大学物理刚体力学

合集下载

大学物理第五章刚体力学1

大学物理第五章刚体力学1

例:课本P182习题5.5
质量连续分布: J r2dm
dm为质量元,简称质元。其计算方法如下:
质量为线分布 dm dl 其中、、分
质量为面分布
dm ds
别为质量的线密 度、面密度和体
质量为体分布 dm dV 密度。
线分布
面分布
体分布
例1、求质量为m、半径为R的均匀圆环的转动 惯量。轴与圆环平面垂直并通过圆心。
a物对地=
g-a 3
0
a人对地=
2a
0 3
g
习题册 P12 典型例题4
典例4.一个质量为M半径为R的匀质球壳可 绕一光滑竖直中心轴转动。轻绳绕在球壳 的水平最大圆周上,又跨过一质量为m半径 为r的匀质圆盘,此圆盘具有光滑水平轴, 然后在下端系一质量也为m的物体,如图。 求当物体由静止下落h时的速度v。
B
已知滑轮对 o 轴的转动惯量
J=MR2/4 ,设人从静止开始以
相对绳匀速向上爬时,绳与滑
轮间无相对滑动,求 B 端重物
上升的加速度?
解:受力分析如图 由题意 a人=aB=a
由牛顿第二定律 由转动定律 :
人 : Mg T 2 Ma
B
:
T
1
1 4
Mg
1 Ma 4
① ②
对滑轮 :
(T2 -T1)R J
再利用 v 2ah 得
1
v
12mgh
2
4M 9m
练习1.一轻绳跨过两个质量为 m、半径为 r 的均匀圆盘状定滑轮, 绳的两端分别挂着质量为 2m 和 m 的重物,如图所示,绳与滑轮间 无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为 mr2/2, 将由 两个定滑轮以及质量为 2m 和 m 的重物组成的系统从静止释放,求 重物的加速度和两滑轮之间绳内的张力。

大学物理第三章刚体力学

大学物理第三章刚体力学

薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理

1.3大学物理(上)刚体力学基础

1.3大学物理(上)刚体力学基础

dm ds dm dV
面密度和体密度。
线分布
面分布
体分布
注 意
只有对于几何形状规则、质量连续且均匀分布
的刚体,才能用积分计算出刚体的转动惯量。
[例3.1]: 求长为L、质量为m的均匀细棒对图中不同 轴的转动惯量。 [分析]:取如图坐标,dm=dx
A B
L
X
J A r dm
2
x dx mL / 3
T1 mg sin ma 1 2 T2 R T1 R J mR 2 mg T2 ma
a R
mg
[例3.4]: 转动着的飞轮的转动惯量为J,在t=0时角速度 为ω0。此后飞轮经历制动过程,阻力矩M的大小与角速度 ω的平方成正比,比例系数为k(k>0),当ω= ω0/3时,飞 轮的角速度及从开始制动到现在的时间分别是多少? [分析]: (1)已知 M k 2
练习:右图所示,刚体对经过
棒端且与棒垂直的轴的转动惯
mL
量如何计算?(棒长为L、球
半径为R)
mO
J L1
1 2 mL L 3
2 2 J o mo R 5
2 2
J L 2 J 0 m0 d J 0 m0 ( L R)
1 2 2 2 2 J mL L mo R mo ( L R) 3 5
dL d ( mv ) dr d (mv ) dr r mv F , v dt dt dt dt dt dL v mv 0, r F M r F v mv dt dL 角动量定理的微分形式 M dt
平均角速度
角速度
t

大学物理_第06章 刚体力学

大学物理_第06章  刚体力学

接触点相同线速度时: 1r1 2r2
联立解得:
1
J1
J1 ( r1 r2
)2
J2
0
2
r1 r2
J1
J1
(
r1 r2
)2
J
2
0
书上177页
解: dm
2 rdr
m2 rdr R2
2mrdr R2
df
2mrdr R2
g
dM
r
2mrdr R2
g et
2mr 2dr R2
g
M
R
dM
0
R 0
2mr 2 dr R2
dm dV
其中、、分别为质量线密度、面密度和体密度。
转动惯量
2). 转动惯量的计算:
质点、圆环、圆筒绕中心轴转动
z
z
Rm
oR m
R
m
o
质点的转动惯量为
Jo mR2
对于匀质圆环和薄圆筒,因各质元到轴的垂直距
离都相同,则有
Jo mR2
圆盘、圆柱绕中心轴转动
对于质量为m、半径为R、厚为l 的均匀圆盘取半径为 r宽
需要一个动力学方程 — 角动量定理
角动量定理: M dL
dt
转轴转动角动量表达式:
Mz
dLz dt
转轴分量角动量定理表达式:
n
Lz z mi (xi2 yi2 ) z J i1
转动定律:
Mz
dLz dt
d (J)
dt
J
d
dt
J
z v
r
P
当刚体绕固定轴转动时,刚体对该轴的转动惯量与角加速 度的乘积等于外力对此轴的合力距。 — 定轴转动定律

