零点的必要不充分条件.10.ab =a2+b2 [解析] 由A∩B 只有一个元素知,圆x2+y2=1与直线x a -yb =1相切,则1=aba2+b2,即ab =a2+b2. 11.必要不充分 [解析] 设向量a ,b 的夹角为θ,则由题意知,当a·b =|a|·|b|cos θ>0时,θ∈⎣⎡⎭⎫0,π2;若a 与b 的夹角为锐角,即θ∈0,π2.因为⎝⎛⎭⎫0,π2 ⎣⎡⎭⎫0,π2,所以p 是q 成立的必要不充分条件.12.(-∞,-1]∪[0,+∞) [解析] 若对于任意实数x ,都有x2+ax -4a>0,则Δ=a2+16a<0,即-16<a<0;若对于任意实数x ,都有x2-2ax +1>0,则Δ=4a2-4<0,即-1<a<1.于是命题“对于任意实数x ,都有x2+ax -4a>0且x2-2ax +1>0”是真命题时有a ∈(-1,0),则命题“对于任意实数x ,都有x2+ax -4a>0且x2-2ax +1>0”是假命题时a 的取值范围是(-∞,-1]∪[0,+∞). 专题限时集训(二)A 【基础演练】1.D [解析] 由题意可得⎩⎪⎨⎪⎧x>0,log3x ≠0,解得x>0且x≠1,故函数定义域为(0,1)∪(1,+∞).2.C [解析] 函数是偶函数,只能是选项C 中的图像.3.C [解析] 依题意,因为5≥4,4≥4,所以f(5)=f(5-1)=f(4)=f(4-1)=f(3),而3<4,所以f(3)=23=8.4.B [解析] 因为3a =5b =A ,所以a =log3A ,b =log5A ,且A>0,于是1a +1b =logA3+logA5=logA15=2,所以A =15. 【提升训练】 5.B [解析] 由loga2<0得0<a<1,f(x)=loga(x +1)的图像是由函数y =logax 的图像向左平移1个单位得到的,故为选项B 中的图像.6.A [解析] 由条件知,0<a<1,b<-1,结合选项,函数g(x)=ax +b 只有A 符合要求. 7.D [解析] 依题意得,方程f(x2-2x -1)=f(x +1)等价于方程x2-2x -1=x +1或x2-2x -1=-x -1,即x2-3x -2=0或x2-x =0,因此所有解之和为3+1=4. 8.A [解析] 依题意,f(27)=11+2713=11+3=14,则f(f(27))=f 14=⎪⎪⎪⎪log414-1-2=|-1-1|-2=0.9.B [解析] 由f(x +3)=-1f (x ),得f(x +6)=-1f (x +3)=f(x),知6为该函数的一个周期,所以f(107.5)=⎝⎛⎭⎫6³18-12=f ⎝⎛⎭⎫-12=-1f ⎝⎛⎭⎫52=-1f ⎝⎛⎭⎫-52=-1-10=110. 10.C [解析] 当x>0时,-x<0,f(-x)+f(x)=(2-x -1)+(1-2-x)=0;当x<0时,-x>0,f(-x)+f(x)=(1-2x)+(2x -1)=0;当x =0时,f(0)=0.因此,对任意x ∈R ,均有f(-x)+f(x)=0,即函数f(x)是奇函数.当x>0,函数f(x)是增函数,因此函数f(x)单调递增. 11.-12 [解析] 依题意,f(m)=12,即em -1em +1=12.所以f(-m)=e -m -1e -m +1=1-em 1+em =-em -1em +1=-12.12.⎣⎡⎭⎫32,3 [解析] 依题意,得⎩⎪⎨⎪⎧3-a>0,a>1,(3-a )·1-a≤loga1, 即⎩⎪⎨⎪⎧a<3,a>1,a≥32,解得32≤a<3.13.②③④ [解析] 根据单函数的定义可知故命题②、④是真命题,①是假命题;根据一个命题与其逆否命题等价可知,命题③是真命题. 专题限时集训(二)B 【基础演练】1.C [解析] 依题意,得⎩⎪⎨⎪⎧x +2>0,1-lg (x +2)≥0,即⎩⎪⎨⎪⎧x +2>0,x +2≤10,解得-2<x≤8,故函数定义域为(-2,8].2.B [解析] y =-1x 是奇函数,A 错误;y =e|x|是偶函数且在(0,+∞)上单调递增,B 正确;y =-x2+3是偶函数且在(0,+∞)上单调递减,C 错误;y =cosx 是偶函数且在(0,+∞)上有时递增,有时递减,D 错误.3.C [解析] 依题意,由f(2-x)=f(x)得f(1-x)=f(1+x), 即函数f(x)的对称轴为直线x =1,结合图形可知f 12<f 13<f(0)=f(2).4.C [解析] 由f(x)·g(x)为偶函数排除①④,当x→+∞时,f(x)·g(x)→-∞,排除②,故为③.【提升训练】5.C [解析] 将函数f(x)=x|x|-2x 去掉绝对值,得f(x)=⎩⎪⎨⎪⎧x2-2x ,x≥0,-x2-2x ,x<0,画出函数f(x)的图像,观察图像可知,函数f(x)的图像关于原点对称,故f(x)为奇函数,且在(-1,1)上单调递减.6.D [解析] 依题意得f(3)=f(2)-f(1)=[f(1)-f(0)]-f(1)=-f(0)=-log28=-3. 7.B [解析] 依题意,f(x)为定义在R 上的奇函数,则f(0)=0,即30-2×0+a =0,求得a =-1.又当x<0,-x>0,所以f(x)=-f(-x)=-(3-x +2x +a)=-3-x -2x +1,于是f(-2)=-32-2×(-2)+1=-4. 8.C [解析] 函数是偶函数,而且函数值为正值,在x→0时,x sinx →1,当x→π时,x sinx →+∞,综合这些信息得只能是选项C 中的图像.9.D [解析] 依题意得,f(x -1)=⎩⎪⎨⎪⎧x +1,x≤0,-x +1,0<x<2,x -3,x≥2,在同一直角坐标系中作出函数y =f(x-1)和y =t(|t|<1)的图像(如图),由图像知方程f(x -1)=t(|t|<1)所有根的和s 的取值范围是(2,4).10.8 [解析] 依题意,若a>0,则f(a)=log2a =3,求得a =8;若a≤0,则f(a)=-2a =3,此时无解.于是a =8.11.-14 [解析] 由对任意t ∈R ,都有f(t)=f(1-t),可得f(-t)=f(1+t),即f(t +1)=-f(t),进而得到f(t +2)=-f(t +1)=-[-f(t)]=f(t),即函数y =f(x)的一个周期为2,故f(3)=f(1)=f(0+1)=-f(0)=0,f -32=f 12=-14.所以f(3)+f -32=0+-14=-14.12.①②④ [解析] 依题意,令x =-2得f(2)=f(-2)+f(2),又函数f(x)是偶函数,故f(2)=0,所以①正确;根据①可得f(x +4)=f(x),即函数f(x)的周期为4,由于偶函数的图像关于y 轴对称,故x =-4也是函数y =f(x)图像的一条对称轴,所以②正确;根据函数的周期性可知,函数f(x)在[8,10]上单调递减,所以③不正确;由于函数f(x)的图像关于直线x =-4对称,故如果方程f(x)=m 在[-6,-2]上的两根为x1,x2,则x1+x2=-8,所以④正确.13.②④ [解析] 对于①,结合函数f(x)的图像分析可知,不存在函数g(x),使得f(x)≥g(x)对一切实数x 都成立,即f(x)不存在承托函数;对于②,注意到f(x)=2-x>0,因此存在函数g(x)=0,使得f(x)≥g(x)对一切实数x 都成立,即f(x)存在承托函数;对于③,结合函数f(x)的图像分析可知,不存在函数g(x),使得f(x)≥g(x)对一切实数x 都成立,即f(x)不存在承托函数;对于④,注意到f(x)=x +sinx ≥x -1,因此存在函数g(x)=x -1,使得f(x)≥g(x)对一切实数x 都成立,即f(x)存在承托函数.综上所述,存在承托函数的f(x)的序号为②④. 专题限时集训(三) 【基础演练】1.B [解析] 依题意,因为f(1)=log21-1=-1<0,f(2)=log22-12=1-12=12>0,所以函数f(x)的零点x0∈(1,2).2.B [解析] 依题意,由所给出的函数图像可求得函数解析式为h =20-5t(0≤t≤4),对照选项可知图像应为B.故选B.3.C [解析] 将表中的数据代入各选项中的函数解析式验证,可知只有v =t2-12满足.故选C.4.B [解析] 在同一坐标系内画出函数y =3cos π2x 和y =log2x +12的图像,可得交点个数为3.【提升训练】5.B [解析] 分析选项中所给图像,只有B 两侧的函数值是同号的,所以不能用二分法求解.故选B.6.B [解析] 记F(x)=x3-12x -2,则F(0)=0-12-2=-4<0,F(1)=1-12-1=-1<0,F(2)=8-120=7>0,所以x0所在的区间是(1,2).故选B.7.C [解析] 设CD =x ,依题意,得S =x(16-x)(4<x<16-a),所以Smax =f(a)=⎩⎪⎨⎪⎧64(0<a≤8),a (16-a )(8<a<12),对照图像知,C 符合函数模型对应的图像.故选C. 8.C [解析] 由已知f(2)=2a +b =0,可得b =-2a ,则g(x)=-2ax2-ax ,令g(x)=0得x =0或x =-12,所以g(x)的零点是0或-12,故选C.9.D [解析] 由对任意的x ∈R 都有f(x +1)=f(x -1)知f(x)=f(x +2),即函数y =f(x)的周期为2,在同一直角坐标系中作出函数y =f(x)(x ∈[-1,3])和y =m(x +1)的图像(如图),要使函数g(x)=f(x)-mx -m 恰有四个不同零点,则0<m≤14.10.3 [解析] 由题意知,f(3)=ln3-1>0,f(4)=ln4-2<0,所以该函数的零点在区间(3,4)内,由此可得k =3.故填3.11.(0,1) [解析] 画出函数f(x)=⎩⎪⎨⎪⎧2x -1,x>0,-x2-2x ,x≤0的图像(如图),由函数g(x)=f(x)-m 有3个零点,结合图像得0<m<1.故填(0,1).12.解:(1)条件说明抛物线f(x)=x2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎩⎪⎨⎪⎧f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0⇒⎩⎪⎨⎪⎧m<-12,m ∈R ,m<-12,m>-56.∴-56<m<-12.(2)抛物线与x 轴交点落在区间(0,1)内,列不等式组⎩⎪⎨⎪⎧Δ=4m2-4(2m +1)≥0,f (0)=2m +1>0,f (1)=4m +2>0,0<-m<1,得-12<m≤1- 2.(这里0<-m<1是因为对称轴x =-m 对应的-m 应在区间(0,1)内过) 13.解:(1)当x =0时,t =0;当0<x≤24时,x +1x ≥2(当x =1时取等号),∴t =x x2+1=1x +1x∈⎝⎛⎦⎤0,12,即t 的取值范围是⎣⎡⎦⎤0,12. (2)当a ∈⎣⎡⎦⎤0,12时,记g(t)=|t -a|+2a +23, 则g(t)=⎩⎨⎧-t +3a +23,0≤t≤a ,t +a +23,a<t≤12.∵g(t)在[0,a]上单调递减,在⎝⎛⎦⎤a ,12上单调递增, 且g(0)=3a +23,g ⎝⎛⎭⎫12=a +76,g(0)-g ⎝⎛⎭⎫12=2⎝⎛⎭⎫a -14. 故M(a)=⎩⎨⎧g ⎝⎛⎭⎫12,0≤a≤14,g (0),14<a≤12,即M(a)=⎩⎨⎧a +76,0≤a≤14,3a +23,14<a≤12.∴当且仅当a≤49时,M(a)≤2.故当0≤a≤49时不超标,当49<a ≤12时超标.14.解:(1)当m =2,x ∈[1,2]时, f(x)=x·(x -1)+2=x2-x +2=x -122+74.∵函数y =f(x)在[1,2]上单调递增,∴f(x)max =f(2)=4,即f(x)在[1,2]上的最大值为4.(2)函数p(x)的定义域为(0,+∞),函数p(x)有零点,即方程f(x)-g(x)=x|x -1|-lnx +m =0有解,即m =lnx -x|x -1|有解,令h(x)=lnx -x|x -1|. 当x ∈(0,1]时,h(x)=x2-x +lnx.∵h ′(x)=2x +1x -1≥22-1>0当且仅当2x =1x 时取“=”,∴函数h(x)在(0,1]上是增函数,∴h(x)≤h(1)=0.当x ∈(1,+∞)时,h(x)=-x2+x +lnx.∵h′(x)=-2x +1x +1=-2x2+x +1x =-(x -1)(2x +1)x <0,∴函数h(x)在(1,+∞)上是减函数,∴h(x)<h(1)=0,∴方程m =lnx -x|x -1|有解时,m≤0, 即函数p(x)有零点时,m 的取值范围为(-∞,0]. 专题限时集训(四)A 【基础演练】1.B [解析] 对于B ,由a3>b3知a>b ,而ab>0,由不等式的倒数法则知1a <1b .故选B.2.D [解析] 由1x <12,得1x -12<0,即2-x 2x <0,于是不等式转化为x(x -2)>0,解得x<0或x>2.故选D.3.B [解析] a·b =4x -4+2y =0,即2x +y =2,9x +3y ≥29x ²3y =232x +y =232=6(当2x =y =1时取等号).4.B [解析] 作出满足题设条件的可行域(如图),则当直线y =-2x +z 经过点A(-2,2)时,截距z 取得最小值,即zmin =2³(-2)+2=-2.【提升训练】5.A [解析] 依题意,由a +d =b +c 得a2+2ad +d2=b2+2bc +c2;由|a -d|<|b -c|得a2-2ad +d2<b2-2bc +c2.于是得bc<ad.故选A.6.A [解析] 依题意,a2<1+x 对任意正数x 恒成立,则a2≤1,求得-1≤a≤1.7.C [解析] 依题意,当x>0时,不等式为lnx ≤1,解得0<x≤e ;当x≤0时,不等式为ex ≤1,解得x≤0.所以不等式的解集为(-∞,e].故选C.8.A [解析] 作出不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -2≥0表示的平面区域,则此平面区域为△ABC ,且A(2,0),B(0,1),C(2,1),于是,S =12³2³1=1.故选A.9.B [解析] 由a>0,b>0且直线x -y =-1与2x -y =2的交点为(3,4),得当x =3,y =4时,z 取得大值,3a +4b =7,所以3a +4b =3a +4b ²3a +4b 7=97+167+127b a +a b ≥257+127³2b a ²a b =257+247=7. 10.(1,+∞) [解析] 依题意,当a =0时,不成立;当a≠0时,要使不等式ax2+2x +a>0的解集为R ,必须满足⎩⎪⎨⎪⎧a>0,Δ=4-4a2<0,解得a>1.故填(1,+∞).11.8 [解析] 依题意,设货车从A 市到B 市的时间为t ,则t =400v +16×v202v =400v +16v 400≥2400v ²16v400=216=8.故填8. 12.8 [解析] 依题意,函数y =a2x -4+1(a>0且a≠0)过定点A(2,2),又A 在直线x m +yn =1,所以2m +2n =1.于是m +n=2m +2n (m +n)=4+2n m +2mn≥4+22n m ²2mn=8. 13.⎣⎡⎦⎤34,43 [解析] 根据指数函数的性质,可知函数f(x)=mx +1+1(m>0,m≠1)恒过定点(-1,2).将点(-1,2)代入2ax -by +14=0,可得a +b =7.由于(-1,2)始终落在所给圆的内部或圆上,所以a2+b2≤25.由⎩⎪⎨⎪⎧a +b =7,a2+b2=25,解得⎩⎪⎨⎪⎧a =3,b =4,或⎩⎪⎨⎪⎧a =4,b =3.这说明点(a ,b)在以A(3,4)和B(4,3)为端点的线段上运动,所以b a 的取值范围是34,43.专题限时集训(四)B【基础演练】1.D [解析] ∵y>x>0,且x +y =1,取特殊值:x =14,y =34,则x +y 2=12,2xy =38,∴x<2xy<x +y 2<y.故选D.2.D [解析] ∵am +bn +c<0,b<0,∴n>-a b m -cb .∴点P 所在的平面区域满足不等式y>-a b x -cb,a>0,b<0.∴-ab>0.故点P 在该直线的上侧,综上知,点P 在该直线的左上方.3.D [解析] 依题意,得a +b =x +y ,cd =xy ,于是(a +b )2cd =(x +y )2xy =x2+y2+2xyxy ≥2xy +2xyxy=4.故选D.4.D [解析] 依题意,不等式f(x0)>1等价于⎩⎪⎨⎪⎧x0≤0,12x0>1或⎩⎨⎧x0>0,x0>1,解得x0<0或x0>1.故选D.【提升训练】5.C [解析] 因为0<x<1,所以1+x>2x =4x>2x ,所以只需比较1+x 与11-x 的大小.因为1+x -11-x =1-x2-11-x =x2x -1<0,所以1+x<11-x.故选C.6.B [解析] 依题意知,-12和13是一元二次方程ax2+bx +2=0的两根,且a<0,则⎩⎨⎧-12+13=-ba ,-12×13=2a ,解得⎩⎪⎨⎪⎧a =-12,b =-2.于是,不等式2x2+bx +a<0即是2x2-2x -12<0,解得-2<x<3.故选B.7.C [解析] 依题意,函数f(x)=x +ax -2(x>2)的图像过点A(3,7),则a =4.于是,f(x)=x+4x -2=(x -2)+4x -2+2≥2(x -2)·4x -2+2=6.故选C.8.A [解析] 作出满足条件的可行域,由图可知,当z =x +ay ,取得最大值的最优解有无数个时,-1a =-2,解得a =12.于是目标函数z =x +12y 经过点(1,2)时,z 得最小值为2.故选A.9.2π [解析] 在同一直角坐标系中作出可行域⎩⎨⎧(x +3y )(3x -y )≤0,x2+y2≤4.由图形知,不等式组表示的平面区域的面积是二分之一的半径为2的圆面积,即S =12³π³22=2π.10.k ≤2 [解析] 依题意,不等式x2-kx +k -1>0对x ∈(1,2)恒成立,则x2-1>k(x -1)对x ∈(1,2)恒成立,所以k<x +1对x ∈(1,2)恒成立,即k≤1+1=2.11.6 [解析] 如图,依题意,S =12²2a ²a =a2=4,所以a =2.分析可知,当直线y =-2x +z 经过点A(2,2)时,zmax =2×2+2=6.12.2+22 [解析] 画出不等式组表示的平面区域,当t 最小时,所表示的区域为第一象限的一个等腰直角三角形.依题意,它有一个半径为1的内切圆,不妨设斜边|OB|=t ,则两直角边长|AB|=|OA|=22t ,所以22t +22t -t 2=1,求得t =22-1=22+2,即 tmin =2+22.专题限时集训(五)【基础演练】1.C [解析] 将点(2,3)分别代入曲线y =x3+ax +1和直线y =kx +b ,得a =-3,2k +b =3.又k =y′|x =2=(3x2-3)|x =2=9,所以b =3-2k =3-18=-15.故选C.2.C [解析] 对f(x)求导,得f ′(x)=3x2+2x +m ,因为f(x)是R 上的单调函数,二次项系数a =3>0,所以Δ=4-12m≤0,解得m≥13.3.C [解析] 对f(x)求导得f ′(x)=3x2-6x =3x(x -2),则f(x)在区间[-1,0]上递增,在区间[0,1]上递减,因此函数f(x)的最大值为f(0)=2.故选C. 4.A [解析] 对f(x)求导,得f ′(x)=x2+c +(x -2)·2x.又因为f′(2)=0,所以4+c +(2-2)×4=0,所以c =-4.于是f′(1)=1-4+(1-2)×2=-5.故选A. 【提升训练】5.D [解析] ∵s(t)=t2+3t ,∴s′(t)=2t -3t2,则机器人在t =2时的瞬时速度为s′(2)=2×2-322=134(m/s).故选D. 6.B [解析] 对f(x)求导,得f ′(x)=2ax ,因为f(x)在区间(-∞,0)内是减函数,则f′(x)<0,求得a>0,且此时b ∈R.故选B.7.A [解析] 对f(x)求导,得f ′(x)=3x2-3≥-3,∴f(x)上任意一点P 处的切线的斜率k≥-3,即tan α≥-3, ∴0≤α<π2或2π3≤α<π.8.D [解析] 由于AB 的长度为定值,只要考虑点C 到直线AB 的距离的变化趋势即可.当x 在区间[0,a]变化时,点C 到直线AB 的距离先是递增,然后递减,再递增,再递减,S′(x)的图像先是在x 轴上方,再到x 轴下方,再回到x 轴上方,再到x 轴下方,并且函数在直线AB 与函数图像的交点处间断,在这个间断点函数性质发生突然变化,所以选项D 中的图像符合要求.9.C [解析] 对f(x)求导,得f ′(x)=3mx2+2nx.依题意⎩⎪⎨⎪⎧f (-1)=-m +n =2,①f′(-1)=3m -2n =-3,②解得⎩⎪⎨⎪⎧m =1,n =3,所以f ′(x)=3x2+6x =3x(x +2).由此可知f(x)在[-2,0]上递减,又已知f(x)在[t ,t +1]上递减,所以[-2,0]⊇[t ,t +1],即⎩⎪⎨⎪⎧t ≥-2,t +1≤0,解得-2≤t≤-1.故选C.10.(1,e) [解析] 设切点坐标为(x0,y0),对f(x)=ex 求导,得f ′(x)=ex ,所以f′(x 0)=ex0=e ,即x0=1.又y0=f(x0)=ex0=e ,所以切点坐标为(1,e).11.-13 [解析] 对f(x)求导,得f ′(x)=-3x2+2ax ,由函数在x =2处取得极值知f′(2)=0,即-3×4+2a×2=0,∴a =3.于是f(x)=-x3+3x2-4,f ′(x)=-3x2+6x ,由此可得f(x)在[-1,0)上单调递减,在(0,1]上单调递增,∴当m ∈[-1,1]时,f(m)min =f(0)=-4.又∵f ′(x)=-3x2+6x 的图像开口向下,且对称轴为x =1,∴当n ∈[-1,1]时,f′(n)min =f(-1)=-9.故f(m)+f′(n)的最小值为-13.12.-2,23 [解析] ∵f ′(x)=3x2+1>0恒成立,∴f(x)是R 上的增函数.又f(-x)=-f(x),∴y =f(x)是奇函数.由f(mx -2)+f(x)<0得f(mx -2)<-f(x)=f(-x),∴mx -2<-x ,即mx-2+x<0在m ∈[-2,2]上恒成立.记g(m)=xm -2+x ,则⎩⎪⎨⎪⎧g (-2)<0,g (2)<0,即⎩⎪⎨⎪⎧-2x -2+x<0,2x -2+x<0,求得-2<x<23.13.解:(1)f′(x)=1k (x2-k2)e xk>0,当k>0时,f(x)的增区间为(-∞,-k)和(k ,+∞),f(x)的减区间为(-k ,k),当k<0时,f(x)的增区间为(k ,-k),f(x)的减区间为(-∞,k)和(-k ,+∞). (2)当k>0时,f(k +1)=e k +1k >1e ,所以不会有任意x ∈(0,+∞),f(x)≤1e .当k<0时,由(1)有f(x)在(0,+∞)上的最大值是f(-k)=4k2e ,所以任意x ∈(0,+∞),f(x)≤1e 等价于f(-k)=4k2e ≤1e⇒-12≤k<0.综上,k 的范围为-12,0.14.解:(1)令f ′(x)=1x -ax2=0,得x =a.当a≥e 时,函数f(x)在区间(0,e]是减函数,f(x)min =ae;当0<a<e 时,函数f(x)在区间(0,a]是减函数,[a ,e]是增函数f(x)min =lna. 综上所述,当0<a<e 时,f(x)min =lna ;当a≥e 时,f(x)min =ae .(2)由(1)可知,a =1时,函数f(x)在x1∈(0,e)的最小值为0, 所以g(x)=(x -b)2+4-b2.当b≤1时,g(1)=5-2b<0不成立; 当b≥3时,g(3)=13-6b<0恒成立;当1<b<3时,g(b)=4-b2<0,此时2<b<3.综上可知,满足条件的实数b 的取值范围为{b|b>2}. 15.解:(1)由f(x)=lnx -ax ,得f(x)的定义域为(0,+∞),f ′(x)=x +ax2.当a =1时,f ′(x)=x +1x2>0(x>0),f(x)在(0,+∞)上单调递增.(2)由已知,得g(x)=ax -ax -5lnx ,其定义域为(0,+∞),g ′(x)=a +a x2-5x =ax2-5x +ax2.因为g(x)在其定义域内为增函数,所以∀x ∈(0,+∞),g ′(x)≥0,即ax2-5x +a≥0,即a≥5xx2+1.而5x x2+1=5x +1x≤52,当且仅当x =1时,等号成立,所以a≥52.(3)当a =2时,g(x)=2x -2x -5lnx ,g′(x)=2x2-5x +2x2,令g′(x)=0,得x =12或x =2.当x ∈0,12时,g′(x)>0;当x ∈12,1时,g ′(x)<0.所以在 (0,1)上,g(x)max =g 12=-3+5ln2.而“∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立”等价于“g(x)在(0,1)上的最大值不小于h(x)在[1,2]上的最大值”.又h(x)在[1,2]上的最大值为max{h(1),h(2)}.所以有⎩⎨⎧g 12≥h (1),g 12≥h (2),即⎩⎪⎨⎪⎧-3+5ln2≥5-m ,-3+5ln2≥8-2m ,解得m≥8-5ln2,即实数m 的取值范围是[8-5ln2,+∞). 专题限时集训(六)A 【基础演练】1.B [解析] 方法1:sin15°+cos165°=sin15°-cos15°=2sin15°²cos45°-cos15°sin45°=2sin(-30°)=-22. 方法2:显然sin15°-cos15°<0,(sin15°-cos15°)2=1-sin30°=12,故sin15°-cos15°=-22. 2.C [解析] 因为1-sin2x =(sinx -cosx )2=|sinx -cosx|,又1-sin2x =sinx -cosx ,所以|sinx -cosx|=sinx -cosx ,则sinx -cosx ≥0,即sinx ≥cosx.又0≤x<2π,所以π4≤x ≤5π4.3.D [解析] 由cos(x +y)sinx -sin(x +y)cosx =1213得sin[x -(x +y)]=-siny =1213,所以siny =-1213.又y 是第四象限的角,所以cosy =513,于是tan y 2=1-cosy siny =1-513-1213=-23.故选D.4.-π6 [解析] 由正弦函数的性质知,正弦函数图像的对称中心是其与x 轴的交点,∴y=2sin2x0+π3=0,又x0∈⎣⎡⎦⎤-π2,0,∴x0=-π6.故填-π6.【提升训练】5.A [解析] 由sin θ+cos θ=2,得θ=2k π+π4,所以tan θ+π3=tan π4+π3=1+31-3=-2- 3.故选A.6.C [解析] 周期T =2πω=5π6--π6=π,解得ω=2,令2×-π6+φ=0,得φ=π3.故选C.7.C [解析] 依题意得f -15π4=f -15π4+3π2³3=f 3π4=sin 3π4=22.故选C.8.B [解析] 依题意得f(x)=sinx +3cosx =2sinx +π3,因为f(x)在⎣⎡⎦⎤0,π6上单调递增,所以f π7<f π6,而c =f π3=2sin 2π3=2sin π3=f(0)<f π7,所以c<a<b.9.B [解析] 因为f(x)=sinx +acosx 的图像的一条对称轴直线是x =5π3,所以⎪⎪⎪⎪sin 5π3+acos 5π3=1+a2,所以⎪⎪⎪⎪-32+12a =1+a2,即34a2+32a +14=0,求得a =-33.于是g(x)max =1+a2=1+13=233.故选B. 10.13 [解析] 依题意由sin(x +y)=1得x +y =2k π+π2(k ∈Z),所以y =2k π+π2-x(k ∈Z).于是sin(2y +x)=sin ⎣⎡⎦⎤2k π+π2+y =sin π2+y =cosy =cos2k π+π2-x =cos π2-x =sinx=13.故填13. 11.74 [解析] 依题意,将函数y =sin ωx +5π6(ω>0)的图像向右平移π3个单位长度后,所得图像对应的函数解析式是y =sin ωx +5π6-π3ω(ω>0),它的图像与函数y =sin ωx +π4的图像重合,所以5π6-π3ω=π4+2k π(k ∈Z),解得ω=74-6k(k ∈Z),因为ω>0,所以ωmin=74.故填74. 12.③④ [解析] 对f(x)=cosxsinx =12sin2x ,画出函数的图像,分析知③,④是正确的.故填③,④.13.解:(1)因为f(x)=32sin2x -12cos2x =sin2x -π6, 故f(x)的最小正周期为π.(2)当x ∈0,π2时,2x -π6∈-π6,5π6,所以f(x)∈-12,1,于是函数f(x)在⎣⎡⎦⎤0,π2上的值域为-12,1.14.解:(1)依题意,得f(x)=2sinxcos π6+cosx +a =3sinx +cosx +a =2sinx +π6+a.所以函数f(x)的最小正周期T =2π.(2)因为x ∈-π2,π2,所以-π3≤x +π6≤2π3.所以当x +π6=-π3,即x =-π2时,f(x)min =f -π2=-3+a ;当x +π6=π2,即x =π3时,f(x)max =f π3=2+a.由题意,有(-3+a)+(2+a)=3,解得a =3-1.15.解:(1)∵函数f(x)的最小正周期T =2πω=π(ω>0),∴ω=2.∵f π4=cos2³π4+φ=cos π2+φ=-sin φ=32,且-π2<φ<0,∴φ=-π3.(2)由(1)知f(x)=cos2x -π3,(3)∵f(x)>22,即cos2x -π3>22, 得2k π-π4<2x -π3<2k π+π4,k ∈Z ,即2k π+π12<2x<2k π+712π,k ∈Z ,即k π+π24<x<k π+724π,k ∈Z.∴所求x 的取值范围是⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π24<x<k π+724π,k ∈Z .专题限时集训(六)B【基础演练】1.B [解析] 因为sin α=35,α是第二象限的角,所以tan α=-34.又因为tan (α+β)=tan α+tan β1-tan αtan β=1,所以-34+tan β1+34tan β=1,求得tan β=7.故选B.2.D [解析] 因为y =sinx -cosx =2sinx -π4,令-π2≤x -π4≤π2,得-π4≤x ≤3π4,满足题意,所以f(x)可以是-cosx.3.B [解析] 依题意得点P 到坐标原点的距离为sin240°+(1+cos40°)2=2+2cos40°=2+2(2cos220°-1)=2cos20°.由三角函数的定义可得cos α=sin40°2cos20°=2sin20°cos20°2cos20°=sin20°=cos70°,因为点P 在第一象限,且角α为锐角,所以α=70°.故选B.4.B [解析] 由已知得y =cos2x -π4=cos π2-2x =sin2x ,因此函数y =1-2sin2x -π4是最小正周期为π的奇函数.故选B.5.A [解析] 依题意得cos θ=±35.又因为sin θ-cos θ>1,所以cos θ=-35,于是sin2θ=2sin θcos θ=2×45³-35=-2425.6.D [解析] 平移后得到的函数图像的解析式是f(x)=Acosx ²sin ωx +π6ω+π6,这个函数是奇函数,由于y =cosx 是偶函数,故只要使得函数y =sin ωx +π6ω+π6是奇函数即可,根据诱导公式和正弦函数性质,则只要π6ω+π6=k π(k ∈Z)即可,即ω=6k -1(k ∈Z),所以ω的可能值为5.7.B [解析] 设(x ,y)为g(x)的图像上任意一点,则其关于点π4,0对称的点为π2-x ,-y ,由题意知该点必在f(x)的图像上,所以-y =sinπ2-x ,即g(x)=-sin π2-x =-cosx.依题意得sinx ≤-cosx ,即sinx +cosx =2sinx +π4≤0.又x ∈[0,2π],解得3π4≤x ≤7π4.故选B.8.A [解析] 依题意,得f(x)=sin (ωx +φ)+cos (ωx +φ)=2sin ωx +φ+π4,由T =2πω=π(ω>0),得ω=2.又f(-x)=f(x),所以φ+π4=k π+π2(k ∈Z),即φ=k π+π4(k ∈Z).又|φ|<π2,所以φ=π4.于是f(x)=2cos2x ,它在0,π2上单调递减.9.A [解析] 作出点P 在x 轴上的投影C ,因为函数周期为T =2ππ=2,则|AC|=14T =12,|PC|=1.在Rt △APC 中,tan ∠APC =|AC||PC|=12,同理tan ∠BPC =|BC||PC|=32,所以tan ∠APB =tan(∠APC +∠BPC)=12+321-12×32=8.故选A.10.13 [解析] 因为cos θ=-35,且θ是第三象限角,所以sin θ=-45.于是cos θsin θ-1=-35-45-1=13.故填13. 11.36565 [解析] 由已知sin (α-β)=513,cos (α+β)=-45,所以sin2α=sin [(α+β)+(α-β)]=sin (α+β)cos (α-β)+cos (α+β)·sin (α-β)=-35³1213+-45³513=-5665.则(sin α+cos α)2=1+sin2α=1-5665=965,当π2<α<3π4时,sin α+cos α>0,即sin α+cos α=36565.12.①②③⑤ [解析] 由题意得f(x)=m2+n2sin(x +φ)其中tan φ=nm .因为f π4是它的最大值,所以π4+φ=2k π+π2(k ∈Z),φ=2k π+π4(k ∈Z).所以f(x)=m2+n2sinx +2k π+π4=m2+n2sinx +π4,且tan φ=n m =tan2k π+π4=1,即nm =1,故f(x)=2|m|sinx +π4.①fx +π4=2|m|sinx +π4+π4=2|m|cosx 为偶函数,所以①正确;②当x =7π4时,f 7π4=2|m|sin 7π4+π4=2|m|sin2π=0,所以函数f(x)的图像关于点7π4,0对称,②正确;③f -3π4=2|m|sin π4-3π4=-2|m|sin π2=-2|m|,f(x)取得最小值,所以③正确;④根据f(x)=2|m|sinx +π4可得其最小正周期为2π,由题意可得P2与P4相差一个周期2π,即|P2P4|=2π,所以④错误; ⑤由n m =1知,mn =1成立,所以⑤正确.故填①②③⑤.13.解:(1)函数f(x)=sin2x +π4+φ.又y =sinx 的图像的对称轴方程为x =k π+π2(k ∈Z),令2x +π4+φ=k π+π2,将x =π6代入,得φ=k π-π12(k ∈Z).∵0<φ<π,∴φ=11π12.(2)由(1)知f(x)=sin2x +7π6.由-π2≤x≤0,得π6≤2x +7π6≤7π6,∴当2x +7π6=7π6,即x =0时,f(x)min =-12.14.解:(1)f(x)=2sin2⎝⎛⎭⎫ωx +π4+2cos2ωx=1-cos ⎝⎛⎭⎫2ωx +π2+1+cos2ωx=sin2ωx +cos2ωx +2=2sin ⎝⎛⎭⎫2ωx +π4+2,∵函数f(x)的图像上两个相邻的最低点之间的距离为2π3, ∴f(x)的最小正周期为2π3,∴2π2ω=2π3(ω>0),∴ω的值为32,∴函数f(x)=2sin ⎝⎛⎭⎫3x +π4+2,∴函数f(x)的最大值为2+2,此时3x +π4=2k π+π2,即x =2k π3+π12(k ∈Z).(2)y =f(x)的图像向右平移π8个单位长度得h(x)=2sin ⎣⎡⎦⎤3⎝⎛⎭⎫x -π8+π4+2=2sin ⎝⎛⎭⎫3x -π8+2,再沿y 轴对称后得到g(x)=2sin ⎝⎛⎭⎫-3x -π8+2=-2sin ⎝⎛⎭⎫3x +π8+2,函数g(x)的单调减区间,即y =sin ⎝⎛⎭⎫3x +π8单调递增区间.由2k π-π2≤3x +π8≤2k π+π2,解得23k π-5π24≤x ≤23k π+π8(k ∈Z).故y =g(x)的单调减区间为⎣⎡⎦⎤23k π+5π24,23k π+π8(k ∈Z).15.解:(1)f(x)=2sinx +π3cosx +π3-23cos2x +π3=sin2x +2π3-3⎣⎡⎦⎤cos2x +2π3+1=sin2x +2π3-3cos2x +2π3- 3=2sin2x +π3- 3.∵-1≤sin2x +π3≤1,∴-2-3≤2sin2x +π3-3≤2-3,又T =2π2=π,即f(x)的值域为[-2-3,2-3],最小正周期为π. (2)当x ∈⎣⎡⎦⎤0,π6时,2x +π3∈⎣⎡⎦⎤π3,23π,∴sin2x +π3∈⎣⎡⎦⎤32,1,此时f(x)+3=2sin2x +π3∈[3,2].由m[f(x)+3]+2=0知,m≠0,且f(x)+3=-2m ,∴3≤-2m ≤2,即⎩⎨⎧2m+3≤0,2m+2≥0,解得-233≤m≤-1.即实数m 的取值范围是⎣⎡⎦⎤-233,-1. 专题限时集训(七)【基础演练】1.A [解析] ∵a2+c2-b22ac =cosB =32,又0<B<π,∴B =π6.2.A [解析] 根据正弦定理得,2sin45°=2sinC ,所以sinC =12,因为C ∈(0,π),所以C=30°或150°.又因为A =45°,且AB<BC ,所以C =30°.3.D [解析] 根据三角形面积公式和正弦定理S =12absinC =122RsinA ²2RsinB ²sinC =2R2sinAsinBsinC ,将R =1和S =1代入得,sinAsinBsinC =12.4.D [解析] 设电视塔的高度为x ,则BC =x ,BD =3x.在△BCD 中,根据余弦定理得3x2=x2+402-2×40xcos120°,即x2-20x -800=0,解得x =-20(舍去),或者x =40.故电视塔的高度为40 m. 【提升训练】5.D [解析] 根据余弦定理得b =32+82-2×3×8cos60°=7,根据正弦定理3sinA=7sin60°,解得sinA =3314.6.C [解析] 由正弦定理得AB sinC =BCsinA,所以a =2sinA.而C =60°,所以0°<∠CAB<120°.又因为△ABC 有两个,所以asin60°<3<a ,即3<a<2.7.B [解析] 由题意得b2=ac ,又c =2a ,由余弦定理得cosB =a2+c2-b22ac =a2+4a2-a×2a2a×2a =34. 8.D [解析] 依题意与正弦定理得AB sinC =AC sinB ,即sinC =AB ²sinB AC =32,∴C =60°或C=120°.当C =60°时,A =90°,则△ABC 的面积等于12AB ²AC =32;当C =120°时,A =30°,则△ABC 的面积等于12AB ²AC ²sinA =34.