2018年春人教版七年级数学下5.1.2垂线ppt公开课优质教学课件

合集下载

5.1.2垂线ppt课件

5.1.2垂线ppt课件
探究: ①用三角尺或量角器画已知直线l 的垂 线,这样的垂线能画出几条?
②经过直线l上一点A画 l 的垂线,这样的垂
线能画出几条?
③经过直线l 外一点B画 l 的垂线,这样的
垂线能画出几条?
问题:过已知直线 l 和l上(或外)的一点A , 作l的垂线,可以作几条?
能作一条,而且只能作一条.
垂线的性质1:
在相交线的模型中,固定木条a,转动木条b,
当b的位置变化时,a、b所 成的角α也会发生变化.
b b bb
当α=90°时, a与b互相垂直.
)α
a
垂直
垂直是相交的特殊情况
一、垂直的定义
1.定义:当两条直线所成的四个 角中有一个角是直角时,这两条 直线互相垂直。其中一条直线叫C 另一条直线的垂线,它们的交点 叫垂足。
A
O
D
B
2.垂直用符号 “⊥”来表示,读作“垂直于”。
如“直线AB垂直于直线CD”,就记作“AB⊥CD”。
3.交点O叫做垂足
从垂直的定义可知,判断两条直线互相垂直的关键: 只要找到两条直线相交时四个交角中一个角是直角。
2.垂直的表示: 用“⊥”和直线字母表示垂直 例如、如图,a、b互相 垂直, 垂足为O,则记为:
过一点有且只有一条直线与已知直线垂直.
注意: 过一点画已知线段(或射线)的垂线, 就是画这条线段(或射线)所在直线的垂线.
根据以上的结果,你能得出什么结论? 垂线的第一性质:
过一点有且只有一条直线与已知直线垂直。
(1)“有且只有”中,“有”指存在, “只有”指唯一性。
(2)“过一点”中的点,可以在已知直 线上,也可以在已知直线外。
)1
D
C
∴∠2=60° (等量代换)

人教版七年级下册数学 5.1.2 垂线-课件(共25张PPT)

人教版七年级下册数学 5.1.2 垂线-课件(共25张PPT)

新知讲解
练习2:如图,在铁路旁有一李庄,现要建一火车站,为了 使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建 在( A )
A.A 点 B.B 点 C.C 点 D.D 点
课堂练习
1、过点P画出射线AB 或线段AB 的垂线.
AP B
P B A
课堂练习
2、如图所示, AC⊥BC, C 为垂足, CD⊥AB, D 为垂足,BC =8, CD=4.8, BD=6.4, AD=3.6, AC=6, 那么:
(1)点C 到AB 的距离是__4__.8____, (2)点A 到BC 的距离是____6____, (3)点B 到CD 的距离____6_._4____.
课堂练习
3、如图,直线AB、CD 相交于点O,OE⊥AB,∠AOC=75°, 求∠EOD 的度数.
解:∵ AB⊥OE (已知), ∴ ∠EOB=90°(垂直的定义).
符号语言:
∵AB ⊥CD
90º
∴ ∠AOC=90º
新知讲解
练习1:如图,直线AB、CD相交于点O, OE⊥AB,∠AOD= 125°, 求∠COE 的度数.
解:∵ ∠AOD=∠BOC ∴ ∠BOC=∠AOD=125° ∵ OE⊥AB ∴ ∠BOE=90°, ∴ ∠COE= ∠BOC- ∠BOE
= 125°- 90° = 35°
CE
∵∠BOD=∠AOC=75°(对顶角相等)
A
∴∠EOD=∠EOB+∠BOD
=90°+75°
=165°
O
B
D
拓展提高
将一副三角板的两个直角顶点O重合在一起,按如图位置放置.
(1)如图①,若∠BOC=50°,求∠AOD的度数; 解:∵∠AOB=90°,∠BOC=50°,