大学物理刚体力学总结

大学物理刚体力学总结

大学物理刚体力学总结大学物理刚体力学总结大学物理刚体力学总结篇一:大学物理力学总结大学物理力学公式总结 ? 第一章(质点运动学)1. r=r(t)=x(t)i+y(t)j+z(t)k Δr=r(t+Δt)- r(t) 一般地|Δr|?Δr2. v= a= dt dx d??d?? d2??dt3. 匀加速运动:a=常矢 v0=vx+vy+vz r=r0+v0t+at2 ????4. 匀加速直线运动:v= v0+at x= v02 v2-v02=2ax 215. 抛体运动:ax=0 ay=-g vx=v0cs vy=v0sinθ-gt x=v0csθ?t y=v0sinθ?tgt2 216. 圆周运动:角速度= dt Rdθ v 角加速度dt dω 加速度 a=an+at 法相加速度an==Rω2 ,指向圆心 Rv2 切向加速度at=Rα ,沿切线方向dt d??7. 伽利略速度变换:v=v’+u ? 第二章(牛顿运动定律)1. 牛顿运动定律: 第一定律:惯性和力的概念,惯性系的定义第二定律:F=, p=mv dtd?? 当m为常量时,F=ma 第三定律:F12=-F21 力的叠加原理:F=F1+F2+……2. 常见的几种力:重力:G=mg 弹簧弹力:f=-kx3. 用牛顿定律解题的基本思路:1) 认物体 2) 看运动 3) 查受力(画示力图) 4) 列方程(一般用分量式) ? 第三章(动量与角动量)1. 动量定理:合外力的冲量等于质点(或质点系)动量的增量,即 Fdt=dp2. 动量守恒定律:系统所受合外力为零时, p= ??????=常矢量3. 质心的概念:质心的位矢 rc= ???????? 离散分布) m 或 rc = ??dmm (连续分布)4. 质心运动定理:质点系所受的合外力等于其总质量乘以质心的加速度,即 F=mac5. 质心参考系:质心在其中静止的平动参考系,即零动量参考系。