所以△ABC 的面积等于32或34.9.-14 [解析] 由正弦定理a sinA =b sinB =csinC 可得,a ∶b ∶c =sinA ∶sinB ∶sinC =2∶3∶4,由此设a =2k ,b =3k ,c =4k(k>0).由余弦定理可得,cosC =a2+b2-c22ab=(2k )2+(3k )2-(4k )22³2k ³3k=-14.10.6-1 [解析] 由题意可得,∠ACB =120°,AC =2,AB =3,设BC =x ,则由余弦定理可得,AB2=BC2+AC2-2BC×ACcos120°,即32=x2+22-2×2xcos120°,整理得x2+2x =5,解得x =6-1或x =-6-1(舍去).故填6-1.11.233 [解析] 由△BCD 的面积为1,可得12³CD ³BC ³sin ∠DCB =1,即sin ∠DCB =55,所以cos ∠DCB =255.在△BCD 中,由余弦定理可知,cos ∠DCB =CD2+BC2-BD22CD ³BC =255,解得BD =2,所以cos ∠DBC =BD2+BC2-CD22BD ³BC =31010.由在△BCD 中,∠DBC 对应的边长最短,所以∠DBC 为锐角,所以sin ∠DBC =1010.在△ABC 中,由正弦定理BC sinA =AC sinB可得,AC =BC·sinBsinA=10³101032=233.12.解:(1)依题意,由正弦定理得sinCsinA =sinAcosC , 在△ABC 中,因为sinA ≠0,所以sinC =cosC ,得C =π4. (2)3sinA -cosB +π4=3sinA -cos ⎣⎡⎦⎤π-(A +C )+π4=3sinA -cos(π-A)=3sinA +cosA =2sinA +π6.因为A ∈0,3π4,所以A +π6∈π6,11π12,于是,当sinA +π6=1,A +π6=π2,A =π3时,3s inA -cosB +π4取得最大值2,此时B =5π12.13.解:(1)∵(2b -3c)cosA =3acosC ,∴(2sinB -3sinC)cosA =3sinAcosC , 即2sinBcosA =3sinAcosC +3sinCcosA , ∴2sinBcosA =3sinB. ∵sinB ≠0,∴cosA =32, ∵0<A<π,∴A =π6.(2)由(1)知A =B =π6,所以AC =BC ,C =2π3,设AC =x ,则MC =12x.又AM =7,在△AMC 中,由余弦定理得 AC2+MC2-2AC·MCcosC =AM2,即x2+x 22-2x·x2²cos120°=(7)2,解得x =2,故S △ABC =12x2sin 2π3= 3.14.解:(1)如图所示,作PN ⊥AB ,N 为垂足,∠PQM =θ,∠PMQ =π-α,sin θ=513,sin α=45,cos θ=1213,cos α=35.在Rt △PNQ 中,PN =PQsin θ=5.2×513=2,QN =PQ·cos θ=5.2×1213=4.8.在Rt △PNM 中,MN =PN tan α=243=1.5,PM =PN sin α=245=2.5,∴MQ =QN -MN =4.8-1.5=3.3.设游船从P 到Q 所用时间为t1 h ,游客甲从P 经M 到Q 所用时间为t2 h ,小船速度为v1 km/h , 则t1=PQ 13=5.213=26513=25,t2=PM v1+MQ 66=2.5v1+3.366=52v1+120.由已知,得t2+120=t1,即52v1+120+120=25,∴v1=253.于是,当小船的速度为253km/h 时,游客甲才能和游船同时到达Q 地.(2)在Rt △PMN 中,PM =PN sin α=2sin α,MN =PN tan α=2cos αsin α,∴QM =QN -MN =4.8-2cos αsin α.于是t =PM 10+QM 66=15sin α+455-cos α33sin α=1165³33-5cos αsin α+455.∵t ′=1165³5sin2α-(33-5cos α)cos αsin2α=5-33cos α165sin2α,∴令t′=0,得cos α=533.当cos α<533时,t′>0;当cos α>533时,t′<0,又y =cos α在α∈0,π2上是减函数,∴当方位角α满足cos α=533时,t 取最小值,即游客甲能按计划以最短时间到达Q 地.专题限时集训(八) 【基础演练】1.C [解析] 依题意,由a ⊥b 得a·b =0,即3x +3=0,解得x =-1.故选C. 2.B [解析] 依题意,得a·b =|a||b|cos30°=2sin75°²4cos75°³32=23sin150°= 3.故选B.3.A [解析] 由a ∥b 得2x =-4,∴x =-2,于是a·b =(1,2)·(-2,-4)=-10.故选A. 4.D [解析] 由a·(a +b)=0得a·a +a·b =0,即|a|2+|a|·|b|cos 〈a ,b 〉=0,将已知数据代入解得,cos 〈a ,b 〉=-12,所以〈a ,b 〉=120°.故选D.【提升训练】5.C [解析] 依题意a 在b 方向上的投影为|a|cos 〈a ,b 〉=2cos π3=22.故选C.6.C [解析] 依题意,|a|=1,|b|=1,所以a·b =|a||b|cos60°=12.于是|a +3b|=(a +3b )2=|a|2+6a·b +9|b|2=1+6×12+9=13.故选C.7.A [解析] 由题设知p·q =sinAsinB -cosAcosB =-cos(A +B)=cosC.又△ABC 是锐角三角形,所以cosC>0,即p·q>0,所以p 与q 的夹角为锐角.故选A. 8.C [解析] 取BC 边中点M ,由2OA →+AB →+AC →=0,可得2AO →=AB →+AC →=2AM →,则点M 与点O 重合.又由|OB →|=|OC →|=|OA →|=|AB →|=1,可得|AC|=|BC|sin60°=2×32=3,则CA →²CB →=|CA →|²|CB →|cosC =|CA →|2=3.9.B [解析] 因为点G 是△ABC 的重心,所以AG →=23³12(AB →+AC →)=13AB →+13AC →.当点P 在线段BC 上运动时,λ+μ=1;当点P 在线段GB 、GC 上运动时,λ+μ的最小值为23.又因为点P 是△GBC 内一点,所以23<λ+μ<1.故选B.10.324 [解析] 因为a ∥b ,所以12³1=sinx ²cosx ,即sin2x =1.又因为x ∈⎣⎡⎦⎤0,π2,所以2x =π2,即x =π4.于是a·b =12sinx +cosx =12sin π4+cos π4=12³22+22=324.11.8 [解析] 依题意得OA →2=OB →2=OC →2,由于AC →2=(OC →-OA →)2=OC →2+OA →2-2OC →²OA →, 所以OC →²OA →=12(OC →2+OA →2-AC →2),同理OA →²OB →=12(OA →2+OB →2-AB →2),所以AO →²BC →=-OA →²(OC →-OB →)=-OA →²OC →+OA →²OB →=-12(OA →2+OC →2-AC →2)+12(OA →2+OB →2-AB →2)=12(AC →2-AB →2)=12(52-32)=8. 12.1 [解析] 依题意,得|a|=1,又△OAB 是以O 为直角顶点的等腰直角三角形,则OA →⊥OB →,|OA →|=|OB →|,则(a -b)·(a +b)=|a|2-|b|2=0,即|a|=|b|.又|OA →|=|OB →|,故|a -b|=|a +b|,得a·b =0,则|a +b|2=|a|2+|b|2=2,所以|OA →|=|OB →|= 2.于是S △AOB =12³2³2=1.13.解:(1)由a·b =0得(sinB +cosB)sinC +cosC(sinB -cosB)=0, 化简得sin(B +C)-cos(B +C)=0, 即sinA +cosA =0,∴tanA =-1. 而A ∈(0,π),∴A =34π.(2)∵a·b =-15,即sin(B +C)-cos(B +C)=-15,sinA +cosA =-15.①对①平方得2sinAcosA =-2425.∵-2425<0,∴A ∈π2,π,∴sinA -cosA =1-2sinAcosA =75.②联立①②得sinA =35,cosA =-45,∴tanA =-34,于是,tan2A =2tanA 1-tan2A=2³-341--342=-247.14.解:(1)∵f(x)=32sin πx +12cos πx =sin πx +π6. ∵x ∈R ,∴-1≤sin πx +π6≤1,∴函数f(x)的最大值和最小值分别为1,-1. (2)解法1:令f(x)=sin πx +π6=0得πx +π6=k π,k ∈Z , ∵x ∈[-1,1],∴x =-16或x =56,∴M -16,0,N 56,0,由sin πx +π6=1,且x ∈[-1,1]得x =13,∴P 13,1,∴PM →=-12,-1,PN →=12,-1,∴cos 〈PM →,PN →〉=PM →²PN →|PM →|²|PN →|=35.解法2:过点P 作PA ⊥x 轴于A ,则|PA|=1,。
2013高考数学(理)二轮复习配套作业(解析版):专题限时集训(五)B(课程标准卷地区专用)
专题限时集训(五)B[第5讲 导数在研究函数性质中的应用](时间:45分钟)1.函数y =xex 的最小值是( )A .-1B .-eC .-1eD .不存在 2.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a =( ) A .2 B .-2 C .-12 D.123.已知f(a)=⎠⎛01(2ax2-a2x)dx ,则函数f(a)的最大值为( ) A .1 B.49 C.29 D.194.垂直于直线2x -6y +1=0且与曲线f(x)=x3+3x2-1相切的直线l 与曲线f(x)及y 轴所围成的图形的面积是________.5.对于R 上可导的任意函数f(x),若满足(x -1)f′(x)≥0,则必有( )A .f(0)+f(2)<2f(1)B .f(0)+f(2)≤2f(1)C .f(0)+f(2)≥2f(1)D .f(0)+f(2)>2f(1)6.函数y =xsinx +cosx 在下面哪个区间上为增函数( )A.⎝⎛⎭⎫π2,3π2 B .(π,2π)C.⎝⎛⎭⎫3π2,5π2 D .(2π,3π)7.已知函数f(x)=x2eax ,其中a 为常数,e 为自然对数的底数,若f(x)在(2,+∞)上为减函数,则a 的取值范围为( )A .(-∞,-1)B .(-∞,0)C .(-∞,1)D .(-∞,2)8.定义在区间[0,a]上的函数f(x)的图象如图5-1所示,记以A(0,f(0)),B(a ,f(a)),C(x ,f(x))为顶点的三角形面积为S(x),则函数S(x)的导函数S′(x)的图象大致是( )图5-1图5-29.若函数f(x)=⎩⎨⎧ cosx ,0≤x<π2,2,π2≤x≤2,则⎠⎛02f(x)dx =________. 10.已知函数f(x)f(x)的导函数y =f′(x)图5-3下列关于f(x)的命题:①函数f(x)是周期函数;②函数f(x)在[0,2]是减函数;③如果当x ∈[-1,t]时,f(x)的最大值是2,那么t 的最大值为4;④当1<a<2时,函数y =f(x)-a 有4个零点;⑤函数y =f(x)-a 的零点个数可能为0,1,2,3,4个.其中正确命题的序号是________.11.已知函数f(x)=(x -k)2e x k. (1)求f(x)的单调区间;(2)若对于任意的x ∈(0,+∞),都有f(x)≤1e,求k 的取值范围.12.已知函数f(x)=lnx.(1)函数g(x)=3x -2x2,若函数F(x)=f(x)+g(x),求函数F(x)的单调区间;(2)函数h(x)=1+xa1-x,函数G(x)=h(x)·f(x),若对任意x∈(0,1),G(x)<-2恒成立,求实数a的取值范围.13.已知函数f(x)=lnx-ax,a∈R.(1)当a=1时,求f(x)的极值;(2)讨论函数y=f(x)的零点个数;(3)设数列{an},{bn}均为正项数列,且满足a1b1+a2b2+…+anbn≤b1+b2+…+bn,求证:a1b1·a2b2·…·anbn≤1.。
2013高考数学(文)二轮复习配套作业(解析版):专题限时集训(六)A(湖南省专用)
专题限时集训(六)A[第6讲 三角恒等变换与三角函数](时间:45分钟)1.sin15°+co s165°的值为( ) A.22 B .-22 C.62 D .-622.设0≤x<2π,且1-sin2x =sinx -cosx ,则( )A .0≤x ≤π B.π4≤x ≤7π4 C.π4≤x ≤5π4 D.π2≤x ≤3π23.设cos(x +y)sinx -sin(x +y)cosx =1213,且y 是第四象限的角,则tan y 2的值是( ) A .±23 B .±32 C .-32 D .-234.设函数y =2sin2x +π3的图象关于点P(x0,0)成中心对称,若x0∈⎣⎡⎦⎤-π2,0,则x0=________.5.若sin θ+cos θ=2,则tan ⎝⎛⎭⎫θ+π3的值是( ) A .-2- 3 B .2- 3C .2+ 3D .-2+ 36.已知函数f(x)=sin (ωx +φ)ω>0,|φ|<π2的部分图象如图6-1所示,则ω,φ的值分别为( )图6-1 A.12,π3 B.12,π6C .2,π3D .2,π67.设f (x)是定义域为R ,最小正周期为3π2的函数,若f(x )=⎩⎪⎨⎪⎧cosx -π2≤x<0,sinx (0≤x<π),则f -15π4等于( )A .0B .1 C.22 D .-228.已知函数f(x)=sinx +3cosx ,设a =f π7,b =f π6,c =f π3,则a ,b ,c 的大小关系是( ) A .a<b<c B .c<a<bC .b<a<cD .b<c<a 9.已知函数f (x)=sin x +acosx 的图象的一条对称轴是直线x =5π3,则函数g(x)=asinx +cosx 的最大值是( ) A.223 B.233C.43D.26310.已知sinx =13,sin(x +y)=1,则sin(2y +x)=________. 11.若将函数y =sin ωx +5π6(ω>0)的图象向右平移π3个单位长度后,与函数y =sin ωx +π4的图象重合,则ω的最小值为________.12.已知函数f(x)=cosxsinx(x ∈R),给出下列四个命题:①若f(x1)=-f(x2),则x1=-x2;②f(x)的最小正周期是2π;③f(x)在区间⎣⎡⎦⎤-π4,π4上是增函数; ④f(x)的图象关于直线x =3π4对称.其中真命题是________.(把你认为正确的答案都填上)13.已知函数f(x)=3sinxcosx -cos2x +12(x ∈R). (1)求函数f(x)的最小正周期;(2)求函数f(x)在区间0,π2上的取值范围.14.已知函数f(x)=sinx +π6+sinx -π6+cosx +a(a ∈R ,a 为常数).(1)求函数f(x)的最小正周期; (2)若函数f(x)在-π2,π2上的最大值与最小值之和为3,求实数a 的值.15.设x ∈R ,函数f(x)=cos (ωx +φ)ω>0,-π2<φ<0的最小正周期为π,且f π4=32. (1)求ω和φ的值;(2)在如图6-2所示的坐标系中作出函数f(x)在[0,π]上的图象;(3)若f(x)>22,求x 的取值范围.图6-2。
2013高考数学(文)二轮复习配套作业(解析版):作业手册详答(湖北省专用)
专题限时集训(一)A 【基础演练】1.A [解析] 依题意得B ={x|-2<x<1},故A ∪B ={x|-2<x<4}.2.D [解析] 依题意得A ={-1,0,1},因此集合A 的子集个数是23=8. 3.B [解析] 根据特称命题的否认得命题綈p 应为:∀x ∈0,π2,sinx ≠12.4.D [解析] D 项中,当φ=π2时,函数f(x)=sin ⎝⎛⎭⎫2x +π2=cos2x 是偶函数,故D 项错误;A ,B ,C 项都易验证是正确的.故选D.【提升训练】5.B [解析] 由x -2x +3<0得-3<x<2,即M ={x|-3<x<2};由|x -1|≤2得-1≤x≤3,即N ={x|-1≤x≤3}.所以M∩N =[-1,2).6.B [解析] 当c =-1时,由函数f(x)=⎩⎪⎨⎪⎧log2x ,x≥1,x -1,x<1的图象可以得出其是增函数;反之,不一定成立,如取c =-2.所以“c =-1”是“f(x)在R 上单调递增”的充分不必要条件. 7.C [解析] 当“A>B”时,因为sinA -sinB =2cos A +B 2sin A -B 2,易知A +B 2∈⎝⎛⎭⎫0,π2,A -B2∈⎝⎛⎭⎫0,π2,所以cos A +B 2>0,sin A -B 2>0.可以推得sinA>sinB.当“sinA>sinB ”时,有sinA -sinB =2cos A +B 2sin A -B 2>0,又由上得cos A +B 2>0,所以sin A -B 2>0,所以A -B 2∈⎝⎛⎭⎫0,π2,即A -B ∈(0,π),可以推得A>B.故“A>B”是“sinA>sinB ”的充分必要条件.故选C. 8.C [解析] 命题p 等价于Δ=a2-16≥0,即a≤-4或a≥4;命题q 等价于-a4≤3,即a≥-12.由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假.假设p 真q 假,则a<-12;假设p 假q 真,则-4<a<4.故实数a 的取值范围是(-∞,-12)∪(-4,4).9.B [解析] 对于①,显然m≠0,故由am2<bm2两边同时除以m2①正确.对于②,因为x是任意正数,所以不等式2x +a x ≥1等价于a≥x -2x2=-2⎝⎛⎭⎫x -142+18.因为不等式恒成立,所以a≥18.故②正确.对于③,命题“∃x ∈R ,x2-x>0”的否认是“∀x ∈R ,x2-x≤0”,故③错误.对于④,假设命题p ∧q 为假,则p 和q 至少有一个为假,不可以推得命题p ∨q 为假命题;但当命题p ∨q 为假时,则p 和q 都为假,可以推得命题p ∧q 为假命题;故“p ∧q 为假命题”是“p ∨q 为假命题”的必要不充分条件,故④B.10.∀x ∈R ,x>1且x2≤4 [解析] 因为特称命题p :∃x0∈M ,p(x0)的否认为綈p :∀x ∈M ,綈p(x),所以题中命题的否认为“∀x ∈R ,x>1且x2≤4”.11.{5,6} [解析] 依题意作出满足条件的韦恩图,可得B ∩(∁UA)={5,6}.12.①④ [解析] 对于①,“∃x0∈R ,2x0>3”的否认是“∀x ∈R ,2x ≤3”,所以①正确;对于②,注意到sin π6-2x =cos2x +π3,因此函数y =sin2x +π3sin π6-2x =sin2x +π3·cos2x+π3=12sin4x +2π3,其最小正周期为2π4=π2,所以②不正确;对于③,注意到命题“函数f(x)在x =x0处有极值,则f′(x 0)=0”的否命题是“假设函数f(x)在x =x0处无极值,则f′(x 0)≠0”,容易知该命题不正确,如取f(x)=x3,f(x)无极值但当x0=0时,f′(x 0)=0,故③不正确;对于④,依题意知,当x<0时,-x>0,f(x)=-f(-x)=-2-x ,所以④正确.综上所述,其中正确的说法是①④. 专题限时集训(一)B 【基础演练】1.B [解析] (∁UM )∩N ={x|x ∈Z ,x≠-1,0,1}∩{0,1,3}={3}.故选B. 2.A [解析] 依题意得M ={x|x≥-a},N ={x|1<x<3},则∁UN ={x|x≤1,或x≥3}.又M∩(∁UN)={x|x =1,或x≥3}, 所以-a =1,求得a =-1.3.C [解析] 因为a2-a +1=a -122+34≥34>0,所以由a -1a2-a +1<0得a<1,不能得到|a|<1;反过来,由|a|<1得-1<a<1,所以a -1a2-a +1<0.因此“a -1a2-a +1<0”是“|a|<1”成立的必要不充分条件.4.D [解析] 对于A ,命题“假设x2=1,则x =1”的否命题为“假设x2≠1,则x≠1”,因此选项A 不正确;对于B ,由x =-1得x2-5x -6=0,因此“x =-1”是“x 2-5x -6=0”的充分条件,选项B 不正确;对于C ,命题“∃x0∈R ,使得x20+x0-1<0”的否认是:“∀x ∈R ,使得x2+x -1≥0”,因此选项C 不正确;对于D ,命题“假设x =y ,则sinx =siny ”是真命题,因此它的逆否命题也为真命题,选项D 正确. 【提升训练】5.B [解析] A ={x|x2-x -6<0}={x|-2<x<3},所以A∩B ={-1,1,2},有三个元素.故选B.6.D [解析] 因为∀x ∈R ,2x2+2x +12=2x +122≥0,所以p 为假命题;当x =3π4时,sin3π4-cos 3π4=22+22=2,所以q 为真命题,则綈q 是假命题.7.B [解析] 注意到⊙O1与⊙O4无公共点,⊙O2与⊙O3无公共点,则满足题意的“有序集合对”(A ,B)的个数是4.8.A [解析] 对于命题q ,函数f(x)=x2+mx +9存在零点,等价于Δ=m2-4×9≥0,等价于m≥6或m≤-6,又{m|m>7}⊂{m|m ≥6},所以p 是q 的充分不必要条件.故选A. 9.C [解析] 假设xyz =0,不妨设x =0,则由xOA →+yOB →+zOC →=0,得yOB →=-zOC →,故OB →与OC →共线,又它们有公共点O ,所以点O 在直线BC 上.同理,当y =0或z =0可分别推得点O 在直线AC ,AB 上.故由“xyz =0”可以推得“点O 在△ABC 的边所在直线上”;假设点O 在△ABC 的边所在直线上,不妨设点O 在直线BC 上,则一定存在实数λ,使得yOB →+zOC →=λOB →成立.又xOA →+yOB →+zOC →=0,所以xOA →+λOB →OA →与OB →不共线,所以x =0,λ=0.同理,当点O 在直线AC ,AB 上时,可以分别推得y =0,z =0.故由“点O 在△ABC 的边所在直线上”可以推得“xyz =0”.故“xyz =0”是“点O 在△ABC 的边所在直线上”的充要条件.故选C.10.ab =a2+b2 [解析] 由A∩B 只有一个元素知,圆x2+y2=1与直线x a -yb =1相切,则1=aba2+b2,即ab =a2+b2.11.必要不充分 [解析] 设向量a ,b 的夹角为θ,则由题意知,当a·b =|a|·|b|cos θ>0时,θ∈⎣⎡⎭⎫0,π2;假设a 与b 的夹角为锐角,即θ∈0,π2.因为⎝⎛⎭⎫0,π2⎣⎡⎭⎫0,π2,所以p 是q 成立的必要不充分条件.12.(-∞,-1]∪[0,+∞) [解析] 假设对于任意实数x ,都有x2+ax -4a>0,则Δ=a2+16a<0,即-16<a<0;假设对于任意实数x ,都有x2-2ax +1>0,则Δ=4a2-4<0,即-1<a<1.于是命题“对于任意实数x ,都有x2+ax -4a>0且x2-2ax +1>0”是真命题时有a ∈(-1,0),则命题“对于任意实数x ,都有x2+ax -4a>0且x2-2ax +1>0”是假命题时a 的取值范围是(-∞,-1]∪[0,+∞). 专题限时集训(二)A 【基础演练】1.D [解析] 由题意可得⎩⎪⎨⎪⎧x>0,log3x ≠0,解得x>0且x≠1,故函数定义域为(0,1)∪(1,+∞).2.C [解析] 函数是偶函数,只能是选项C 中的图象.3.C [解析] 依题意,因为5≥4,4≥4,所以f(5)=f(5-1)=f(4)=f(4-1)=f(3),而3<4,所以f(3)=23=8.4.B [解析] 因为3a =5b =A ,所以a =log3A ,b =log5A ,且A>0,于是1a +1b =logA3+logA5=logA15=2,所以A =15. 【提升训练】5.D [解析] 由题意,⎩⎨⎧2-x>0,lgx ≥0,D.6.B [解析] 由loga2<0得0<a<1,f(x)=loga(x +1)的图象是由函数y =logax 的图象向左平移1个单位得到的,故为选项B 中的图象.7.A [解析] 由条件知,0<a<1,b<-1,结合选项,函数g(x)=ax +b 只有A 符合要求. 8.B [解析] 根据f(x)的图象知0<b<1,a>1,则函数g(x)单调递增,且是由函数h(x)=logax 向左平移了b(0<b<1)个单位而得到的,故B 项符合. 9.B [解析] 由f(x +3)=-1f 〔x 〕,得f(x +6)=-1f 〔x +3〕=f(x),知6为该函数的一个周期,所以f(107.5)=⎝⎛⎭⎫6×18-12=f ⎝⎛⎭⎫-12=-1f ⎝⎛⎭⎫52=-1f ⎝⎛⎭⎫-52=-1-10=110. 10.-12 [解析] 依题意,f(m)=12,即em -1em +1=12.所以f(-m)=e -m -1e -m +1=1-em 1+em =-em -1em +1=-12.11.7 6 [解析] 因为f(22)=loga((22)2-1)=loga7=1,所以a =7. 故f(f(2))=f[log7(22-1)] =2×7log73=2×3=6.12.②③④ [解析] 根据单函数的定义可知故命题②、④是真命题,①是假命题;根据一个命题与其逆否命题等价可知,命题③是真命题. 专题限时集训(二)B 【基础演练】1.C [解析] 依题意,得⎩⎪⎨⎪⎧x +2>0,1-lg 〔x +2〕≥0,即⎩⎪⎨⎪⎧x +2>0,x +2≤10,解得-2<x≤8,故函数定义域为(-2,8].2.A [解析] f(27)=11+327=14,f(f(27))=f ⎝⎛⎭⎫14=⎪⎪⎪⎪log414-1 A. 3.B [解析] y =-1x 是奇函数,A 错误;y =e|x|是偶函数且在(0,+∞)上单调递增,B 正确;y =-x2+3是偶函数且在(0,+∞)上单调递减,C 错误;y =cosx 是偶函数且在(0,+∞)上有时递增,有时递减,D 错误.4.C [解析] 依题意,由f(2-x)=f(x)得f(1-x)=f(1+x), 即函数f(x)的对称轴为直线x =1,结合图形可知f 12<f 13<f(0)=f(2). 【提升训练】5.C [解析] 将函数f(x)=x|x|-2x 去掉绝对值,得f(x)=⎩⎪⎨⎪⎧x2-2x ,x≥0,-x2-2x ,x<0,画出函数f(x)的图象,观察图象可知,函数f(x)的图象关于原点对称,故f(x)为奇函数,且在(-1,1)上单调递减.6.A [解析] 此题考查函数的奇偶性,周期性,函数求值. f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫12=-2×12×⎝⎛⎭⎫1-12=-12.故选A. 7.C [解析] 函数是偶函数,而且函数值为正值,在x→0时,x sinx →1,当x→π时,x sinx →+∞,综合这些信息得只能是选项C 中的图象.8.D [解析] 由题意,f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,4+4)=6×14D.9.D [解析] 依题意得,f(x -1)=⎩⎪⎨⎪⎧x +1,x≤0,-x +1,0<x<2,x -3,x≥2,在同一直角坐标系中作出函数y =f(x -1)和y =t(|t|<1)的图象(如图),由图象知方程f(x -1)=t(|t|<1)所有根的和s 的取值范围是(2,4).10.-14 [解析] 由对任意t ∈R ,都有f(t)=f(1-t),可得f(-t)=f(1+t),即f(t +1)=-f(t),进而得到f(t +2)=-f(t +1)=-[-f(t)]=f(t),即函数y =f(x)的一个周期为2,故f(3)=f(1)=f(0+1)=-f(0)=0,f -32=f 12=-14.所以f(3)+f -32=0+-14=-14.11.①②④ [解析] 依题意,令x =-2得f(2)=f(-2)+f(2),又函数f(x)是偶函数,故f(2)=0,所以①正确;根据①可得f(x +4)=f(x),即函数f(x)的周期为4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f(x)图象的一条对称轴,所以②正确;根据函数的周期性可知,函数f(x)在[8,10]上单调递减,所以③不正确;由于函数f(x)的图象关于直线x =-4对称,故如果方程f(x)=m 在[-6,-2]上的两根为x1,x2,则x1+x2=-8,所以④正确. 12.②④ [解析] 对于①,结合函数f(x)的图象分析可知,不存在函数g(x),使得f(x)≥g(x)对一切实数x 都成立,即f(x)不存在承托函数;对于②,注意到f(x)=2-x>0,因此存在函数g(x)=0,使得f(x)≥g(x)对一切实数x 都成立,即f(x)存在承托函数;对于③,结合函数f(x)的图象分析可知,不存在函数g(x),使得f(x)≥g(x)对一切实数x 都成立,即f(x)不存在承托函数;对于④,注意到f(x)=x +sinx ≥x -1,因此存在函数g(x)=x -1,使得f(x)≥g(x)对一切实数x 都成立,即f(x)存在承托函数.综上所述,存在承托函数的f(x)的序号为②④. 专题限时集训(三) 【基础演练】1.B [解析] 此题考查函数零点所在区间的判断.因为f ⎝⎛⎭⎫-14=e 14-2<0,f ⎝⎛⎭⎫-12=e 12-1>0,所以f ⎝⎛⎭⎫-14·f ⎝⎛⎭⎫-12<0.又函数f(x)的图象是连续的,所以由零点存在定理得函数f(x)=e -x -4x -3的零点所在的区间为⎝⎛⎭⎫-12,-14.故选B. 2.B [解析] 依题意,由所给出的函数图象可求得函数解析式为h =20-5t(0≤t≤4),对照选项可知图象应为B.故选B.3.C [解析] 将表中的数据代入各选项中的函数解析式验证,可知只有v =t2-12满足.故选C.4.B [解析] 在同一坐标系内画出函数y =3cos π2x 和y =log2x +12的图象,可得交点个数为3.【提升训练】5.D [解析] 由于f ⎝⎛⎭⎫1e =13×1e -ln 1e =13e +1>0,f(1)=13×1-ln1=13>0,f(e)=13×e -lne =13e -1<0,则知函数f(x)在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点.故选D.6.C [解析] 易知f(a)=0,函数f(x)=lnx -log 12x 在(0,+∞)上单调递增,因为0<x0<a ,所以f(x0)<f(a)=0.7.C [解析] 设CD =x ,依题意,得S =x(16-x)(4<x<16-a),所以Smax =f(a)=⎩⎪⎨⎪⎧64〔0<a≤8〕,a 〔16-a 〕〔8<a<12〕,对照图象知,C 符合函数模型对应的图象.故选C. 8.D [解析] 因为函数f(x)是奇函数,且定义域为R ,所以f(0)=0.又函数f(x)是周期为∈⎝⎛⎭⎫0,32时,f(x)=sin πx ⎝⎛⎭⎫32=0,所以f ⎝⎛⎭⎫92=0.综上,函数f(x)在区间[0,6]上的零点有0,1,32,2,3,4,92,5,6共9个.9.D [解析] 由对任意的x ∈R 都有f(x +1)=f(x -1)知f(x)=f(x +2),即函数y =f(x)的周期为2,在同一直角坐标系中作出函数y =f(x)(x ∈[-1,3])和y =m(x +1)的图象(如图),要使函数g(x)=f(x)-mx -m 恰有四个不同零点,则0<m≤14.10.3 [解析] 由题意知,f(3)=ln3-1>0,f(4)=ln4-2<0,所以该函数的零点在区间(3,4)内,由此可得k =3.故填3.11.40 [解析] 设相同时间间隔为t1小时,第10台投入工作至收割完成为t2小时,则第1,2,3,4,5,6,7,8,9台投入工作的时间依次为9t1+t2,8t1+t2,…,t1+t2小时.因为采用第一种方案总共用24小时完成,所以每台收割机每小时完成收割任务的1240.依题意有⎩⎪⎨⎪⎧9t1+t2=5t2,1240[〔9t1+t2〕+〔8t1+t2〕+…+t2]=1,解得t22=40(小时).12.解:(1)条件说明抛物线f(x)=x2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎩⎪⎨⎪⎧f 〔0〕=2m +1<0,f 〔-1〕=2>0,f 〔1〕=4m +2<0,f 〔2〕=6m +5>0⇒⎩⎪⎨⎪⎧m<-12,m ∈R ,m<-12,m>-56.∴-56<m<-12.(2)抛物线与x 轴交点落在区间(0,1)内,列不等式组⎩⎪⎨⎪⎧Δ=4m2-4〔2m +1〕≥0,f 〔0〕=2m +1>0,f 〔1〕=4m +2>0,0<-m<1,得-12<m≤1-2.(这里0<-m<1是因为对称轴x =-m 对应的-m 应在区间(0,1)内过) 13.解:(1)当x =0时,t =0;当0<x≤24时,x +1x ≥2(当x =1时取等号),∴t =x x2+1=1x +1x∈⎝⎛⎦⎤0,12,即t 的取值范围是⎣⎡⎦⎤0,12. (2)当a ∈⎣⎡⎦⎤0,12时,记g(t)=|t -a|+2a +23, 则g(t)=⎩⎨⎧-t +3a +23,0≤t≤a ,t +a +23,a<t ≤12.∵g(t)在[0,a]上单调递减,在⎝⎛⎦⎤a ,12上单调递增, 且g(0)=3a +23,g ⎝⎛⎭⎫12=a +76,g(0)-g ⎝⎛⎭⎫12=2⎝⎛⎭⎫a -14. 故M(a)=⎩⎨⎧g ⎝⎛⎭⎫12,0≤a≤14,g 〔0〕,14<a ≤12,即M(a)=⎩⎨⎧a +76,0≤a≤14,3a +23,14<a ≤12.∴当且仅当a≤49时,M(a)≤2.故当0≤a≤49时不超标,当49<a ≤12时超标. 14.解:(1)当m =2,x ∈[1,2]时, f(x)=x·(x -1)+2=x2-x +2=x -122+74.∵函数y =f(x)在[1,2]上单调递增,∴f(x)max =f(2)=4,即f(x)在[1,2]上的最大值为4.(2)函数p(x)的定义域为(0,+∞),函数p(x)有零点,即方程f(x)-g(x)=x|x -1|-lnx +m =0有解,即m =lnx -x|x -1|有解,令h(x)=lnx -x|x -1|. 当x ∈(0,1]时,h(x)=x2-x +lnx.∵h ′(x)=2x +1x -1≥22-1>0当且仅当2x =1x 时取“=”,∴函数h(x)在(0,1]上是增函数,∴h(x)≤h(1)=0.当x ∈(1,+∞)时,h(x)=-x2+x +lnx.∵h ′(x)=-2x +1x +1=-2x2+x +1x =-〔x -1〕〔2x +1〕x <0,∴函数h(x)在(1,+∞)上是减函数,∴h(x)<h(1)=0,∴方程m =lnx -x|x -1|有解时,m≤0, 即函数p(x)有零点时,m 的取值范围为(-∞,0]. 专题限时集训(四)A 【基础演练】1.B [解析] 对于B ,由a3>b3知a>b ,而ab>0,由不等式的倒数法则知1a <1b .故选B. 2.D [解析] 由1x <12,得1x -12<0,即2-x 2x<0,于是不等式转化为D.3.B [解析] a·b =4x -4+2y =0,即2x +y =2,9x +3y ≥29x ·3y =232x +y =232=6(当2x =y =1时取等号).4.B [解析] 作出满足题设条件的可行域(如图),则当直线y =-2x +z 经过点A(-2,2)时,截距z 取得最小值,即zmin =2×(-2)+2=-2.【提升训练】 5.A [解析] |x +3|-|x -1|≤|(x +3)-(x -1)|=4,由题意,有4≤a 2-3a ,解得a≤-1,或a≥4.6.A [解析] 依题意,a2<1+x 对任意正数x 恒成立,则a2≤1,求得-1≤a≤1. 7.B [解析] 作出不等式组⎩⎪⎨⎪⎧2x -y≤0,x -2y +3≥0,x≥0B.8.A [解析] 作出不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -2≥0表示的平面区域,则此平面区域为△ABC ,且A(2,0),B(0,1),C(2,1),于是,S =12×2×1A.9.B [解析] 由a>0,b>0且直线x -y =-1与2x -y =2的交点为(3,4),得当x =3,y =4时,z 取得大值,3a +4b =7,所以3a +4b =3a +4b ·3a +4b 7=97+167+127b a +a b ≥257+127×2b a ·a b =257+247=7. 10.A [解析] 由f(x)是奇函数知f(0)=lg(2+a)=0,解得a =-1,那么由f(x)=lg ⎝⎛⎭⎫21-x -1<0=lg1,得21-x -1<1,即x x -1>0,解得x<0或x>1,又知其定义域为21-x -1>0,即x +1x -1<0A.11.8 [解析] 依题意,设货车从A 市到B 市的时间为t ,则t =400v +16×v202v =400v +16v400≥2400v ·16v400=216=8.故填8.12.(-∞,-1)∪(3,+∞) [解析] 当x≤-1时,不等式可化为-(x +1)-(2x -4)>6,解得x<-1;当-1<x<2时,不等式可化为(x +1)-(2x -4)>6,解得x<-1,无解;当x≥2时,不等式可化为(x +1)+(2x -4)>6,解得x>3;故不等式的解集为(-∞,-1)∪(3,+∞).13.-18 6 [解析] 作出不等式组⎩⎪⎨⎪⎧y2-x≤0,x +y≤2表示的可行域(如下列图阴影部分所示,含边界).联立⎩⎪⎨⎪⎧y2-x =0,x +y =2,解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =4,y =-2,故两交点分别为A(1,1),B(4,-2).设z =2x +y ,可知当直线z =2x +y 经过点B(4,-2)时,z =2x +y 有最大值,且zmax =6;当直线z =2x+y 与抛物线y2-x =0相切时,z =2x +y 有最小值,此时由⎩⎪⎨⎪⎧y2-x =0,z =2x +y ,消去y 得4x2-(4z+1)x +z2=0,令Δ=(4z +1)2-16z2=0,解得z =-18.故zmin =-18.故2x +y 的最小值为-18,最大值为6. 专题限时集训(四)B 【基础演练】1.D [解析] ∵y>x>0,且x +y =1,取特殊值:x =14,y =34,则x +y 2=12,2xy =38,∴x<2xy<x +y 2<y.故选D.2.D [解析] |x -1|+|x -6|≥|(x -1)-(x -6)|=5,故要使不等式|x -1|+|x -6|>m 恒成立,须满足m<5.3.D [解析] ∵am +bn +c<0,b<0,∴n>-a b m -cb . ∴点P 所在的平面区域满足不等式y>-a b x -cb ,a>0,b<0.