5.1.2垂线ppt课件

5.1.2垂线ppt课件

THANKS
感谢观看
详细描述
首先,确定给定的点和平行线。然后,选择一个与该平面垂直的平面,并将给 定点包含在该平面内。最后,过该点作与该平面垂直的直线,即为所求的垂线 。
过一点作已知直线的垂面
总结词
通过给定的点,使用三维几何的知识,可以作出已知直线的垂面。
详细描述
首先,确定给定的点和已知直线。然后,选择一个与该直线垂直的平面,并将给 定点包含在该平面内。最后,过该点作与该平面垂直的平面,即为所求的垂面。
总结词
通过给定的点,使用直角三角形的性质,可以作出已知直线 的垂线。
详细描述
首先,将给定的点和已知直线连接,形成一个直线段。然后 ,以该点为顶点,直角三角形的直角边与已知直线重合,构 造一个直角三角形。最后,沿着直角三角形的斜边进行延长 ,即可得到过该点的垂线。
过一点作已知平面的垂线
总结词
通过给定的点,使用空间几何的性质,可以作出已知平面的垂线。
机械制造应用
在机械制造中,垂线是确 定机器部件位置和方向的 重要依据。
数学应用
在数学中,垂线是解决几 何问题的重要工具,如求 点到直线的距离、确定直 线的位置等。
02
垂线的判定
直线与直线垂直的判定
判定定理
空间中的垂直关系
两条直线所成的角为直角,则这两条 直线垂直。
如果两条直线所成的角为直角,则它 们垂直。
这个平面垂直。
平面与平面垂直的判定
判定定理
如果一个平面内的两条相交直线都与另一个平面 垂直,那么这两个平面垂直。
推论
如果一个平面内的无数条直线都与另一个平面垂 直,那么这两个平面垂直。
空间中的垂直关系
如果一个平面内的两条相交直线都与另一个平面 垂直,那么这两个平面垂直。

人教版七年级下册《5.1.2垂线》课件(共26张PPT)

人教版七年级下册《5.1.2垂线》课件(共26张PPT)

2、如图,分别过A、B、C 作BC、AC、AB的垂线。 解:如图、直线AD⊥BC于 A D、直线BE⊥AC于E、直线 CF⊥AB于F 3、如图,过P作直线 PM⊥OA,垂足为点M. O 过P作线段PN⊥OB于N点。 解:如图、直线PM⊥OA 于M、线段PN⊥OB于N
F
C D M A P
B
E
N
B
学点3:垂线的性质
A
B
5、如图2-23,试用直尺或三角板量出: (1).城市A与城市B的距离. (2).城市A,B到大河l的距离.
拓展应用1
如图:在铁路旁边有 一张庄,现在要建一火车 站,为了使张庄人乘火车 最方便(即距离最近), 请你在铁路上选一点来建 火车站,并说明理由。
张庄
垂线段最短
拓 展 应 用2
如图:要把水渠中的水引到水池 C中,在渠岸的什么地方开沟,水沟 的长度才能最短? 请画出图来,并说明理由。
学点2:垂线的画法
1)已知直线AB和直线上的一点C, 画直线AB的垂线 C ● A
B
2)已知直线AB和直线外的一点C, 画直线AB的垂线 ● C A
B
E E
E 注意:画线段(或射线)的 垂线时,有时要将线段 延长(或将射线反向延 长)后再画垂线.
课堂练习 1.过点 P 向线段 AB 所在直线引垂线,正确的是( C). A B C D
线段AC 3如图已知AC⊥BC,CD⊥AB,则图中以________ 线段BC 的长度表示A点到BC的距离;以_____________ 线段CD 的长度表示B点到AC的距离;以_____________ 的长度表示C点到AB的距离. C
D 4.如图A,B,C三点在直线a上,M点在直线a外,AM⊥CM, MB⊥AC,在①MA>MB②MB>MC③MC>BC ④AC>AM这四个结论中,正确的个数是( C )个 M A.1 B.2 C.3 D.4 a A B C

5.1.2垂线 课件(共29张PPT)

5.1.2垂线  课件(共29张PPT)