6. 质点的角动量:对于某一点, L=r×p=mr×v7. 角动量定理:M= dtd?? 其中M 为合外力距,M=r×F,他和L 都是对同一定点说的。

大学物理刚体力学

大学物理刚体力学

大学物理刚体力学标题:大学物理中的刚体力学在物理学的研究中,大学物理是引领我们探索自然界规律的重要途径。

而在大学物理中,刚体力学是一个相对独特的领域,它专注于研究物体在受到外力作用时的质点运动规律。

本文将探讨大学物理中的刚体力学。

一、刚体概念及特性刚体是指物体内部各质点之间没有相对位移,形状和体积不发生变化的理想化物体。

在刚体力学中,我们通常将刚体视为一个整体,研究其宏观运动规律。

刚体具有以下特性:1、内部质点无相对位移。

2、刚体不发生形变,形状和体积保持不变。

3、刚体在运动过程中,内部任意两质点间的距离保持不变。

二、刚体力学的基础知识1、刚体的运动形式刚体的运动形式包括平动、转动和振动。

平动是指刚体沿直线作均匀速度的运动;转动是指刚体绕某轴线作角速度变化的运动;振动是指刚体在平衡位置附近作往复运动的周期性运动。

2、刚体的动力学基础动力学是研究物体运动状态变化的原因和规律的科学。

在刚体力学中,动力学的基本方程包括牛顿第二定律、动量定理和动能定理等。

这些方程为我们提供了分析刚体运动状态变化的基本工具。

三、刚体的转动惯量转动惯量是描述刚体转动惯性大小的物理量。

它与刚体的质量、形状和大小有关。

在物理学中,转动惯量是研究刚体转动规律的重要参数。

通过计算转动惯量,我们可以了解刚体在受到外力矩作用时角速度变化的规律。

四、刚体的角动量角动量是描述物体绕某轴线旋转的物理量,与物体的质量、速度和半径有关。

在刚体力学中,角动量是一个非常重要的概念。

它可以帮助我们理解刚体在受到外力矩作用时的角速度变化规律。

同时,角动量守恒定律也是刚体力学中的一个重要定律。

在已知刚体的质量、转动惯量和角动量的基础上,我们可以建立刚体的动力学方程。

动力学方程可以帮助我们分析刚体在受到外力作用时的运动状态变化规律。

对于复杂的动力学问题,我们通常需要借助数学软件进行数值模拟和分析。

六、总结在大学物理中,刚体力学是一个相对独立且具有重要应用价值的领域。

大学物理刚体力学

大学物理刚体力学

一 刚体定轴转动的运动方程 如图,一刚体定轴转动,如何确
定该刚体的位置。在固定轴上固结 ox
轴。
设想在刚体上有一直线 op,在刚
o
体转动中,op与 ox的夹角 t 不断
变化,是时间 t 的函数, t 一定,
则刚体的位置确定(或曰刚体上的所
有质点的位置确定), t 变化,说明 刚体的位置变化。 因而,用 t
可确定刚体的位置。
t
为刚体定轴转动的运动方程。
如同质点一维运动时的 x x t
固定轴
t
p
x
刚 体
二 角速度
设t
t
t t t t
则 t t t
称为角位移,代数量。
o
平均角速度
t
瞬时角速度
lim
t 0
t
t

d 对运动方程求一阶导数。
dt
固定轴
t
段如何求解此题?轮质量不计。仅研究 A和 B
二物体,绳仅为连接体。则有
o
T2
m2 a
m2 g
T 1 m1
m2
a B
m1 g
m1
A
T1 T2
然而,此处要考虑轮(因给出了质量与半径)-----刚体。此为一刚
体与二质点组成得物体系。如何求解:用隔离体法,分析各物体受力。
mN
o
o
T2
mg
T2
m2 a
若是变化的,同理得瞬时角加速度.
d
dt

d 2
dt 2
o
单位 弧度 或 rad
矢量式为
秒2
s2
d
dt
减速转动
同样,在定轴转动中,角加速度仅两个

大学物理 第3章 刚体力学基础

大学物理 第3章 刚体力学基础


2 1
Jd

1 2
J22

1 2
J12
2 Md (1 J2 )
1
2
力矩对刚体所做的功,等于刚体转动动能的增量。
例 如图所示,一根质量为m,长为l的均匀细棒OA,可绕固定点O在竖直平 面内转动.今使棒从水平位置开始自由下摆,求棒摆到与水平位置成30°角 时中心点C和端点A的速度.
F
·
F
式中为力F到轴的距离
F
若力的作用线不在转动在平面内,
则只需将力分解为与轴垂直、平行
r
的两个分力即可。
力对固定点的力矩为零的情况:
1、力F等于零, 2、力F的作用线与矢径r共线
(有心力对力心的力矩恒为零)。
力对固定轴的力矩为零的情况:
若力的作用线与轴平行 若力的作用线与轴相交
则力对该轴无力矩作用。
dJ R2dm
考虑到所有质元到转轴的距离均为R,所以细圆环对中心轴的转动惯量为
J dJ R2dm R2 dm mR2
m
m
(2)求质量为m,半径为R的圆盘对中心轴的转动惯量.整个圆盘可以看成许
多半径不同的同心圆环构成.为此,在离转轴的距离为r处取一小圆环,如
图2.36(b)所示,其面积为dS=2πrdr,设圆盘的面密度(单位面积上的质量)
力矩在x,y,z轴的分量式,称力对轴的矩。例如上面所列
Mx , My , Mz , 即为力对X轴、Y轴、Z轴的矩。 设力F 的作用线就在Z轴
的转动平面内,作用点到Z
轴的位矢为r,则力对Z轴
的力矩为
M z rF sin
r sin F F rF sin rF

大学物理:第 05 章 刚体力学基础

大学物理:第 05 章  刚体力学基础

j
i
设作用在质元Dmi上的外力
位于转动平面内。
z
合外力对刚体做的元功: P
力矩的功:
功率:
三、刚体定轴转动的动能定理
合外力矩对刚体所作的功等于刚体转动动能的增量。
四、刚体的重力势能
以地面为势能零点,刚体和地球 系统的重力势能:
z
i O
五、 刚体定轴转动的功能原理
将重力矩作的功用重力势能差表示:
如:直立旋转陀螺不倒。
o
此时,即使撤去轴承的支撑作用, 刚体仍将作 定轴转动——定向回转仪—— 可以作定向装置。
二、非刚体( J 可变)的角动量守恒
当 J 增大, 就减小,当 J 减小, 就增大。
如:芭蕾舞,花样滑冰中的转动, 恒星塌缩 (R0,0) (R,) 中子星 的形成等。
[例5-11] 水平转台(m1 、 R ) 可绕竖直的中心轴转动,初角 速度0,一人(m2 )立在台中心,相对转台以恒定速度u沿 半径向边缘走去,计算经时间 t,台转过了多少角度。 解:人与转台组成的系统对竖直 轴的角动量守恒:
(2)
(3) (4)
[例5-16] 细杆A : (m , L)可绕轴转动,水平处静止释放, 在竖直位置与静止物块B : (m) 发生弹性碰撞,求碰后: (1)物块B的速度 vB ,(2)细杆A 的角速度2 , (3)细杆A 转过的最大角度 θmax 。 解: B
A
碰后反方向转动。
A
B
[例5-17] 圆锥体R,h,J,表面有浅槽,令以ω0转动, 小滑块m 由静止从顶端下滑,不计摩擦,求滑到底部滑 块相对圆锥体的速度、圆锥体角速度。
是关于刚体定轴转动的动力学方程。 (与 F = ma 比较) 推广到 J 可变情形: ——刚体定轴转动的角动量定理