∴-ab >0.故点P 在该直线的上侧,综上知,点P 在该直线的左上方.4.D [解析] 依题意,不等式f(x0)>1等价于⎩⎪⎨⎪⎧x0≤0,12x0>1或⎩⎨⎧x0>0,x0>1,解得x0<0或x0>1.故选D.【提升训练】5.C [解析] 不等式x2-x -6x -1>0可化为(x +2)(x -3)(x -1)>0,由数轴标根法可知,解集为{x|-2<x<1,或x>3}.6.B [解析] 依题意知,-12和13是一元二次方程ax2+bx +2=0的两根,且a<0,则⎩⎨⎧-12+13=-ba ,-12×13=2a ,解得⎩⎪⎨⎪⎧a =-12,b =-2.于是,不等式2x2+bx +a<0即是2x2B.7.C [解析] 因为0<x<1,所以1+x>2x =4x>2x ,所以只需比较1+x 与11-x 的大小.因为1+x -11-x =1-x2-11-x =x2x -1<0,所以1+x<11-x .故选C.8.2π [解析] 在同一直角坐标系中作出可行域⎩⎨⎧〔x +3y 〕〔3x -y 〕≤0,x2+y2≤4.由图形知,不等式组表示的平面区域的面积是二分之一的半径为2的圆面积,即S =12×π×22=2π.9.2+22 [解析] 画出不等式组表示的平面区域,当t 最小时,所表示的区域为第一象限的一个等腰直角三角形.依题意,它有一个半径为1的内切圆,不妨设斜边|OB|=t ,则两直角边长|AB|=|OA|=22t ,所以22t +22t -t 2=1,求得t =22-1=22+2,即 tmin =2+2 2.10.(-∞,-4)∪(0,+∞) [解析] 由题意,对任意x ∈R ,|x -a|+|x +2|>2恒成立,因为|x -a|+|x +2|≥|(x -a)-(x +2)|=|2+a|,所以需满足|2+a|>2,得2+a>2,或2+a<-2,解得a>0,或a<-4.11.10 [解析] 设应把楼房设计成x 层,每层的面积为y m2,则平均每平方米建筑面积的成本费为k =2 000y +y×400+y×440+…+y×[400+40〔x -1〕]xy =2 000x+20x +380≥22 000x ·20x +380=780,当且仅当2 000x=20x ,即x =10时取等号,故应把楼房设计成10层.12.[-1,11] [解析] 作出x ,y 满足的可行域(如下列图阴影部分所示,含边界).当x≥0时,z =2x +y 在点C(6,-1)处取得最大值11,在点D(0,-1)处取最小值-1;当x≤0时,目标函数z =-2x +y 在点B (-2,-1)处取最大值3,在点D(0,-1)处取最小值-1,所以z ∈[-1,11]. 专题限时集训(五) 【基础演练】1.C [解析] 将点(2,3)分别代入曲线y =x3+ax +1和直线y =kx +b ,得a =-3,2k +b =3.又k =y′|x =2=(3x2-3)|xC.2.C [解析] 对f(x)求导,得f ′(x)=3x2+2x +m ,因为f(x)是R 上的单调函数,二次项系数a =3>0,所以Δ=4-12m≤0,解得m≥13.3.C [解析] 对f(x)求导得f ′(x)=3x2C. 4.A [解析] 对f(x)求导,得f ′(x)=x2A. 【提升训练】5.A [解析] 对f(x)求导,得f ′(x)=3x2-3≥-3,∴f(x)上任意一点P 处的切线的斜率k≥-3,即tan α≥-3, ∴0≤α<π2或2π3≤α<π.6.D [解析] ∵s(t)=t2+3t ,∴s′(t)=2t -3t2,则机器人在t =2时的瞬时速度为s′(2)=2×2-322=134(m/s).故选D.7.D [解析] 由于AB 的长度为定值,只要考虑点C 到直线AB 的距离的变化趋势即可.当x 在区间[0,a]变化时,点C 到直线AB 的距离先是递增,然后递减,再递增,再递减,S′(x)的图象先是在x 轴上方,再到x 轴下方,再回到x 轴上方,再到x 轴下方,并且函数在直线AB 与函数图象的交点处间断,在这个间断点函数性质发生突然变化,所以选项D 中的图象符合要求.8.B [解析] f′(x)=1x -x =1-x2x ,当x>1时,f′(x)<0;当0<x<1时,f′(x)>0,所以函数f(x)在(1,+∞)上单调递减,在(0,1)上单调递增,故排除C ,D 项;因为f(1)=-12<0,故排除A 项.9.D [解析] 根据二次函数图象知f(0)=a ∈(0,1),f(1)=1-b +a =0,即b -a =1,所以b ∈(1,2).又g′(x)=2x +2x -b ,所以g′(b)=2b+b≥22b ·b =22,当且仅当2b=b ,即b =2时取等号,故g′(b)min =2 2.故选D.10.(1,e) [解析] 设切点坐标为(x0,y0),对f(x)=ex 求导,得f ′(x)=ex ,所以f′(x 0)=ex0=e ,即x00=f(x0)=ex0=e ,所以切点坐标为(1,e).11.13 [解析] 此题考查函数的单调性,多项式函数的求导.f′(x)=3kx2+6(k -1)x(k>0),由题意,f′(x)<0的解集是(0,4),所以f′(0)=0,f′(4)=0,解得k =13.12.①1 ②h(0)<h(1)<h(-1) [解析] 此题考查二次函数和三次函数的导数及其图象,求值,比较大小等.①由题意,f′(x)是一次函数,g′(x)是二次函数.所以由图象可得f′(x)=x ,g′(x)=x2.设f(x)=12x2+c(c 为常数).假设f(1)=1,则12×12+c =1,解得c =12.所以f(x)=12x2+12.故f(-1)=1.②由①得,可设f(x)=12x2+c1,g(x)=13x3+c2,则h(x)=f(x)-g(x)=12x2+c1-13x3-c2=-13x3+12x2+c3.所以h(-1)=56+c3,h(0)=c3,h(1)=16+c3.所以h(0)<h(1)<h(-1). 13.解:(1)当a =1时,f′(x)=1+1x ⇒f ′⎝⎛⎭⎫12=3. (2)由题知f′(x)=a +1x(x>0),当a≥0时,f′(x)=a +1x >0,则f(x)在区间(0,+∞)上单调递增; 当a<0时,f′(x)=a +1x >0⇒0<x<-1a ,∴当a≥0时,f(x)的单调递增区间是(0,+∞), 当a<0时,f(x)的单调递增区间是⎝⎛⎭⎫0,-1a . (3)由题知对任意x1∈(0,+∞),存在x2∈[0,1],使得f(x1)<g(x2),故f(x)max<g(x)max ,又g(x)=2x 在区间[0,1]上递增,所以g(x)max =g(1)=2, 即f(x)max<2,当a≥0时,f(x)在区间(0,+∞)上单调递增,无最大值,显然不满足条件; 当a<0时,f(x)在区间⎝⎛⎭⎫0,-1a 上单调递增,在区间⎝⎛⎭⎫-1a ,+∞上单调递减, 所以f(x)max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a , 即-1+ln ⎝⎛⎭⎫-1a <2⇒a<-1e3,∴a<-1e3. 14.解:(1)令f ′(x)=1x -ax2=0,得x =a.当a≥e 时,函数f(x)在区间(0,e]是减函数,f(x)min =ae ;当0<a<e 时,函数f(x)在区间(0,a]是减函数,[a ,e]是增函数f(x)min =lna. 综上所述,当0<a<e 时,f(x)min =lna ;当a≥e 时,f(x)min =ae . (2)由(1)可知,a =1时,函数f(x)在x1∈(0,e)的最小值为0, 所以g(x)=(x -b)2+4-b2.当b≤1时,g(1)=5-2b<0不成立; 当b≥3时,g(3)=13-6b<0恒成立;当1<b<3时,g(b)=4-b2<0,此时2<b<3.综上可知,满足条件的实数b 的取值范围为{b|b>2}. 15.解:(1)当x<1时,f ′(x)=-3x2+2ax +b.因为函数图象在点(-2,f(-2))处的切线方程为16x +y +20=0. 所以切点坐标为(-2,12),且⎩⎪⎨⎪⎧f 〔-2〕=8+4a -2b =12,f′〔-2〕=-12-4a +b =-16, 解得a =1,b =0.(2)由(1)得,当x<1时,f(x)=-x3+x2,令f ′(x)=-3x2+2x =0可得x =0或x =23,f(x)在(-1,0)和23,1上单调递减,在0,23上单调递增,对于x<1部分:f(x)的最大值为max ⎩⎨⎧⎭⎬⎫f 〔-1〕,f 23=f(-1)=2;当1≤x≤2时,f(x)=c·lnx , 当c≤0时,c·lnx ≤0恒成立,f(x)≤0<2, 此时f(x)在[-1,2]上的最大值为f(-1)=2;当c>0时,f(x)=clnx 在[1,2]上单调递增,且f(2)=c·ln2. 令c·ln2=2,则c =2ln2,所以当c>2ln2时, f(x)在[-1,2]上的最大值为f(2)=c·ln2;当0<c≤2ln2时,f(x)在[-1,2]上的最大值为f(-1)=2. 综上可知,当c≤2ln2时,f(x)在[-1,2]上的最大值为2; 当c>2ln2时,f(x)在[-1,2]上的最大值为c·ln2.(3)f(x)=⎩⎪⎨⎪⎧-x3+x2〔x<1〕,clnx 〔x≥1〕,根据条件M ,N 的横坐标互为相反数,不妨设M(-t ,t3+t2),N(t ,f(t)),(t>0).假设t<1,则f(t)=-t3+t2,由∠MON 是直角得,OM →·ON →=0,即-t2+(t3+t2)(-t3+t2)=0, 即t4-t2+1=0.此时无解;假设t≥1,则f(t)=c·lnt.由于MN 的中点在y 轴上,且∠MON =90°OM →·ON →=0,即-t2+(t3+t2)·clnt =0,c =1〔t +1〕lnt.由于函数g(t)=1〔t +1〕lnt (t>1)的值域是(0,+∞),则实数c 的取值范围是(0,+∞). 专题限时集训(六)A 【基础演练】1.B [解析] 方法1:sin15°+cos165°=sin15°-cos15°=2sin15°·cos45°-cos15°sin45°=2sin(-30°)=-22.方法2:显然sin15°-cos15°<0,(sin15°-cos15°)2=1-sin30°=12,故sin15°-cos15°=-22.2.C [解析] 因为1-sin2x =〔sinx -cosx 〕2=|sinx -cosx|,又1-sin2x =sinx -cosx ,所以|sinx -cosx|=sinx -cosx ,则sinx -cosx ≥0,即sinx ≥cosx.又0≤x<2π,所以π4≤x ≤5π4.3.D [解析] 由cos(x +y)sinx -sin(x +y)cosx =1213得sin[x -(x +y)]=-siny =1213,所以siny=-1213.又y 是第四象限的角,所以cosy =513,于是tan y 2=1-cosy siny =1-513-1213=-23.故选D.4.B [解析] 把函数y =sin ⎝⎛⎭⎫2x +π6的图象向右平移π4个长度单位,得到函数y =2sin ⎝⎛⎭⎫2⎝⎛⎭⎫x -π4+π6=2sin ⎝⎛⎭⎫2x -π3的图象.【提升训练】5.A [解析] 由sin θ+cos θ=2,得θ=2k π+π4,所以tan θ+π3=tan π4+π3=1+31-3=-2- 3.故选A.6.C [解析] 依题意得f -15π4=f -15π4+3π2×3=f 3π4=sin 3π4=22.故选C.7.B [解析] 依题意得f(x)=sinx +3cosx =2sinx +π3,因为f(x)在⎣⎡⎦⎤0,π6上单调递增,所以f π7<f π6,而c =f π3=2sin 2π3=2sin π3=f(0)<f π7,所以c<a<b.8.B [解析] 不妨设A>0,由图象可知,A =2,又函数的图象过点⎝⎛⎭⎫π3,2,所以2×π3+φ=2k π+π2(k ∈Z),解得φ=2k π-π6(k ∈Z).故f(x)=2sin ⎝⎛⎭⎫2x +2k π-π6=2sin ⎝⎛⎭⎫2x -π6.所以f(0)=2sin ⎝⎛⎭⎫-π6 B.9.D [解析] f(x)=cosx ,f′(x)=-sinx ,又f(x -m)=cos(x -m)=-sin ⎝⎛⎭⎫x -m -π2,由题意,-sinx =-sin ⎝⎛⎭⎫x -m -π2,所以-m -π2=2k π,得m =-2k π-π2(k ∈Z).则m 可以为3π2.故选D.10.13 [解析] 依题意由sin(x +y)=1得x +y =2k π+π2(k ∈Z),所以y =2k π+π2-x(k ∈Z).于是sin(2y +x)=sin ⎣⎡⎦⎤2k π+π2+y =sin π2+y =cosy =cos2k π+π2-x =cos π2-x =sinx =13.故填13.11.74 [解析] 依题意,将函数y =sin ωx +5π6(ω>0)的图象向右平移π3个单位长度后,所得图象对应的函数解析式是y =sin ωx +5π6-π3ω(ω>0),它的图象与函数y =sin ωx +π4的图象重合,所以5π6-π3ω=π4+2k π(k ∈Z),解得ω=74-6k(k ∈Z),因为ω>0,所以ωmin =74.故填74.12.③④ [解析] 对f(x)=cosxsinx =12sin2x ,画出函数的图象,分析知③,④是正确的.故填③,④.13.解:(1)由题得AC →=(3cos α-4,3sin α),BC →=(3cos α,3sin α-4). 由|AC →|=|BC →|,得(3cos α-4)2+9sin2α=9cos2α+(3sin α-4)2⇒sin α=cos α. 因为α∈(-π,0), 所以α=-3π4.(2)由AC →·BC →=0,得3cos α(3cos α-4)+3sin α(3sin α-4)=0, 解得sin α+cos α=34,两边平方得2sin αcos α=-716,所以2sin2α+sin2α1+tan α=2sin2α+2sin αcos α1+sin αcos α=2sin αcos α=-716.14.解:(1)依题意,得f(x)=2sinxcos π6+cosx +a =3sinx +cosx +a =2sinx +π6+a. 所以函数f(x)的最小正周期T =2π.(2)因为x ∈-π2,π2,所以-π3≤x +π6≤2π3.所以当x +π6=-π3,即x =-π2时, f(x)min =f -π2=-3+a ;当x +π6=π2,即x =π3时,f(x)max =f π3=2+a.由题意,有(-3+a)+(2+a)=3,解得a =3-1.15.解:(1)∵函数f(x)的最小正周期T =2πω=π(ω>0),∴ω=2.∵f π4=cos2×π4+φ=cos π2+φ=-sin φ=32,且-π2<φ<0,∴φ=-π3. (2)由(1)知f(x)=cos2x -π3, 列表如下:图象如图.(3)∵f(x)>22,即cos2x -π3>22, 得2k π-π4<2x -π3<2k π+π4,k ∈Z , 即2k π+π12<2x<2k π+712π,k ∈Z ,即k π+π24<x<k π+724π,k ∈Z. ∴所求x 的取值范围是⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π24<x<k π+724π,k ∈Z . 专题限时集训(六)B【基础演练】1.B [解析] 因为sin α=35,α是第二象限的角,所以tan α=-34.又因为tan (α+β)=tan α+tan β1-tan αtan β=1,所以-34+tan β1+34tan β=1,求得tan βB. 2.D [解析] 因为y =sinx -cosx =2sinx -π4,令-π2≤x -π4≤π2,得-π4≤x ≤3π4,满足题意,所以f(x)可以是-cosx.3.A [解析] 把函数y =sin ⎝⎛⎭⎫x +π6图象上各点的横坐标缩短到原来的12倍(纵坐标不变),得到函数为y =sin ⎝⎛⎭⎫2x +π6,再将图象向右平移π3个长度单位,那么所得函数为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3+π6=-cos2x ,结合各选项可知其对称轴方程为x =-π2.故选A.4.B [解析] 由已知得y =cos2x -π4=cos π2-2x =sin2x ,因此函数y =1-2sin2x -π4是最小正周期为π的奇函数.故选B.【提升训练】5.A [解析] 依题意得cos θ=±35.又因为sin θ-cos θ>1,所以cos θ=-35,于是sin2θ=2sin θcos θ=2×45×-35=-2425.6.D [解析] 此题考查三角函数的对称性.由题意,有2×π3+φ=k π+π2(k ∈Z),得φ=k π-π6()k ∈Z .又φ∈(0,π),所以φ=5π6.故选D.7.B [解析] 设(x ,y)为g(x)的图象上任意一点,则其关于点π4,0对称的点为π2-x ,-y ,由题意知该点必在f(x)的图象上,所以-y =sin π2-x ,即g(x)=-sin π2-x =-cosx.依题意得sinx ≤-cosx ,即sinx +cosx =2sinx +π4≤0.又x ∈[0,2π],解得3π4≤x ≤7π4.故选B.8.A [解析] 依题意,得f(x)=sin (ωx +φ)+cos (ωx +φ)=2sin ωx +φ+π4,由T =2πω=π(ω>0),得ω=2.又f(-x)=f(x),所以φ+π4=k π+π2(k ∈Z),即φ=k π+π4(k ∈Z).又|φ|<π2,所以φ=π4.于是f(x)=2cos2x ,它在0,π2上单调递减.9.B [解析] 由图可知,A =10,函数I =Asin (ωt +φ)的最小正周期T =2⎝⎛⎭⎫4300-1300=150,所以2πω=150,解得ω=100π.又函数图象过点⎝⎛⎭⎫1300,10,代入得sin ⎝⎛⎭⎫100π×1300+φ=1,所以π3+φ=π2+2k π(k ∈Z),解得φ=π6+2k π(k ∈Z).又0<φ<π2,所以φ=π6.故函数I =10sin ⎝⎛⎭⎫100πt +π6.所以当t =150时,电流强度I =10sin ⎝⎛⎭⎫100π×150+π6=5.10.13 [解析] 因为cos θ=-35,且θ是第三象限角,所以sin θ=-45.于是cos θsin θ-1=-35-45-1=13.故填13.11.36565 [解析] 由已知sin (α-β)=513,cos (α+β)=-45,所以sin2α=sin [(α+β)+(α-β)]=sin (α+β)cos (α-β)+cos (α+β)·sin (α-β)=-35×1213+-45×513=-5665.则(sin α+cos α)2=1+sin2α=1-5665=965,当π2<α<3π4时,sin α+cos α>0,即sin α+cos α=36565. 12.4 [解析] 由h =40sin ⎝⎛⎭⎫π6t -π2+50知其最小正周期为T =2ππ6=12,即摩天轮转动一周的时间为12 min.由h =40sin ⎝⎛⎭⎫π6t -π2+50>70(0≤t≤12),解得4<t<8.所以持续时间为4 min.13.①②③⑤ [解析] 由题意得f(x)=m2+n2sin(x +φ)其中tan φ=nm .因为f π4是它的最大值,所以π4+φ=2k π+π2(k ∈Z),φ=2k π+π4(k ∈Z).所以f(x)=m2+n2sinx +2k π+π4=m2+n2sinx +π4,且tan φ=n m =tan2k π+π4=1,即nm =1,故f(x)=2|m|sinx +π4.①fx +π4=2|m|sinx +π4+π4=2|m|cosx 为偶函数,所以①正确;②当x =7π4时,f 7π4=2|m|sin 7π4+π4=2|m|sin2π=0,所以函数f(x)的图象关于点7π4,0对称,②正确;③f -3π4=2|m|sin π4-3π4=-2|m|sin π2=-2|m|,f(x)取得最小值,所以③正确;④根据f(x)=2|m|sinx +π4可得其最小正周期为2π,由题意可得P2与P4相差一个周期2π,即|P2P4|=2π,所以④错误; ⑤由n m =1知,mn =1成立,所以⑤正确. 故填①②③⑤.14.解:(1)由点P 的坐标和三角函数的定义可得⎩⎨⎧sin θ=32,cos θ=12.于是f(θ)=3sin θ+cos θ=3×32+12=2. (2)作出平面区域Ω(即三角形ABC 区域)如下图, 其中A(1,0),B(1,1),C(0,1).于是0≤θ≤π2.又f(θ)=3sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π6,且π6≤θ+π6≤2π3,故当θ+π6=π2,即θ=π3时,f(θ)取得最大值,且最大值等于2; 当θ+π6=π6,即θ=0时,f(θ)取得最小值,且最小值等于1. 15.解:(1)f(x)=2sin2⎝⎛⎭⎫ωx +π4+2cos2ωx=1-cos ⎝⎛⎭⎫2ωx +π2+1+cos2ωx=sin2ωx +cos2ωx +2=2sin ⎝⎛⎭⎫2ωx +π4+2,∵函数f(x)的图象上两个相邻的最低点之间的距离为2π3,∴f(x)的最小正周期为2π3,∴2π2ω=2π3(ω>0),∴ω的值为32, ∴函数f(x)=2sin ⎝⎛⎭⎫3x +π4+2,∴函数f(x)的最大值为2+2,此时3x +π4=2k π+π2,即x =2k π3+π12(k ∈Z).(2)y =f(x)的图象向右平移π8个单位长度得h(x)=2sin ⎣⎡⎦⎤3⎝⎛⎭⎫x -π8+π4+2=2sin ⎝⎛⎭⎫3x -π8+2,再沿y 轴对称后得到g(x)=2sin ⎝⎛⎭⎫-3x -π8+2=-2sin ⎝⎛⎭⎫3x +π8+2,函数g(x)的单调减区间,即y =sin ⎝⎛⎭⎫3x +π8单调递增区间.由2k π-π2≤3x +π8≤2k π+π2, 解得23k π-5π24≤x ≤23k π+π8(k ∈Z).故y =g(x)的单调减区间为⎣⎡⎦⎤23k π+5π24,23k π+π8(k ∈Z).16.解:(1)f(x)=2sinx +π3cosx +π3-23cos2x +π3 =sin2x +2π3-3⎣⎡⎦⎤cos2x +2π3+1=sin2x +2π3-3cos2x +2π3- 3=2sin2x +π3- 3. ∵-1≤sin2x +π3≤1,∴-2-3≤2sin2x +π3-3≤2-3, 又T =2π2=π,即f(x)的值域为[-2-3,2-3],最小正周期为π. (2)当x ∈⎣⎡⎦⎤0,π6时,2x +π3∈⎣⎡⎦⎤π3,23π,∴sin2x +π3∈⎣⎡⎦⎤32,1,此时f(x)+3=2sin2x +π3∈[3,2].由m[f(x)+3]+2=0知,m≠0,且f(x)+3=-2m ,∴3≤-2m ≤2,即⎩⎨⎧2m+3≤0,2m +2≥0,解得-233≤m ≤-1.即实数m 的取值范围是⎣⎡⎦⎤-233,-1. 专题限时集训(七)【基础演练】1.A [解析] 根据正弦定理得,2sin45°=2sinC ,所以sinC =12,因为C ∈(0,π),所以C =30°或150°.又因为A =45°,且AB<BC ,所以C =30°.2.D [解析] 根据三角形面积公式和正弦定理S =12absinC =122RsinA ·2RsinB ·sinC =2R2sinAsinBsinC ,将R =1和S =1代入得,sinAsinBsinC =12.3.A [解析] 由sinC =23sinB 及正弦定理得c =23b ,代入a2-b2=3bc 中,得a =7b.所以由余弦定理得cosA =b2+c2-a22bc =b2+〔23b 〕2-〔7b 〕22b ·23b =32,所以A =30°. 4.D [解析] 设电视塔的高度为x ,则BC =x ,BD =3x.在△BCD 中,根据余弦定理得3x2=x2+402-2×40xcos120°,即x2-20x -800=0,解得x =-20(舍去),或者x =40.故电视塔的高度为40 m. 【提升训练】5.D [解析] 根据余弦定理得b =32+82-2×3×8cos60°=7,根据正弦定理3sinA =7sin60°,解得sinA =3314.6.B [解析] 由题意得b2=ac ,又c =2a ,由余弦定理得cosB =a2+c2-b22ac =a2+4a2-a×2a2a×2a =34. 7.A [解析] 设楼顶D 对应的楼底记为E ,过点D 作DC ∥BE ,则由AC CD =tan30°,即AC20=33,解得AC =2033.由BC CD =tan45°,即BC20=1,解得BC =20.所以AB =AC +BC =20⎝⎛⎭⎫1+33 m.8.A [解析] 在Rt △ABC 中,由正切函数的定义,得tan β=AB BC ,所以BC =ABtan β.同理,BD =AB tan α.所以BD -BC =AB tan α-ABtan β=DC =a.所以AB =atan αtan βtan β-tan α=asin αsin βsin 〔β-α〕.9.-14 [解析] 由正弦定理a sinA =b sinB =c sinC 可得,a ∶b ∶c =si nA ∶sinB ∶sinC =2∶3∶4,由此设a =2k ,b =3k ,c =4k(k>0).由余弦定理可得,cosC =a2+b2-c22ab=〔2k 〕2+〔3k 〕2-〔4k 〕22×2k ×3k=-14.10.6-1 [解析] 由题意可得,∠ACB =120°,AC =2,AB =3,设BC =x ,则由余弦定理可得,AB2=BC2+AC2-2BC×ACcos120°,即32=x2+22-2×2xcos120°,整理得x2+2x =5,解得x =6-1或x =-6-1(舍去).故填6-1.11.233 [解析] 由△BCD 的面积为1,可得12×CD ×BC ×sin ∠DCB =1,即sin ∠DCB =55,所以cos ∠DCB =255.在△BCD 中,由余弦定理可知,cos ∠DCB =CD2+BC2-BD22CD ×BC =255,解得BD =2,所以cos ∠DBC =BD2+BC2-CD22BD ×BC =31010.由在△BCD 中,∠DBC 对应的边长最短,所以∠DBC 为锐角,所以sin ∠DBC =1010.在△ABC 中,由正弦定理BC sinA =ACsinB 可得,AC =BC ·sinB sinA =10×101032=233.12.解:(1)tanC =-tan(A +B)=-tanA +tanB1-tanAtanB=-23+151-23×15=-1, 又0<C<π, ∴C =3π4.(2)由已知和(1)知:c =13,b 为最小边长. ∵tanB =15, ∴sinB =2626, ∴b =csinBsinC =1, ∴最小的边长为1.13.解:(1)f(x)=23cos2x 2+2sin x 2cos x2 =3(1+cosx)+sinx =2cos ⎝⎛⎭⎫x -π6+3,∴f ⎝⎛⎭⎫17π12=2cos ⎝⎛⎭⎫17π12-π6+3=3- 2.(2)f(C)=2cos ⎝⎛⎭⎫C -π6+3=3+1,∴cos ⎝⎛⎭⎫C -π6=12,C ∈(0,π),∴C =π2,在Rt △ABC 中,∵b2=ac ,c2=a2+b2,∴c2=a2+ac ⇒⎝⎛⎭⎫a c 2+a c -1=0, 解得a c =-1±52.∵0<sinA<1,∴sinA =ac =5-12.14.解:(1)如下图,作PN ⊥AB ,N 为垂足,∠PQM =θ,∠PMQ =π-α,sin θ=513,sin α=45,cos θ=1213,cos α=35.在Rt △PNQ 中,PN =PQsin θ=5.2×513=2,QN =PQ·cos θ=5.2×1213=4.8.在Rt △PNM 中,MN =PN tan α=243=1.5,PM =PN sin α=245=2.5,∴MQ =QN -MN =4.8-1.5=3.3.设游船从P 到Q 所用时间为t1 h ,游客甲从P 经M 到Q 所用时间为t2 h ,小船速度为v1 km/h , 则t1=PQ 13=5.213=26513=25,t2=PM v1+MQ 66=2.5v1+3.366=52v1+120.由已知,得t2+120=t1,即52v1+120+120=25,∴v1=253.于是,当小船的速度为253km/h 时,游客甲才能和游船同时到达Q 地.(2)在Rt △PMN 中,PM =PN sin α=2sin α,MN =PN tan α=2cos αsin α,∴QM =QN -MN =4.8-2cos αsin α.于是t =PM 10+QM66=15sin α+455-cos α33sin α=1165×33-5cos αsin α+455.∵t ′=1165×5sin2α-〔33-5cos α〕cos αsin2α=5-33cos α165sin2α,∴令t′=0,得cos α=533. 当cos α<533时,t′>0;当cos α>533时,t′<0,又y =cos α在α∈0,π2上是减函数,∴当方位角α满足cos α=533时,t 取最小值, 即游客甲能按计划以最短时间到达Q 地. 专题限时集训(八) 【基础演练】1.A [解析] a -b +c -d =BA →+DC →A. 2.C [解析] 依题意,由a ⊥C.3.A [解析] 由a ∥b 得2x =-4,∴A.4.B [解析] 依题意,得a·b =|a||b|cos30°=2sin75°·4cos75°×32=23sin150°= 3.故选B.【提升训练】5.C [解析] 依题意a 在b 方向上的投影为|a|cos 〈a ,b 〉=2cos π3=22.故选C.6.C [解析] 依题意,|a|=1,|b|=1,所以a·b =|a||b|cos60°=12.于是|a +3b|=〔a +3b 〕2=|a|2+6a·b +9|b|2=1+6×12+9=13.故选C.7.A [解析] 连结AD ,BE ,CF 交于点O ,则点O 为正六边形ABCDEF 的中心.故AF →+ED →+CB →=AF →+(ED →+EF →)=AF →+EO →A.8.C [解析] 由于λa +b =λ(1,2)+(2,0)=(λ+2,2λ),而λa +b 与c 共线,则有λ+21=2λ-2C. 9.A [解析] 由|OA →|=|OB →|=|OC →|可知,点O 到三角形三个顶点的距离相等,所以点O 是三角形的外心;由NA →+NB →+NC →=0,得点N 在三角形各边的中线上,故点N 是三角形的重心;由PA →·PB →=PB →·PC →,得PB →·(PA →-PC →)=0,即PB →·CA →=0,所以PB →⊥CA →;同理,PC →⊥AB →,PA →⊥BC →,故点P 是三角形的垂心.10.324 [解析] 因为a ∥b ,所以12×1=sinx ·cosx ,即sin2x ∈⎣⎡⎦⎤0,π2,所以2x =π2,即x=π4.于是a·b =12sinx +cosx =12sin π4+cos π4=12×22+22=324. 11.8 [解析] 依题意得OA →2=OB →2=OC →2,由于AC →2=(OC →-OA →)2=OC →2+OA →2-2OC →·OA →, 所以OC →·OA →=12(OC →2+OA →2-AC →2),同理OA →·OB →=12(OA →2+OB →2-AB →2),所以AO →·BC →=-OA →·(OC →-OB →)=-OA →·OC →+OA →·OB →=-12(OA →2+OC →2-AC →2)+12(OA →2+OB →2-AB →2)=12(AC →2-AB →2)=12(52-32)=8.12.3 [解析] 由于PA →+PB →+PC →=PA →+(PA →+AB →)+(PA →+AC →)=3PA →+AB →+AC →=3PA →+mAP →=0,那么m =3.13.解:(1)a·b -c·d =2+cos2θ-2sin2θ-1=2cos2θ. 因为θ∈⎝⎛⎭⎫0,π4,所以2cos2θ∈(0,2).(2)因为f(a·b)=|cos2θ+1|∈(1,2), f(c·d)=|2sin2θ|∈(0,1), 所以f(a·b)>f(c·d).14.解:(1)由题设知AB →=(3,5),AC →=(-1,1),则 AB →+AC →=(2,6),AB →-AC →=(4,4). 所以|AB →+AC →|=210,|AB →-AC →|=4 2. 故所求的两条对角线的长分别为42、210.(2)由题设知:OC →=(-2,-1),AB →-tOC →=(3+2t ,5+t). 由(AB →-tOC →)·OC →=0,得(3+2t ,5+t)·(-2,-1)=0, 从而5t =-11,所以t =-115.或者:AB →·OC →=tOC →2,AB →=(3,5),t =AB →·OC →|OC →|2=-115.15.解:(1)∵m ·n =1,即3sin x 4cos x 4+cos2x4=1, 即32sin x 2+12cos x 2+12=1,。
2013年高考全国Ⅱ理科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(全国II )数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2013年全国Ⅱ,理1,5分】已知集合{}2|(1)4),M x x x R =-<∈,{}1,0,1,2,3N =-,则M N = ( )(A ){}0,1,2 (B ){}1,0,1,2- (C ){}1,0,2,3- (D ){}0,1,2,3 【答案】A【解析】因为{}31|<<-=x x M ,{}3,2,1,0,1-=N ,所以{}0,1,2M N = ,故选A . (2)【2013年全国Ⅱ,理2,5分】设复数z 满足(1i)2i z -=则z =( )(A )1i -+ (B )1i -- (C )1i + (D )1i - 【答案】A【解析】2i 2i(1i)1i 1i (1i)(1i)z +===-+--+,故选A . (3)【2013年全国Ⅱ,理3,5分】等比数列{}n a 的前n 项和为n S ,已知32110S a a =+,59a =,则1a =( )(A )13 (B )13- (C )19(D )19-【答案】C【解析】设数列{}n a 的公比为q ,若1q =,则由59a =,得19a =,此时327S =,而211099a a +=,不满足题意,因此1q ≠.∵1q ≠时,33111(1)·101a q qa a S q -=-=+,∴31101q q q -=+-,整理得29q =. ∵451·9a a q ==,即1819a =,∴119a =,故选C .(4)【2013年全国Ⅱ,理4,5分】已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l m ⊥,l n ⊥,l α⊄,l β⊄,则( )(A )//αβ且//l α (B )αβ⊥且l β⊥ (C )α与β相交,且交线垂直于l (D )α与β相交,且交线平行于l【答案】D【解析】因为m α⊥,l m ⊥,l α⊄,所以//l α.同理可得//l β.又因为m ,n 为异面直线,所以α与β相交,且l 平行于它们的交线,故选D .(5)【2013年全国Ⅱ,理5,5分】已知5(1)(1)ax x ++的展开式中2x 的系数是5,则a =( )(A )4- (B )3- (C )2- (D )1- 【答案】D【解析】因为5(1)x +的二项展开式的通项为5C 0)5(r rr r x ≤≤∈Z ,,则含2x 的项为221552C C 105()x ax x a x +⋅=+,所以1055a +=,1a =-,故选D . (6)【2013年全国Ⅱ,理6,5分】执行右面的程序框图,如果输入的10N =,那么输出的S =( )(A )1111+2310+++ (B )1111+2!3!10!+++ (C )1111+2311+++ (D )1111+2!3!11!+++【答案】D【解析】由程序框图知,当1k =,0S =,1T =时,1T =,1S =;当2k =时,12T =,1=1+2S ;当3k =时,123T =⨯,111+223S =+⨯;当4k =时,1234T =⨯⨯,1111+223234S =++⨯⨯⨯;…; 当10k =时,123410T =⨯⨯⨯⨯ ,1111+2!3!10!S =+++ ,k 增加1变为11,满足k N >,输出S ,所以B 正确,故选D .(7)【2013年全国Ⅱ,理7,5分】一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是()1,0,1,()1,1,0,()0,1,1,()0,0,0,画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )(A ) (B ) (C ) (D )【答案】A【解析】如图所示,该四面体在空间直角坐标系O xyz -的图像为下图:则它在平面zOx 上的投影即正视图为A 图形,故选A .(8)【2013年全国Ⅱ,理8,5分】设3log 6a =,5log 10b =,7log 14c =,则( )(A )c b a >> (B )b c a >> (C )a c b >> (D )a b C >> 【答案】D【解析】根据公式变形,lg 6lg 21lg3lg3a ==+,lg10lg 21lg 5lg 5b ==+,lg14lg 21lg 7lg 7c ==+,因为lg 7lg5lg3>>, 所以lg 2lg 2lg 2lg 7lg5lg3<<,即c b a <<,故选D . (9)【2013年全国Ⅱ,理9,5分】已知0a >,,x y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值是1,则a =( )(A )14 (B )12(C )1 (D )2【答案】B【解析】由题意作出13x x y ≥⎧⎨+≤⎩所表示的区域如图阴影部分所示,作直线21x y +=,因为直线21x y +=与直线1x =的交点坐标为(1)1-,,结合题意知直线()3y a x =-过点(1)1-,,代入得12a =,故选B . (10)【2013年全国Ⅱ,理10,5分】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )(A )0x R ∃∈,0()0f x = (B )函数()y f x =的图象是中心对称图形(C )若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减(D )若0x 是()f x 的极值点,则0'()0f x = 【答案】C【解析】若0c =则有(0)0f =,所以A 正确.由32()f x x ax bx c =+++得32()f x c x ax bx -=++,因为函数32y x ax bx =++的对称中心为0,0(),所以32()f x x ax bx c =+++的对称中心为(0,)c ,所以B 正确.