线垂直的是( C )
A.有两个角相等
B.有两对角相等
C.有三个角相等
D.有四对邻补角
随堂检测 4.过点P画出射线AB或线段AB的垂线.
P
A
PB
A
人教版数学七年级下册
B
巩固练习
人教版数学七年级下册
1.已知,如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1
与∠2的关系一定成立的是( B )
A.①② B.①③ C.②③ D.①②③ 2. 如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若 ∠1=54°,则∠2的度数为 ( B ) A.26° B.36° C.44° D.54°
于点O,∠AOD=90°,那么AB⊥CD.
A
符号语言表示:
∵∠AOD=90°
C
O
D
∴AB⊥CD(垂直的定义)
B
探究新知
人教版数学七年级下册
日常生活中,两条直线互相垂直的情形很常见,说出下 图中的一些互相垂直的线条.
你能再举出其他例子吗?
探究新知
人教版数学七年级下册
探究 (1)画已知直线l的垂线能画几条? (2)过直线l上的一点A画l的垂线,这样的垂线能画几条? (3)过直线l外的一点B画l的垂线,这样的垂线能画几条?
(6)线段AB是点B到AC的距离.
其中正确的有( B )
A.1个
B.2个 C.3个 D.4个
人教版数学七年级下册
巩固练习
人教版数学七年级下册
3.如图,直线AB、CD相交于点O,OE⊥AB,∠EOC=35°,求
∠AOD的度数.
解:∵AB⊥OE∴ ∠EOB=90° ∵∠EOC=35° ∴∠AOC=35° ∴∠AOD=180°-∠AOC =180°- 35°=145 °

七年级数学下册5.1.2垂线(人教版)全面版PPT课件

七年级数学下册5.1.2垂线(人教版)全面版PPT课件

(2)两条直线相交,有一组邻补角相等,则这两条直
线互相垂直.
(3)两条直线相交,所成的四个角相等,这两条直线
互相垂直.
(4)两条直线相交,有一组对顶角互补,则这两条直
线互相垂直.
A.4
B.3
C- .2
D.1
8
选择题
巩固练习
2.两条直线相交所成的四个角中,下列条
件中能判定两条直线垂直的是 [ C ]
光不会因你而停留,你却会随着光阴而老去。
有些事情注定会发生,有的结局早已就预见,那么就改变你可以改变的,适应你必须去适应的。面对幸与不幸,换一个角度,改变一种思维,也许心空就不再布满阴霾,头上就 是一片蔚蓝的天。一生能有多少属于我们的时光,很多事情,很多人已经渐渐模糊。而能随着岁月积淀下来,在心中无法忘却的,一定是触动心灵,甚至是刻骨铭心的,无论是 伤痛是欢愉。人生无论是得意还是失意,都不要错过了清早的晨曦,正午的骄阳,夕阳的绚烂,暮色中的朦胧。经历过很多世态炎凉之后,你终于能懂得:谁会在乎你?你又何 必要别人去在乎?生于斯世,赤条条的来,也将身无长物的离开,你在世上得到的,失去的,最终都会化作尘埃。原本就不曾带来什么,所以也谈不到失去什么,因此,对自己 经历的幸与不幸都应怀有一颗平常心有一颗平常心,面对人生小小的不如意或是飞来横祸就能坦然接受,知道人有旦夕祸福,这和命运没什么关系;有一颗平常心,面对台下的 鲜花掌声和头上的光环,身上的浮名都能清醒看待。花不常开,人不常在。再热闹华美的舞台也有谢幕的时候;再奢华的宴席,悠扬的乐曲,总有曲终人散的时刻。春去秋来, 我们无法让季节停留;同样如同季节一样无法挽留的还有我们匆匆的人生。谁会在乎你?生养我们的父母。纵使我们有千般不是,纵使我们变成了穷光蛋,唯有父母会依然在乎! 为你愁,为你笑,为你牵挂,为你满足。这风云变幻的世界,除了父母,不敢在断言还会有谁会永远的在乎你!看惯太多海誓山盟的感情最后星流云散;看过太多翻云覆雨的友 情灰飞烟灭。你春风得意时前呼后拥的都来锦上添花;你落寞孤寂时,曾见几人焦急赶来为你雪中送炭。其实,谁会在乎你?除了父母,只有你自己。父母待你再好,总要有离 开的时日;再恩爱夫妻,有时也会劳燕分飞,孩子之于你,就如同你和父母;管鲍贫交,俞伯牙和钟子期,这样的肝胆相照,从古至今有几人?不是把世界想的太悲观,世事白 云苍狗,要在纷纷扰扰的生活中,懂得爱惜自己。不羡慕如昙花一现的的流星,虽然灿烂,却是惊鸿一瞥;宁愿做一颗小小的暗淡的星子,即使不能同日月争辉,也有自己无可 取代的位置其实,也不该让每个人都来在乎自己,每个人的人生都是单行道,世上绝没有两片完全相同的树叶。大家生活得都不容易,都有自己方向。相识就是缘分吧,在一起 的时候,要多想着能为身边的人做点什么,而不是想着去得到和索取。与人为善,以直报怨,我们就会内心多一份宁静,生活多一份和谐没有谁会在乎你的时候,要学会每时每 刻的在乎自己。在不知不觉间,已经走到了人生的分水岭,回望过去生活的点滴,路也茫茫,心也茫茫。少不更事的年龄,做出了一件件现在想来啼笑皆非的事情:斜阳芳草里, 故作深沉地独对晚风夕照;风萧萧兮,渴望成为一代侠客;一遍遍地唱着罗大佑的《童年》,期待着做那个高年级的师兄;一天天地幻想,生活能轰轰烈烈。没有刀光剑影,没 有死去活来,青春就在浑浑噩噩、懵懵懂懂中悄然滑过。等到发觉逝去的美好,年华的可贵,已经被无可奈何地推到了滚滚红尘。从此,青春就一去不回头。没有了幻想和冲动, 日子就像白开水一样平淡,寂寞地走过一天天,一年年。涉世之初,还有几分棱角,有几许豪情。在碰了壁,折了腰之后,终于明白,生活不是童话,世上本没有白雪公主和青 蛙王子,原本是一张白纸似的人生,开始被染上了光怪陆离的色彩。你情愿也罢,被情愿也罢,生存,就要适应身不由己,言不由衷的生活。人到中年,突然明白了许多:人生 路漫漫,那是说给还不知道什么叫人生的人说的,人生其实很短暂,百年一瞬间;世事难预料,是至理名言,这一辈子,你遇见了谁,擦肩而过了谁,谁会是你真心的良朋益友,