大学物理-第三章 刚体力学

大学物理-第三章 刚体力学
向力的作用点P的矢量。 M rF
大小:M rF sin Fd
M

O
z
M
r
d
P*
F
方向:右手螺旋,图中向上
0 , M o,沿转轴向上,使刚体绕转轴逆时针转
2 , M o,沿转轴向下,使刚体绕转轴顺时针转
上一页 下一页

2.外力F不在转动平面内 MFOFr FFz r F r Fz
T
N2

mg T2 T2 2m
2mg
解 : 设 整 体 顺 时 针 运 动, 即 两 滑 轮 转 轴 正 向 向内 。
右 质 点2m正 向 向 下 , 左 质 点m正 向 向 上 ,
受力分析如图。
上一页 下一页
右质点 2mg T2 2ma
左质点 T1 mg ma
右 滑 轮 T2 r
Tr
第三章 刚体力学
上一页 下一页
刚体:不发生形变的物体(理想模型)
刚体模型突出了物体的大小形状,忽略形变和振动。 刚体的运动形式:平动、转动、滚动、进动
刚体复杂运动可视为:平动 转动(绕某轴线转动) 刚体力学研究方法 把刚体看成不变质点系(任意两个质元的相对距离 保持不变),运用质点系定理和定律研究刚体的运动。

m 2
r
2
左滑轮Tr
T1r

m 2
r 2
关联方程 a r
解出 T 11 mg 8
N1
T

T1
mg
T1 m
mg
T
N2
a
mg T2
T2 2m
2mg
上一页 下一页
M,
J

大学物理CH.-刚体力学(PDF)

大学物理CH.-刚体力学(PDF)

β
ri Fi
sinϕi
+
ri
fi
sinθi
=
∆mi
r2 i
β
质点∆mi的外力矩
质点∆mi的内力矩
对所有质点求和,可以得到:
∑ ∑ ∑ riFi sinϕi +
ri fi sinθi =
∆mi
r2 i
β
i=1
i=1
i=1
合内力矩∑ri fi sinθi 为零,则:
∑ ∑ riFi sinϕi =
∆mi
F = 0 p = 常量
Ek
=
1 2
mv2
A = ∫ F ⋅ dr =∆Ek
刚体定轴转动规律
M = r × F = dL = J β
dt
L = r × p = Jω
∫t2 Mdt = ∆L t1
M = 0 L = 常量
Ek
=
1 2
Jω2
A = ∫ M ⋅ dθ = ∆Ek
第五节 进 动 一、 进动(precession)现象:
= ∫ r 2λdl l
质量体分布,例如立方体、球体 质量面分布,例如薄片、薄球壳 质量线分布,例如细棒、细环
例2 计算质量为 m ,长为 L 的匀质细棒绕通过其 端点的垂直轴的转动惯量。
解:J = ∫ r 2dm
z
dm = λdl = m dl o
L
∫ J = L l2 ⋅ m dl 0L = 1 mL2 3
o ω
o’
ω
oG
二、杠杆回转仪的分析
设右图中的刚体回转仪处于平
o
衡状态,现将重物左移并将飞
ω 轮作如图方向旋转。则飞轮进
动的方向如何?

6.1 刚体运动学(大学物理)

6.1 刚体运动学(大学物理)

1、转动惯量

刚体转动时,刚 体内的各质点作圆周 运动,刚体的动能等 于各质点动能之和。
mn
m1
rn
r1
r2 m2
1 1 1 2 2 2 Ek m1v1 m2v2 mnvn 2 2 2 n n 1 1 2 2 mivi mi (ri ) i 1 2 i 1 2 1 n 2 2 ( miri ) 2 i 1
1 l 1 2 2 J ml m ml 结果与前相同。 3 12 2
t
0
1 2 0 0 t t 2
v v 2a( x x0 )
2 2 0
2 ( )
2 2 0 0
匀变速转动
六 角量与线量之间的关系
1、位移与角位移之间的关系 刚体转过 刚体上的一点 位移 s
o
r
s
x
s r
第六章 刚体力学
本章主要内容:
6-1 刚体的运动 6-2 刚体的角动量、转动动能、转动惯量
6-3 力矩
刚体定轴转动定律
6-4 定轴转动的动能定理 6-5 刚体对定轴的角动量守恒定律
6-6 进动*
本章学习要求
2.理解转动惯量、力矩的概念,掌握转动定律。 3.掌握刚体转动的动能定理、角动量定理。
1.掌握刚体定轴转动的特点,理解角坐标、角位移 角速度、角加速度的概念。
1 n 刚体的转动动能 Ek ( miri2 ) 2 2 i 1 1 2 与平动动能比较 Ek mv 2 n 2 miri :相对于转轴的特征的物理量
i 1
转动惯量的定义:
单位:kg ·m2
J m r
i 1