由三次函数的图象可知,若0x 是()f x 的极小值点,则极大值点在0x 的左侧,所以函数在区间0,x -∞()单调递减是错误的,D 正确,故选C .(11)【2013年全国Ⅱ,理11,5分】设抛物线22(0)y px p =≥的焦点为F ,点M 在C 上,5MF =,若以MF为直径的圆过点0,2(),则C 的方程为( )(A )24y x =或28y x = (B )22y x =或28y x = (C )24y x =或216y x = (D )22y x =或216y x = 【答案】C【解析】设点M 的坐标为00()x y ,,由抛物线的定义,得052P MF x =+=,则052x p =-.又点F 的坐标为,02p ⎛⎫⎪⎝⎭,所以以MF 为直径的圆的方程为()()0020p y y x x x y ⎛⎫- ⎭-⎪⎝-+=.将0x =,2y =代入得00840px y +-=,即0202480y y -+=,所以04y =.由0202y px =,得16252p p ⎛⎫=- ⎪⎝⎭,解之得2p =,或8p =. 所以C 的方程为24y x =或216y x =,故选C .(12)【2013年全国Ⅱ,理12,5分】已知1,0A -(),1,0B (),0,1C (),直线(0)y ax b a =+>将ABC ∆分割为面积相等的两部分,则b 的取值范围是( )(A )0,1() (B )112⎛⎫ ⎪ ⎪⎝⎭ (C )113⎛⎫- ⎪ ⎪⎝⎭ (D )11,32⎡⎫⎪⎢⎣⎭ 【答案】B第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上(13)【2013年全国Ⅱ,理13,5分】已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=______. 【答案】2【解析】解法一:在正方形中,12AE AD DC =+ ,BD BA AD AD DC =+=-,所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯= .解法二:以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如图所示,则点A 的坐标为()0,0,点B 的坐标为()2,0,点D 的坐标为()0,2,点E 的坐标为()1,2,则()1,2AE =,()2,2BD =-,所以2AE BD ⋅= . (14)【2013年全国Ⅱ,理14,5分】从n 个正整数1,2,3,4,5,…,n 中任意取出两个不同的数,若其和为5的概率是114,则n =__ ____.【答案】8【解析】从1,2,…,n 中任取两个不同的数共有2C n种取法,两数之和为5的有()1,4,()2,3 2种,所以221C 14n=,即24111142n n n n ==(-)(-),解得8n =.(15)【2013年全国Ⅱ,理15,5分】设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_______.【答案】【解析】由π1tan 1tan 41tan 2θθθ+⎛⎫+== ⎪-⎝⎭,得1t a n 3θ=-,即1s i n c o s 3θθ=-.将其代入22sin cos 1θθ+=,得210cos 19θ=.因为θ为第二象限角,所以cos θ=,sin θ=sin cos θθ+=. (16)【2013年全国Ⅱ,理16,5分】等差数列{}n a 的前n 项和为n S ,已知100S =,1525S =,则n nS 的最小值为_______. 【答案】49-【解析】设数列{}n a 的首项为1a ,公差为d ,则1101109S =10210450a a d d ⨯=+=+,①115115141521510525d S a d a =+⨯==+.② 联立①②,得13a =-,23d =,所以2(1)211032333n n n n S n n --+⨯=-=.令()n f n nS =,则32110()33f n n n =-,220'()3f n n n =-.令()0f n '=,得0n =或203n =.当203n >时,()0f n '>,200<<3n 时,()0f n '<,所以当203n =时,()f n 取最小值,而n +∈N ,则()648f =-,()749f =-,所以当7n =时,()f n 取最小值49-.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)【2013年全国Ⅱ,理17,12分】ABC ∆的内角的对边分别为,,,a b c 已知cos cos a b C c B =+.(1)求B ;(2)若2b =,求ABC ∆的面积的最大值. 解:(1)由已知及正弦定理得sin sin cos sin sin A B C C B =+.① 又()A B C π=-+,故()sin sin sin cos cos sin A B C B C B C =+=+.② 由①,②和0()C π∈,得sin cos B B =, 又0()B π∈,,所以π4B =. (2)ABC ∆的面积1sin 2S ac B ==.由已知及余弦定理得22π2cos 44ac a c =+-. 又222a c ac +≥,故ac ≤a c =时,等号成立.因此ABC ∆.(18)【2013年全国Ⅱ,理18,12分】如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点.1AA AC CB AB ===. (1)证明:1//BC 平面11A CD ;(2)求二面角1D ACE --的正弦值. 解:(1)连结1AC 交1A C 于点F ,则F 为1AC 中点.又D 是AB 中点,连结DF ,则1//BC DF . 因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1//BC 平面1A CD .(2)由AC CB AB ==得,AC BC ⊥.以C 为坐标原点,CA 的方向为x 轴正方向,建立如图 所示的空间直角坐标系C xyz -.设2CA =,则()1,1,0D ,()0,2,1E ,()12,0,2A ,()1,1,0CD =, ()0,2,1CE = ,()12,0,2CA =.设111()x y z =n ,,是平面1A CD 的法向量,则100CD CA ⎧⋅=⎪⎨⋅=⎪⎩n n 即11110220x y x z +=⎧⎨+=⎩,可取11(1)=--n ,,.同理,设m 是平面A 1CE 的法向量, 则10CE CA ⎧⋅=⎪⎨⋅=⎪⎩m m 可取2,1()2=-m ,.从而||||o c s ==n?m n n m m 〈,〉,故sin ,=n m 即二面角1D ACE --(19)【2013年全国Ⅱ,理19,12分】经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润 (1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作1为需求量取该区间中点值的概率(例如:若需求量[)100,110X ∈,则取105X =,且105X =的概率等于需求量落入[)100,110的频率),求T 的数学期望.解:(1)当[)100,130X ∈时,()50030013080039000T X X X =--=-,当[]130,150X ∈时,50013065000T =⨯=. 所以80039000,10013065000,130150X X T X -≤<⎧=⎨≤≤⎩.(2)由(1)知利润T 不少于57000元当且仅当120150X ≤≤.由直方图知需求量[]120,150X ∈的频率为0.7,所以下一个销售季度内的利润T 不少于57000元的概率的估计值为0.7. (3)依题意可得T所以450000.1ET =⨯+(20)【2013年全国Ⅱ,理20,12分】平面直角坐标系xOy 中,过椭圆M :2222=1x y a b +(0a b >>)右焦点的直线0x y +交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 面积的最大值.解:(1)设11()A x y ,,22()B x y ,,00()P x y ,,则221122=1x y a b+,222222=1x y a b +,2121=1y y x x ---, 由此可得2212122121=1b x x y y a y y x x (+)-=-(+)-.因为1202x x x +=,1202y y y +=,0012y x =,所以222a b =. 又由题意知,M 的右焦点为),故223ab -=.因此26a =,23b =.所以M 的方程为22=163x y +.(2)由220163x y xy⎧+-=⎪⎨+=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或0x y =⎧⎪⎨=⎪⎩AB =CD 的方程为: y x n n ⎛=+<<⎝,设33()C x y ,,44()D x y ,.由22163y x nx y =+⎧⎪⎨+=⎪⎩得2234260x nx n ++-=. 于是3,4x =CD 的斜率为1,所以43|x xCD -由已知,四边形ACBD 的面积1||||2S CD AB =⋅=. 当0n =时,S .所以四边形ACBD .(21)【2013年全国Ⅱ,理21,12分】已知函数()ln()x f x e x m =-+.(1)设0x =是()f x 的极值点,求m 并讨论()f x 的单调性; (2)当2m ≤时,证明()0f x >.解:(1)()1e x mf x x =-'+.由0x =是()f x 的极值点得()00f '=,所以1m =.于是()()e ln 1x f x x =-+,定义域为()1-+∞,,()1e 1x f x x =-+'.函数()1e 1x f x x =-+'在()1-+∞,单调递增,且()00f '=. 因此当()1,0x ∈-时,()0f x '<;当0()x ∈+∞,时,()0f x '>.所以()f x 在()1,0-单调递减,在(0)+∞, 单调递增.(2)当2m ≤,()x m ∈-+∞,时,()()ln ln 2x m x +≤+,故只需证明当2m =时,()0f x >.当2m =时,函数()1e 2x f x x =-+'在()2-+∞,单调递增.又()10f '-<,()00f '>, 故()0f x '=在()2-+∞,有唯一实根0x ,且()01,0x ∈-.当02()x x ∈-,时,()0f x '<; 当0()x x ∈+∞,时,()0f x '>,从而当0x x =时,()f x 取得最小值.由()00f x '=得001e 2x x =+, ()00ln 2x x +=-,故()()20000011022f x x x x f x x (+)+=≥>++=.综上,当2m ≤时,()0f x >. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时请写清题号. (22)【2013年全国Ⅱ,理22,10分】(选修4-1:几何证明选讲)如图,CD 为ABC ∆外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且 ··BC AE DC AF =,B ,E ,F ,C 四点共圆. (1)证明:CA 是ABC ∆外接圆的直径;(2)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC ∆外接圆面积的比值.解:(1)因为CD 为ABC ∆外接圆的切线,所以DCB A ∠=∠,由题设知BC DCFA EA=,故CDB AEF ∆∆∽, 所以DBC EFA ∠=∠.因为B ,E ,F ,C 四点共圆,所以CFE DBC ∠=∠,故90EFA CFE ∠=∠=︒. 所以90CBA ∠=︒,因此CA 是ABC ∆外接圆的直径.(2)连结CE ,因为90CBE ∠=︒,所以过B ,E ,F ,C 四点的圆的直径为CE ,由D B B E =,有C E D C =, 又22·2BC DB BA DB ==,所以222246CA DB BC DB =+=.而22·3DC DB DA DB ==,故过B ,E ,F , C 四点的圆的面积与ABC ∆外接圆面积的比值为12.(23)【2013年全国Ⅱ,理23,10分】(选修4-4:坐标系与参数方程)已知动点P Q 、都在曲线2cos :2sin x tC y t =⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02απ<<),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.解:(1)依题意有2cos (n )2si P αα,,2cos2(2)2sin Q αα,,因此cos cos ()2sin sin2M αααα++,. M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩(α为参数,02απ<<).(2)M点到坐标原点的距离)02d απ<<.当απ=时,0d =,故M 的轨迹过坐标原点.(24)【2013年全国Ⅱ,理24,10分】(选修4-5:不等式选讲)设a ,b ,c 均为正数,且1a b c ++=,证明:(1)13ab bc ac ++≤;(2)2221a b c b c a ++≥.解:(1)由222a b ab +≥,222b c bc +≥,222c a ca +≥,得222a b c ab bc ca ++≥++.由题设得()21a b c ++=,即2222221a b c a b b c c a +++++=.()31ab bc ca ∴++≤,即13a b b c c a ++≤.(2)因为22a b a b +≥,22b c b c +≥,22c a c a +≥,故()222(2)a b ca abc c a b c b +≥++++++,即222a b c a b c b c a ≥++++.所以2221a b cb c a++≥.。
2013高考数学(文)二轮复习配套作业(解析版):作业手册详答(湖北省专用)doc资料
专题限时集训(一)A 【基础演练】1.A [解析] 依题意得B ={x|-2<x<1},故A ∪B ={x|-2<x<4}.2.D [解析] 依题意得A ={-1,0,1},因此集合A 的子集个数是23=8. 3.B [解析] 根据特称命题的否定得命题綈p 应为:∀x ∈0,π2,sinx ≠12.4.D [解析] D 项中,当φ=π2时,函数f(x)=sin ⎝⎛⎭⎫2x +π2=cos2x 是偶函数,故D 项错误;A ,B ,C 项都易验证是正确的.故选D.【提升训练】5.B [解析] 由x -2x +3<0得-3<x<2,即M ={x|-3<x<2};由|x -1|≤2得-1≤x≤3,即N ={x|-1≤x≤3}.所以M∩N =[-1,2).6.B [解析] 当c =-1时,由函数f(x)=⎩⎪⎨⎪⎧log2x ,x≥1,x -1,x<1的图象可以得出其是增函数;反之,不一定成立,如取c =-2.所以“c =-1”是“f(x)在R 上单调递增”的充分不必要条件. 7.C [解析] 当“A>B”时,因为sinA -sinB =2cos A +B 2sin A -B 2,易知A +B 2∈⎝⎛⎭⎫0,π2,A -B2∈⎝⎛⎭⎫0,π2,所以cos A +B 2>0,sin A -B 2>0.可以推得sinA>sinB.当“sinA>sinB ”时,有sinA -sinB =2cos A +B 2sin A -B 2>0,又由上得cos A +B 2>0,所以sin A -B 2>0,所以A -B 2∈⎝⎛⎭⎫0,π2,即A -B ∈(0,π),可以推得A>B.故“A>B”是“sinA>sinB ”的充分必要条件.故选C. 8.C [解析] 命题p 等价于Δ=a2-16≥0,即a≤-4或a≥4;命题q 等价于-a4≤3,即a≥-12.由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假.若p 真q 假,则a<-12;若p 假q 真,则-4<a<4.故实数a 的取值范围是(-∞,-12)∪(-4,4).9.B [解析] 对于①,显然m≠0,故由am2<bm2两边同时除以m2,得a<b.故①正确.对于②,因为x 是任意正数,所以不等式2x +a x ≥1等价于a≥x -2x2=-2⎝⎛⎭⎫x -142+18.因为不等式恒成立,所以a≥18.故②正确.对于③,命题“∃x ∈R ,x2-x>0”的否定是“∀x ∈R ,x2-x≤0”,故③错误.对于④,若命题p ∧q 为假,则p 和q 至少有一个为假,不可以推得命题p ∨q 为假命题;但当命题p ∨q 为假时,则p 和q 都为假,可以推得命题p ∧q 为假命题;故“p ∧q 为假命题”是“p ∨q 为假命题”的必要不充分条件,故④错误.综上,正确的个数为2.故选B. 10.∀x ∈R ,x>1且x2≤4 [解析] 因为特称命题p :∃x0∈M ,p(x0)的否定为綈p :∀x ∈M ,綈p(x),所以题中命题的否定为“∀x ∈R ,x>1且x2≤4”.11.{5,6} [解析] 依题意作出满足条件的韦恩图,可得B ∩(∁UA)={5,6}.12.①④ [解析] 对于①,“∃x0∈R ,2x0>3”的否定是“∀x ∈R ,2x ≤3”,所以①正确;对于②,注意到sin π6-2x =cos2x +π3,因此函数y =sin2x +π3sin π6-2x =sin2x +π3·cos2x+π3=12sin4x +2π3,其最小正周期为2π4=π2,所以②不正确;对于③,注意到命题“函数f(x)在x =x0处有极值,则f′(x 0)=0”的否命题是“若函数f(x)在x =x0处无极值,则f′(x 0)≠0”,容易知该命题不正确,如取f(x)=x3,f(x)无极值但当x0=0时,f′(x 0)=0,故③不正确;对于④,依题意知,当x<0时,-x>0,f(x)=-f(-x)=-2-x ,所以④正确.综上所述,其中正确的说法是①④. 专题限时集训(一)B 【基础演练】1.B [解析] (∁UM )∩N ={x|x ∈Z ,x≠-1,0,1}∩{0,1,3}={3}.故选B. 2.A [解析] 依题意得M ={x|x≥-a},N ={x|1<x<3},则∁UN ={x|x≤1,或x≥3}.又M∩(∁UN)={x|x =1,或x≥3}, 所以-a =1,求得a =-1.3.C [解析] 因为a2-a +1=a -122+34≥34>0,所以由a -1a2-a +1<0得a<1,不能得到|a|<1;反过来,由|a|<1得-1<a<1,所以a -1a2-a +1<0.因此“a -1a2-a +1<0”是“|a|<1”成立的必要不充分条件.4.D [解析] 对于A ,命题“若x2=1,则x =1”的否命题为“若x2≠1,则x≠1”,因此选项A 不正确;对于B ,由x =-1得x2-5x -6=0,因此“x =-1”是“x 2-5x -6=0”的充分条件,选项B 不正确;对于C ,命题“∃x0∈R ,使得x20+x0-1<0”的否定是:“∀x ∈R ,使得x2+x -1≥0”,因此选项C 不正确;对于D ,命题“若x =y ,则sinx =siny ”是真命题,因此它的逆否命题也为真命题,选项D 正确. 【提升训练】5.B [解析] A ={x|x2-x -6<0}={x|-2<x<3},所以A∩B ={-1,1,2},有三个元素.故选B.6.D [解析] 因为∀x ∈R ,2x2+2x +12=2x +122≥0,所以p 为假命题;当x =3π4时,sin3π4-cos 3π4=22+22=2,所以q 为真命题,则綈q 是假命题.7.B [解析] 注意到⊙O1与⊙O4无公共点,⊙O2与⊙O3无公共点,则满足题意的“有序集合对”(A ,B)的个数是4.8.A [解析] 对于命题q ,函数f(x)=x2+mx +9存在零点,等价于Δ=m2-4×9≥0,等价于m≥6或m≤-6,又{m|m>7}⊂{m|m ≥6},所以p 是q 的充分不必要条件.故选A. 9.C [解析] 若xyz =0,不妨设x =0,则由xOA →+yOB →+zOC →=0,得yOB →=-zOC →,故OB →与OC →共线,又它们有公共点O ,所以点O 在直线BC 上.同理,当y =0或z =0可分别推得点O 在直线AC ,AB 上.故由“xyz =0”可以推得“点O 在△ABC 的边所在直线上”;若点O 在△ABC 的边所在直线上,不妨设点O 在直线BC 上,则一定存在实数λ,使得yOB →+zOC →=λOB →成立.又xOA →+yOB →+zOC →=0,所以xOA →+λOB →=0.因为OA →与OB →不共线,所以x =0,λ=0.同理,当点O 在直线AC ,AB 上时,可以分别推得y =0,z =0.故由“点O 在△ABC 的边所在直线上”可以推得“xyz =0”.故“xyz =0”是“点O 在△ABC 的边所在直线上”的充要条件.故选C.10.ab =a2+b2 [解析] 由A∩B 只有一个元素知,圆x2+y2=1与直线x a -yb =1相切,则1=aba2+b2,即ab =a2+b2.11.必要不充分 [解析] 设向量a ,b 的夹角为θ,则由题意知,当a·b =|a|·|b|cos θ>0时,θ∈⎣⎡⎭⎫0,π2;若a 与b 的夹角为锐角,即θ∈0,π2.因为⎝⎛⎭⎫0,π2⎣⎡⎭⎫0,π2,所以p 是q 成立的必要不充分条件.12.(-∞,-1]∪[0,+∞) [解析] 若对于任意实数x ,都有x2+ax -4a>0,则Δ=a2+16a<0,即-16<a<0;若对于任意实数x ,都有x2-2ax +1>0,则Δ=4a2-4<0,即-1<a<1.于是命题“对于任意实数x ,都有x2+ax -4a>0且x2-2ax +1>0”是真命题时有a ∈(-1,0),则命题“对于任意实数x ,都有x2+ax -4a>0且x2-2ax +1>0”是假命题时a 的取值范围是(-∞,-1]∪[0,+∞). 专题限时集训(二)A 【基础演练】1.D [解析] 由题意可得⎩⎪⎨⎪⎧x>0,log3x ≠0,解得x>0且x≠1,故函数定义域为(0,1)∪(1,+∞).2.C [解析] 函数是偶函数,只能是选项C 中的图象.3.C [解析] 依题意,因为5≥4,4≥4,所以f(5)=f(5-1)=f(4)=f(4-1)=f(3),而3<4,所以f(3)=23=8.4.B [解析] 因为3a =5b =A ,所以a =log3A ,b =log5A ,且A>0,于是1a +1b =logA3+logA5=logA15=2,所以A =15. 【提升训练】5.D [解析] 由题意,⎩⎨⎧2-x>0,lgx ≥0,解得1≤x<2.故选D.6.B [解析] 由loga2<0得0<a<1,f(x)=loga(x +1)的图象是由函数y =logax 的图象向左平移1个单位得到的,故为选项B 中的图象.7.A [解析] 由条件知,0<a<1,b<-1,结合选项,函数g(x)=ax +b 只有A 符合要求. 8.B [解析] 根据f(x)的图象知0<b<1,a>1,则函数g(x)单调递增,且是由函数h(x)=logax 向左平移了b(0<b<1)个单位而得到的,故B 项符合. 9.B [解析] 由f(x +3)=-1f (x ),得f(x +6)=-1f (x +3)=f(x),知6为该函数的一个周期,所以f(107.5)=⎝⎛⎭⎫6×18-12=f ⎝⎛⎭⎫-12=-1f ⎝⎛⎭⎫52=-1f ⎝⎛⎭⎫-52=-1-10=110. 10.-12 [解析] 依题意,f(m)=12,即em -1em +1=12.所以f(-m)=e -m -1e -m +1=1-em 1+em =-em -1em +1=-12.11.7 6 [解析] 因为f(22)=loga((22)2-1)=loga7=1,所以a =7. 故f(f(2))=f[log7(22-1)] =2×7log73=2×3=6.12.②③④ [解析] 根据单函数的定义可知故命题②、④是真命题,①是假命题;根据一个命题与其逆否命题等价可知,命题③是真命题. 专题限时集训(二)B 【基础演练】1.C [解析] 依题意,得⎩⎪⎨⎪⎧x +2>0,1-lg (x +2)≥0,即⎩⎪⎨⎪⎧x +2>0,x +2≤10,解得-2<x≤8,故函数定义域为(-2,8].2.A [解析] f(27)=11+327=14,f(f(27))=f ⎝⎛⎭⎫14=⎪⎪⎪⎪log414-1-2=0.故选A. 3.B [解析] y =-1x 是奇函数,A 错误;y =e|x|是偶函数且在(0,+∞)上单调递增,B 正确;y =-x2+3是偶函数且在(0,+∞)上单调递减,C 错误;y =cosx 是偶函数且在(0,+∞)上有时递增,有时递减,D 错误.4.C [解析] 依题意,由f(2-x)=f(x)得f(1-x)=f(1+x), 即函数f(x)的对称轴为直线x =1,结合图形可知f 12<f 13<f(0)=f(2). 【提升训练】5.C [解析] 将函数f(x)=x|x|-2x 去掉绝对值,得f(x)=⎩⎪⎨⎪⎧x2-2x ,x≥0,-x2-2x ,x<0,画出函数f(x)的图象,观察图象可知,函数f(x)的图象关于原点对称,故f(x)为奇函数,且在(-1,1)上单调递减.6.A [解析] 本题考查函数的奇偶性,周期性,函数求值. f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫12=-2×12×⎝⎛⎭⎫1-12=-12.故选A. 7.C [解析] 函数是偶函数,而且函数值为正值,在x→0时,x sinx →1,当x→π时,x sinx →+∞,综合这些信息得只能是选项C 中的图象.8.D [解析] 由题意,f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12×4=48.故选D.9.D [解析] 依题意得,f(x -1)=⎩⎪⎨⎪⎧x +1,x≤0,-x +1,0<x<2,x -3,x≥2,在同一直角坐标系中作出函数y =f(x -1)和y =t(|t|<1)的图象(如图),由图象知方程f(x -1)=t(|t|<1)所有根的和s 的取值范围是(2,4).10.-14 [解析] 由对任意t ∈R ,都有f(t)=f(1-t),可得f(-t)=f(1+t),即f(t +1)=-f(t),进而得到f(t +2)=-f(t +1)=-[-f(t)]=f(t),即函数y =f(x)的一个周期为2,故f(3)=f(1)=f(0+1)=-f(0)=0,f -32=f 12=-14.所以f(3)+f -32=0+-14=-14.11.①②④ [解析] 依题意,令x =-2得f(2)=f(-2)+f(2),又函数f(x)是偶函数,故f(2)=0,所以①正确;根据①可得f(x +4)=f(x),即函数f(x)的周期为4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f(x)图象的一条对称轴,所以②正确;根据函数的周期性可知,函数f(x)在[8,10]上单调递减,所以③不正确;由于函数f(x)的图象关于直线x =-4对称,故如果方程f(x)=m 在[-6,-2]上的两根为x1,x2,则x1+x2=-8,所以④正确. 12.②④ [解析] 对于①,结合函数f(x)的图象分析可知,不存在函数g(x),使得f(x)≥g(x)对一切实数x 都成立,即f(x)不存在承托函数;对于②,注意到f(x)=2-x>0,因此存在函数g(x)=0,使得f(x)≥g(x)对一切实数x 都成立,即f(x)存在承托函数;对于③,结合函数f(x)的图象分析可知,不存在函数g(x),使得f(x)≥g(x)对一切实数x 都成立,即f(x)不存在承托函数;对于④,注意到f(x)=x +sinx ≥x -1,因此存在函数g(x)=x -1,使得f(x)≥g(x)对一切实数x 都成立,即f(x)存在承托函数.综上所述,存在承托函数的f(x)的序号为②④. 专题限时集训(三) 【基础演练】1.B [解析] 本题考查函数零点所在区间的判断.因为f ⎝⎛⎭⎫-14=e 14-2<0,f ⎝⎛⎭⎫-12=e 12-1>0,所以f ⎝⎛⎭⎫-14·f ⎝⎛⎭⎫-12<0.又函数f(x)的图象是连续的,所以由零点存在定理得函数f(x)=e -x -4x -3的零点所在的区间为⎝⎛⎭⎫-12,-14.故选B. 2.B [解析] 依题意,由所给出的函数图象可求得函数解析式为h =20-5t(0≤t≤4),对照选项可知图象应为B.故选B.3.C [解析] 将表中的数据代入各选项中的函数解析式验证,可知只有v =t2-12满足.故选C.4.B [解析] 在同一坐标系内画出函数y =3cos π2x 和y =log2x +12的图象,可得交点个数为3.【提升训练】5.D [解析] 由于f ⎝⎛⎭⎫1e =13×1e -ln 1e =13e +1>0,f(1)=13×1-ln1=13>0,f(e)=13×e -lne =13e -1<0,则知函数f(x)在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点.故选D.6.C [解析] 易知f(a)=0,函数f(x)=lnx -log 12x 在(0,+∞)上单调递增,因为0<x0<a ,所以f(x0)<f(a)=0.7.C [解析] 设CD =x ,依题意,得S =x(16-x)(4<x<16-a),所以Smax =f(a)=⎩⎪⎨⎪⎧64(0<a≤8),a (16-a )(8<a<12),对照图象知,C 符合函数模型对应的图象.故选C. 8.D [解析] 因为函数f(x)是奇函数,且定义域为R ,所以f(0)=0.又函数f(x)是周期为3的周期函数,所以f(6)=f(3)=f(0)=0.又当x ∈⎝⎛⎭⎫0,32时,f(x)=sin πx ,所以f(1)=0.所以f(4)=f(1)=f(-2)=0.所以f(2)=f(5)=0.因为f ⎝⎛⎭⎫32=0,所以f ⎝⎛⎭⎫92=0.综上,函数f(x)在区间[0,6]上的零点有0,1,32,2,3,4,92,5,6共9个.9.D [解析] 由对任意的x ∈R 都有f(x +1)=f(x -1)知f(x)=f(x +2),即函数y =f(x)的周期为2,在同一直角坐标系中作出函数y =f(x)(x ∈[-1,3])和y =m(x +1)的图象(如图),要使函数g(x)=f(x)-mx -m 恰有四个不同零点,则0<m≤14.10.3 [解析] 由题意知,f(3)=ln3-1>0,f(4)=ln4-2<0,所以该函数的零点在区间(3,4)内,由此可得k =3.故填3.11.40 [解析] 设相同时间间隔为t1小时,第10台投入工作至收割完成为t2小时,则第1,2,3,4,5,6,7,8,9台投入工作的时间依次为9t1+t2,8t1+t2,…,t1+t2小时.因为采用第一种方案总共用24小时完成,所以每台收割机每小时完成收割任务的1240.依题意有⎩⎪⎨⎪⎧9t1+t2=5t2,1240[(9t1+t2)+(8t1+t2)+…+t2]=1,解得t2=8.故采用第二种方案时第一台收割机投入工作的时间为5t2=40(小时).12.解:(1)条件说明抛物线f(x)=x2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎩⎪⎨⎪⎧f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0⇒⎩⎪⎨⎪⎧m<-12,m ∈R ,m<-12,m>-56.∴-56<m<-12.(2)抛物线与x 轴交点落在区间(0,1)内,列不等式组⎩⎪⎨⎪⎧Δ=4m2-4(2m +1)≥0,f (0)=2m +1>0,f (1)=4m +2>0,0<-m<1,得-12<m≤1-2.(这里0<-m<1是因为对称轴x =-m 对应的-m 应在区间(0,1)内过) 13.解:(1)当x =0时,t =0;当0<x≤24时,x +1x ≥2(当x =1时取等号),∴t =x x2+1=1x +1x∈⎝⎛⎦⎤0,12,即t 的取值范围是⎣⎡⎦⎤0,12. (2)当a ∈⎣⎡⎦⎤0,12时,记g(t)=|t -a|+2a +23, 则g(t)=⎩⎨⎧-t +3a +23,0≤t≤a ,t +a +23,a<t ≤12.∵g(t)在[0,a]上单调递减,在⎝⎛⎦⎤a ,12上单调递增, 且g(0)=3a +23,g ⎝⎛⎭⎫12=a +76,g(0)-g ⎝⎛⎭⎫12=2⎝⎛⎭⎫a -14. 故M(a)=⎩⎨⎧g ⎝⎛⎭⎫12,0≤a≤14,g (0),14<a ≤12,即M(a)=⎩⎨⎧a +76,0≤a≤14,3a +23,14<a ≤12.∴当且仅当a≤49时,M(a)≤2.故当0≤a≤49时不超标,当49<a ≤12时超标. 14.解:(1)当m =2,x ∈[1,2]时, f(x)=x·(x -1)+2=x2-x +2=x -122+74.∵函数y =f(x)在[1,2]上单调递增,∴f(x)max =f(2)=4,即f(x)在[1,2]上的最大值为4.(2)函数p(x)的定义域为(0,+∞),函数p(x)有零点,即方程f(x)-g(x)=x|x -1|-lnx +m =0有解,即m =lnx -x|x -1|有解,令h(x)=lnx -x|x -1|. 当x ∈(0,1]时,h(x)=x2-x +lnx.∵h ′(x)=2x +1x -1≥22-1>0当且仅当2x =1x 时取“=”,∴函数h(x)在(0,1]上是增函数,∴h(x)≤h(1)=0.当x ∈(1,+∞)时,h(x)=-x2+x +lnx.∵h ′(x)=-2x +1x +1=-2x2+x +1x =-(x -1)(2x +1)x <0,∴函数h(x)在(1,+∞)上是减函数,∴h(x)<h(1)=0,∴方程m =lnx -x|x -1|有解时,m≤0, 即函数p(x)有零点时,m 的取值范围为(-∞,0]. 专题限时集训(四)A 【基础演练】1.B [解析] 对于B ,由a3>b3知a>b ,而ab>0,由不等式的倒数法则知1a <1b .故选B. 2.D [解析] 由1x <12,得1x -12<0,即2-x 2x <0,于是不等式转化为x(x -2)>0,解得x<0或x>2.故选D.3.B [解析] a·b =4x -4+2y =0,即2x +y =2,9x +3y ≥29x ·3y =232x +y =232=6(当2x =y =1时取等号).4.B [解析] 作出满足题设条件的可行域(如图),则当直线y =-2x +z 经过点A(-2,2)时,截距z 取得最小值,即zmin =2×(-2)+2=-2.【提升训练】5.A [解析] |x +3|-|x -1|≤|(x +3)-(x -1)|=4,由题意,有4≤a 2-3a ,解得a≤-1,或a≥4. 6.A [解析] 依题意,a2<1+x 对任意正数x 恒成立,则a2≤1,求得-1≤a≤1.7.B [解析] 作出不等式组⎩⎪⎨⎪⎧2x -y≤0,x -2y +3≥0,x≥0的可行域,如图中的阴影部分所示,设w =2x +y ,由图知,当取点A(1,2)时,w 取得最大值为2×1+2=4,此时z =2x +y +4的最大值为4+4=8.故选B.8.A [解析] 作出不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -2≥0表示的平面区域,则此平面区域为△ABC ,且A(2,0),B(0,1),C(2,1),于是,S =12×2×1=1.故选A.9.B [解析] 由a>0,b>0且直线x -y =-1与2x -y =2的交点为(3,4),得当x =3,y =4时,z 取得大值,3a +4b =7,所以3a +4b =3a +4b ·3a +4b 7=97+167+127b a +a b ≥257+127×2b a ·a b =257+247=7. 10.A [解析] 由f(x)是奇函数知f(0)=lg(2+a)=0,解得a =-1,那么由f(x)=lg ⎝⎛⎭⎫21-x -1<0=lg1,得21-x -1<1,即x x -1>0,解得x<0或x>1,又知其定义域为21-x -1>0,即x +1x -1<0,解得-1<x<1,综上可得-1<x<0.故选A.11.8 [解析] 依题意,设货车从A 市到B 市的时间为t ,则t =400v +16×v202v =400v +16v400≥2400v ·16v400=216=8.故填8.12.(-∞,-1)∪(3,+∞) [解析] 当x≤-1时,不等式可化为-(x +1)-(2x -4)>6,解得x<-1;当-1<x<2时,不等式可化为(x +1)-(2x -4)>6,解得x<-1,无解;当x≥2时,不等式可化为(x +1)+(2x -4)>6,解得x>3;故不等式的解集为(-∞,-1)∪(3,+∞).13.-18 6 [解析] 作出不等式组⎩⎪⎨⎪⎧y2-x≤0,x +y≤2表示的可行域(如下图阴影部分所示,含边界).联立⎩⎪⎨⎪⎧y2-x =0,x +y =2,解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =4,y =-2,故两交点分别为A(1,1),B(4,-2).设z =2x +y ,可知当直线z =2x +y 经过点B(4,-2)时,z =2x +y 有最大值,且zmax =6;当直线z =2x+y 与抛物线y2-x =0相切时,z =2x +y 有最小值,此时由⎩⎪⎨⎪⎧y2-x =0,z =2x +y ,消去y 得4x2-(4z+1)x +z2=0,令Δ=(4z +1)2-16z2=0,解得z =-18.故zmin =-18.故2x +y 的最小值为-18,最大值为6. 专题限时集训(四)B 【基础演练】1.D [解析] ∵y>x>0,且x +y =1,取特殊值:x =14,y =34,则x +y 2=12,2xy =38,∴x<2xy<x +y 2<y.故选D.2.D [解析] |x -1|+|x -6|≥|(x -1)-(x -6)|=5,故要使不等式|x -1|+|x -6|>m 恒成立,须满足m<5.3.D [解析] ∵am +bn +c<0,b<0,∴n>-a b m -cb . ∴点P 所在的平面区域满足不等式y>-a b x -cb ,a>0,b<0.∴-ab >0.故点P 在该直线的上侧,综上知,点P 在该直线的左上方.4.D [解析] 依题意,不等式f(x0)>1等价于⎩⎪⎨⎪⎧x0≤0,12x0>1或⎩⎨⎧x0>0,x0>1,解得x0<0或x0>1.故选D.【提升训练】5.C [解析] 不等式x2-x -6x -1>0可化为(x +2)(x -3)(x -1)>0,由数轴标根法可知,解集为{x|-2<x<1,或x>3}.6.B [解析] 依题意知,-12和13是一元二次方程ax2+bx +2=0的两根,且a<0,则⎩⎨⎧-12+13=-ba ,-12×13=2a ,解得⎩⎪⎨⎪⎧a =-12,b =-2.