人教版七年级数学下册全册5.1.2垂线PPT课件

人教版七年级数学下册全册5.1.2垂线PPT课件

画几条?
.B
.A l
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
如图,已知直线 l,作l的垂线.
A
O
1.放 2.靠 3.画
l
0 1 2 3 4 5 6 7 8 9 1 0 1 1
孝 感 市 文 昌 中 学 学 生 专 用 尺
例2 如图,直线BC与MN相交于点O,AO⊥BC, ∠BOE=∠NOE,若∠EON=20°,求∠AOM和 ∠NOC的度数.
解:∵∠BOE=∠NOE, ∴∠BON=2∠EON=40°, ∴∠NOC=180°-∠BON
=180°-40°=140°, ∠MOC=∠BON=40°. ∵AO⊥BC, ∴∠AOC=90°, ∴∠AOM=∠AOC-∠MOC=90°-40°=50°, ∴∠NOC=140°,∠AOM=50°.
作,你能得
1.放
出什么结论
2.靠
A
3.移
4.画
l
B
0 1 2 3 4 5 6 7 8 9 1 0 1 1
孝 感 市 文 昌 中 学 学 生 专 用 尺
C m
问题:这样画l的垂线可以画几条? 一条
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
C A
F
E B
D
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
6.如图,AO⊥FD,OD为∠BOC的平分线,OE 为射线OB的反向延长线,若∠AOB=40°,求 ∠EOF、∠COE的度数.

人教版七年级数学下册第五章《垂 线》优质课课件

人教版七年级数学下册第五章《垂 线》优质课课件

变式训练1-1:点O在直线AB上,且OC⊥OD.若∠COA=36°,则∠DOB的大 小为( B ) (A)36°(B)54°(C)64°(D)72° 解析:根据OC⊥OD, 得出∠COD=90°, 根据∠AOC+∠COD+∠DOB=180°, 得∠DOB=180°-∠AOC-∠COD=180°-36°-90°=54°. 故选B.
。超