大学物理03-刚体力学基础

大学物理03-刚体力学基础
15
J
r
m
2
dm
• 刚体的形状(质量分布)
16
J
注 意
r
m
2
dm
只有对于几何形状规则、质量连续且均匀分布 的刚体,才能用积分计算出刚体的转动惯量
例3-2 一均匀细棒,质量为 m ,长为 l 。求该棒对下列转轴 的转动惯量:(1)通过棒中心且与棒垂直的轴;(2)通过 棒的一端且与棒垂直的轴。 解:取如图坐标,在棒上任取质元,到转轴的垂直距离为x, 长度为 d x,该质元的质量为 dm = (m/l )dx (质量为线分布)。 A L/2 C
S
O
Mz r d
P
F
M r F
O r
F
P
F
F //

大小: M rF sin Fd 方向: 由右手螺旋法则确定
转动平面
F 应该理解为外力在转动平面内的 分力F//
转动平面
在定轴转动中,M 的方向只有两种可能指向。若先选 定了转轴的正方向,则 M 与转轴方向一致时取正 值,反之为负值
11
(3) 如果有几个外力矩作用在刚体上,则合力矩等 于各个力矩的代数和
M
i i i
ri Fi
12
2
二 刚体绕定轴的转动定律
刚体可视为由许多质点组成的,而每一个质点都遵从质点力学 的规律。刚体转动定律可由牛顿第二定律直接导出。
Fi f i mi ai mi ri
一、力对转轴的力矩
力是引起质点运动状态变化的原因,而力 矩是引起转动物体运动状态变化的原因
(2) 外力F 不在转动平面内(任意力) 可将 F 分解为转动平面内的分力 F// 和垂直于转动平面的分力F F不能引起刚体转动状态的变化 力矩:

大学物理第四章

大学物理第四章
返回 退出
二、平动和转动
1、平动 当刚体运动时,如果刚体内任何一条给定的直
线,在运动中始终保持它的方向不变,这种运动叫 平动(translation)。
平动时,刚体内各质点在任一时 刻具有相同的速度和加速度。
刚体内任何一个质点的运动,都可代表整个刚体的 运动,如质心。
可以用质点动力学的方法来处理刚体的平动问题。
如:车轮的滚动。
返回 退出
3、刚体的定轴转动 定轴转动时,刚体上各点都绕同一固定转轴作
不同半径的圆周运动。
在同一时间内,各点转过的圆弧长度不同,但 在相同时间内转过的角度相同,称为角位移,它可 以用来描述整个刚体的转动。
作定轴转动时,刚体内各点具 有相同的角量,包括角位移、角速 度和角加速度。但不同位置的质点 具有不同的线量,包括位移、速度 和加速度。
直角坐标系中,采用用 、 ,如图所示:
最后,刚体绕定轴转动时,需
要一个坐标来描述,选定参考方 z
向后,转动位置用表示。
p
总的说来,刚体共有6个自由
度,其中3个平动自由度,3个转 动自由度。
y
物体有几个自由度,它
o
的运动定律可归结为几个
独立的方程。
x
返回 退出
返回 退出
§4-2 力矩 转动惯量 定轴转动定律 一、力矩
v r
返回 退出
三、定轴转动定律
对刚体中任一质量元
mi
受外力 Fi 和内力 fi
应用牛顿第二定律,可得:
F ifi m ia i
采用自然坐标系,上式切向分量式为:
F isii n fisi i n m ia it m ir i
F ir isiin fir isiin m ir i2