于是,不等式2x2+bx +a<0即是2x2-2x -12<0,解得-2<x<3.故选B.7.C [解析] 因为0<x<1,所以1+x>2x =4x>2x ,所以只需比较1+x 与11-x 的大小.因为1+x -11-x =1-x2-11-x =x2x -1<0,所以1+x<11-x .故选C.8.2π [解析] 在同一直角坐标系中作出可行域⎩⎨⎧(x +3y )(3x -y )≤0,x2+y2≤4.由图形知,不等式组表示的平面区域的面积是二分之一的半径为2的圆面积,即S =12×π×22=2π.9.2+22 [解析] 画出不等式组表示的平面区域,当t 最小时,所表示的区域为第一象限的一个等腰直角三角形.依题意,它有一个半径为1的内切圆,不妨设斜边|OB|=t ,则两直角边长|AB|=|OA|=22t ,所以22t +22t -t 2=1,求得t =22-1=22+2,即 tmin =2+2 2.10.(-∞,-4)∪(0,+∞) [解析] 由题意,对任意x ∈R ,|x -a|+|x +2|>2恒成立,因为|x-a|+|x +2|≥|(x -a)-(x +2)|=|2+a|,所以需满足|2+a|>2,得2+a>2,或2+a<-2,解得a>0,或a<-4.11.10 [解析] 设应把楼房设计成x 层,每层的面积为y m2,则平均每平方米建筑面积的成本费为k =2 000y +y×400+y×440+…+y×[400+40(x -1)]xy =2 000x+20x +380≥22 000x ·20x +380=780,当且仅当2 000x =20x ,即x =10时取等号,故应把楼房设计成10层.12.[-1,11] [解析] 作出x ,y 满足的可行域(如下图阴影部分所示,含边界).当x≥0时,z =2x +y 在点C(6,-1)处取得最大值11,在点D(0,-1)处取最小值-1;当x≤0时,目标函数z =-2x +y 在点B (-2,-1)处取最大值3,在点D(0,-1)处取最小值-1,所以z ∈[-1,11]. 专题限时集训(五)【基础演练】1.C [解析] 将点(2,3)分别代入曲线y =x3+ax +1和直线y =kx +b ,得a =-3,2k +b =3.又k =y′|x =2=(3x2-3)|x =2=9,所以b =3-2k =3-18=-15.故选C.2.C [解析] 对f(x)求导,得f ′(x)=3x2+2x +m ,因为f(x)是R 上的单调函数,二次项系数a =3>0,所以Δ=4-12m≤0,解得m≥13.3.C [解析] 对f(x)求导得f ′(x)=3x2-6x =3x(x -2),则f(x)在区间[-1,0]上递增,在区间[0,1]上递减,因此函数f(x)的最大值为f(0)=2.故选C. 4.A [解析] 对f(x)求导,得f ′(x)=x2+c +(x -2)·2x.又因为f′(2)=0,所以4+c +(2-2)×4=0,所以c =-4.于是f′(1)=1-4+(1-2)×2=-5.故选A. 【提升训练】5.A [解析] 对f(x)求导,得f ′(x)=3x2-3≥-3,∴f(x)上任意一点P 处的切线的斜率k≥-3,即tan α≥-3, ∴0≤α<π2或2π3≤α<π.6.D [解析] ∵s(t)=t2+3t ,∴s′(t)=2t -3t2,则机器人在t =2时的瞬时速度为s′(2)=2×2-322=134(m/s).故选D. 7.D [解析] 由于AB 的长度为定值,只要考虑点C 到直线AB 的距离的变化趋势即可.当x 在区间[0,a]变化时,点C 到直线AB 的距离先是递增,然后递减,再递增,再递减,S′(x)的图象先是在x 轴上方,再到x 轴下方,再回到x 轴上方,再到x 轴下方,并且函数在直线AB 与函数图象的交点处间断,在这个间断点函数性质发生突然变化,所以选项D 中的图象符合要求.8.B [解析] f′(x)=1x -x =1-x2x ,当x>1时,f′(x)<0;当0<x<1时,f′(x)>0,所以函数f(x)在(1,+∞)上单调递减,在(0,1)上单调递增,故排除C ,D 项;因为f(1)=-12<0,故排除A 项.9.D [解析] 根据二次函数图象知f(0)=a ∈(0,1),f(1)=1-b +a =0,即b -a =1,所以b ∈(1,2).又g′(x)=2x +2x -b ,所以g′(b)=2b +b≥22b ·b =22,当且仅当2b =b ,即b =2时取等号,故g′(b)min =2 2.故选D.10.(1,e) [解析] 设切点坐标为(x0,y0),对f(x)=ex 求导,得f ′(x)=ex ,所以f′(x 0)=ex0=e ,即x0=1.又y0=f(x0)=ex0=e ,所以切点坐标为(1,e).11.13 [解析] 本题考查函数的单调性,多项式函数的求导.f′(x)=3kx2+6(k -1)x(k>0),由题意,f′(x)<0的解集是(0,4),所以f′(0)=0,f′(4)=0,解得k =13.12.①1 ②h(0)<h(1)<h(-1) [解析] 本题考查二次函数和三次函数的导数及其图象,求值,比较大小等.①由题意,f′(x)是一次函数,g′(x)是二次函数.所以由图象可得f′(x)=x ,g′(x)=x2.设f(x)=12x2+c(c 为常数).若f(1)=1,则12×12+c =1,解得c =12.所以f(x)=12x2+12.故f(-1)=1.②由①得,可设f(x)=12x2+c1,g(x)=13x3+c2,则h(x)=f(x)-g(x)=12x2+c1-13x3-c2=-13x3+12x2+c3.所以h(-1)=56+c3,h(0)=c3,h(1)=16+c3.所以h(0)<h(1)<h(-1). 13.解:(1)当a =1时,f′(x)=1+1x ⇒f ′⎝⎛⎭⎫12=3. (2)由题知f′(x)=a +1x (x>0),当a≥0时,f′(x)=a +1x >0,则f(x)在区间(0,+∞)上单调递增;当a<0时,f′(x)=a +1x >0⇒0<x<-1a , ∴当a≥0时,f(x)的单调递增区间是(0,+∞), 当a<0时,f(x)的单调递增区间是⎝⎛⎭⎫0,-1a . (3)由题知对任意x1∈(0,+∞),存在x2∈[0,1],使得f(x1)<g(x2),故f(x)max<g(x)max ,又g(x)=2x 在区间[0,1]上递增,所以g(x)max =g(1)=2, 即f(x)max<2,当a≥0时,f(x)在区间(0,+∞)上单调递增,无最大值,显然不满足条件; 当a<0时,f(x)在区间⎝⎛⎭⎫0,-1a 上单调递增,在区间⎝⎛⎭⎫-1a ,+∞上单调递减, 所以f(x)max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a , 即-1+ln ⎝⎛⎭⎫-1a <2⇒a<-1e3,∴a<-1e3. 14.解:(1)令f ′(x)=1x -ax2=0,得x =a.当a≥e 时,函数f(x)在区间(0,e]是减函数,f(x)min =ae ;当0<a<e 时,函数f(x)在区间(0,a]是减函数,[a ,e]是增函数f(x)min =lna. 综上所述,当0<a<e 时,f(x)min =lna ;当a≥e 时,f(x)min =ae . (2)由(1)可知,a =1时,函数f(x)在x1∈(0,e)的最小值为0, 所以g(x)=(x -b)2+4-b2.当b≤1时,g(1)=5-2b<0不成立; 当b≥3时,g(3)=13-6b<0恒成立;当1<b<3时,g(b)=4-b2<0,此时2<b<3.综上可知,满足条件的实数b 的取值范围为{b|b>2}. 15.解:(1)当x<1时,f ′(x)=-3x2+2ax +b.因为函数图象在点(-2,f(-2))处的切线方程为16x +y +20=0. 所以切点坐标为(-2,12),且⎩⎪⎨⎪⎧f (-2)=8+4a -2b =12,f′(-2)=-12-4a +b =-16,解得a =1,b =0.(2)由(1)得,当x<1时,f(x)=-x3+x2, 令f ′(x)=-3x2+2x =0可得x =0或x =23,f(x)在(-1,0)和23,1上单调递减,在0,23上单调递增,对于x<1部分:f(x)的最大值为max ⎩⎨⎧⎭⎬⎫f (-1),f 23=f(-1)=2;当1≤x≤2时,f(x)=c·lnx , 当c≤0时,c·lnx ≤0恒成立,f(x)≤0<2, 此时f(x)在[-1,2]上的最大值为f(-1)=2;当c>0时,f(x)=clnx 在[1,2]上单调递增,且f(2)=c·ln2. 令c·ln2=2,则c =2ln2,所以当c>2ln2时, f(x)在[-1,2]上的最大值为f(2)=c·ln2;当0<c≤2ln2时,f(x)在[-1,2]上的最大值为f(-1)=2. 综上可知,当c≤2ln2时,f(x)在[-1,2]上的最大值为2;当c>2ln2时,f(x)在[-1,2]上的最大值为c·ln2.(3)f(x)=⎩⎪⎨⎪⎧-x3+x2(x<1),clnx (x≥1),根据条件M ,N 的横坐标互为相反数,不妨设M(-t ,t3+t2),N(t ,f(t)),(t>0).若t<1,则f(t)=-t3+t2,由∠MON 是直角得,OM →·ON →=0,即-t2+(t3+t2)(-t3+t2)=0,即t4-t2+1=0.此时无解; 若t≥1,则f(t)=c·lnt.由于MN 的中点在y 轴上,且∠MON =90°,所以N 点不可能在x 轴上,即t≠1.同理有OM →·ON →=0,即-t2+(t3+t2)·clnt =0,c =1(t +1)lnt .由于函数g(t)=1(t +1)lnt (t>1)的值域是(0,+∞),则实数c 的取值范围是(0,+∞). 专题限时集训(六)A 【基础演练】1.B [解析] 方法1:sin15°+cos165°=sin15°-cos15°=2sin15°·cos45°-cos15°sin45°=2sin(-30°)=-22.方法2:显然sin15°-cos15°<0,(sin15°-cos15°)2=1-sin30°=12,故sin15°-cos15°=-22.2.C [解析] 因为1-sin2x =(sinx -cosx )2=|sinx -cosx|,又1-sin2x =sinx -cosx ,所以|sinx -cosx|=sinx -cosx ,则sinx -cosx ≥0,即sinx ≥cosx.又0≤x<2π,所以π4≤x ≤5π4.3.D [解析] 由cos(x +y)sinx -sin(x +y)cosx =1213得sin[x -(x +y)]=-siny =1213,所以siny =-1213.又y 是第四象限的角,所以cosy =513,于是tan y 2=1-cosy siny =1-513-1213=-23.故选D.4.B [解析] 把函数y =sin ⎝⎛⎭⎫2x +π6的图象向右平移π4个长度单位,得到函数y =2sin ⎝⎛⎭⎫2⎝⎛⎭⎫x -π4+π6=2sin ⎝⎛⎭⎫2x -π3的图象.【提升训练】5.A [解析] 由sin θ+cos θ=2,得θ=2k π+π4,所以tan θ+π3=tan π4+π3=1+31-3=-2- 3.故选A.6.C [解析] 依题意得f -15π4=f -15π4+3π2×3=f 3π4=sin 3π4=22.故选C.7.B [解析] 依题意得f(x)=sinx +3cosx =2sinx +π3,因为f(x)在⎣⎡⎦⎤0,π6上单调递增,所以f π7<f π6,而c =f π3=2sin 2π3=2sin π3=f(0)<f π7,所以c<a<b.8.B [解析] 不妨设A>0,由图象可知,A =2,又函数的图象过点⎝⎛⎭⎫π3,2,所以2×π3+φ=2k π+π2(k ∈Z),解得φ=2k π-π6(k ∈Z).故f(x)=2sin ⎝⎛⎭⎫2x +2k π-π6=2sin ⎝⎛⎭⎫2x -π6.所以f(0)=2sin ⎝⎛⎭⎫-π6=-1.故选B.9.D [解析] f(x)=cosx ,f′(x)=-sinx ,又f(x -m)=cos(x -m)=-sin ⎝⎛⎭⎫x -m -π2,由题意,-sinx =-sin ⎝⎛⎭⎫x -m -π2,所以-m -π2=2k π,得m =-2k π-π2(k ∈Z).则m 可以为3π2.故选D.10.13 [解析] 依题意由sin(x +y)=1得x +y =2k π+π2(k ∈Z),所以y =2k π+π2-x(k ∈Z).于是sin(2y +x)=sin ⎣⎡⎦⎤2k π+π2+y =sin π2+y =cosy =cos2k π+π2-x =cos π2-x =sinx =13.故填13.11.74 [解析] 依题意,将函数y =sin ωx +5π6(ω>0)的图象向右平移π3个单位长度后,所得图象对应的函数解析式是y =sin ωx +5π6-π3ω(ω>0),它的图象与函数y =sin ωx +π4的图象重合,所以5π6-π3ω=π4+2k π(k ∈Z),解得ω=74-6k(k ∈Z),因为ω>0,所以ωmin =74.故填74.12.③④ [解析] 对f(x)=cosxsinx =12sin2x ,画出函数的图象,分析知③,④是正确的.故填③,④.13.解:(1)由题得AC →=(3cos α-4,3sin α),BC →=(3cos α,3sin α-4). 由|AC →|=|BC →|,得(3cos α-4)2+9sin2α=9cos2α+(3sin α-4)2⇒sin α=cos α. 因为α∈(-π,0), 所以α=-3π4.(2)由AC →·BC →=0,得3cos α(3cos α-4)+3sin α(3sin α-4)=0, 解得sin α+cos α=34,两边平方得2sin αcos α=-716,所以2sin2α+sin2α1+tan α=2sin2α+2sin αcos α1+sin αcos α=2sin αcos α=-716.14.解:(1)依题意,得f(x)=2sinxcos π6+cosx +a =3sinx +cosx +a =2sinx +π6+a. 所以函数f(x)的最小正周期T =2π.(2)因为x ∈-π2,π2,所以-π3≤x +π6≤2π3.所以当x +π6=-π3,即x =-π2时, f(x)min =f -π2=-3+a ;当x +π6=π2,即x =π3时,f(x)max =f π3=2+a.由题意,有(-3+a)+(2+a)=3,解得a =3-1.15.解:(1)∵函数f(x)的最小正周期T =2πω=π(ω>0),∴ω=2.∵f π4=cos2×π4+φ=cos π2+φ=-sin φ=32,且-π2<φ<0,∴φ=-π3. (2)由(1)知f(x)=cos2x -π3, 列表如下:图象如图.(3)∵f(x)>22,即cos2x -π3>22, 得2k π-π4<2x -π3<2k π+π4,k ∈Z , 即2k π+π12<2x<2k π+712π,k ∈Z ,即k π+π24<x<k π+724π,k ∈Z. ∴所求x 的取值范围是⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π24<x<k π+724π,k ∈Z . 专题限时集训(六)B【基础演练】1.B [解析] 因为sin α=35,α是第二象限的角,所以tan α=-34.又因为tan (α+β)=tan α+tan β1-tan αtan β=1,所以-34+tan β1+34tan β=1,求得tan β=7.故选B. 2.D [解析] 因为y =sinx -cosx =2sinx -π4,令-π2≤x -π4≤π2,得-π4≤x ≤3π4,满足题意,所以f(x)可以是-cosx.3.A [解析] 把函数y =sin ⎝⎛⎭⎫x +π6图象上各点的横坐标缩短到原来的12倍(纵坐标不变),得到函数为y =sin ⎝⎛⎭⎫2x +π6,再将图象向右平移π3个长度单位,那么所得函数为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3+π6=-cos2x ,结合各选项可知其对称轴方程为x =-π2.故选A.4.B [解析] 由已知得y =cos2x -π4=cos π2-2x =sin2x ,因此函数y =1-2sin2x -π4是最小正周期为π的奇函数.故选B.【提升训练】5.A [解析] 依题意得cos θ=±35.又因为sin θ-cos θ>1,所以cos θ=-35,于是sin2θ=2sin θcos θ=2×45×-35=-2425.6.D [解析] 本题考查三角函数的对称性.由题意,有2×π3+φ=k π+π2(k ∈Z),得φ=k π-π6()k ∈Z .又φ∈(0,π),所以φ=5π6.故选D.7.B [解析] 设(x ,y)为g(x)的图象上任意一点,则其关于点π4,0对称的点为π2-x ,-y ,由题意知该点必在f(x)的图象上,所以-y =sin π2-x ,即g(x)=-sin π2-x =-cosx.依题意得sinx ≤-cosx ,即sinx +cosx =2sinx +π4≤0.又x ∈[0,2π],解得3π4≤x ≤7π4.故选B.8.A [解析] 依题意,得f(x)=sin (ωx +φ)+cos (ωx +φ)=2sin ωx +φ+π4,由T =2πω=π(ω>0),得ω=2.又f(-x)=f(x),所以φ+π4=k π+π2(k ∈Z),即φ=k π+π4(k ∈Z).又|φ|<π2,所以φ=π4.于是f(x)=2cos2x ,它在0,π2上单调递减.9.B [解析] 由图可知,A =10,函数I =Asin (ωt +φ)的最小正周期T =2⎝⎛⎭⎫4300-1300=150,所以2πω=150,解得ω=100π.又函数图象过点⎝⎛⎭⎫1300,10,代入得sin ⎝⎛⎭⎫100π×1300+φ=1,所以π3+φ=π2+2k π(k ∈Z),解得φ=π6+2k π(k ∈Z).又0<φ<π2,所以φ=π6.故函数I =10sin ⎝⎛⎭⎫100πt +π6.所以当t =150时,电流强度I =10sin ⎝⎛⎭⎫100π×150+π6=5.10.13 [解析] 因为cos θ=-35,且θ是第三象限角,所以sin θ=-45.于是cos θsin θ-1=-35-45-1=13.故填13.11.36565 [解析] 由已知sin (α-β)=513,cos (α+β)=-45,所以sin2α=sin [(α+β)+(α-β)]=sin (α+β)cos (α-β)+cos (α+β)·sin (α-β)=-35×1213+-45×513=-5665.则(sin α+cos α)2=1+sin2α=1-5665=965,当π2<α<3π4时,sin α+cos α>0,即sin α+cos α=36565. 12.4 [解析] 由h =40sin ⎝⎛⎭⎫π6t -π2+50知其最小正周期为T =2ππ6=12,即摩天轮转动一周的时间为12 min.由h =40sin ⎝⎛⎭⎫π6t -π2+50>70(0≤t≤12),解得4<t<8.所以持续时间为4 min.13.①②③⑤ [解析] 由题意得f(x)=m2+n2sin(x +φ)其中tan φ=nm .因为f π4是它的最大值,所以π4+φ=2k π+π2(k ∈Z),φ=2k π+π4(k ∈Z).所以f(x)=m2+n2sinx +2k π+π4=m2+n2sinx +π4,且tan φ=n m =tan2k π+π4=1,即nm =1,故f(x)=2|m|sinx +π4.①fx +π4=2|m|sinx +π4+π4=2|m|cosx 为偶函数,所以①正确;②当x =7π4时,f 7π4=2|m|sin 7π4+π4=2|m|sin2π=0,所以函数f(x)的图象关于点7π4,0对称,②正确;③f -3π4=2|m|sin π4-3π4=-2|m|sin π2=-2|m|,f(x)取得最小值,所以③正确;④根据f(x)=2|m|sinx +π4可得其最小正周期为2π,由题意可得P2与P4相差一个周期2π,即|P2P4|=2π,所以④错误; ⑤由n m =1知,mn =1成立,所以⑤正确. 故填①②③⑤.14.解:(1)由点P 的坐标和三角函数的定义可得⎩⎨⎧sin θ=32,cos θ=12.于是f(θ)=3sin θ+cos θ=3×32+12=2. (2)作出平面区域Ω(即三角形ABC 区域)如图所示, 其中A(1,0),B(1,1),C(0,1).于是0≤θ≤π2.又f(θ)=3sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π6,且π6≤θ+π6≤2π3,故当θ+π6=π2,即θ=π3时,f (θ)取得最大值,且最大值等于2; 当θ+π6=π6,即θ=0时,f(θ)取得最小值,且最小值等于1. 15.解:(1)f(x)=2sin2⎝⎛⎭⎫ωx +π4+2cos2ωx=1-cos ⎝⎛⎭⎫2ωx +π2+1+cos2ωx=sin2ωx +cos2ωx +2=2sin ⎝⎛⎭⎫2ωx +π4+2,∵函数f(x)的图象上两个相邻的最低点之间的距离为2π3,∴f(x)的最小正周期为2π3,∴2π2ω=2π3(ω>0),∴ω的值为32, ∴函数f(x)=2sin ⎝⎛⎭⎫3x +π4+2,∴函数f(x)的最大值为2+2,此时3x +π4=2k π+π2,即x =2k π3+π12(k ∈Z).(2)y =f(x)的图象向右平移π8个单位长度得h(x)=2sin ⎣⎡⎦⎤3⎝⎛⎭⎫x -π8+π4+2=2sin ⎝⎛⎭⎫3x -π8+2,再沿y 轴对称后得到g(x)=2sin ⎝⎛⎭⎫-3x -π8+2=-2sin ⎝⎛⎭⎫3x +π8+2,函数g(x)的单调减区间,即y =sin ⎝⎛⎭⎫3x +π8单调递增区间.由2k π-π2≤3x +π8≤2k π+π2, 解得23k π-5π24≤x ≤23k π+π8(k ∈Z).故y =g(x)的单调减区间为⎣⎡⎦⎤23k π+5π24,23k π+π8(k ∈Z).16.解:(1)f(x)=2sinx +π3cosx +π3-23cos2x +π3 =sin2x +2π3-3⎣⎡⎦⎤cos2x +2π3+1=sin2x +2π3-3cos2x +2π3- 3=2sin2x +π3- 3. ∵-1≤sin2x +π3≤1,∴-2-3≤2sin2x +π3-3≤2-3, 又T =2π2=π,即f(x)的值域为[-2-3,2-3],最小正周期为π. (2)当x ∈⎣⎡⎦⎤0,π6时,2x +π3∈⎣⎡⎦⎤π3,23π,∴sin2x +π3∈⎣⎡⎦⎤32,1,此时f(x)+3=2sin2x +π3∈[3,2].由m[f(x)+3]+2=0知,m≠0,且f(x)+3=-2m ,∴3≤-2m ≤2,即⎩⎨⎧2m+3≤0,2m +2≥0,解得-233≤m ≤-1.即实数m 的取值范围是⎣⎡⎦⎤-233,-1. 专题限时集训(七)【基础演练】1.A [解析] 根据正弦定理得,2sin45°=2sinC ,所以sinC =12,因为C ∈(0,π),所以C =30°或150°.又因为A =45°,且AB<BC ,所以C =30°.2.D [解析] 根据三角形面积公式和正弦定理S =12absinC =122RsinA ·2RsinB ·sinC =2R2sinAsinBsinC ,将R =1和S =1代入得,sinAsinBsinC =12.3.A [解析] 由sinC =23sinB 及正弦定理得c =23b ,代入a2-b2=3bc 中,得a =7b.所以由余弦定理得cosA =b2+c2-a22bc =b2+(23b )2-(7b )22b ·23b =32,所以A =30°. 4.D [解析] 设电视塔的高度为x ,则BC =x ,BD =3x.在△BCD 中,根据余弦定理得3x2=x2+402-2×40xcos120°,即x2-20x -800=0,解得x =-20(舍去),或者x =40.故电视塔的高度为40 m. 【提升训练】5.D [解析] 根据余弦定理得b =32+82-2×3×8cos60°=7,根据正弦定理3sinA =7sin60°,解得sinA =3314.6.B [解析] 由题意得b2=ac ,又c =2a ,由余弦定理得cosB =a2+c2-b22ac =a2+4a2-a×2a2a×2a =34. 7.A [解析] 设楼顶D 对应的楼底记为E ,过点D 作DC ∥BE ,则由AC CD =tan30°,即AC20=33,解得AC =2033.由BC CD =tan45°,即BC20=1,解得BC =20.所以AB =AC +BC =20⎝⎛⎭⎫1+33 m.8.A [解析] 在Rt △ABC 中,由正切函数的定义,得tan β=AB BC ,所以BC =ABtan β.同理,BD =AB tan α.所以BD -BC =AB tan α-ABtan β=DC =a.所以AB =atan αtan βtan β-tan α=asin αsin βsin (β-α).9.-14 [解析] 由正弦定理a sinA =b sinB =c sinC 可得,a ∶b ∶c =si nA ∶sinB ∶sinC =2∶3∶4,由此设a =2k ,b =3k ,c =4k(k>0).由余弦定理可得,cosC =a2+b2-c22ab=(2k )2+(3k )2-(4k )22×2k ×3k=-14.10.6-1 [解析] 由题意可得,∠ACB =120°,AC =2,AB =3,设BC =x ,则由余弦定理可得,AB2=BC2+AC2-2BC×ACcos120°,即32=x2+22-2×2xcos120°,整理得x2+2x =5,解得x =6-1或x =-6-1(舍去).故填6-1.11.233 [解析] 由△BCD 的面积为1,可得12×CD ×BC ×sin ∠DCB =1,即sin ∠DCB =55,所以cos ∠DCB =255.在△BCD 中,由余弦定理可知,cos ∠DCB =CD2+BC2-BD22CD ×BC =255,解得BD =2,所以cos ∠DBC =BD2+BC2-CD22BD ×BC =31010.由在△BCD 中,∠DBC 对应的边长最短,所以∠DBC 为锐角,所以sin ∠DBC =1010.在△ABC 中,由正弦定理BC sinA =ACsinB 可得,AC =BC ·sinB sinA =10×101032=233.12.解:(1)tanC =-tan(A +B)=-tanA +tanB1-tanAtanB=-23+151-23×15=-1, 又0<C<π, ∴C =3π4.(2)由已知和(1)知:c =13,b 为最小边长. ∵tanB =15, ∴sinB =2626, ∴b =csinBsinC =1, ∴最小的边长为1.13.解:(1)f(x)=23cos2x 2+2sin x 2cos x2 =3(1+cosx)+sinx =2cos ⎝⎛⎭⎫x -π6+3,∴f ⎝⎛⎭⎫17π12=2cos ⎝⎛⎭⎫17π12-π6+3=3- 2.(2)f(C)=2cos ⎝⎛⎭⎫C -π6+3=3+1,∴cos ⎝⎛⎭⎫C -π6=12,C ∈(0,π),∴C =π2,在Rt △ABC 中,∵b2=ac ,c2=a2+b2,∴c2=a2+ac ⇒⎝⎛⎭⎫a c 2+a c -1=0, 解得a c =-1±52.∵0<sinA<1,∴sinA =ac =5-12.14.解:(1)如图所示,作PN ⊥AB ,N 为垂足,∠PQM =θ,∠PMQ =π-α,sin θ=513,sin α=45,cos θ=1213,cos α=35.在Rt △PNQ 中,PN =PQsin θ=5.2×513=2,QN =PQ·cos θ=5.2×1213=4.8.在Rt △PNM 中,MN =PN tan α=243=1.5,PM =PN sin α=245=2.5,∴MQ =QN -MN =4.8-1.5=3.3.设游船从P 到Q 所用时间为t1 h ,游客甲从P 经M 到Q 所用时间为t2 h ,小船速度为v1 km/h , 则t1=PQ 13=5.213=26513=25,t2=PM v1+MQ 66=2.5v1+3.366=52v1+120.由已知,得t2+120=t1,即52v1+120+120=25,∴v1=253.于是,当小船的速度为253km/h 时,游客甲才能和游船同时到达Q 地.(2)在Rt △PMN 中,PM =PN sin α=2sin α,MN =PN tan α=2cos αsin α,∴QM =QN -MN =4.8-2cos αsin α.于是t =PM 10+QM66=15sin α+455-cos α33sin α=1165×33-5cos αsin α+455.∵t ′=1165×5sin2α-(33-5cos α)cos αsin2α=5-33cos α165sin2α,∴令t′=0,得cos α=533. 当cos α<533时,t′>0;当cos α>533时,t′<0,又y =cos α在α∈0,π2上是减函数,∴当方位角α满足cos α=533时,t 取最小值, 即游客甲能按计划以最短时间到达Q 地. 专题限时集训(八) 【基础演练】1.A [解析] a -b +c -d =BA →+DC →=0.故选A.2.C [解析] 依题意,由a ⊥b 得a·b =0,即3x +3=0,解得x =-1.故选C. 3.A [解析] 由a ∥b 得2x =-4,∴x =-2,于是a·b =(1,2)·(-2,-4)=-10.故选A. 4.B [解析] 依题意,得a·b =|a||b|cos30°=2sin75°·4cos75°×32=23sin150°= 3.故选B.【提升训练】5.C [解析] 依题意a 在b 方向上的投影为|a|cos 〈a ,b 〉=2cos π3=22.故选C.6.C [解析] 依题意,|a|=1,|b|=1,所以a·b =|a||b|cos60°=12.于是|a +3b|=(a +3b )2=|a|2+6a·b +9|b|2=1+6×12+9=13.故选C.7.A [解析] 连结AD ,BE ,CF 交于点O ,则点O 为正六边形ABCDEF 的中心.故AF →+ED →+CB →=AF →+(ED →+EF →)=AF →+EO →=0.故选A.8.C [解析] 由于λa +b =λ(1,2)+(2,0)=(λ+2,2λ),而λa +b 与c 共线,则有λ+21=2λ-2,解得λ=-1.故选C. 9.A [解析] 由|OA →|=|OB →|=|OC →|可知,点O 到三角形三个顶点的距离相等,所以点O 是三角形的外心;由NA →+NB →+NC →=0,得点N 在三角形各边的中线上,故点N 是三角形的重心;由PA →·PB →=PB →·PC →,得PB →·(PA →-PC →)=0,即PB →·CA →=0,所以PB →⊥CA →;同理,PC →⊥AB →,PA →⊥BC →,故点P 是三角形的垂心.。
2013高考数学(理)二轮复习配套作业(解析版):专题限时集训(二十二)(江西省专用)
专题限时集训(二十二)[第22讲 分类与整合和化归与转化思想](时间:45分钟)1.已知sin ⎝⎛⎭⎫π3-x =35,则cos ⎝⎛⎭⎫5π6-x =( ) A.35 B.45 C .-35 D .-452.已知tan ⎝⎛⎭⎫α+π4=3,则tan α的值为( ) A.12 B .-12 C.14 D .-143.若偶函数f(x)在(-∞,-1]上是增函数,则下列关系式中成立的是( )A .f ⎝⎛⎭⎫-32<f(-1)<f(2)B .f(-1)<f ⎝⎛⎭⎫-32<f(2) C .f(2)<f(-1)<f ⎝⎛⎭⎫-32D .f(2)<f ⎝⎛⎭⎫-32<f(-1)4.Sn 是数列{an}的前n 项和,则“Sn 是关于n 的二次函数”是“数列{an}为等差数列”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.函数y =2sin ⎝⎛⎭⎫x +π4cos ⎝⎛⎭⎫π4-x 图像的一条对称轴是( ) A .x =π8 B .x =π4 C .x =π2D .x =π 6.某市为宣传红色旅游,召集20名志愿者,他们编号分别是1,2,3,…,19,20.若要从中任取4人再按编号大小分成两组去做一些服务工作,其中两个编号较小的人在一组,两个编号较大的在另一组,那么确保5号与14号入选并被分配到同一组的选取种数是( )A .16B .21C .24D .907.已知数列{an}满足a1=1,a2=1,an +1=|an -an -1|(n ≥2),则该数列前2 012项的和等于( )A .1 340B .1 341C .1 342D .1 3438.设0<a<1,函数f(x)=loga(a2x -3ax +3),则使f(x)>0的x 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(loga2,0)D .(loga2,+∞)9.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则2y -3x +1的最大值为________.图22-110.如图22-1,圆台上底面半径为1,下底面半径为4,母线AB =18;从AB 的中点M 拉一条绳子绕圆台侧面转到点A ,则绳子的最短长度为________.11.已知函数f(x)=lnx -ax +1-a x(0<a<1),讨论f(x)的单调性.12.某公园设有自行车租车点,租车的收费标准是每小时2元(不足1小时的部分按1小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为14,12;一小时以上且不超过两小时还车的概率分别为12,14;两人租车时间都不会超过三小时. (1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望Eξ.13.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a(3≤a≤5)元的管理费,预计当每件产品的售价为x(9≤x≤11)元时,一年的销售量为(12-x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).。
2013年高考数学(理)二轮复习 专题一 配套课时作业 第五节 (带解析)