You made my day!
我们,还在路上……
(1)该汽车行驶到公路AB上的某一位置C′时距离村庄C最近,行驶到D′位置 时,距离村庄D最近,请在公路AB上作出C′、D′的位置; 【导学探究】 连接直线外一点与直线上各点的所有线段中 垂线段 最短.
解:(1)如图所示. 过点 C 作 AB 的垂线,垂足为 C′, 过点 D 作 AB 的垂线,垂足为 D′.
5.1.2 垂 线
1.了解垂直的概念,掌握垂线的性质. 2.会过一点用三角板或量角器画已知直线的垂线.
1.垂直 两条直线相交所成的四个角中的任意一个角是 90° 时,我们说这两条直线互 相垂直. 如图:(1)直线AB、CD相交于点O,若∠AOC=90°,则 AB⊥CD .
(2)若AB⊥CD时,则∠COB= 90° . 2.垂线 垂直是相交的一种特殊情况,两直线 互相垂直 ,其中的一条直线叫做另一 条直线的垂线,它们的交点叫做垂足 .如图:AB⊥CD,垂足为O.
(2)当汽车从A出发向B行驶时,在哪一段路上距离村庄C越来越远,而离村庄 D越来越近?(只叙述结论,不必说明理由)
解: (2)在线段C′D′这段路上,距离村庄C越来越远,而离村庄D越来越近. 点到直线的距离是指直线外一点到这条直线的垂线段的长

新人教版七年级下册数学5.1.2垂线优质课件

新人教版七年级下册数学5.1.2垂线优质课件
新人教版七年级下册数学 5.1.2 垂线 优质课件
科 目:数学 适用版本:新人教版 适用范围:【教师教学】
第五章 相交线与平行线
5.1 相交线
第2课时 垂线
第一页,共三十六页。
1 课时讲解 2 课时流程
垂直的定义 垂线的画法
垂线的性质
逐点 导讲练
课堂 小结
作业提 升
第二页,共三十六页。
如图所示是北京天安门 广场庄严隆重的升国旗仪式, 是亿万中国人民特别关注的 活动.众所周知,1949年10 月1日,毛泽东主席在天安门城楼 上用洪亮的声音向全世界宣告中 华人民共和国诞生,亲手升起了 第一面五星红旗.
A.35°
C
B.45°
C.55°
D.65°
第十八页,共三十六页。
6. 已知在同一平面内:
知1-练
①两条直线相交成直角;
②两条直线互相垂直;
③一条直线是另一条直线的垂线.
那么下列因果关系:①→②③;②→①③;③→①②
中,正确的有( )
A.0个 B.1个 CD.2个 D.3个
第十九页,共三十六页。
知识点 2 垂线的画法
第十四页,共三十六页。
2. 如图,已知点O在直线AB上,CO⊥DO于点O,若∠1 =145°,则∠3的度数为( ) C A.35°
B.45°
C.55° D.65°

知1-练
第十五页,共三十六页。
3. 【中考·德宏州】如图,三条直线相交于点O, 若CO⊥AB,∠1=56°,则∠2等于( ) B A.30° B.34° C.45° D.56°
导引: 要判断OE,OF是什么位置关 系,其实质是说明OE,OF是 否垂直,即要看∠EOF是否为 90°;要让∠EOF=90°,需说明∠EOF= ∠AOC或∠EOF=∠BOC都可,这样就把问题 转化为说明∠AOE=∠COF(已知)了.

人教版七年级数学下册 5.1.2 垂线的课件 (共15张PPT)

人教版七年级数学下册  5.1.2  垂线的课件 (共15张PPT)
择决定命运,环境造就人生!
4.如图, AC⊥BC, ∠C=90° ,线段AC、BC、CD 中最短的是 ( )
A. AC
B. BC
C. CD
D. 不能确定
C
A
D
B
5.如图,直线AB、CD相交于点E, EF⊥AB于E,若∠CEF=58°,则∠BED 的度数为 .
F C
ቤተ መጻሕፍቲ ባይዱ
E
A
B
D
6.如图,AO⊥FD,OD为∠BOC的平分线,OE 为射线OB的反向延长线,若∠AOB=40°,求 ∠EOF、∠COE的度数.
问题2:什么样的两条直线互相垂直?
定义:当两条直线相交所成的四个角中,有一个角
是直角时,就说这两条直线互相垂直,其中一条直 线叫做另一条直线的垂线,它们的交点叫做垂足.
在生产和日常生活中,两条直线互相垂直的情形是 很常见的.如:
十字路口的两 条道路
方格本的横 线和竖线
铅垂线和 水平线
垂直的记法、读法
m
B
C
1
O
n
O
A
图1
图2
2.如图,下列说法正确的是( ) A.线段AB叫做点B到直线AC的距离 B.线段AB的长度叫作点A到直线AC的距离 C.线段BD的长度叫作点D到直线BC的距离 D.线段BD的长度叫作点B到直线AC的距离
A D
B
C
3.两条直线相交所成的四个角中,下列条件中能 判定两条直线垂直的是( ) A. 有两个角相等 B.有两对角相等 C. 有三个角相等 D.有四对邻补角
过P点可做直线 a 的垂线有几条(1条)
. 直线有几条?(无数条)那条最短? p
a
.p
a
例题