大学物理第五章刚体力学1

大学物理第五章刚体力学1
详细描述
机械能守恒定律是物理学中的基本定律之一,对于刚体而言同样适用。如果一个刚体在 运动过程中不受外力矩作用,则其动能和势能之和保持不变。这意味着,如果刚体的动
能增加,则其势能必定减少,反之亦然。
05
刚体的振动和波动
简谐振动
简谐振动定义
物体在平衡位置附近做周期性往复运动的现象。
简谐振动方程
x=A*sin(ωt+φ),其中A为振幅,ω为角频率,φ为初相角。
THANK YOU
感谢聆听
转动惯量的计算
对于细长均匀杆,转动惯量I=mr^2/2;对于质量均匀分布的圆盘, I=mr^2/4。
03
刚体的角动量守恒定律
角动量守恒定律
角动量守恒定律
一个不受外力矩作用或者所受 外力矩的矢量和为零的刚体, 其角动量保持不变。
角动量
刚体绕某一定点的转动惯量与 刚体相对该点的角速度的乘积 。
角动量守恒的条件
刚体定义与特性
80%
刚体定义
刚体是一个理想化的物理模型, 在实际中并不存在。
100%
刚体特性
刚体具有不变形、不可压缩、无 摩擦等特性。
80%
刚体运动
刚体的运动可以用质点和刚体的 运动学来描述,其动力学则由牛 顿第二定律和转动定律来描述。
02
刚体的转动定律
刚体的角速度和角动量
角速度
描述刚体绕固定点转动的速度,用矢 量表示,单位为弧度/秒。
总结词
刚体的动能在数值上等于刚体 转动惯量与刚体角速度平方乘 积的一半。
详细描述
除了平动运动外,刚体还可以 进行转动运动。在转动运动中 ,刚体的动能等于刚体的转动 惯量与刚体角速度平方乘积的 一半。
刚体的势能

大学物理力学第五章1刚体、转动定律

大学物理力学第五章1刚体、转动定律
3. 同一方程式中所有量都必须相对同一转轴。
(12)
例1、如图所示,A、B为两个相同的绕着轻绳的定滑
轮.A滑轮挂一质量为M的物体,B滑轮受拉力F,而且
F=Mg.设A、B两滑轮的角加速度分别为βA和β B,
不计滑轮轴的摩擦,则有
(A) β A= β B. (B) β A> β B. (C) β A< β B. (D) 开始时β A= β B,以后β A< β B.
转动惯量的计算
1)定义 J miri2
J r 2dm
i
m
2) 对称的 简单的 查表
3) 平行轴定理
典型的几种刚体的转动惯量
m
m
l
细棒转轴通过中 心与棒垂直
J ml 2 12
l
细棒转轴通过端 点与棒垂直
J ml 2 3
M,R
M,R
o
圆环转轴通过环心与环面垂直
J MR2
薄圆盘转轴通过 中心与盘面垂直
以 m1 为研究对象 m1g T1 m1a 以 m 2 为研究对象 T2 m2a 以 M 为研究对象
(T1 T2 )R J J 1 MR 2 2
m 2 T2 M , R
(1) T1
T1
(2)
m1
m1
M ,R
m1g (3)
T2
m2
T2
T1
补充方程:
a R
(4)
联立方程(1)---(4)求解得
J 1 MR 2 2
m 2r
r l
球体转轴沿直径
J 2mr 2 5
圆柱体转轴沿几何轴
J 1 mr 2 2
转动定律应用举例 解题步骤: 1. 认刚体;
3. 分析力和力矩;

大学物理第5章刚体

大学物理第5章刚体
Ar
B C
分析受力和力矩情况
第一篇 力 学
解:由ABC和绳子组成系统为研究对象,分析受力和力矩情况。
系统受到的合力矩: M m2 gr m3gr
对整个系统列出角动量定理积分形式
t
Mdt Lt L0
t0
分别计算,有 Mdt (m2gr m1gr)t
L0 0
0
L

LA
若质量连续分布 J r2dm
一维
二维
三维
dm
dl
线密度 dm dl
J r2dl
面密度 dm dS
J r2dS
体密度 dm dV
J r2dV
第一篇 力 学
例1.求长为L、质量为m的均匀细棒对图中不同轴的转动惯量。
解:取如图坐标,dm=dx
J A
L x2dx mL2 / 3
0
L
JC
2 L
x2dx

mL2
/12
2
A L
A
C
L/2
B X
B L/2 X
例2.求质量为m、半径为R的均匀圆环的转动惯量。轴与圆环平面垂
直并通过圆心。
解:
J R2dm R2 dm mR2
O
R
dm
第一篇 力 学
例3.求长求质量为m、半径为R均匀圆盘的转动惯量。轴与盘平面垂 直并通过盘心。
解:取半径为r宽为dr 的薄圆环
dm 2rdr
dJ r2dm 2r3dr
dr rR
J dJ R 2r3dr 1 R4
0
2


m
R 2

大学物理 刚体力学

大学物理 刚体力学

试计算飞轮的角加速
rO
F
mg
解 (1)
Fr J
Fr 98 0.2 39.2 rad s -2 J 0.5
(2) mg T ma
Tr J a r
两者区别
rO
mgr 98 0.2 -2 21 . 8 rad s J mr 2 0.5 10 0.22
3、转动惯量
(1)定义
J mi ri2
在(SI)中,J 的单位:kgm2
物理意义:转动惯量是对刚体转动惯性大小的量度,其大小 反映了改变刚体转动状态的难易程度。 (2) 与转动惯量有关的因素 ①刚体的质量及其分布 ②转轴的位置 (3) 转动惯量的计算
m1
①质量离散分布的刚体
J mi ri2
二、刚体定轴转动的转动定律
1.力矩