[配套课时作业](A)1.函数f(x)=3x2+ln x -2x 的极值点的个数是( ) A .0 B .1 C .2 D .无数个解析:选A 函数定义域为(0,+∞), 且f′(x)=6x +1x -2=6x2-2x +1x,由于x>0,g(x)=6x2-2x +1中Δ=-20<0, 所以g(x)>0恒成立,故f′(x)>0恒成立. 即f(x)在定义域上单调递增,无极值点.2.(2012·陕西高考)设函数f(x)=2x +ln x ,则( )A .x =12为f(x)的极大值点B .x =12为f(x)的极小值点C .x =2为f(x)的极大值点D .x =2为f(x)的极小值点解析:选D 函数f(x)的定义域为(0,+∞),f′(x)=-2x2+1x =x -2x2,当x =2时,f′(x)=0;当x>2时,f′(x)>0,函数f(x)为增函数;当0<x<2时,f′(x)<0,函数f(x)为减函数,所以x =2为函数f(x)的极小值点. 3.(2012·江南十校联考)已知定义在R 上的函数f(x),其导函数f′(x)的大致图像如图所示,则下列叙述正确的是( ) A .f(b)>f(c)>f(d) B .f(b)>f(a)>f(e) C .f(c)>f(b)>f(a) D .f(c)>f(e)>f(d)解析:选C 依题意得,当x ∈(-∞,c)时,f′(x)>0;当x ∈(c ,e)时,f′(x)<0;当x ∈(e ,+∞)时,f′(x)>0.因此,函数f(x)在(-∞,c)上是增函数,在(c ,e)上是减函数,在(e ,+∞)上是增函数,又a<b<c ,所以f(c)>f(b)>f(a).4.设函数f(x)=x3+2ax2+bx +a ,g(x)=x2-3x +2(其中x ∈R ,a ,b 为常数).已知曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线l ,则a ,b 的值分别为( ) A .a =2,b =-5 B .a =-2,b =5 C .a =5,b =2 D .a =-5,b =2解析:选B f′(x)=3x2+4ax +b ,g′(x)=2x -3,由于曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线,故有f(2)=g(2)=0,f ′(2)=g′(2)=1,由此解得a =-2,b =5.5.已知f1(x)=sin x +cos x ,fn +1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,fn +1(x)=fn′(x),n ∈N*,则f2 011(x)等于( ) A .-sin x -cos x B .sin x -cos x C .-sin x +cos x D .sin x +cos x解析:选A 由题意知f2(x)=cos x -sin x ;f3(x)=-sin x -cos x ;f4(x)=-cos x +sin x ; f5(x)=sin x +cos x ;…可得fn(x)是以4为周期的周期函数. 故f2 011(x)=f3(x)=-sin x -cos x.6.函数f(x)=x2-2ax +a 在区间(-∞,1)上有最小值,则函数g(x)=f x x 在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数解析:选D 由函数f(x)=x2-2ax +a 在区间(-∞,1)上有最小值,可得a 的取值范围为a<1. 所以g(x)=f x x =x +a x -2a ,则g′(x)=1-a x2.易知在x ∈(1,+∞)上g′(x)>0,所以g(x) 为增函数.7.(2012·长春调研)设f(x)=⎩⎪⎨⎪⎧x2,x ∈[0,1],1x ,x ∈1,e](e 为自然对数的底数),则∫e 0f(x)dx 的值为________.解析:依题意得∫e 0f(x)dx =∫10x2dx +∫e 11x dx =x33| 10+ln x | e 1=131=43.答案:438.设函数f(x)=x(ex -1)-12x2,则函数f(x)的单调增区间为________.解析:因为f(x)=x(ex -1)-12x2,所以f′(x)=ex -1+xex -x =(ex -1)·(x +1).令f′(x)>0,即(ex -1)·(x +1)>0,解得x ∈(-∞,-1)或x ∈(0,+∞). 所以函数f(x)的单调增区间为(-∞,-1]和[0,+∞). 答案:(-∞,-1]和[0,+∞)9.已知函数f(x)=ex +aln x 的定义域是D ,关于函数f(x)给出下列命题: ①对于任意a ∈(0,+∞ ),函数f(x)是D 上的减函数;②对于任意a ∈(-∞,0 ),函数f(x)存在最小值;③存在a ∈(0,+∞ ),使得对于任意的x ∈D ,都有f(x)>0成立; ④存在a ∈(-∞,0 ),使得函数f(x)有两个零点.其中正确命题的序号是________(写出所有正确命题的序号).解析:由f(x)=ex +aln x 可得f′(x)=ex +ax ,若a>0,则f′(x)>0,得函数f(x)是D 上的增函数,存在x ∈(0,1),使得f(x)<0,即得命题①③不正确;若a<0,设ex +ax =0的根为m ,则在(0,m)上f′(x)<0,在(m ,+∞)上f′(x)>0,所以函数f(x)存在最小值f(m),即命题②正确;若f(m)<0,则函数f(x)有两个零点,即命题④正确. 答案:②④10.(2012·安徽高考)设定义在(0,+∞)上的函数f(x)=ax +1ax +b(a>0).(1)求f(x)的最小值;(2)若曲线y =f(x)在点(1,f(1))处的切线方程为y =32x ,求a ,b 的值.解:(1)法一:由题设和基本不等式可知, f(x)=ax +1ax +b≥2+b ,其中等号成立当且仅当ax =1, 即当x =1a 时,f(x)取最小值为2+b.法二:f(x)的导数f′(x)=a -1ax2=a2x2-1ax2,当x>1a 时,f′(x)>0,f(x)在⎝⎛⎭⎫1a ,+∞上单调递增;当0<x<1a 时,f′(x)<0,f(x)在⎝⎛⎭⎫0,1a 上单调递减. 所以当x =1a f(x)取最小值,为2+b.(2)由题设知,f′(x)=a -1ax2,f′(1)=a -1a =32,解得a =2或a =-12(不合题意,舍去). 将a =2代入f(1)=a +1a +b =32,解得b =-1.所以a =2,b =-1.11.(2012·潍坊模拟)已知函数f(x)=(x2-3x +3)ex ,x ∈[-2,t](t>-2).(1)当t<1时,求函数y =f(x)的单调区间;(2)设f(-2)=m ,f(t)=n ,求证:m<n.解:(1)f′(x)=(2x -3)ex +ex(x2-3x +3)=exx(x -1), ①当-2<t≤0,x ∈[-2,t]时,f′(x)≥0,f(x)单调递增. ②当0<t<1,x ∈[-2,0)时,f′(x)>0,f(x)单调递增, 当x ∈(0,t]时,f′(x)<0,f(x)单调递减.综上, 当-2<t≤0时,y =f(x)的单调递增区间为[-2,t],当0<t<1时,y =f(x)的单调递增区间为[-2,0),单调递减区间为(0,t]. (2)证明:依题意得m =f(-2)=13e -2,n =f(t)=(t2-3t +3)et , 设h(t)=n -m =(t2-3t +3)et -13e -2,t>-2, h′(t)=(2t -3)et +et(t2-3t +3)=ett(t -1)(t>-2). 故h(t),h′(t)随t 的变化情况如下表:由上表可知h(t)的极小值为h(1)=e -13e2=e3-13e2>0,又h(-2)=0,所以当t>-2时,h(t)>h(-2)=0,即h(t)>0,因此,n -m>0,即m<n.12.(2012·浙江高考)已知a ∈R ,函数f(x)=4x3-2ax +a.(1)求f(x)的单调区间;(2)证明:当0≤x≤1时,f(x)+|2-a|>0. 解:(1)由题意得f′(x)=12x2-2a.当a≤0时,f′(x)≥0恒成立,此时f(x)的单调递增区间为(-∞,+∞). 当a>0时,f′(x)=12⎝⎛⎭⎫x -a 6⎝⎛⎭⎫x +a 6,此时函数f(x)的单调递增区间为⎝⎛⎦⎤-∞,-a 6和⎣⎡⎭⎫a 6,+∞,单调递减区间为⎣⎡⎦⎤-a 6,a 6 . (2)证明:由于0≤x≤1,故当a≤2时, f(x)+|2-a|=4x3-2ax +2≥4x3-4x +2. 当a>2时,f(x)+|2-a|=4x3+2a(1-x)-2 ≥4x3+4(1-x)-2=4x3-4x +2. 设g(x)=2x3-2x +1,0≤x≤1,则g′(x)=6x2-2=6⎝⎛⎭⎫x -3⎝⎛⎭⎫x +3,于是g′(x),g(x)随x 的变化情况如下表:所以,g(x)min =g⎝⎛⎭⎫33=1-439>0. 所以当0≤x≤1时,2x3-2x +1>0. 故f(x)+|2-a|≥4x3-4x +2>0.(B)1.(2012·新课标全国卷)已知函数y =x3-3x +c 的图像与x 轴恰有两个公共点,则c = ( )A .-2或2B .-9或3C .-1或1D .-3或1 解析:选A 设f(x)=x3-3x +c ,对f(x)求导可得,f′(x)=3x2-3,令f′(x)=0,可得x =±1,易知f(x)在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.若f(1)=1-3+c =0,可得c =2;若f(-1)=-1+3+c =0,可得c =-2.2.函数f(x)的定义域为(0,+∞),且f(x)>0,f′(x)>0,则函数y =xf(x)( ) A .存在极大值 B .存在极小值 C .是增函数D .是减函数解析:选C ∵y′=f(x)+xf′(x),而函数f(x)的定义域为(0,+∞)且f(x)>0,f′(x)>0, ∴y′>0在(0,+∞)上恒成立.因此y =xf(x)在(0,+∞)上是增函数. 3.(2012·湖北高考)已知二次函数y =f(x)的图像如图所示,则它与x 轴所围图形的面积为( )A.2π5 B.43C.32D.π2解析:选B 由题中图像易知f(x)=-x2+1,则所求面积为2∫10(-x2+1)dx =2⎝⎛⎭⎫-x33+x |10=43.4.若a>3,则方程x3-ax2+1=0在(0,2)上的实根个数是( ) A .0 B .1 C .2 D .3解析:选B 令f(x)=x3-ax2+1,而在区间(0,2)上函数f(x)的导函数f′(x)=3x2-2ax =x(3x -2a)<0恒成立,所以函数f(x)在(0,2)上是减函数, 又f(0)=1>0,f(2)=9-4a<0,所以方程x3-ax2+1=0在(0,2)上恰有1个实根.5.已知函数 g(x)=ax3+bx2+cx(a ∈R 且a≠0),g(-1)=0,且g(x)的导函数f(x)满足f(0)f(1)≤0.则ba的取值范围为( ) A.⎣⎡⎦⎤-23,2 B .[ 23,1] C.⎣⎡⎦⎤-23,1 D.⎣⎡⎦⎤-23,3 解析:选C ∵g(x)=ax3+bx2+cx , ∴ g(-1)=-a +b -c =0,即c =b -a.又f(x)=g′(x)=3ax2+2bx +c ,由f(0)f(1)≤0,得c(3a +2b +c)≤0,所以(b -a)(3b +2a)≤0. ∵a≠0,∴⎝⎛⎭⎫b a -1⎝⎛⎭⎫3·b a +2≤0,解得-23≤b a ≤1. 所以b a 的取值范围是⎣⎡⎦⎤-23,1. 6.给出定义:若函数f(x)在区间D 上可导,即f′(x)存在,且导函数f′(x)在区间D 上也可导,则称f(x)在区间D 上存在二阶导函数,记f″(x)=(f′(x))′,若f″(x)<0在区间D 上恒成立,则称f(x)在区间D 上为凸函数.以下四个函数在(0,π2)上不是凸函数的是( )A .f(x)=sin x +cos xB .f(x)=ln x -2xC .f(x)=-x3+2x -1D .f(x)=-xe -x解析:选D 若f(x)=sin x +cos x ,则f″(x)=-sin x -cos x ,在x ∈⎝⎛⎭⎫0,π2上,恒有f″(x)<0;若f(x)=ln x -2x ,则f″(x)=-1x2,在x ∈⎝⎛⎭⎫0,π2上,恒有f″(x)<0;若f(x)=-x3+2x -1,则f″(x)=-6x , 在x ∈⎝⎛⎭⎫0,π2上,恒有f″(x)<0;若f(x)=-xe -x ,则f″(x)=2e -x -xe -x =(2-x)e -x , 在x ∈⎝⎛⎭⎫0,π2上,恒有f″(x)>0.7.若函数y =x +4x 在(0,a)上为单调减函数,则实数a 的取值范围是________.解析:y′=1-4x2,x ∈(0,a). 因为y 在(0,a)上单调递减, 故y′=1-4x2≤0⇒0<x≤2或-2≤x<0 , 所以0<a≤2. 答案:(0,2]8.已知函数f(x)=aln x +12x2(a>0),若对定义域内的任意x ,f′(x)≥2恒成立,则a 的取值范围是________.解析:由题意得f′(x)=a x +x≥2a ,当且仅当ax =x ,即x =a 时取等号,∵f′(x)≥2,∴只要f′(x)min≥2即可,即2a ≥2,解得a≥1. 答案:[1,+∞) 9.函数f(x)=x3-3a2x +a(a>0)的极大值是正数,极小值是负数,则a 的取值范围是________. 解析:f′(x)=3x2-3a2=3(x +a)(x -a),由f′(x)=0得x =±a ,当-a<x<a 时,f′(x)<0,函数递减;当x>a 或x<-a 时,f′(x)>0,函数递增.f(-a)=-a3+3a3+a>0,且f(a)=a3-3a3+a<0,解得a>22. 答案:⎝⎛⎭⎫22,+∞10.某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为t 元(t 为常数,且2≤t≤5),设该食品厂每公斤蘑菇的出厂价为x 元(25≤x≤40),根据市场调查,销售量q 与ex 成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(1)求该工厂的每日利润y 元与每公斤蘑菇的出厂价x 元的函数关系式;(2)若t =5,当每公斤蘑菇的出厂价x 为多少元时,该工厂的利润y 最大,并求最大值. 解:(1)设日销量q =k ex ,则ke30=100,所以k =100e30.所以日销量q =100e30ex.所以y =100e30 x -20-tex(25≤x≤40).(2)当t =5时,y =100e30 x -25 ex ,y′=100e30 26-xex,由y′≥0,得x≤26,由y′≤0,得x≥26,所以y 在区间[25,26]上单调递增,在区间[26,40]上单调递减.所以当x =26时,ymax =100e4.所以当每公斤蘑菇的出厂价为26元时,该工厂的利润最大,最大值为100e4元. 11.已知函数f(x)=x2ln x -a(x2-1),a ∈R.(1)当a =-1时,求曲线f(x)在点(1,f(1))处的切线方程; (2)若当x≥1时,f(x)≥0成立,求a 的取值范围.解:(1)当a =-1时,f(x)=x2ln x +x2-1,f′(x)=2xln x +3x.则曲线f(x)在点(1,f(1))处的切线的斜率为f′(1)=3,又f(1)=0,所以切线方程为3x -y -3=0.(2)f′(x)=2xln x +(1-2a)x =x(2ln x +1-2a),其中x≥1. 令f′(x)=0,得x =1a 2e-.当a≤12时,因为x≥1,所以f′(x)≥0,所以函数f(x)在[1,+∞)上单调递增,故f(x)≥f(1)=0. 当a>12时,若x ∈[1,1a 2e-),则f′(x)<0,所以函数f(x)在[1,1a 2e-)上单调递减,所以当x ∈[1,1a 2e-)时,f(x)≤f(1)=0,不符合题意.所以a 的取值范围是⎝⎛⎦⎤-∞,12.12.(2012·天津高考)已知函数f(x)=13x3+1-a 2x2-ax -a ,x ∈R ,其中a>0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a 的取值范围;(3)当a =1时,设函数f(x)在区间[t ,t +3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值. 解:(1)f′(x)=x2+(1-a)x -a =(x +1)(x -a). 由f′(x)=0,得x1=-1,x2=a>0.当x 变化时f′(x),f(x)的变化情况如下表:故函数f(x)的单调递增区间是(-∞,-1),(a ,+∞);单调递减区间是(-1,a).(2)由(1)知f(x)在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,从而函数f(x)在区间(-2,0)内恰有两个零点当且仅当⎩⎪⎨⎪⎧f -2 <0,f -1 >0,f 0<0.解得0<a<13. 所以,a 的取值范围是⎝⎛⎭⎫0,13.(3)a =1时,f(x)=13x3-x -1.由(1)知f(x)在[-3,-1]上单调递增,在[-1,1]上单调递减, 在[1,2]上单调递增.①当t ∈[-3,-2]时,t +3∈[0,1],-1∈[t ,t +3],f(x)在[t ,-1]上单调递增,在[-1,t +3]上单调递减.因此,f(x)在[t ,t +3]上的最大值M(t)=f(-1)=-13,而最小值m(t)为f(t)与f(t +3)中的较小者.由f(t +3)-f(t)=3(t +1)(t +2)知,当t ∈[-3,-2]时,f(t)≤f(t +3),故m(t)=f(t),所以g(t)=f(-1)-f(t).而f(t)在[-3,-2]上单调递增,因此f(t)≤f(-2)=-53.所以g(t)在[-3,-2]上的最小值为g(-2)=-13-⎝⎛⎭⎫-53=43.②当t ∈[-2,-1]时,t +3∈[1,2], 且-1,1∈[t ,t +3].下面比较f(-1),f(1),f(t),f(t +3)的大小. 由f(x)在[-2,-1],[1,2]上单调递增,有 f(-2)≤f(t)≤f(-1), f(1)≤f(t +3)≤f(2).又由f(1)=f(-2)=-53f(-1)=f(2)=-13从而M(t)=f(-1)=-13,m(t)=f(1)=-53.所以g(t)=M(t)-m(t)=43.综上,函数g(t)在区间[-3,-1]上的最小值为43.。
2013高考数学(理)二轮复习配套作业(解析版):专题限时集训(十)(浙江省专用)
专题限时集训(十)[第10讲 数列求和及数列的简单应用](时间:45分钟)1.设等差数列{an}的前n 项和为Sn ,a2,a4是方程x2-x -2=0的两个根,S5=( ) A.52B .5C .-52D .-52.已知数列{an}为等差数列,Sn 是它的前n 项和.若a1=2,S3=12,则S4=( ) A .10 B .16 C .20 D .243.等差数列{an}中,若a7a5=913,则S13S9=( ) A.913 B.139C .1D .2 4.数列{an}的前n 项和为Sn ,若an =1n n +2,则S10等于( )A.1112B.1124C.173132D.1752645.已知等差数列{an}的前n 项和为Sn ,若OA →=a1OB →+a2010OC →且A ,B ,C 三点共线(该直线不过点O),则S2010=( ) A .1 005 B .1 006 C .2 010 D .2 0116.在等差数列{an}中,a9=12a12+6,则数列{an}的前11项和S11等于( )A .24B .48C .66D .1327.某钢厂的年产量由1993年的40万吨增加到2003年的50万吨,如果按照这样的年增长率计算,则该钢厂2013年的年产量约为( ) A .60万吨 B .61万吨 C .63万吨 D .64万吨8.甲、乙两间工厂的月产值在2012年元月份时相同,甲以后每个月比前一个月增加相同的产值,乙以后每个月比前一个月增加产值的百分比相同.到2012年11月份发现两间工厂的月产值又相同.比较甲、乙两间工厂2012年6月份的月产值大小,则有( ) A .甲的产值小于乙的产值 B .甲的产值等于乙的产值 C .甲的产值大于乙的产值D .不能确定 9.已知数列{an}的通项公式为an =|n -13|,那么满足ak +ak +1+…+ak +19=102的整数k( )A .有3个B .有2个C .有1个D .不存在10.已知数列{an}满足a1=1,a2=2,an +2=⎝⎛⎭⎫1+cos2n π2an +sin2n π2,则该数列的前20项的和为________.11.已知数列{an}满足a1=23,且对任意的正整数m ,n 都有am +n =am·an ,若数列{an}的前n 项和为Sn ,则Sn =________.12.等差数列{an}的各项为正,其前n 项和为Sn ,且S3=9,又a1+2,a2+3,a3+7成等比数列.(1)求数列{an}的通项公式;(2)求证:当n ≥2时,1a21+1a22+…+1a2n <54.13.已知数列{an}满足:Sn =1-an(n ∈N*),其中Sn 为数列{an}的前n 项和. (1)试求{an}的通项公式;(2)若数列{bn}满足bn =nan (n ∈N*),求{bn}的前n 项和Tn.14.已知数列{an},{bn}满足:a1=92,2an +1-an =6·2n ,bn =an -2n +1(n ∈N*). (1)求证:数列{bn}为等比数列,并求数列{an},{bn}的通项公式;(2)记数列{an},{bn}的前n 项和分别为Sn ,Tn ,若对任意的n ∈N*都有Sn Tn ≤mbn ,求实数m 的最小值.专题限时集训(十) 【基础演练】1.A [解析] a2,a4是方程x2-x -2=0的两个根,a2+a4=1,S5=a 1+a5×52=a 2+a4×52=52. 2.C [解析] 设公差为d ,则3a1+3d =12,解得d =2.所以S4=4×2+4×32×2=20. 3.C [解析] S13S9=13a 1+a1329a 1+a92=139×a7a5=139×913=1.4.D [解析] an =1n n +2=121n -1n +2, 所以S10=a1+a2+…+a10=12⎝⎛⎭⎫1-13+12-14+…+110-112=12⎝⎛⎭⎫1+12-111-112=175264,选D. 【提升训练】5.A [解析] 根据平面向量知识,a1+a2 010=1,所以S2 010=2 010a 1+a2 0102=1 005.6.D [解析] 设公差为d ,则a1+8d =12a1+112d +6,即a1+5d =12,即a6=12,所以S11=11a6=132.7.C [解析] 10年为一段,则1993,2003,2013年的年产量成等比数列,故2013年的年产量为50×5040=62.5≈63.8.C [解析] 设甲各个月份的产值为数列{an},乙各个月份的产值为数列{bn},则数列{an}为等差数列,数列{bn}为等比数列,且a1=b1,a11=b11,故a6=a1+a112≥a1a11=b1b11=b26=b6,由于在等差数列{an}中的公差不等于0,故a1≠a11,上面的等号不能成立,故a6>b6.9.B [解析] 如果k ≥13,则ak +ak +1+…+ak +19≥0+1+…+19=190>102,故k<13.设k +i =13,0<i<20,则ak +ak +1+…+ak +19=i +(i -1)+…+2+1+0+1+2+…+(19-i)=i i +12+19-i 20-i 2=102,即i2-19i +88=0,解得i =8或i =11,此时k =5或k =2,即只有两个整数k 满足等式ak +ak +1+…+ak +19=102.10.2 101 [解析] 当n 为奇数时,an +2=an +1,故奇数项是首项为1,公差为1的等差数列,其前10项之和等于1×10+10×92=55;当n 为偶数时,an +2=2an ,故偶数项是首项为2,公比为2的等比数列,其前10项之和为21-2101-2=211-2=2 046. 所以,数列{an}的前20项之和为55+2 046=2 101.11.2-2n +13n [解析] 对m =1等式am +n =am·an 也成立,即an +1=23an ,所以数列{an}是首项为23,公比为23的等比数列,所以Sn =231-23n 1-23=2-2n +13n .12.解:(1)设等差数列{an}的公差为d , ∵S3=9,∴a2=3,∴a1+2=3-d +2=5-d ,a2+3=6,a3+7=3+d +7=10+d. ∵a1+2,a2+3,a3+7成等比数列, ∴(5-d)(10+d)=36,解得d =2或d =-7(舍去). ∴an =3+(n -2)×2=2n -1.(2)证明:因为1a2n =12n -12=14n2-4n +1<14n2-4n =14n n -1=141n -1-1n .所以当n ≥2时,1a21+1a22+…+1a2n <1+141-12+12-13+…+1n -1-1n =1+141-1n <1+14=54.13.解:(1)∵Sn =1-an ,① ∴Sn +1=1-an +1,②②-①得an +1=-an +1+an , ∴an +1=12an(n ∈N*).又n =1时,a1=1-a1,∴a1=12,∴an =12·12n -1=12n(n ∈N*). (2)bn =nan=n·2n(n ∈N*), ∴Tn =1×2+2×22+3×23+…+n×2n ,③∴2Tn =1×22+2×23+3×24+…+n×2n +1,④ ③-④得-Tn =2+22+23+…+2n -n×2n +1 =21-2n 1-2-n×2n +1. 整理得:Tn =(n -1)2n +1+2,n ∈N*.14.解:(1)证明:由已知得:2(an +1-2n +2)=an -2n +1,即bn +1=12bn ,因为b1=12≠0,所以数列{bn}为等比数列,且bn =12n ,因此,an =bn +2n +1=2n +1+12n.(2)SnTn =22+23+…+2n +1+12+122+…+12n 12+122+…+12n =2n +2-41-12n +1=4·2n +1, 则m ≥(4·2n +1)12n =4+12n 对任意的n ∈N*恒成立,又因为数列4+12n 单调递减,所以4+12n max =92,因此m ≥92.。
2013高考数学(文)二轮复习配套作业(解析版):专题限时集训(八)(湖南省专用)
专题限时集训(八)[第8讲 平面向量及其应用]1.已知平面向量a =(3,1),b =(x ,3),且a ⊥b ,则实数x 的值为( )A .9B .1C .-1D .-92.已知|a|=2sin75°,|b|=4cos75°,a 与b 的夹角为30°,则a ·b 的值为( ) A.32 B. 3 C .2 3 D.123.已知向量a =(1,2),b =(x ,-4),若a ∥b ,则a·b 等于( )A .-10B .-6C .0D .64.设向量a ,b 满足|a|=1,|b|=2,a·(a +b)=0,则a 与b 的夹角是( )A .30°B .60°C .90°D .120°5.已知向量a 与b 的夹角为π3,|a|=2,则a 在b 方向上的投影为( ) A. 3 B. 2 C.22 D.326.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b|=( ) A.7 B.10 C.13 D .47.若△ABC 是锐角三角形,向量p =(sinA ,cosA),q =(sinB ,-cosB),则p 与q 的夹角为( )A .锐角B .直角C .钝角D .以上均不对 8.△ABC 外接圆的半径为1,圆心为O ,且2OA →+AB →+AC →=0,|OA →|=|AB →|,则CA →·CB →等于( ) A.32B. 3 C .3 D .239.已知点G 是△ABC 的重心,点P 是△GBC 内一点,若AP →=λAB →+μAC →,则λ+μ的取值范围是( ) A.12,1 B.23,1 C .1,32D .(1,2) 10.a =12,cosx ,b =(sinx ,1),x ∈⎣⎡⎦⎤0,π2,若a ∥b ,则a ·b =________. 11.在△ABC 中,AB =3,AC =5,若O 为△ABC 中的外心,则AO →·BC →的值为________.12.已知向量a =-12,32,OA →=a -b ,OB →=a +b ,若△AOB 是以O 为直角顶点的等腰直角三角形,则△AOB 的面积为________.13.已知A ,B ,C 是△ABC 的三个内角,a =(sinB +cosB ,cosC),b =(sinC ,sinB -cosB).(1)若a·b =0,求角A ;(2)若a·b =-15,求tan2A.14.已知函数f(x)=32sin πx +12cos πx ,x ∈R. (1)求函数f(x)的最大值和最小值;(2)设函数f(x)在[-1,1]上的图象与x 轴的交点从左到右分别为M 、N ,图象的最高点为P ,求PM →与PN →的夹角的余弦.15.已知向量m =3sin x 4,1,n =cos x 4,cos2x 4. (1)若m·n =1,求cosx +π3(2)设函数f(x)=m·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c 且满足(2a -c)cosB =bcosC ,求f(A)的取值范围.。
2013高考数学(理)二轮复习配套作业(解析版):专题限时集训(二)A(新课标)
专题限时集训(二)A[第2讲 函数、基本初等函数Ⅰ的图象与性质](时间:30分钟)1.设f(x)是定义在R 上的偶函数,当x≤0时,f(x)=log2(2-x)3,则f(2)=( )A .3B .4C .6D .82.函数f(x)=11+|x|的图象是( )图2-13.若loga2<0(a>0,且a≠1),则函数f(x)=loga(x +1)的图象大致是( )图2-24.定义在R 上的函数f(x)满足f(x +1)=-f(x),且当x ∈[0,2)时,f(x)=log2(x +1),则f(2 012)-f(2 011)=( )A .-1B .-2C .1D .25.函数y =ln ex -e -x ex +e -x的图象大致为( )图2-36.函数y =f(x)的定义域为R ,若对于任意的正数a ,函数g(x)=f(x +a)-f(x)都是其定义域上的增函数,则函数y =f(x)的图象可能是( )图2-47.设偶函数f(x)对任意x ∈R ,都有f(x +3)=-1f (x ),且当x ∈[-3,-2]时,f(x)=4x ,则f(107.5)=( )A .10 B.110C .-10D .-1108.在同一平面直角坐标系中,函数y =f(x)的图象与y =ex 的图象关于直线y =x 对称.而函数y =f(x)的图象与y =g(x)的图象关于y 轴对称,若g(m)=-1,则m 的值是( )A .e B.1eC .-eD .-1e9.设y =f(x)在(-∞,1]上有定义,对于给定的实数K ,定义fK(x)=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K ,给出函数f(x)=2x +1-4x ,若对于任意x ∈(-∞,1],恒有fK(x)=f(x),则( )A .K 的最大值为0B .K 的最小值为0C .K 的最大值为1D .K 的最小值为110.设函数f(x)为定义在R 上的奇函数,当x≥0时,f(x)=2x +2x +b(b 为常数),则f(-1)=________.11.若函数y =f(x)的定义域是[0,2],则函数g(x)=f (2x )x -1的定义域是________. 12.定义在R 上的函数f(x)满足f(x)+f(x +2)=8,且当x ∈(-1,1]时,f(x)=x2+2x ,则当x ∈(3,5]时,f(x)=________________.专题限时集训(二)A【基础演练】1.C [解析] 法一:因为函数f(x)为偶函数,所以f(2)=f(-2)=log2(2+2)3=6.法二:因为f(x)是偶函数,当x≤0时,f(x)=log2(2-x)3,所以当x>0时,f(x)=log2(2+x)3,易求f(2)=6.2.C [解析] 函数是偶函数,只能是选项C 中的图象.3.B [解析] 由loga2<0得0<a<1,f(x)=loga(x +1)的图象是由函数y =logax 的图象向左平移一个单位得到的,故为选项B 中的图象.4.A [解析] 由f(x +1)=-f(x),得f(x +2)=-f(x +1)=f(x),2是函数f(x)的一个周期,故f(2 012)-f(2 011)=f(0)-f(1)=0-1=-1.【提升训练】5.C [解析] 需满足ex -e -x ex +e -x>0,即ex -e -x>0,所以x>0,即函数的定义域是(0,+∞),排除选项A ,B 中的图象,由于ex -e -x ex +e -x =e2x -1e2x +1<1,所以ln ex -e -x ex +e -x<0,故只能是选项C 中的图象.6.D [解析] 法一:令x1<x2,因为函数g(x)=f(x +a)-f(x)是增函数,故g(x1)=f(x1+a)-f(x1)<g(x2)=f(x2+a)-f(x2),也就是f(x1+a)-f(x1)<f(x2+a)-f(x2),所以函数f(x)是增长速度越来越快的函数,故选D.法二:对于A ,可令f(x)=x3,则g(x)=f(x +a)-f(x)=3ax2+3a2x +a3在其定义域上不是增函数;对于B ,可令f(x)=(x +1)13,则g(x)=f(x +a)-f(x)=3x +a +1-3x +1是减函数;对于C ,可令f(x)=-(x -2)2+3,则g(x)=f(x +a)-f(x)=-2ax -a2+4a ,因为a>0,所以函数为减函数;对于D ,可令f(x)=2x ,则g(x)=f(x +a)-f(x)=2x +a -2x =(2a -1)2x ,因为a>0,所以2a -1>0,函数为增函数.7.B [解析] 由f(x +3)=-1f (x ),得f(x +6)=-1f (x +3)=f(x),知6为该函数的一个周期,所以f(107.5)=⎝⎛⎭⎫6×18-12=f ⎝⎛⎭⎫-12=-1f ⎝⎛⎭⎫52=-1f ⎝⎛⎭⎫-52=-1-10=110. 8.D [解析] 根据指数函数与对数函数互为反函数,故f(x)=lnx ,由于函数y =f(x),y =g(x)图象关于y 轴对称,可得g(x)=f(-x)=ln(-x),g(m)=-1,即ln(-m)=-1,解得m =-e-1=-1e. 9.D [解析] 根据给出的定义,fK(x)的含义是在函数y =f(x),y =K 中取小.若对任意的x ∈(-∞,1]恒有fK(x)=f(x),等价于对任意的x ∈(-∞,1]恒有f(x)≤K ,即函数f(x)在(-∞,1]上的最大值小于或者等于K.令t =2x ∈(0,2],则函数f(x)=2x +1-4x ,即为函数φ(t)=-t2+2t =-(t -1)2+1≤1,故函数f(x)在(-∞,1]上的最大值为1,即K≥1.所以K 有最小值1.10.-3 [解析] 因为函数f(x)为定义在R 上的奇函数,所以f(0)=0,即20+b =0,所以b =-1,所以函数f(x)=2x +2x -1,(x≥0),所以f(-1)=-f(1)=-(2+2-1)=-3.11.[0,1) [解析] 因为f(x)的定义域为[0,2],所以对g(x),0≤2x≤2但x≠1,故x ∈[0,1).12.f(x)=x2-6x+8[解析] 根据f(x)+f(x+2)=8,可得f(x+2)+f(x+4)=8,消掉f(x+2)得f(x)=f(x+4),即函数f(x)是以4为周期的函数.当x∈(3,5]时,(x-4)∈(-1,1],所以f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.。
2013高考数学(理)二轮复习配套作业(解析版):专题限时集训(六)(江西省专用)
专题限时集训(六)[第6讲 三角恒等变换与三角函数](时间:45分钟)1.下列函数中,周期为π,且在⎣⎡⎦⎤0,π2上为减函数的是( ) A .y =sin ⎝⎛⎭⎫2x +π2 B .y =cos ⎝⎛⎭⎫2x +π2 C .y =sin ⎝⎛⎭⎫x +π2 D .y =cos ⎝⎛⎭⎫x +π2 2.已知tan α=2,则cos2α()sin α-cos α2的值为( ) A .-3 B .3C .-2D .2 3.已知角2α的顶点在原点,始边与x 轴非负半轴重合,终边过⎝⎛⎭⎫-12,32,2α∈[0,2π),则tan α=( )A .- 3 B. 3 C.33 D .±334.要得到函数y =3c os ⎝⎛⎭⎫2x -π4的图像,可以将函数y =3sin2x 的图像( ) A .沿x 轴向左平移π8个单位长度B .沿x 轴向右平移π8个单位长度C .沿x 轴向左平移π4个单位长度D .沿x 轴向右平移π4个单位长度5.比较sin150°,ta n240°,cos(-120°)三个三角函数值的大小,正确的是( )A .sin150°>tan240°>cos(-120°)B .tan240°>sin150°>cos(-120°)C .si n150°>cos(-120°)>tan240°D .tan240°>cos(-120°)>sin150°6.若函数y =Asin(ωx +φ)⎝⎛⎭⎫A>0,ω>0,||φ<π2在一个周期内的图像如图6-1所示,M ,N 分别是这段图像的最高点和最低点,且OM →²ON →=0,则A·ω=( )图6-1A.π6B.7π12C.7π6D.7π37.已知x =π4是f(x)=asinx +bcosx 的一条对称轴,且最大值为22,则函数g(x)=asinx +b( )A .最大值是4,最小值为0B .最大值是2,最小值为-2C .最大值可能是0D .最小值不可能是-48.函数y =cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图像如图6-2所示,A ,B 分别为最高点与最低点,并且直线AB 的斜率为1,则该函数的一条对称轴为( )图6-2A .x =2πB .x =π2C .x =1D .x =29.平面直角坐标系中,圆O 方程为x2+y2=1,直线y =2x 与圆O 交于A ,B 两点,又知角α,β的始边是x 轴,终边分别为OA 和OB ,则cos(α+β)=________.10.设f(x)是定义在R 上最小正周期为5π3的函数,且在⎣⎡⎭⎫-2π3,π上f(x )=⎩⎪⎨⎪⎧sinx ,x ∈⎣⎡⎭⎫-2π3,0,cosx ,x ∈[0,π),则f ⎝⎛⎭⎫-16π3的值为________. 11.已知函数f(x)=Asin(ωx +φ)其中A>0,ω>0,0<φ<π2的图像如图6-3所示. (1)求函数y =f(x)的解析式;(2)求函数y =f ⎝⎛⎭⎫x +π8的零点.图6-312.已知函数f(x)=sin ωx(3cos ωx +sin ωx)+12(ω∈R ,x ∈R)的最小正周期为π,且图像关于直线x =76π对称.(1)求f(x)的最大值及对应的x 的集合;(2)若直线y =a 与函数y =1-f(x),x ∈⎣⎡⎦⎤0,π2的图像有且只有一个公共点,求实数a 的范围.13.已知角α的顶点在原点,始边与x 轴的正半轴重合,终边经过点P(-3,3).(1)求sin2α-ta n α的值;(2)若函数f(x)=cos(x -α)cos α-sin(x -α)sin α,求函数y =3f ⎝⎛⎭⎫π2-2x -2f2(x)在区间⎣⎡⎦⎤0,2π3上的取值范围.。
2013高考数学(理)二轮复习配套作业(解析版):专题限时集训(二十三)(江西省专用)
专题限时集训(二十三)[第23讲 坐标系与参数方程](时间:30分钟)1.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.2.圆C :⎩⎨⎧x =1+2cos θ,y =1+2sin θ(θ为参数)的极坐标方程为________. 3.在极坐标系中,圆ρ=2的圆心到直线ρcos θ+ρsin θ=2的距离为________.[来源:学§科§网]4.在极坐标系中,曲线ρ=2cos θ与曲线θ=π6的交点的极坐标为________.5.已知圆ρ=3cos θ,则圆截直线⎩⎪⎨⎪⎧x =2+2t ,y =1+4t (t 为参数)所得的弦长为________. 6.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为________.7.在极坐标系中,曲线C 的方程为ρ=2sin θ,过点P ⎝⎛⎭⎫22,π4作曲线的切线,则切线长为________.8.曲线C1:y =|x|,C2:x =0,C3的参数方程为⎩⎨⎧x =t ,y =1-t(t 为参数),那么C1,C2,C3围成的图形的面积为________.9.将圆M :x2+y2=a(a>0)的横坐标伸长为原来的2倍,纵坐标缩短为原来的13,正好与直线x -y -1=0相切.若以原点为极点,x 轴非负半轴为极轴建立极坐标系,则圆M 的极坐标方程为________.10.直线l :ρ=a -2cos θ+2sin θ(极轴与x 轴的正半轴重合,且单位长度相同), 圆C :⎩⎨⎧x =1+2cos θ,y =-1+2sin θ(θ为参数).若直线l 被圆C 截得的弦长为655,则a 的值为________. 11.在直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B分别在曲线C1:⎩⎪⎨⎪⎧x =4+cos θ,y =sin θ(θ为参数)和曲线C2:ρ=22cos ⎝⎛⎭⎫θ+π4上,则|AB|的最小值为________.12.直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C :⎩⎪⎨⎪⎧x =4+2cos θ,y =3+2sin θ(θ为参数)和曲线ρ=12上,则|AB|的取值范围是________. 13.已知抛物线C1的参数方程为⎩⎪⎨⎪⎧x =8t2,y =8t (t 为参数),圆C2的极坐标方程为ρ=r(r>0),若斜率为1的直线经过抛物线C1的焦点,且与圆C2相切,则r =________.14.在平面直角坐标系xOy 中,曲线C1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,经过点D ⎝⎛⎭⎫2,π3的圆,且曲线C1经过曲线C2的圆心.若点A(ρ1,θ),B ⎝⎛⎭⎫ρ2,θ+π2在曲线C1上,则1ρ21+1ρ2的值为________.。
2013高考数学(文)二轮复习配套作业(解析版):作业手册详答(湖北省专用)