人教版七年级数学下册5.1.2垂线(2)优质课件.ppt

人教版七年级数学下册5.1.2垂线(2)优质课件.ppt

三、研学教材
1、画一条线段的垂线,垂足在( D )
A、线段上
B、线段的端点
C、线段的延长线上 D、以上都有可能
2、直线AB外一点P到直线AB的距离指的是
(B )
A、从P点到AB的垂线段
B、从P点到AB的垂线段的长度
C、从P点到AB的垂线
D、从P点到AB的垂线长
三、研学教材
3、如右图,AC⊥BC,C为垂足,CD⊥AB,D为垂 足, BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6, 那么
MORE THAN TEMPLATE
点击此处添加副标题
STRENGTHS
S
Lorem Ipsum simply dummy text of the printing.
Lorem Ipsum simply
dummy text of the printing.
O
OPPORTUNITIE S
Lorem Ipsum simply dummy text of the printing. Lorem Ipsum simply dummy text of the printing.
Step
03
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
第四节
教学过程
输入你的文本 根据你所需的内容输入你想要的文本 点击输入本栏的具体文字,简明扼要的说明分项内容,此为概念图解,
请根据您的具体内容酌情修改。
MARK 03 PRESENTATION
Vivamus magna justo, lacinia eget consectetur sed.
2014
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A D
C
B
3.两条直线相交所成的四个角中,下列条件中能
判定两条直线垂直的是( C )
A. 有两个角相等
B.有两对角相等
C. 有三个角相等
D.有四对邻补角
4.如图, AC⊥BC, ∠C=90° ,线段AC、BC、CD中最短 的是 ( C ) A. AC C. CD B. BC D. 不能确定
C
A
D
问题:这样画l的垂线可以画几条?
无数条
如图,已知直线 l 和l上的一点A ,作l的垂线.
1.放 2.靠 3.移 4.画
B
A
l
0
1
2
3
4
5
6
7
8
9
10
11 Cm
孝感市文昌中学学生专用尺
问题:这样画l的垂线可以画几条? 一条
如图,已知直线 l 和l外的一点A ,作l的垂线. 根据以上操 作,你能得 出什么结论
二 垂线的画法及基本事实
问题: (1)画已知直线l的垂线能画几条? (2)过直线l上的一点A画l的垂线,这样的垂线能 画几条?
(3)过直线l外的一点B画l的垂线,这样的垂线能
画几条?
.
B
.
A
l
如图,已知直线 l,作l的垂线.
A
l
O
1.放 2.靠 3.画
0
1
2
3
4
5
6
7
8
9
10
11 Cm
孝感市文昌中学学生专用尺
B
5.如图,直线AB、CD相交于点E,EF⊥AB于E, 若∠CEF=58°,则∠BED的度数为 32° .
F E A D B
C
6.如图,AO⊥FD,OD为∠BOC的平分线,OE 为射线OB的反向延长线,若∠AOB=40°,求 ∠EOF、∠COE的度数.
解:∵AO⊥OD且∠AOB=40°,
∴∠BOD=90°-40°=50°, ∴∠EOF=50°.
A
O
D
B
由对顶角和邻补角的性质知,当 ∠ AOC= 90°时, ∠BOD=∠AOD=∠BOC=90°.
知识要点
垂直定义:
两条直线相交成四个角,如果有一 个角是直角,那么称这两条直线互 相垂直. 注意:两条线段互相垂直是指这 两条线段所在的直线互相垂直.
垂直的表示法 如果直线AB与直线CD垂直,那 么可记作:AB⊥CD(或CD⊥AB). 如果用l、m表示这两条直线, 那么直线l与直线m垂直,可记作: A l⊥m(或m ⊥ l). 把互相垂直的两条直线的交点 叫作垂足(如图中的O点).
第五章 相交线与平行线
5.1 相交线
5.1.2
导入新课 讲授新课
垂 线
当堂练习 课堂小结
学习目标
1.理解垂线的有关概念、性质及画法;(重点) 2.知道垂线段和点到直线的距离的概念,并会应用
其解决问题. (重点、难点)
导入新课
情境引入 观察下面图片,你能找出其中相交的直线吗?它 们有什么特殊的位置关系?
日常生活里,图中的两条直线的关系很常见, 你能再举出其他例子吗?
讲授新课
一 垂线的概念
在相交线的模型中,固定木条a,转动木条b,当b的 位置变化时,a、b所成的角α也会发生变化.
b
b
b
b
b
α