改变质点的运动状态
改变刚体的转动状态
质点获得加速度 刚体获得角加速度
力矩
(1) 力矩的定义式
M
M r F
大小:M Fr sin Fd M rF (2) 物理意义
是决定刚体转动的物理量,表明力的大 小、方向和作用点对物体转动的影响。
z
M

PP

x
参考 方向
x x
转动平面 转轴
(2)角速度

d dt
角速度方向用右手螺旋法则确定。
定轴转动的角速度仅有沿转轴的两个方向。


用正负号表示方向


d
(3) 角加速度
角加速度方向与 加速转动 相同。 方向相反
方向一致; 减速转动
(4) 角量与线量的关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

该式同样适用于薄圆盘
(4) 均匀球体绕其对称轴的转动惯量. 已知: 球的半径为 R , 质量 m . 3 3 m (4 R ) 设其质量密度为 方法1: 取距球心为 x 处, 厚度为dx、半径为 r 的薄圆盘为质量元 圆盘半径 体积元 质量元
r R x
2 2
r
R
x
dx
dV r dx (R x ) dx
i
d d M I I I 2 dt dt
2
定轴转动定律 : 刚体绕定轴转动时 , 作用在刚体 上的合外力矩等于刚体对该转轴的转动惯量与角 加速度的乘积.
以矢量形式表示 其中合外力矩
M Iβ
M Mi ri Fi
i i
力矩指向在转轴方位 转动惯量
I mi ri
2
则有
I x dm
2
l 2
l 2
x dx
2
2
l 2
0
1 3 1 2 x dx l ml 12 12
2
(2) 均匀细圆环绕其对称轴的转动惯量. 已知: 半径 R, 总质量 m .
I R dm R
2
2
dm
R
mR
2
dm
(3) 空心圆柱绕其对称轴的转动惯量. 已知: 内半径 R1, 外半径 R2 , 高 l , 总质量 m .
对(2)式乘以ri : 对 i 求和:
(1) (2)
2
Fr i i sin i fi r i sin i mi ra i it mi r i
2
Fr i i sini fi r i sin i mi r i
i i i
Fr i i sini fi r i sin i mi r i
Δm x
i i i
i
m Δmi yi m Δmi zi
i
这三个量可确定刚体上某 点 c (xc, yc, zc), 称为刚体的质 量中心, 简称质心.
m
若质量连续分布, 则有
xc = yc = zc =
xdm = ρxdV
m m

ydm m m
转动: 刚体转动时, 各个质点都绕同一直线(转动 轴)作同角速度的圆周运动.
定轴转动: 转轴固定不动的转动. 质心轴: 通过质心的转轴.


v
特点: 定轴转动时, 刚体转轴上各点保持不动. 轴 外各点在同一时间间隔 dt 内, 移动的弧长 虽然不同, 但其角位移 d 却完全一样. 因 此 , 描述刚体的定轴转动可引入新的物理 量, 如角位移、角速度和角加速度.
y x
角 位 移 不 是 矢 量
x


2

2
k
z
y x

z
z
y
x
2
y x
k

2
i
(3) 瞬时角位移 d 符合矢量运算法则, 为矢量.
角速度: 大小为在某一时刻 t 附 近的单位时间间隔内, 刚体上任 一点角位移的大小; 其方向在转 轴方位, 可用右手螺旋法则确定 .

o

z
d lim k k t 0 t dt
Fi fi Δmi ai
F f
i i i
i
mi ai
i
f
i
i
0
a1 = a2
i i i
ai = a
i i i
所以
F m a ( m )a
F ( m )a
i i i i
F ma
平动运动定律: 刚体平动时, 其运动规律与同质 量的质点相同, 受力等于刚体所受外力的矢量和.
3. 描述刚体转动的物理量 角位移: 在时间间隔 t 内, 刚体上任一点相对于 某一特定转轴转过的角度为. z

o
x
特征: (1)角位移 是相对于某一特定转轴而言的 . (2)角位移 不是矢量, 它的合成与转动 的先后次序有关, 不符合矢量的加法交换律 .
z y
z
z
y
x
i
第5章 刚体力学初步
前 4 章给出了质点运动状态变化的有关规 律. 本章介绍具有一定形状和大小物体的机械 运动规律. 既然任何物体都可看成是由大量质点组成 的, 那么前面的理论在本章中依然有效.
§5.1 刚体运动学 §5.2 刚体平动动力学 §5.3 质心与质心运动定律 §5.4 刚体绕定轴的转动 §5.5 角动量定理与角动量守恒定律 §5.6 定轴转动的动能定理 与机械能守恒定律
i
2
2. 力矩 定义: 力对某转轴的力矩, 等 于转轴到力作用点的矢径与 作用力的叉乘.
F sin
F