专题限时集训(一)A 【基础演练】1.A [解析] 依题意得B ={x|-2<x<1},故A ∪B ={x|-2<x<4}.2.D [解析] 依题意得A ={-1,0,1},因此集合A 的子集个数是23=8. 3.B [解析] 根据特称命题的否定得命题綈p 应为:∀x ∈0,π2,sinx ≠12.4.D [解析] D 项中,当φ=π2时,函数f(x)=sin ⎝⎛⎭⎫2x +π2=cos2x 是偶函数,故D 项错误;A ,B ,C 项都易验证是正确的.故选D.【提升训练】5.B [解析] 由x -2x +3<0得-3<x<2,即M ={x|-3<x<2};由|x -1|≤2得-1≤x≤3,即N ={x|-1≤x≤3}.所以M∩N =[-1,2).6.B [解析] 当c =-1时,由函数f(x)=⎩⎪⎨⎪⎧log2x ,x≥1,x -1,x<1的图象可以得出其是增函数;反之,不一定成立,如取c =-2.所以“c =-1”是“f(x)在R 上单调递增”的充分不必要条件. 7.C [解析] 当“A>B”时,因为sinA -sinB =2cos A +B 2sin A -B 2,易知A +B 2∈⎝⎛⎭⎫0,π2,A -B2∈⎝⎛⎭⎫0,π2,所以cos A +B 2>0,sin A -B 2>0.可以推得sinA>sinB.当“sinA>sinB ”时,有sinA -sinB =2cos A +B 2sin A -B 2>0,又由上得cos A +B 2>0,所以sin A -B 2>0,所以A -B 2∈⎝⎛⎭⎫0,π2,即A -B ∈(0,π),可以推得A>B.故“A>B”是“sinA>sinB ”的充分必要条件.故选C. 8.C [解析] 命题p 等价于Δ=a2-16≥0,即a≤-4或a≥4;命题q 等价于-a4≤3,即a≥-12.由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假.若p 真q 假,则a<-12;若p 假q 真,则-4<a<4.故实数a 的取值范围是(-∞,-12)∪(-4,4).9.B [解析] 对于①,显然m≠0,故由am2<bm2两边同时除以m2,得a<b.故①正确.对于②,因为x 是任意正数,所以不等式2x +a x ≥1等价于a≥x -2x2=-2⎝⎛⎭⎫x -142+18.因为不等式恒成立,所以a≥18.故②正确.对于③,命题“∃x ∈R ,x2-x>0”的否定是“∀x ∈R ,x2-x≤0”,故③错误.对于④,若命题p ∧q 为假,则p 和q 至少有一个为假,不可以推得命题p ∨q 为假命题;但当命题p ∨q 为假时,则p 和q 都为假,可以推得命题p ∧q 为假命题;故“p ∧q 为假命题”是“p ∨q 为假命题”的必要不充分条件,故④错误.综上,正确的个数为2.故选B. 10.∀x ∈R ,x>1且x2≤4 [解析] 因为特称命题p :∃x0∈M ,p(x0)的否定为綈p :∀x ∈M ,綈p(x),所以题中命题的否定为“∀x ∈R ,x>1且x2≤4”.11.{5,6} [解析] 依题意作出满足条件的韦恩图,可得B ∩(∁UA)={5,6}.12.①④ [解析] 对于①,“∃x0∈R ,2x0>3”的否定是“∀x ∈R ,2x ≤3”,所以①正确;对于②,注意到sin π6-2x =cos2x +π3,因此函数y =sin2x +π3sin π6-2x =sin2x +π3·cos2x+π3=12sin4x +2π3,其最小正周期为2π4=π2,所以②不正确;对于③,注意到命题“函数f(x)在x =x0处有极值,则f′(x 0)=0”的否命题是“若函数f(x)在x =x0处无极值,则f′(x 0)≠0”,容易知该命题不正确,如取f(x)=x3,f(x)无极值但当x0=0时,f′(x 0)=0,故③不正确;对于④,依题意知,当x<0时,-x>0,f(x)=-f(-x)=-2-x ,所以④正确.综上所述,其中正确的说法是①④. 专题限时集训(一)B 【基础演练】1.B [解析] (∁UM )∩N ={x|x ∈Z ,x≠-1,0,1}∩{0,1,3}={3}.故选B. 2.A [解析] 依题意得M ={x|x≥-a},N ={x|1<x<3},则∁UN ={x|x≤1,或x≥3}.又M∩(∁UN)={x|x =1,或x≥3}, 所以-a =1,求得a =-1.3.C [解析] 因为a2-a +1=a -122+34≥34>0,所以由a -1a2-a +1<0得a<1,不能得到|a|<1;反过来,由|a|<1得-1<a<1,所以a -1a2-a +1<0.因此“a -1a2-a +1<0”是“|a|<1”成立的必要不充分条件.4.D [解析] 对于A ,命题“若x2=1,则x =1”的否命题为“若x2≠1,则x≠1”,因此选项A 不正确;对于B ,由x =-1得x2-5x -6=0,因此“x =-1”是“x 2-5x -6=0”的充分条件,选项B 不正确;对于C ,命题“∃x0∈R ,使得x20+x0-1<0”的否定是:“∀x ∈R ,使得x2+x -1≥0”,因此选项C 不正确;对于D ,命题“若x =y ,则sinx =siny ”是真命题,因此它的逆否命题也为真命题,选项D 正确. 【提升训练】5.B [解析] A ={x|x2-x -6<0}={x|-2<x<3},所以A∩B ={-1,1,2},有三个元素.故选B.6.D [解析] 因为∀x ∈R ,2x2+2x +12=2x +122≥0,所以p 为假命题;当x =3π4时,sin3π4-cos 3π4=22+22=2,所以q 为真命题,则綈q 是假命题.7.B [解析] 注意到⊙O1与⊙O4无公共点,⊙O2与⊙O3无公共点,则满足题意的“有序集合对”(A ,B)的个数是4.8.A [解析] 对于命题q ,函数f(x)=x2+mx +9存在零点,等价于Δ=m2-4×9≥0,等价于m≥6或m≤-6,又{m|m>7}⊂{m|m ≥6},所以p 是q 的充分不必要条件.故选A. 9.C [解析] 若xyz =0,不妨设x =0,则由xOA →+yOB →+zOC →=0,得yOB →=-zOC →,故OB →与OC →共线,又它们有公共点O ,所以点O 在直线BC 上.同理,当y =0或z =0可分别推得点O 在直线AC ,AB 上.故由“xyz =0”可以推得“点O 在△ABC 的边所在直线上”;若点O 在△ABC 的边所在直线上,不妨设点O 在直线BC 上,则一定存在实数λ,使得yOB →+zOC →=λOB →成立.又xOA →+yOB →+zOC →=0,所以xOA →+λOB →=0.因为OA →与OB →不共线,所以x =0,λ=0.同理,当点O 在直线AC ,AB 上时,可以分别推得y =0,z =0.故由“点O 在△ABC 的边所在直线上”可以推得“xyz =0”.故“xyz =0”是“点O 在△ABC 的边所在直线上”的充要条件.故选C.10.ab =a2+b2 [解析] 由A∩B 只有一个元素知,圆x2+y2=1与直线x a -yb =1相切,则1=aba2+b2,即ab =a2+b2.11.必要不充分 [解析] 设向量a ,b 的夹角为θ,则由题意知,当a·b =|a|·|b|cos θ>0时,θ∈⎣⎡⎭⎫0,π2;若a 与b 的夹角为锐角,即θ∈0,π2.因为⎝⎛⎭⎫0,π2⎣⎡⎭⎫0,π2,所以p 是q 成立的必要不充分条件.12.(-∞,-1]∪[0,+∞) [解析] 若对于任意实数x ,都有x2+ax -4a>0,则Δ=a2+16a<0,即-16<a<0;若对于任意实数x ,都有x2-2ax +1>0,则Δ=4a2-4<0,即-1<a<1.于是命题“对于任意实数x ,都有x2+ax -4a>0且x2-2ax +1>0”是真命题时有a ∈(-1,0),则命题“对于任意实数x ,都有x2+ax -4a>0且x2-2ax +1>0”是假命题时a 的取值范围是(-∞,-1]∪[0,+∞). 专题限时集训(二)A 【基础演练】1.D [解析] 由题意可得⎩⎪⎨⎪⎧x>0,log3x ≠0,解得x>0且x≠1,故函数定义域为(0,1)∪(1,+∞).2.C [解析] 函数是偶函数,只能是选项C 中的图象.3.C [解析] 依题意,因为5≥4,4≥4,所以f(5)=f(5-1)=f(4)=f(4-1)=f(3),而3<4,所以f(3)=23=8.4.B [解析] 因为3a =5b =A ,所以a =log3A ,b =log5A ,且A>0,于是1a +1b =logA3+logA5=logA15=2,所以A =15. 【提升训练】5.D [解析] 由题意,⎩⎨⎧2-x>0,lgx ≥0,解得1≤x<2.故选D.6.B [解析] 由loga2<0得0<a<1,f(x)=loga(x +1)的图象是由函数y =logax 的图象向左平移1个单位得到的,故为选项B 中的图象.7.A [解析] 由条件知,0<a<1,b<-1,结合选项,函数g(x)=ax +b 只有A 符合要求. 8.B [解析] 根据f(x)的图象知0<b<1,a>1,则函数g(x)单调递增,且是由函数h(x)=logax 向左平移了b(0<b<1)个单位而得到的,故B 项符合. 9.B [解析] 由f(x +3)=-1f (x ),得f(x +6)=-1f (x +3)=f(x),知6为该函数的一个周期,所以f(107.5)=⎝⎛⎭⎫6×18-12=f ⎝⎛⎭⎫-12=-1f ⎝⎛⎭⎫52=-1f ⎝⎛⎭⎫-52=-1-10=110. 10.-12 [解析] 依题意,f(m)=12,即em -1em +1=12.所以f(-m)=e -m -1e -m +1=1-em 1+em =-em -1em +1=-12.11.7 6 [解析] 因为f(22)=loga((22)2-1)=loga7=1,所以a =7. 故f(f(2))=f[log7(22-1)] =2×7log73=2×3=6.12.②③④ [解析] 根据单函数的定义可知故命题②、④是真命题,①是假命题;根据一个命题与其逆否命题等价可知,命题③是真命题. 专题限时集训(二)B 【基础演练】1.C [解析] 依题意,得⎩⎪⎨⎪⎧x +2>0,1-lg (x +2)≥0,即⎩⎪⎨⎪⎧x +2>0,x +2≤10,解得-2<x≤8,故函数定义域为(-2,8].2.A [解析] f(27)=11+327=14,f(f(27))=f ⎝⎛⎭⎫14=⎪⎪⎪⎪log414-1-2=0.故选A. 3.B [解析] y =-1x 是奇函数,A 错误;y =e|x|是偶函数且在(0,+∞)上单调递增,B 正确;y =-x2+3是偶函数且在(0,+∞)上单调递减,C 错误;y =cosx 是偶函数且在(0,+∞)上有时递增,有时递减,D 错误.4.C [解析] 依题意,由f(2-x)=f(x)得f(1-x)=f(1+x), 即函数f(x)的对称轴为直线x =1,结合图形可知f 12<f 13<f(0)=f(2). 【提升训练】5.C [解析] 将函数f(x)=x|x|-2x 去掉绝对值,得f(x)=⎩⎪⎨⎪⎧x2-2x ,x≥0,-x2-2x ,x<0,画出函数f(x)的图象,观察图象可知,函数f(x)的图象关于原点对称,故f(x)为奇函数,且在(-1,1)上单调递减.6.A [解析] 本题考查函数的奇偶性,周期性,函数求值. f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫12=-2×12×⎝⎛⎭⎫1-12=-12.故选A. 7.C [解析] 函数是偶函数,而且函数值为正值,在x→0时,x sinx →1,当x→π时,x sinx →+∞,综合这些信息得只能是选项C 中的图象.8.D [解析] 由题意,f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12×4=48.故选D.9.D [解析] 依题意得,f(x -1)=⎩⎪⎨⎪⎧x +1,x≤0,-x +1,0<x<2,x -3,x≥2,在同一直角坐标系中作出函数y =f(x -1)和y =t(|t|<1)的图象(如图),由图象知方程f(x -1)=t(|t|<1)所有根的和s 的取值范围是(2,4).10.-14 [解析] 由对任意t ∈R ,都有f(t)=f(1-t),可得f(-t)=f(1+t),即f(t +1)=-f(t),进而得到f(t +2)=-f(t +1)=-[-f(t)]=f(t),即函数y =f(x)的一个周期为2,故f(3)=f(1)=f(0+1)=-f(0)=0,f -32=f 12=-14.所以f(3)+f -32=0+-14=-14.11.①②④ [解析] 依题意,令x =-2得f(2)=f(-2)+f(2),又函数f(x)是偶函数,故f(2)=0,所以①正确;根据①可得f(x +4)=f(x),即函数f(x)的周期为4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f(x)图象的一条对称轴,所以②正确;根据函数的周期性可知,函数f(x)在[8,10]上单调递减,所以③不正确;由于函数f(x)的图象关于直线x =-4对称,故如果方程f(x)=m 在[-6,-2]上的两根为x1,x2,则x1+x2=-8,所以④正确. 12.②④ [解析] 对于①,结合函数f(x)的图象分析可知,不存在函数g(x),使得f(x)≥g(x)对一切实数x 都成立,即f(x)不存在承托函数;对于②,注意到f(x)=2-x>0,因此存在函数g(x)=0,使得f(x)≥g(x)对一切实数x 都成立,即f(x)存在承托函数;对于③,结合函数f(x)的图象分析可知,不存在函数g(x),使得f(x)≥g(x)对一切实数x 都成立,即f(x)不存在承托函数;对于④,注意到f(x)=x +sinx ≥x -1,因此存在函数g(x)=x -1,使得f(x)≥g(x)对一切实数x 都成立,即f(x)存在承托函数.综上所述,存在承托函数的f(x)的序号为②④. 专题限时集训(三) 【基础演练】1.B [解析] 本题考查函数零点所在区间的判断.因为f ⎝⎛⎭⎫-14=e 14-2<0,f ⎝⎛⎭⎫-12=e 12-1>0,所以f ⎝⎛⎭⎫-14·f ⎝⎛⎭⎫-12<0.又函数f(x)的图象是连续的,所以由零点存在定理得函数f(x)=e -x -4x -3的零点所在的区间为⎝⎛⎭⎫-12,-14.故选B. 2.B [解析] 依题意,由所给出的函数图象可求得函数解析式为h =20-5t(0≤t≤4),对照选项可知图象应为B.故选B.3.C [解析] 将表中的数据代入各选项中的函数解析式验证,可知只有v =t2-12满足.故选C.4.B [解析] 在同一坐标系内画出函数y =3cos π2x 和y =log2x +12的图象,可得交点个数为3.【提升训练】5.D [解析] 由于f ⎝⎛⎭⎫1e =13×1e -ln 1e =13e +1>0,f(1)=13×1-ln1=13>0,f(e)=13×e -lne =13e -1<0,则知函数f(x)在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点.故选D.6.C [解析] 易知f(a)=0,函数f(x)=lnx -log 12x 在(0,+∞)上单调递增,因为0<x0<a ,所以f(x0)<f(a)=0.7.C [解析] 设CD =x ,依题意,得S =x(16-x)(4<x<16-a),所以Smax =f(a)=⎩⎪⎨⎪⎧64(0<a≤8),a (16-a )(8<a<12),对照图象知,C 符合函数模型对应的图象.故选C. 8.D [解析] 因为函数f(x)是奇函数,且定义域为R ,所以f(0)=0.又函数f(x)是周期为3的周期函数,所以f(6)=f(3)=f(0)=0.又当x ∈⎝⎛⎭⎫0,32时,f(x)=sin πx ,所以f(1)=0.所以f(4)=f(1)=f(-2)=0.所以f(2)=f(5)=0.因为f ⎝⎛⎭⎫32=0,所以f ⎝⎛⎭⎫92=0.综上,函数f(x)在区间[0,6]上的零点有0,1,32,2,3,4,92,5,6共9个.9.D [解析] 由对任意的x ∈R 都有f(x +1)=f(x -1)知f(x)=f(x +2),即函数y =f(x)的周期为2,在同一直角坐标系中作出函数y =f(x)(x ∈[-1,3])和y =m(x +1)的图象(如图),要使函数g(x)=f(x)-mx -m 恰有四个不同零点,则0<m≤14.10.3 [解析] 由题意知,f(3)=ln3-1>0,f(4)=ln4-2<0,所以该函数的零点在区间(3,4)内,由此可得k =3.故填3.11.40 [解析] 设相同时间间隔为t1小时,第10台投入工作至收割完成为t2小时,则第1,2,3,4,5,6,7,8,9台投入工作的时间依次为9t1+t2,8t1+t2,…,t1+t2小时.因为采用第一种方案总共用24小时完成,所以每台收割机每小时完成收割任务的1240.依题意有⎩⎪⎨⎪⎧9t1+t2=5t2,1240[(9t1+t2)+(8t1+t2)+…+t2]=1,解得t2=8.故采用第二种方案时第一台收割机投入工作的时间为5t2=40(小时).12.解:(1)条件说明抛物线f(x)=x2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎩⎪⎨⎪⎧f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0⇒⎩⎪⎨⎪⎧m<-12,m ∈R ,m<-12,m>-56.∴-56<m<-12.(2)抛物线与x 轴交点落在区间(0,1)内,列不等式组⎩⎪⎨⎪⎧Δ=4m2-4(2m +1)≥0,f (0)=2m +1>0,f (1)=4m +2>0,0<-m<1,得-12<m≤1-2.(这里0<-m<1是因为对称轴x =-m 对应的-m 应在区间(0,1)内过) 13.解:(1)当x =0时,t =0;当0<x≤24时,x +1x ≥2(当x =1时取等号),∴t =x x2+1=1x +1x∈⎝⎛⎦⎤0,12,即t 的取值范围是⎣⎡⎦⎤0,12. (2)当a ∈⎣⎡⎦⎤0,12时,记g(t)=|t -a|+2a +23, 则g(t)=⎩⎨⎧-t +3a +23,0≤t≤a ,t +a +23,a<t ≤12.∵g(t)在[0,a]上单调递减,在⎝⎛⎦⎤a ,12上单调递增, 且g(0)=3a +23,g ⎝⎛⎭⎫12=a +76,g(0)-g ⎝⎛⎭⎫12=2⎝⎛⎭⎫a -14. 故M(a)=⎩⎨⎧g ⎝⎛⎭⎫12,0≤a≤14,g (0),14<a ≤12,即M(a)=⎩⎨⎧a +76,0≤a≤14,3a +23,14<a ≤12.∴当且仅当a≤49时,M(a)≤2.故当0≤a≤49时不超标,当49<a ≤12时超标. 14.解:(1)当m =2,x ∈[1,2]时, f(x)=x·(x -1)+2=x2-x +2=x -122+74.∵函数y =f(x)在[1,2]上单调递增,∴f(x)max =f(2)=4,即f(x)在[1,2]上的最大值为4.(2)函数p(x)的定义域为(0,+∞),函数p(x)有零点,即方程f(x)-g(x)=x|x -1|-lnx +m =0有解,即m =lnx -x|x -1|有解,令h(x)=lnx -x|x -1|. 当x ∈(0,1]时,h(x)=x2-x +lnx.∵h ′(x)=2x +1x -1≥22-1>0当且仅当2x =1x 时取“=”,∴函数h(x)在(0,1]上是增函数,∴h(x)≤h(1)=0.当x ∈(1,+∞)时,h(x)=-x2+x +lnx.∵h ′(x)=-2x +1x +1=-2x2+x +1x =-(x -1)(2x +1)x <0,∴函数h(x)在(1,+∞)上是减函数,∴h(x)<h(1)=0,∴方程m =lnx -x|x -1|有解时,m≤0, 即函数p(x)有零点时,m 的取值范围为(-∞,0]. 专题限时集训(四)A 【基础演练】1.B [解析] 对于B ,由a3>b3知a>b ,而ab>0,由不等式的倒数法则知1a <1b .故选B. 2.D [解析] 由1x <12,得1x -12<0,即2-x 2x <0,于是不等式转化为x(x -2)>0,解得x<0或x>2.故选D.3.B [解析] a·b =4x -4+2y =0,即2x +y =2,9x +3y ≥29x ·3y =232x +y =232=6(当2x =y =1时取等号).4.B [解析] 作出满足题设条件的可行域(如图),则当直线y =-2x +z 经过点A(-2,2)时,截距z 取得最小值,即zmin =2×(-2)+2=-2.【提升训练】5.A [解析] |x +3|-|x -1|≤|(x +3)-(x -1)|=4,由题意,有4≤a 2-3a ,解得a≤-1,或a≥4. 6.A [解析] 依题意,a2<1+x 对任意正数x 恒成立,则a2≤1,求得-1≤a≤1.7.B [解析] 作出不等式组⎩⎪⎨⎪⎧2x -y≤0,x -2y +3≥0,x≥0的可行域,如图中的阴影部分所示,设w =2x +y ,由图知,当取点A(1,2)时,w 取得最大值为2×1+2=4,此时z =2x +y +4的最大值为4+4=8.故选B.8.A [解析] 作出不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -2≥0表示的平面区域,则此平面区域为△ABC ,且A(2,0),B(0,1),C(2,1),于是,S =12×2×1=1.故选A.9.B [解析] 由a>0,b>0且直线x -y =-1与2x -y =2的交点为(3,4),得当x =3,y =4时,z 取得大值,3a +4b =7,所以3a +4b =3a +4b ·3a +4b 7=97+167+127b a +a b ≥257+127×2b a ·a b =257+247=7. 10.A [解析] 由f(x)是奇函数知f(0)=lg(2+a)=0,解得a =-1,那么由f(x)=lg ⎝⎛⎭⎫21-x -1<0=lg1,得21-x -1<1,即x x -1>0,解得x<0或x>1,又知其定义域为21-x -1>0,即x +1x -1<0,解得-1<x<1,综上可得-1<x<0.故选A.11.8 [解析] 依题意,设货车从A 市到B 市的时间为t ,则t =400v +16×v202v =400v +16v400≥2400v ·16v400=216=8.故填8.12.(-∞,-1)∪(3,+∞) [解析] 当x≤-1时,不等式可化为-(x +1)-(2x -4)>6,解得x<-1;当-1<x<2时,不等式可化为(x +1)-(2x -4)>6,解得x<-1,无解;当x≥2时,不等式可化为(x +1)+(2x -4)>6,解得x>3;故不等式的解集为(-∞,-1)∪(3,+∞).13.-18 6 [解析] 作出不等式组⎩⎪⎨⎪⎧y2-x≤0,x +y≤2表示的可行域(如下图阴影部分所示,含边界).联立⎩⎪⎨⎪⎧y2-x =0,x +y =2,解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =4,y =-2,故两交点分别为A(1,1),B(4,-2).设z =2x +y ,可知当直线z =2x +y 经过点B(4,-2)时,z =2x +y 有最大值,且zmax =6;当直线z =2x+y 与抛物线y2-x =0相切时,z =2x +y 有最小值,此时由⎩⎪⎨⎪⎧y2-x =0,z =2x +y ,消去y 得4x2-(4z+1)x +z2=0,令Δ=(4z +1)2-16z2=0,解得z =-18.故zmin =-18.故2x +y 的最小值为-18,最大值为6. 专题限时集训(四)B 【基础演练】1.D [解析] ∵y>x>0,且x +y =1,取特殊值:x =14,y =34,则x +y 2=12,2xy =38,∴x<2xy<x +y 2<y.故选D.2.D [解析] |x -1|+|x -6|≥|(x -1)-(x -6)|=5,故要使不等式|x -1|+|x -6|>m 恒成立,须满足m<5.3.D [解析] ∵am +bn +c<0,b<0,∴n>-a b m -cb . ∴点P 所在的平面区域满足不等式y>-a b x -cb ,a>0,b<0.∴-ab >0.故点P 在该直线的上侧,综上知,点P 在该直线的左上方.4.D [解析] 依题意,不等式f(x0)>1等价于⎩⎪⎨⎪⎧x0≤0,12x0>1或⎩⎨⎧x0>0,x0>1,解得x0<0或x0>1.故选D.【提升训练】5.C [解析] 不等式x2-x -6x -1>0可化为(x +2)(x -3)(x -1)>0,由数轴标根法可知,解集为{x|-2<x<1,或x>3}.6.B [解析] 依题意知,-12和13是一元二次方程ax2+bx +2=0的两根,且a<0,则⎩⎨⎧-12+13=-ba ,-12×13=2a ,解得⎩⎪⎨⎪⎧a =-12,b =-2.于是,不等式2x2+bx +a<0即是2x2-2x -12<0,解得-2<x<3.故选B.7.C [解析] 因为0<x<1,所以1+x>2x =4x>2x ,所以只需比较1+x 与11-x 的大小.因为1+x -11-x =1-x2-11-x =x2x -1<0,所以1+x<11-x .故选C.8.2π [解析] 在同一直角坐标系中作出可行域⎩⎨⎧(x +3y )(3x -y )≤0,x2+y2≤4.由图形知,不等式组表示的平面区域的面积是二分之一的半径为2的圆面积,即S =12×π×22=2π.9.2+22 [解析] 画出不等式组表示的平面区域,当t 最小时,所表示的区域为第一象限的一个等腰直角三角形.依题意,它有一个半径为1的内切圆,不妨设斜边|OB|=t ,则两直角边长|AB|=|OA|=22t ,所以22t +22t -t 2=1,求得t =22-1=22+2,即 tmin =2+2 2.10.(-∞,-4)∪(0,+∞) [解析] 由题意,对任意x ∈R ,|x -a|+|x +2|>2恒成立,因为|x-a|+|x +2|≥|(x -a)-(x +2)|=|2+a|,所以需满足|2+a|>2,得2+a>2,或2+a<-2,解得a>0,或a<-4.11.10 [解析] 设应把楼房设计成x 层,每层的面积为y m2,则平均每平方米建筑面积的成本费为k =2 000y +y×400+y×440+…+y×[400+40(x -1)]xy =2 000x+20x +380≥22 000x ·20x +380=780,当且仅当2 000x =20x ,即x =10时取等号,故应把楼房设计成10层.12.[-1,11] [解析] 作出x ,y 满足的可行域(如下图阴影部分所示,含边界).当x≥0时,z =2x +y 在点C(6,-1)处取得最大值11,在点D(0,-1)处取最小值-1;当x≤0时,目标函数z =-2x +y 在点B (-2,-1)处取最大值3,在点D(0,-1)处取最小值-1,所以z ∈[-1,11]. 专题限时集训(五)【基础演练】1.C [解析] 将点(2,3)分别代入曲线y =x3+ax +1和直线y =kx +b ,得a =-3,2k +b =3.又k =y′|x =2=(3x2-3)|x =2=9,所以b =3-2k =3-18=-15.故选C.2.C [解析] 对f(x)求导,得f ′(x)=3x2+2x +m ,因为f(x)是R 上的单调函数,二次项系数a =3>0,所以Δ=4-12m≤0,解得m≥13.3.C [解析] 对f(x)求导得f ′(x)=3x2-6x =3x(x -2),则f(x)在区间[-1,0]上递增,在区间[0,1]上递减,因此函数f(x)的最大值为f(0)=2.故选C. 4.A [解析] 对f(x)求导,得f ′(x)=x2+c +(x -2)·2x.又因为f′(2)=0,所以4+c +(2-2)×4=0,所以c =-4.于是f′(1)=1-4+(1-2)×2=-5.故选A. 【提升训练】5.A [解析] 对f(x)求导,得f ′(x)=3x2-3≥-3,∴f(x)上任意一点P 处的切线的斜率k≥-3,即tan α≥-3, ∴0≤α<π2或2π3≤α<π.6.D [解析] ∵s(t)=t2+3t ,∴s′(t)=2t -3t2,则机器人在t =2时的瞬时速度为s′(2)=2×2-322=134(m/s).故选D. 7.D [解析] 由于AB 的长度为定值,只要考虑点C 到直线AB 的距离的变化趋势即可.当x 在区间[0,a]变化时,点C 到直线AB 的距离先是递增,然后递减,再递增,再递减,S′(x)的图象先是在x 轴上方,再到x 轴下方,再回到x 轴上方,再到x 轴下方,并且函数在直线AB 与函数图象的交点处间断,在这个间断点函数性质发生突然变化,所以选项D 中的图象符合要求.8.B [解析] f′(x)=1x -x =1-x2x ,当x>1时,f′(x)<0;当0<x<1时,f′(x)>0,所以函数f(x)在(1,+∞)上单调递减,在(0,1)上单调递增,故排除C ,D 项;因为f(1)=-12<0,故排除A 项.9.D [解析] 根据二次函数图象知f(0)=a ∈(0,1),f(1)=1-b +a =0,即b -a =1,所以b ∈(1,2).又g′(x)=2x +2x -b ,所以g′(b)=2b +b≥22b ·b =22,当且仅当2b =b ,即b =2时取等号,故g′(b)min =2 2.故选D.10.(1,e) [解析] 设切点坐标为(x0,y0),对f(x)=ex 求导,得f ′(x)=ex ,所以f′(x 0)=ex0=e ,即x0=1.又y0=f(x0)=ex0=e ,所以切点坐标为(1,e).11.13 [解析] 本题考查函数的单调性,多项式函数的求导.f′(x)=3kx2+6(k -1)x(k>0),由题意,f′(x)<0的解集是(0,4),所以f′(0)=0,f′(4)=0,解得k =13.12.①1 ②h(0)<h(1)<h(-1) [解析] 本题考查二次函数和三次函数的导数及其图象,求值,比较大小等.①由题意,f′(x)是一次函数,g′(x)是二次函数.所以由图象可得f′(x)=x ,g′(x)=x2.设f(x)=12x2+c(c 为常数).若f(1)=1,则12×12+c =1,解得c =12.所以f(x)=12x2+12.故f(-1)=1.②由①得,可设f(x)=12x2+c1,g(x)=13x3+c2,则h(x)=f(x)-g(x)=12x2+c1-13x3-c2=-13x3+12x2+c3.所以h(-1)=56+c3,h(0)=c3,h(1)=16+c3.所以h(0)<h(1)<h(-1). 13.解:(1)当a =1时,f′(x)=1+1x ⇒f ′⎝⎛⎭⎫12=3. (2)由题知f′(x)=a +1x (x>0),当a≥0时,f′(x)=a +1x >0,则f(x)在区间(0,+∞)上单调递增;当a<0时,f′(x)=a +1x >0⇒0<x<-1a , ∴当a≥0时,f(x)的单调递增区间是(0,+∞), 当a<0时,f(x)的单调递增区间是⎝⎛⎭⎫0,-1a . (3)由题知对任意x1∈(0,+∞),存在x2∈[0,1],使得f(x1)<g(x2),故f(x)max<g(x)max ,又g(x)=2x 在区间[0,1]上递增,所以g(x)max =g(1)=2, 即f(x)max<2,当a≥0时,f(x)在区间(0,+∞)上单调递增,无最大值,显然不满足条件; 当a<0时,f(x)在区间⎝⎛⎭⎫0,-1a 上单调递增,在区间⎝⎛⎭⎫-1a ,+∞上单调递减, 所以f(x)max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a , 即-1+ln ⎝⎛⎭⎫-1a <2⇒a<-1e3,∴a<-1e3. 14.解:(1)令f ′(x)=1x -ax2=0,得x =a.当a≥e 时,函数f(x)在区间(0,e]是减函数,f(x)min =ae ;当0<a<e 时,函数f(x)在区间(0,a]是减函数,[a ,e]是增函数f(x)min =lna. 综上所述,当0<a<e 时,f(x)min =lna ;当a≥e 时,f(x)min =ae . (2)由(1)可知,a =1时,函数f(x)在x1∈(0,e)的最小值为0, 所以g(x)=(x -b)2+4-b2.当b≤1时,g(1)=5-2b<0不成立; 当b≥3时,g(3)=13-6b<0恒成立;当1<b<3时,g(b)=4-b2<0,此时2<b<3.综上可知,满足条件的实数b 的取值范围为{b|b>2}. 15.解:(1)当x<1时,f ′(x)=-3x2+2ax +b.因为函数图象在点(-2,f(-2))处的切线方程为16x +y +20=0. 所以切点坐标为(-2,12),且⎩⎪⎨⎪⎧f (-2)=8+4a -2b =12,f′(-2)=-12-4a +b =-16,解得a =1,b =0.(2)由(1)得,当x<1时,f(x)=-x3+x2, 令f ′(x)=-3x2+2x =0可得x =0或x =23,f(x)在(-1,0)和23,1上单调递减,在0,23上单调递增,对于x<1部分:f(x)的最大值为max ⎩⎨⎧⎭⎬⎫f (-1),f 23=f(-1)=2;当1≤x≤2时,f(x)=c·lnx , 当c≤0时,c·lnx ≤0恒成立,f(x)≤0<2, 此时f(x)在[-1,2]上的最大值为f(-1)=2;当c>0时,f(x)=clnx 在[1,2]上单调递增,且f(2)=c·ln2. 令c·ln2=2,则c =2ln2,所以当c>2ln2时, f(x)在[-1,2]上的最大值为f(2)=c·ln2;当0<c≤2ln2时,f(x)在[-1,2]上的最大值为f(-1)=2. 综上可知,当c≤2ln2时,f(x)在[-1,2]上的最大值为2;当c>2ln2时,f(x)在[-1,2]上的最大值为c·ln2.(3)f(x)=⎩⎪⎨⎪⎧-x3+x2(x<1),clnx (x≥1),根据条件M ,N 的横坐标互为相反数,不妨设M(-t ,t3+t2),N(t ,f(t)),(t>0).若t<1,则f(t)=-t3+t2,由∠MON 是直角得,OM →·ON →=0,即-t2+(t3+t2)(-t3+t2)=0,即t4-t2+1=0.此时无解; 若t≥1,则f(t)=c·lnt.由于MN 的中点在y 轴上,且∠MON =90°,所以N 点不可能在x 轴上,即t≠1.同理有OM →·ON →=0,即-t2+(t3+t2)·clnt =0,c =1(t +1)lnt .由于函数g(t)=1(t +1)lnt (t>1)的值域是(0,+∞),则实数c 的取值范围是(0,+∞). 专题限时集训(六)A 【基础演练】1.B [解析] 方法1:sin15°+cos165°=sin15°-cos15°=2sin15°·cos45°-cos15°sin45°=2sin(-30°)=-22.方法2:显然sin15°-cos15°<0,(sin15°-cos15°)2=1-sin30°=12,故sin15°-cos15°=-22.2.C [解析] 因为1-sin2x =(sinx -cosx )2=|sinx -cosx|,又1-sin2x =sinx -cosx ,所以|sinx -cosx|=sinx -cosx ,则sinx -cosx ≥0,即sinx ≥cosx.又0≤x<2π,所以π4≤x ≤5π4.3.D [解析] 由cos(x +y)sinx -sin(x +y)cosx =1213得sin[x -(x +y)]=-siny =1213,所以siny =-1213.又y 是第四象限的角,所以cosy =513,于是tan y 2=1-cosy siny =1-513-1213=-23.故选D.4.B [解析] 把函数y =sin ⎝⎛⎭⎫2x +π6的图象向右平移π4个长度单位,得到函数y =2sin ⎝⎛⎭⎫2⎝⎛⎭⎫x -π4+π6=2sin ⎝⎛⎭⎫2x -π3的图象.【提升训练】5.A [解析] 由sin θ+cos θ=2,得θ=2k π+π4,所以tan θ+π3=tan π4+π3=1+31-3=-2- 3.故选A.6.C [解析] 依题意得f -15π4=f -15π4+3π2×3=f 3π4=sin 3π4=22.故选C.7.B [解析] 依题意得f(x)=sinx +3cosx =2sinx +π3,因为f(x)在⎣⎡⎦⎤0,π6上单调递增,所以f π7<f π6,而c =f π3=2sin 2π3=2sin π3=f(0)<f π7,所以c<a<b.8.B [解析] 不妨设A>0,由图象可知,A =2,又函数的图象过点⎝⎛⎭⎫π3,2,所以2×π3+φ=2k π+π2(k ∈Z),解得φ=2k π-π6(k ∈Z).故f(x)=2sin ⎝⎛⎭⎫2x +2k π-π6=2sin ⎝⎛⎭⎫2x -π6.所以f(0)=2sin ⎝⎛⎭⎫-π6=-1.故选B.9.D [解析] f(x)=cosx ,f′(x)=-sinx ,又f(x -m)=cos(x -m)=-sin ⎝⎛⎭⎫x -m -π2,由题意,-sinx =-sin ⎝⎛⎭⎫x -m -π2,所以-m -π2=2k π,得m =-2k π-π2(k ∈Z).则m 可以为3π2.故选D.10.13 [解析] 依题意由sin(x +y)=1得x +y =2k π+π2(k ∈Z),所以y =2k π+π2-x(k ∈Z).于是sin(2y +x)=sin ⎣⎡⎦⎤2k π+π2+y =sin π2+y =cosy =cos2k π+π2-x =cos π2-x =sinx =13.故填13.11.74 [解析] 依题意,将函数y =sin ωx +5π6(ω>0)的图象向右平移π3个单位长度后,所得图象对应的函数解析式是y =sin ωx +5π6-π3ω(ω>0),它的图象与函数y =sin ωx +π4的图象重合,所以5π6-π3ω=π4+2k π(k ∈Z),解得ω=74-6k(k ∈Z),因为ω>0,所以ωmin =74.故填74.12.③④ [解析] 对f(x)=cosxsinx =12sin2x ,画出函数的图象,分析知③,④是正确的.故填③,④.13.解:(1)由题得AC →=(3cos α-4,3sin α),BC →=(3cos α,3sin α-4). 由|AC →|=|BC →|,得(3cos α-4)2+9sin2α=9cos2α+(3sin α-4)2⇒sin α=cos α. 因为α∈(-π,0), 所以α=-3π4.(2)由AC →·BC →=0,得3cos α(3cos α-4)+3sin α(3sin α-4)=0, 解得sin α+cos α=34,两边平方得2sin αcos α=-716,所以2sin2α+sin2α1+tan α=2sin2α+2sin αcos α1+sin αcos α=2sin αcos α=-716.14.解:(1)依题意,得f(x)=2sinxcos π6+cosx +a =3sinx +cosx +a =2sinx +π6+a. 所以函数f(x)的最小正周期T =2π.(2)因为x ∈-π2,π2,所以-π3≤x +π6≤2π3.所以当x +π6=-π3,即x =-π2时, f(x)min =f -π2=-3+a ;当x +π6=π2,即x =π3时,f(x)max =f π3=2+a.由题意,有(-3+a)+(2+a)=3,解得a =3-1.15.解:(1)∵函数f(x)的最小正周期T =2πω=π(ω>0),∴ω=2.∵f π4=cos2×π4+φ=cos π2+φ=-sin φ=32,且-π2<φ<0,∴φ=-π3. (2)由(1)知f(x)=cos2x -π3, 列表如下:图象如图.(3)∵f(x)>22,即cos2x -π3>22, 得2k π-π4<2x -π3<2k π+π4,k ∈Z , 即2k π+π12<2x<2k π+712π,k ∈Z ,即k π+π24<x<k π+724π,k ∈Z. ∴所求x 的取值范围是⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π24<x<k π+724π,k ∈Z . 专题限时集训(六)B【基础演练】1.B [解析] 因为sin α=35,α是第二象限的角,所以tan α=-34.又因为tan (α+β)=tan α+tan β1-tan αtan β=1,所以-34+tan β1+34tan β=1,求得tan β=7.