a
α
问题
如图 , 当 ∠ AOC = 90°时, ∠ BOD 、 ∠ AOD 、
C
∠BOC的度数是多少?为什么?
三 点到直线的距离
如图,从A点向已知直线 l 画一条垂直的线段和
几条不垂直的线段.
说一说: 1.线段AB, AC, AD , AE谁最短? 2.你能用一句话表示这个结论吗?
l B C D E A
总结归纳 连接直线外一点与直线上各点的所有线段中垂
线段最短.简单说成:垂线段最短.
A
特别规定:
l D
线段AD的长度叫做点A到直线l的距离.
A
B
又∵OD平分∠BOC,
∴∠DOC=∠BOD=50°,
F E
O
D C
∴∠COE=180°-50°-50°=80°.
课堂小结
1.垂线的定义 当两条直线相交所成的四个角中,有一个角是 直角时,这两条直线互相垂直,其中一条直线叫另
一条直线的垂线,它们的交点叫垂足.
C A
D
O
B
反之,若直线AB与CD垂直,垂足为O,则∠AOD=90°.
典例精析 例1(1)如图1,若直线m、n相交于点O,∠1=90°,则 m⊥n; (2)若直线AB、CD相交于点O,且AB⊥CD,则 ∠BOD =______ 90° ; (3)如图2,BO⊥AO,∠BOC与∠BOA的度数之比 72° ∠BOC的补角为162° 为1∶5,那么∠COA=____, .
A
1.放 2.靠 3.移 4.画
l
B
0
1
2
3
4
5
6
7
8
9
10
11 Cm
孝感市文昌中学学生专用尺
问题:这样画l的垂线可以画几条? 一条
总结归纳 垂线的性质:在同一平面内,过一点有且只有一条
直线与已知直线垂直.
注意:
1.“过一点”中的点,可以在已知直线上,也可
以在已知直线外;
2.“有且只有”中,“有”指存在,“只有”指 唯一性.
试一试: 在灌溉时,要把河中的水引到农田P处,如
何挖掘能使渠道最短?请画出图来,并说明理由.
垂线段最短 m
当堂练习
1. 过点 P 向线段 AB 所在直线引垂线,正确的是
(C)
A
B
C
D
2.如图,下列说法正确的是( D )
A.线段AB叫做点B到直线AC的距离 B.线段AB的长度叫作点A到直线AC的距离 C.线段BD的长度叫作点D到直线BC的距离 D.线段BD的长度叫作点B到直线AC的距离
m 1 OLeabharlann 图1B n O图2
C
A
活动1:
你能借助三角尺在一张白纸上画出两条互相垂
直的直线吗?
活动2: 如果只有直尺,你能在方格纸上画出两条互相
垂直的直线吗?
折一折,试一试
你能用纸折出两条互相垂直的直线吗?
例2 如图,直线BC与MN相交于点O,AO⊥BC, ∠BOE=∠NOE,若∠EON=20°,求∠AOM和 ∠NOC的度数. 解:∵∠BOE=∠NOE, ∴∠BON=2∠EON=40°, ∴∠NOC=180°-∠BON =180°-40°=140°, ∠MOC=∠BON=40°. ∵AO⊥BC, ∴∠AOC=90°, ∴∠AOM=∠AOC-∠MOC=90°-40°=50°, ∴∠NOC=140°,∠AOM=50°.
C l
O
mB
D
垂线的基本性质与判定 如图,当直线AB与CD相交于O点,∠AOD=90° 时,AB⊥CD,垂足为O. 符号语言: ①判定:∵∠AOD=90°,(已知) ∴AB⊥CD.(垂直的定义) 符号语言: ②性质:∵ AB⊥CD ,(已知) ∴ ∠AOD=90° .(垂直的定义) (∠AOC=∠BOC=∠BOD=90°)
相关文档
最新文档