F cos
r
o

M r F 大小 M = rFsinθ = FR
R r sin
方向: 由 r 和 F 的右手螺旋法则确定. 特性: 力矩是矢量; 力矩的和不恒等于合力的力 矩; 每个分力的力矩与力的作用点有关.
§5.1 刚体运动学
1. 刚体 物理模型: 物体在运动和相互作用过程中, 其大 小和形状均不发生变化. 推论: 刚体内任意两点间的距离不变. 2. 刚体的运动 刚体的一般运动=平动+定轴转动
平动: 在运动过程中, 通过刚体内任一条直线的 方位始终保持不变.
特点: 刚体平动时, 内部各点运动情况完全相同. 因此, 描述质点运动的物理量(如位移、速 度和加速度)均可用来描述刚体的运动. 刚体内任意一点的平动可代表整个刚体的平动.
I Ic md
2
m d
(6) 规则形状刚体相对于对称轴的 转动惯量可直接计算求得, 其它不 规则刚体的转动惯量一般由实验 测定.
4. 转动惯量的计算 (1) 垂直于细棒且通过质心轴的转动惯量. 已知: 棒长 l , 总质量 m .
设棒的线密度为 m l
o dx x x
I x dm
§5.2 刚体平动动力学
刚体: 质点间距离保持不变的质点系. 质量元mi : 在刚体上任取一质量元 mi 视为 质点.
质量元外力F i: 其它物体施于质量元 mi 的作 用力.
质量元内力f i: 刚体内其它部分施于质量元 mi 的作用力.
由牛顿力学有 对所有质量元求和有 考虑到 且平动时有
m 设其密度为 2 ( l R2 R12 )
在半径为 r 处, 取厚度为 dr 的薄层为质量元
R2
o
R1
r
d r
l
dm dV 2 rldr
I r dm
2
2 l R r dr
3
1
R2
l
2
(R R )
4 2 4 1
1 2 2 m( R1 R2 ) 2
=
ρydV m m
zdm = ρzdV
其中 dV 为质量元 dm 的体积.
代入分量式可得
mi xi 2 d 2 d xc m i m 2 macx Fix m 2 dt dt i mi yi 2 d 2 d yc m i m 2 macy Fiy m 2 dt dt i mi zi 2 d 2 d z m i Fiz m m 2c macz m dt i
3. 转动惯量 定义:
I mi ri r dm r dV
2 2 2 i
特性: (1) 转动惯量是标量, 它是反映刚体转动 惯性大小的物理量. (2) 它是相对于某一特定转轴而言的. 转 轴不同, 同一物体的转动惯量则不同.
(3) 它与刚体的质量和质量分布有关.
(4) 它符合加法结合律和交换律——和的转动惯 量等于转动惯量的和. Ic I (5) 转动惯量的平行轴定律:
§5.3 质心与质心运动定律
1. 刚体的质心与质心运动定律
对刚体的任意运动, 由牛顿第二定律有:
Fi mi ai
i i
刚体任意运动时, 作用在刚体上的合外力等于各 个质量元的加速度与质量元乘积的矢量和. 刚体任意运动时, 每一质量元的加速度不一定相 同, 故上式无法确定每一质量元的加速度. 但它可 以确定刚体中一特殊点——质心的加速度.
d
y
x
特征: (1) 角速度是矢量, 它反映了刚体转动瞬时 角位移随时间变化的规律. (2) 定轴转动时, 转轴的方向已经给定, 角 速度的方向可用正负表示, 即满足标量 运算法则.
角加速度: 在任意时刻 t 附近的单位时间间隔内, 刚体转动角速度的变化量, 其方向由矢量运算法 则确定.
d lim t 0 t dt
匀加速定轴转动
匀加速直线运动 a =常数
=常数
1 2 1 2 t β t x x v t at 0 0 0 0 2 2 ω ω0 βt v v 0 at 2 2 2 2 ω ω0 2 β v v 0 2ax
F ma
i i
c
质心运动定律: 刚体任意运动时, 作用在刚体上的 合外力等于刚体的质量与质心加速度的乘积.
2. 刚体的重力势能 对任一质量元
ΔEpi = Δmi ghi
Ep =
对整个刚体
ΔE
i i
pi
=
Δm gh
i i
i
= mg
Δm h
m
i i
= mghc
hc为刚体质心的高度 , 刚体的重力势能取决于其 质心的高度.
将上式写成直角坐标分量形式
d xi Fix mi aix mi dt 2 i i i 2 d yi Fiy mi aiy mi 2 d t i i i 2 d zi Fiz mi aiz mi 2 dt i i i
相关文档
最新文档