故选B. 2.D [解析] 因为y =sinx -cosx =2sinx -π4,令-π2≤x -π4≤π2,得-π4≤x ≤3π4,满足题意,所以f(x)可以是-cosx.3.A [解析] 把函数y =sin ⎝⎛⎭⎫x +π6图象上各点的横坐标缩短到原来的12倍(纵坐标不变),得到函数为y =sin ⎝⎛⎭⎫2x +π6,再将图象向右平移π3个长度单位,那么所得函数为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3+π6=-cos2x ,结合各选项可知其对称轴方程为x =-π2.故选A.4.B [解析] 由已知得y =cos2x -π4=cos π2-2x =sin2x ,因此函数y =1-2sin2x -π4是最小正周期为π的奇函数.故选B.【提升训练】5.A [解析] 依题意得cos θ=±35.又因为sin θ-cos θ>1,所以cos θ=-35,于是sin2θ=2sin θcos θ=2×45×-35=-2425.6.D [解析] 本题考查三角函数的对称性.由题意,有2×π3+φ=k π+π2(k ∈Z),得φ=k π-π6()k ∈Z .又φ∈(0,π),所以φ=5π6.故选D.7.B [解析] 设(x ,y)为g(x)的图象上任意一点,则其关于点π4,0对称的点为π2-x ,-y ,由题意知该点必在f(x)的图象上,所以-y =sin π2-x ,即g(x)=-sin π2-x =-cosx.依题意得sinx ≤-cosx ,即sinx +cosx =2sinx +π4≤0.又x ∈[0,2π],解得3π4≤x ≤7π4.故选B.8.A [解析] 依题意,得f(x)=sin (ωx +φ)+cos (ωx +φ)=2sin ωx +φ+π4,由T =2πω=π(ω>0),得ω=2.又f(-x)=f(x),所以φ+π4=k π+π2(k ∈Z),即φ=k π+π4(k ∈Z).又|φ|<π2,所以φ=π4.于是f(x)=2cos2x ,它在0,π2上单调递减.9.B [解析] 由图可知,A =10,函数I =Asin (ωt +φ)的最小正周期T =2⎝⎛⎭⎫4300-1300=150,所以2πω=150,解得ω=100π.又函数图象过点⎝⎛⎭⎫1300,10,代入得sin ⎝⎛⎭⎫100π×1300+φ=1,所以π3+φ=π2+2k π(k ∈Z),解得φ=π6+2k π(k ∈Z).又0<φ<π2,所以φ=π6.故函数I =10sin ⎝⎛⎭⎫100πt +π6.所以当t =150时,电流强度I =10sin ⎝⎛⎭⎫100π×150+π6=5.10.13 [解析] 因为cos θ=-35,且θ是第三象限角,所以sin θ=-45.于是cos θsin θ-1=-35-45-1=13.故填13.11.36565 [解析] 由已知sin (α-β)=513,cos (α+β)=-45,所以sin2α=sin [(α+β)+(α-β)]=sin (α+β)cos (α-β)+cos (α+β)·sin (α-β)=-35×1213+-45×513=-5665.则(sin α+cos α)2=1+sin2α=1-5665=965,当π2<α<3π4时,sin α+cos α>0,即sin α+cos α=36565. 12.4 [解析] 由h =40sin ⎝⎛⎭⎫π6t -π2+50知其最小正周期为T =2ππ6=12,即摩天轮转动一周的时间为12 min.由h =40sin ⎝⎛⎭⎫π6t -π2+50>70(0≤t≤12),解得4<t<8.所以持续时间为4 min.13.①②③⑤ [解析] 由题意得f(x)=m2+n2sin(x +φ)其中tan φ=nm .因为f π4是它的最大值,所以π4+φ=2k π+π2(k ∈Z),φ=2k π+π4(k ∈Z).所以f(x)=m2+n2sinx +2k π+π4=m2+n2sinx +π4,且tan φ=n m =tan2k π+π4=1,即nm =1,故f(x)=2|m|sinx +π4.①fx +π4=2|m|sinx +π4+π4=2|m|cosx 为偶函数,所以①正确;②当x =7π4时,f 7π4=2|m|sin 7π4+π4=2|m|sin2π=0,所以函数f(x)的图象关于点7π4,0对称,②正确;③f -3π4=2|m|sin π4-3π4=-2|m|sin π2=-2|m|,f(x)取得最小值,所以③正确;④根据f(x)=2|m|sinx +π4可得其最小正周期为2π,由题意可得P2与P4相差一个周期2π,即|P2P4|=2π,所以④错误; ⑤由n m =1知,mn =1成立,所以⑤正确. 故填①②③⑤.14.解:(1)由点P 的坐标和三角函数的定义可得⎩⎨⎧sin θ=32,cos θ=12.于是f(θ)=3sin θ+cos θ=3×32+12=2. (2)作出平面区域Ω(即三角形ABC 区域)如图所示, 其中A(1,0),B(1,1),C(0,1).于是0≤θ≤π2.又f(θ)=3sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π6,且π6≤θ+π6≤2π3,故当θ+π6=π2,即θ=π3时,f (θ)取得最大值,且最大值等于2; 当θ+π6=π6,即θ=0时,f(θ)取得最小值,且最小值等于1. 15.解:(1)f(x)=2sin2⎝⎛⎭⎫ωx +π4+2cos2ωx=1-cos ⎝⎛⎭⎫2ωx +π2+1+cos2ωx=sin2ωx +cos2ωx +2=2sin ⎝⎛⎭⎫2ωx +π4+2,∵函数f(x)的图象上两个相邻的最低点之间的距离为2π3,∴f(x)的最小正周期为2π3,∴2π2ω=2π3(ω>0),∴ω的值为32, ∴函数f(x)=2sin ⎝⎛⎭⎫3x +π4+2,∴函数f(x)的最大值为2+2,此时3x +π4=2k π+π2,即x =2k π3+π12(k ∈Z).(2)y =f(x)的图象向右平移π8个单位长度得h(x)=2sin ⎣⎡⎦⎤3⎝⎛⎭⎫x -π8+π4+2=2sin ⎝⎛⎭⎫3x -π8+2,再沿y 轴对称后得到g(x)=2sin ⎝⎛⎭⎫-3x -π8+2=-2sin ⎝⎛⎭⎫3x +π8+2,函数g(x)的单调减区间,即y =sin ⎝⎛⎭⎫3x +π8单调递增区间.由2k π-π2≤3x +π8≤2k π+π2, 解得23k π-5π24≤x ≤23k π+π8(k ∈Z).故y =g(x)的单调减区间为⎣⎡⎦⎤23k π+5π24,23k π+π8(k ∈Z).16.解:(1)f(x)=2sinx +π3cosx +π3-23cos2x +π3 =sin2x +2π3-3⎣⎡⎦⎤cos2x +2π3+1=sin2x +2π3-3cos2x +2π3- 3=2sin2x +π3- 3. ∵-1≤sin2x +π3≤1,∴-2-3≤2sin2x +π3-3≤2-3, 又T =2π2=π,即f(x)的值域为[-2-3,2-3],最小正周期为π. (2)当x ∈⎣⎡⎦⎤0,π6时,2x +π3∈⎣⎡⎦⎤π3,23π,∴sin2x +π3∈⎣⎡⎦⎤32,1,此时f(x)+3=2sin2x +π3∈[3,2].由m[f(x)+3]+2=0知,m≠0,且f(x)+3=-2m ,∴3≤-2m ≤2,即⎩⎨⎧2m+3≤0,2m +2≥0,解得-233≤m ≤-1.即实数m 的取值范围是⎣⎡⎦⎤-233,-1. 专题限时集训(七)【基础演练】1.A [解析] 根据正弦定理得,2sin45°=2sinC ,所以sinC =12,因为C ∈(0,π),所以C =30°或150°.又因为A =45°,且AB<BC ,所以C =30°.2.D [解析] 根据三角形面积公式和正弦定理S =12absinC =122RsinA ·2RsinB ·sinC =2R2sinAsinBsinC ,将R =1和S =1代入得,sinAsinBsinC =12.3.A [解析] 由sinC =23sinB 及正弦定理得c =23b ,代入a2-b2=3bc 中,得a =7b.所以由余弦定理得cosA =b2+c2-a22bc =b2+(23b )2-(7b )22b ·23b =32,所以A =30°. 4.D [解析] 设电视塔的高度为x ,则BC =x ,BD =3x.在△BCD 中,根据余弦定理得3x2=x2+402-2×40xcos120°,即x2-20x -800=0,解得x =-20(舍去),或者x =40.故电视塔的高度为40 m. 【提升训练】5.D [解析] 根据余弦定理得b =32+82-2×3×8cos60°=7,根据正弦定理3sinA =7sin60°,解得sinA =3314.6.B [解析] 由题意得b2=ac ,又c =2a ,由余弦定理得cosB =a2+c2-b22ac =a2+4a2-a×2a2a×2a =34. 7.A [解析] 设楼顶D 对应的楼底记为E ,过点D 作DC ∥BE ,则由AC CD =tan30°,即AC20=33,解得AC =2033.由BC CD =tan45°,即BC20=1,解得BC =20.所以AB =AC +BC =20⎝⎛⎭⎫1+33 m.8.A [解析] 在Rt △ABC 中,由正切函数的定义,得tan β=AB BC ,所以BC =ABtan β.同理,BD =AB tan α.所以BD -BC =AB tan α-ABtan β=DC =a.所以AB =atan αtan βtan β-tan α=asin αsin βsin (β-α).9.-14 [解析] 由正弦定理a sinA =b sinB =c sinC 可得,a ∶b ∶c =si nA ∶sinB ∶sinC =2∶3∶4,由此设a =2k ,b =3k ,c =4k(k>0).由余弦定理可得,cosC =a2+b2-c22ab=(2k )2+(3k )2-(4k )22×2k ×3k=-14.10.6-1 [解析] 由题意可得,∠ACB =120°,AC =2,AB =3,设BC =x ,则由余弦定理可得,AB2=BC2+AC2-2BC×ACcos120°,即32=x2+22-2×2xcos120°,整理得x2+2x =5,解得x =6-1或x =-6-1(舍去).故填6-1.11.233 [解析] 由△BCD 的面积为1,可得12×CD ×BC ×sin ∠DCB =1,即sin ∠DCB =55,所以cos ∠DCB =255.在△BCD 中,由余弦定理可知,cos ∠DCB =CD2+BC2-BD22CD ×BC =255,解得BD =2,所以cos ∠DBC =BD2+BC2-CD22BD ×BC =31010.由在△BCD 中,∠DBC 对应的边长最短,所以∠DBC 为锐角,所以sin ∠DBC =1010.在△ABC 中,由正弦定理BC sinA =ACsinB 可得,AC =BC ·sinB sinA =10×101032=233.12.解:(1)tanC =-tan(A +B)=-tanA +tanB1-tanAtanB=-23+151-23×15=-1, 又0<C<π, ∴C =3π4.(2)由已知和(1)知:c =13,b 为最小边长. ∵tanB =15, ∴sinB =2626, ∴b =csinBsinC =1, ∴最小的边长为1.13.解:(1)f(x)=23cos2x 2+2sin x 2cos x2 =3(1+cosx)+sinx =2cos ⎝⎛⎭⎫x -π6+3,∴f ⎝⎛⎭⎫17π12=2cos ⎝⎛⎭⎫17π12-π6+3=3- 2.(2)f(C)=2cos ⎝⎛⎭⎫C -π6+3=3+1,∴cos ⎝⎛⎭⎫C -π6=12,C ∈(0,π),∴C =π2,在Rt △ABC 中,∵b2=ac ,c2=a2+b2,∴c2=a2+ac ⇒⎝⎛⎭⎫a c 2+a c -1=0, 解得a c =-1±52.∵0<sinA<1,∴sinA =ac =5-12.14.解:(1)如图所示,作PN ⊥AB ,N 为垂足,∠PQM =θ,∠PMQ =π-α,sin θ=513,sin α=45,cos θ=1213,cos α=35.在Rt △PNQ 中,PN =PQsin θ=5.2×513=2,QN =PQ·cos θ=5.2×1213=4.8.在Rt △PNM 中,MN =PN tan α=243=1.5,PM =PN sin α=245=2.5,∴MQ =QN -MN =4.8-1.5=3.3.设游船从P 到Q 所用时间为t1 h ,游客甲从P 经M 到Q 所用时间为t2 h ,小船速度为v1 km/h , 则t1=PQ 13=5.213=26513=25,t2=PM v1+MQ 66=2.5v1+3.366=52v1+120.由已知,得t2+120=t1,即52v1+120+120=25,∴v1=253.于是,当小船的速度为253km/h 时,游客甲才能和游船同时到达Q 地.(2)在Rt △PMN 中,PM =PN sin α=2sin α,MN =PN tan α=2cos αsin α,∴QM =QN -MN =4.8-2cos αsin α.于是t =PM 10+QM66=15sin α+455-cos α33sin α=1165×33-5cos αsin α+455.∵t ′=1165×5sin2α-(33-5cos α)cos αsin2α=5-33cos α165sin2α,∴令t′=0,得cos α=533. 当cos α<533时,t′>0;当cos α>533时,t′<0,又y =cos α在α∈0,π2上是减函数,∴当方位角α满足cos α=533时,t 取最小值, 即游客甲能按计划以最短时间到达Q 地. 专题限时集训(八) 【基础演练】1.A [解析] a -b +c -d =BA →+DC →=0.故选A.2.C [解析] 依题意,由a ⊥b 得a·b =0,即3x +3=0,解得x =-1.故选C. 3.A [解析] 由a ∥b 得2x =-4,∴x =-2,于是a·b =(1,2)·(-2,-4)=-10.故选A. 4.B [解析] 依题意,得a·b =|a||b|cos30°=2sin75°·4cos75°×32=23sin150°= 3.故选B.【提升训练】5.C [解析] 依题意a 在b 方向上的投影为|a|cos 〈a ,b 〉=2cos π3=22.故选C.6.C [解析] 依题意,|a|=1,|b|=1,所以a·b =|a||b|cos60°=12.于是|a +3b|=(a +3b )2=|a|2+6a·b +9|b|2=1+6×12+9=13.故选C.7.A [解析] 连结AD ,BE ,CF 交于点O ,则点O 为正六边形ABCDEF 的中心.故AF →+ED →+CB →=AF →+(ED →+EF →)=AF →+EO →=0.故选A.8.C [解析] 由于λa +b =λ(1,2)+(2,0)=(λ+2,2λ),而λa +b 与c 共线,则有λ+21=2λ-2,解得λ=-1.故选C. 9.A [解析] 由|OA →|=|OB →|=|OC →|可知,点O 到三角形三个顶点的距离相等,所以点O 是三角形的外心;由NA →+NB →+NC →=0,得点N 在三角形各边的中线上,故点N 是三角形的重心;由PA →·PB →=PB →·PC →,得PB →·(PA →-PC →)=0,即PB →·CA →=0,所以PB →⊥CA →;同理,PC →⊥AB →,PA →⊥BC →,故点P 是三角形的垂心.。
2013高考数学(理)二轮复习配套作业(解析版):专题限时集训(二十)B(湖南省专用)
专题限时集训(二十)B[第20讲复数、算法与推理证明](时间:30分钟)1.复数z满足等式(2-i)·z=i,则复数z在复平面内对应的点所在的象限是() A.第一象限B.第二象限C.第三象限D.第四象限2.执行下面的程序后,输出的结果为()A.13,7 B.7,4 C.9,7 D.9,5i=1W HILE i<7i=i+1s=2×i-1i=i+2WENDPRINT s;iEND图20-53.运行如图20-5所示的程序框图,则输出S的值为()A.3 B.-2 C.4 D.84.设复数z1=1-3i,z2=3-2i,则z1z2在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限5.复数z =x +3i 1-i(x ∈R ,i 是虚数单位)是实数,则x 的值为( ) A .3 B .-3 C .0 D. 36.阅读如图20-6所示的程序框图,运行相应的程序,输出的i 值等于( )A .2B .3C .4D .5图20-6图20-77.算法程序框图如图20-7所示,其输出结果是( )A .124B .125C .126D .1278.通过圆与球的类比,由“半径为R 的圆的内接矩形中,以正方形的面积为最大,最大值为2R2”,猜想关于球的相应命题为( )A .半径为R 的球的内接六面体中以正方体的体积为最大,最大值为2R3B .半径为R 的球的内接六面体中以正方体的体积为最大,最大值为3R3C .半径为R 的球的内接六面体中以正方体的体积为最大,最大值为439R3 D .半径为R 的球的内接六面体中以正方体的体积为最大,最大值为839R3 9.设a ∈R ,且(a +i)2i 为正实数,则a 的值为________.10.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.11.某程序框图如图20-8所示,现将输出的(x,y)值依次记为:(x1,y1),(x2,y2),…,(xn,yn),…;若程序运行中输出的一个数组是(x,-10),则数组中的x=________.图20-812.把正整数排列成如图20-9甲的三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图20-9乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到数列{an},若an=2 011,则n=________.图20-9专题限时集训(二十)B【基础演练】1.B [解析] z =i 2-i =i (2+i )(2-i )(2+i )=-1+2i 5=-15+25i ,所以复数z 对应的点位于复平面的第二象限.2.C [解析] 由程序知该算法循环两次.第一步:s =2×2-1=3,i =4,第二步:s =2×5-1=9,i =7.而i≥7时,循环结束,输出9,7.3.B [解析] S =1+(-1)1×1+(-1)2×2+(-1)3×3+(-1)4×4+(-1)5×5=-2.4.D [解析] ∵z1z2=(1-3i )(3+2i )(3-2i )(3+2i )=9-7i 13,∴z1z2在复平面内对应的点在第四象限. 【提升训练】5.B [解析] z =x +3i 1-i =(x +3i )(1+i )(1-i )(1+i )=(x -3)+(3+x )i 2=x -32+3+x 2i 是实数,∴3+x 2=0⇒x =-3. 6.C [解析] 由程序框图可知,该框图的功能是输出使和S =1·21+2·22+3·23+…+i·2i>11时i 的值加1,因为1·21+2·22=10<11,1·21+2·22+3·23>11,所以当S>11时,计算i =3,故输出的i 是4,选C.7.D [解析] a 的取值依次构成一个数列,且满足a1=1,an +1=2an +1,则求第一个大于100的an 值,写出这个数列1,3,7,15,31,63,127,…,故结果为127.8.D [解析] 正方形类比到空间的正方体,即“半径为R 的球的内接六面体中以正方体的体积为最大”,此时正方体的棱长a =2R 3,故其体积是⎝⎛⎭⎫2R 33=839R3. 9.-1 [解析] (a +i)2i =(a2-1+2ai)i =-2a +(a2-1)i>0⇔⎩⎪⎨⎪⎧-2a>0,a2-1=0.解得a =-1. 10.13+23+33+43+53+63=212[解析] 观察可知,第n 个等式的左边是从1开始的连续n +1个自然数的立方和,而右边是这连续自然数和的平方,第5个等式为13+23+33+43+53+63=212.11.32 [解析] 由程序框图可知,第一次运行时,输出(1,0),n =3,x =2×1=2,y =0-2=-2;第二次运行时,输出(2,-2),n =5,x =2×2=4,y =-2-2=-4;以此类推,x 每次乘以2,y 每次减小2,故后面输出依次是(4,-4),(8,-6),(16,-8),(32,-10).故所求的x =32.12.1 028 [解析] 每一行最后一个数是第n 行的平方,∴452=2 025,442=1 936,∴2 011在第45行,2011-1937+22=38,∴an =2 011是第45行的第38个数,∴n =1+2+3+…+44+38=1 028.。
2013年高考数学(理)二轮复习 专题三 第二节 配套课时作业 (解析版)
[配套课时作业]1.数列{an}的通项公式是an =1n +n -1,若数列的前n 项和为45,则项数n 等于( )A .45B .44C .2 025D .2 012解析:选C 因为an =1n +n -1=n -n -1, 所以Sn =(1-0)+(2-1)+(3-2)+…+(n -n -1)=n ,由题意得Sn =n =45,解得n =2 025.2.(2011·安徽高考)若数列{an}的通项公式是an =(-1)n·(3n -2),则a1+a2+…+a10=( )A .15B .12C .-12D .-15 解析:选A a1+a2+…+a10=-1+4-7+10+…+(-1)10·(3×10-2)=(-1+4)+(-7+10)+…+[(-1)9·(3×9-2)+(-1)10·(3×10-2)]=3×5=15.3.下列关于五角星的图案构成一个数列,该数列的一个通项公式是( )★★ ★ ★★ ★ ★ ★ ★ ★ … ★ ★ ★ ★ ★ ★ ★ ★ ★ ★A .an =n2-n +1B .an =n n -1 2C .an =n n +1 2D .an =n n +2 2解析:选C 从图中观察五角星构成规律,n =1时,有1个;n =2时,有3个;n =3时,有6个;n =4时,有10个;…所以an =1+2+3+4+…+n =n n +1 2. 4.已知等差数列{an}的前n 项和为Sn ,且S2=10,S5=55,则过点P(n ,an)和Q(n +2,an +2)(n ∈N*)的直线的斜率是( )A .4B .3C .2D .1解析:选A 由S2=10,S5=55得a1=3,d =4,所以kPQ =an +2-an n +2 -n =2d 2=d =4. 5.(2012·济南模拟)在等差数列{an}中,a1=-2 012,其前n 项和为Sn ,若S1212-S1010=2,则S2 012的值等于( )A .-2 011B .-2 012C .-2 010D .-2 013解析:选B 根据等差数列的性质,得数列⎩⎨⎧⎭⎬⎫Sn n 也是等差数列,根据已知可得这个数列的首项S11=a1=-2 012,公差d =1,故S2 0122 0122 012+(2 012-1)×1=-1, 所以S2 012=-2 012.6.(2012·浙江高考)设Sn 是公差为d(d≠0)的无穷等差数列{an}的前n 项和,则下列命题错误的是( )A .若d <0,则数列{Sn}有最大项B .若数列{Sn}有最大项,则d <0C .若数列{Sn}是递增数列,则对任意n ∈N*,均有Sn >0D .若对任意n ∈N*,均有Sn >0,则数列{Sn}是递增数列解析:选C A 、B 、D 均正确,对于C ,若首项为-1,d =2时就不成立.7.函数y =x2(x>0)的图像在点(ak ,a2k )处的切线与x 轴的交点的横坐标为ak +1,其中k ∈N*,若a1=16,则a1+a3+a5=________. 解析:∵y′=2x ,∴k =y′|x =ak =2ak ,故切线方程为y -a2k =2ak(x -ak ),令y =0得x =12ak ,即ak +1=12ak. ∴{an}是以16为首项,12即an =16·⎝⎛⎭⎫12 n -1. ∴a1+a3+a5=16+4+1=21.答案:218.秋末冬初,流感盛行,特别是甲型H1N1流感.某医院近30天每天入院治疗甲流的人数依次构成数列{an},已知a1=1,a2=2,且an +2-an =1+(-1)n(n ∈N*),则该医院30天入院治疗甲流的人数共有________.解析:由于an +2-an =1+(-1)n ,所以a1=a3=…=a29=1,且a2,a4,…,a30构成公差为2的等差数列,所以a1+a2+…+a29+a30=15+15×2+15×142×2=255. 答案:2559.(2012·山西考前适应性训练)已知向量a =(2,-n),b =(Sn ,n +1),n ∈N*,其中Sn 是数列{an}的前n 项和,若a ⊥b ,则数列⎩⎨⎧⎭⎬⎫an an +1an +4的最大项的值为________. 解析:依题意得a·b =0,即2Sn =n(n +1),Sn =n n +1 2.当n≥2时,an =Sn -Sn -1=n n +1 2-n n -1 2=n ;又a1=S1=1× 1+1 2=1,因此an =n.所以an an +1an +4=n n +1 n +4 =n n2+5n +4=1n +4n+5≤19,当且仅当n =4n ,n ∈N*,即n =2时取等号,因此数列⎩⎨⎧⎭⎬⎫an an +1an +4的最大项的值是19. 答案:1910.已知x ,f x 2,3(x≥0)成等差数列.又数列{an}(an>0)中,a1=3,此数列的前n 项和为Sn ,对于所有大于1的正整数n 都有Sn =f(Sn -1). (1)求数列{an}的第n +1项; (2)若bn 是1an +1,1an的等比中项,且Tn 为{bn}的前n 项和,求Tn. 解:(1)因为x ,f x 2,3(x≥0)成等差数列, 所以2×f x 2=x +3,整理,得f(x)=(x +3)2. 因为Sn =f(Sn -1)(n≥2),所以Sn =( Sn -1+3)2,所以Sn = Sn -1+3,即Sn -Sn -1=3,所以{Sn}是以3为公差的等差数列. 因为a1=3,所以S1=a1=3, 所以Sn =S1+(n -1)3=3+3n -3= 3 n.所以Sn =3n2(n ∈N*).所以an +1=Sn +1-Sn =3(n +1)2-3n2=6n +3.(2)因为bn 是1an +1与1an的等比中项, 所以(bn)2=1an +1·1an, 所以bn =1an +1·1an =13 2n +1 ×3 2n -1=118×⎝⎛⎭⎫12n -1-12n +1, Tn =b1+b2+…+bn =118⎣⎡⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+ ⎦⎤⎝⎛⎭⎫12n -1-12n +1=118⎝⎛⎭⎫1-12n +1=n 18n +9. 11.(2012·湖北高考)已知等差数列{an}前三项的和为-3,前三项的积为8.(1)求等差数列{an}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|an|}的前n 项和.解:(1)设等差数列{an}的公差为d ,则a2=a1+d ,a3=a1+2d ,由题意得⎩⎪⎨⎪⎧ 3a1+3d =-3,a1 a 1+d a 1+2d =8. 解得⎩⎪⎨⎪⎧ a1=2,d =-3,或⎩⎪⎨⎪⎧a1=-4,d =3. 所以由等差数列通项公式可得an =2-3(n -1)=-3n +5或an =-4+3(n -1)=3n -7.故an =-3n +5或an =3n -7.(2)当an =-3n +5时,a2,a3,a1分别为-1,-4,2,不成等比数列;当an =3n -7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.故|an|=|3n -7|=⎩⎪⎨⎪⎧ -3n +7,n =1,2,3n -7,n≥3.记数列{|an|}的前n 项和为Sn.当n =1时,S1=|a1|=4;当n =2时,S2=|a1|+|a2|=5;当n≥3时,Sn =S2+|a3|+|a4|+…+|an|=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+n -2 [2+3n -7 ]2=32n2-112n +10,且当n =2时,满足此式. 综上,Sn =⎩⎪⎨⎪⎧ 4,n =1,32n2-112n +10,n >1. 12.(2012·东城模拟)定义:若数列{An}满足An +1=A2n ,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an ,an +1)在函数f(x)=2x2+2x 的图像上,其中n 为正整数.(1)证明:数列{2an +1}是“平方递推数列”,且数列{lg(2an +1)}为等比数列;(2)设(1)中“平方递推数列”的前n 项之积为Tn ,即Tn =(2a1+1)(2a2+1)…(2an +1),求数列{an}的通项公式及Tn 关于n 的表达式;(3)记bn =21log +n Tn a ,求数列{bn}的前n 项之和Sn ,并求使Sn>2 012成立的n 的最小值. 解:(1)证明:由题意得an +1=2a2n +2an ,得2an +1+1=4a2n +4an +1=(2an +1)2. 所以数列{2an +1}是“平方递推数列”.令cn =2an +1,所以lg cn +1=2lg cn.因为lg(2a1+1)=lg 5≠0,所以lg 2an +1+1 lg 2an +1=2. 所以数列{lg(2an +1)}为等比数列.(2)因为lg(2a1+1)=lg 5,所以lg(2an +1)=2n -1·lg 5,所以2an +1=52n -1,即an =12(52n -1-1). 因为lg Tn =lg(2a1+1)+lg(2a2+1)+…+lg(2an +1)=lg 5· 1-2n 1-2=(2n -1)lg 5. 所以Tn =52n -1.(3)因为bn =lg Tn lg 2an +1 =2n -1 l g 52n -1lg 5=2n -12n -1=2-⎝⎛⎭⎫12n -1,所以Sn =2n -⎣⎡⎦⎤1+12+⎝⎛⎭⎫122+…+⎝⎛⎭⎫12n -1=2n -1-⎝⎛⎭⎫12n 1-122n -2⎣⎡⎦⎤1-⎝⎛⎭⎫12n =2n -2+2·⎝⎛⎭⎫12n.由Sn>2 012得2n -2+2·⎝⎛⎭⎫12n>2 012, 即n +⎝⎛⎭⎫12n>1 007, 当n≤1 006时,n +⎝⎛⎭⎫12n<1 007,当n≥1 007时,n +⎝⎛⎭⎫12n>1 007, 所以n 的最小值为1 007.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题限时集训(十)
[第10讲 数列求和及数列的简单应用]
(时间:45分钟)
1.设等差数列{an}的前n 项和为Sn ,a2,a4是方程x2-x -2=0的两个根,S5=( ) A.52
B .5
C .-52
D .-5 2.已知数列{an}为等差数列,Sn 是它的前n 项和.若a1=2,S3=12,则S4=( )
A .10
B .16
C .20
D .24
3.等差数列{an}中,若a7a5=913,则S13S9
=( ) A.913 B.139
C .1
D .2 4.数列{an}的前n 项和为Sn ,若an =1n (n +2)
,则S10等于( ) A.1112 B.1124 C.173132 D.175264
5.已知等差数列{an}的前n 项和为Sn ,若OA →=a1OB →+a2 010OC →且A ,B ,C 三点共线(该直线
不过点O),则S2 010=( )
A .1 005
B .1 006
C .2 010
D .2 011
6.在等差数列{a n}中,a9=12
+6,则数列{an}的前11项和S11等于( ) A .24 B .48 C .66 D .132
7.某钢厂的年产量由1993年的40万吨增加到2003年的50万吨,如果按照这样的年增长率计算,则该钢厂2013年的年产量约为( )
A .60万吨
B .61万吨
C .63万吨
D .64万吨
8.甲、乙两间工厂的月产值在2012年元月份时相同,甲以后每个月比前一个月增加相同的产值,乙以后每个月比前一个月增加产值的百分比相同.到2012年11月份发现两间工厂的
月产值又相同.比较甲、乙两间工厂2012年6月份的月产值大小,则有( )
A .甲的产值小于乙的产值
B .甲的产值等于乙的产值
C .甲的产值大于乙的产值
D .不能确定
9.已知数列{an}的通项公式为an =|n -13|,那么满足ak +ak +1+…+ak +19=102的整数k( )
A .有3个
B .有2个
C .有1个
D .不存在
10.已知数列{an}满足a1=1,a2=2,an +2=⎝⎛⎭⎫1+cos2n π2an +sin2n π2
,则该数列的前20项的和为________.
11.已知数列{an}满足a1=23,且对任意的正整数m ,n 都有am +n =am·an,若数列{an}的前n 项和为Sn ,则Sn =________.
12.等差数列{an}的各项为正,其前n 项和为Sn ,且S3=9,又a1+2,a2+3,a3+7成等比数列.
(1)求数列{an}的通项公式;
(2)求证:当n≥2时,1a21+1a22+…+1a2n <54
.
13.数列{an}的前n 项和为Sn ,已知Sn =n2+3n 2
. (1)求数列{an}的通项公式;
(2)若数列{cn}满足cn =⎩
⎪⎨⎪⎧an ,n 为奇数,2n ,n 为偶数,求数列{cn}的前n 项和Tn.
14.某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付酬方案:第一种,每天支付38元;第二种,第一天付4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0.4元,以后每天支付的薪酬是前一天薪酬的2倍,工作时间为n天.
(1)工作n天,记三种付酬方式薪酬总金额依次为An,Bn,Cn,写出An,Bn,Cn关于n的表达式;
(2)如果n=10,你会选择哪种方式领取报酬?
专题限时集训(十)
【基础演练】
1.A [解析] a2,a4是方程x2-x -2=0的两个根,a2+a4=1,S5=
(a1+a5)×52
=(a2+a4)×52=52
. 2.C [解析] 设公差为d ,则3a1+3d =12,解得d =2.所以S4=4×2+4×32
×2=20. 3.C [解析] S13S9=13(a1+a13)29(a1+a9)2
=139×a7a5=139×913
=1. 4.D [解析] an =1n (n +2)=121n -1n +2, 所以S10=a1+a2+…+a10=
12⎝⎛⎭⎫1-13+12-14+…+110-112=12⎝⎛⎭
⎫1+12-111-112 =175264
,选D. 【提升训练】
5.A [解析] 根据平面向量知识,a1+a2 010=1,所以S2 010=2 010(a1+a2 010)2
=1 005. 6.D [解析] 设公差为d ,则a1+8d =12a1+112
d +6,即a1+5d =12,即a6=12,所以S11=11a6=132.
7.C [解析] 10年为一段,则1993,2003,2013年的年产量成等比数列,故2013年的年产量为50×5040
=62.5≈63. 8.C [解析] 设甲各个月份的产值为数列{an},乙各个月份的产值为数列{bn},则数列{an}为等差数列,数列{bn}为等比数列,且a1=b1,a11=b11,故a6=a1+a112≥a1a11=b1b11=b26=b6,由于在等差数列{an}中的公差不等于0,故a1≠a11,上面的等号不能成立,故a6>b6.
9.B [解析] 如果k≥13,则ak +ak +1+…+ak +19≥0+1+…+19=190>102,故k<13.设k +i =13,0<i<20,则ak +ak +1+…+ak +19=i +(i -1)+…+2+1+0+1+2+…+(19-i)=i (i +1)2+(19-i )(20-i )2
=102,即i2-19i +88=0,解得i =8或i =11,此时k =5或k =2,即只有两个整数k 满足等式ak +ak +1+…+ak +19=102.
10.2 101 [解析] 当n 为奇数时,an +2=an +1,故奇数项是首项为1,公差为1的等差数
列,其前10项之和等于1×10+10×92
=55; 当n 为偶数时,an +2=2an ,故偶数项是首项为2,公比为2的等比数列,其前10项之和为2(1-210)1-2
=211-2=2 046. 所以,数列{an}的前20项之和为55+2 046=2 101.
11.2-2n +13n [解析] 对m =1等式am +n =am·an 也成立,即an +1=23
an ,所以数列{an}是首项为23,公比为23的等比数列,所以Sn =231-23n 1-23
=2-2n +13n . 12.解:(1)设等差数列{an}的公差为d ,
∵S3=9,∴a2=3,
∴a1+2=3-d +2=5-d ,a2+3=6,a3+7=3+d +7=10+d.
∵a1+2,a2+3,a3+7成等比数列,
∴(5-d)(10+d)=36,
解得d =2或d =-7(舍去).
∴an =3+(n -2)×2=2n -1.
(2)证明:因为1a2n =1(2n -1)2=14n2-4n +1<14n2-4n
=14n (n -1)=141n -1-1n
. 所以当n≥2时,
1a21+1a22+…+1a2n <1+141-12+12-13+…+1n -1-1n
=1+141-1n <1+14=54
. 13.解:(1)当n =1时,a1=S1=2;
当n>1时,an =Sn -Sn -1=n +1,则an =n +1(n ∈N*).
(2)当n 为偶数时,Tn =(a1+a3+…+an -1)+(22+24+…+2n)=n2+2n 4+43
(2n -1), 当n 为奇数时,n -1为偶数,Tn =(a1+a3+…+an)+(22+24+…+2n -1)=n2+4n +34+43
(2n -1-1),
则Tn =⎩⎪⎨⎪⎧n2+2n 4+43(2n -1),n 为偶数,
n2+4n +34+43(2n -1-1),n 为奇数.
14.解:(1)设三种付酬方式每天金额依次为数列{an},{bn},{cn},它们的前n 项和依次分
别为An,Bn,Cn.依题意,
第一种付酬方式每天金额组成数列{an}为常数数列,An=38n.
第二种付酬方式每天金额组成数列{bn}为首项为4,公差为4的等差数列,
则Bn=4n+n(n-1)
2
×4=2n2+2n.
第三种付酬方式每天金额组成数列{cn}为首项是0.4,公比为2的等比数列,
则Cn=0.4(1-2n)
1-2
=0.4(2n-1).
(2)由(1)得,当n=10时,
An=38n=380,
Bn=2n2+2n=220,
Cn=0.4(210-1)=409.2.
所以B10<A10<C10.
答:应该选择第三种付酬方案.。