深圳市高级中学2014届高三数学文第一次月考试题及答案
2014届高三名校数学(文)试题分省分项汇编 专题05 平面向量
一.基础题组1. 【江苏省诚贤中学2014届高三数学月考试题】A ,B 是半径为1的圆O 上两点,且∠AOB=π3.若点C 是圆O 上任意一点,则→OA ▪→BC 的取值范围为 .2. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知向量(1,3),(4,2)a b =-=- ,若()//a b b λ+ ,则λ= .3.【南京市、盐城市2014届高三第一次模拟考试】 在ABC ∆中,2BC =,23A π=,则AB AC ⋅的最小值为 .【答案】23- 【解析】4. 【江苏省通州高级中学2013-2014学年度秋学期期中考试】 在ABC ∆中,已知9=⋅,C A B sin cos sin ⋅=,6=∆ABC S ,P 为线段AB 上的点,且||||CB y CA x +=xy 的最大值为 ▲_ .5. 【江苏省扬州中学2013—2014学年第一学期月考】 已知||1a = ,||2b =,a 与b 的夹角为120︒,0a c b ++= ,则a 与c的夹角为 .6. 【苏州市2014届高三调研测试】已知两个单位向量a ,b 的夹角为60°,c = t a +(1 - t )b ,若b ·c = 0,则实数t 的值为 ▲ .7. 【江苏省兴化市安丰高级中学2014届高三12月月考】AC 为平行四边形ABCD 的一条对角线,(2,4),(1,3),AB AC AD ===则 .8. 【江苏省兴化市安丰高级中学2014届高三12月月考】 在平面直角坐标系xOy 中,已知(1,0)A ,(0,1)B ,点C 在第一象限内,6AOC π∠=,且2OC =,若O C O A O B λμ=+,则λ+μ的值是 .1 【解析】试题分析:根据平面向量基本定理,cos 2cos6OC AOC πλ=∠==,sin 2sin16OC AOC πμ=∠==,所以1λμ+=.考点:平面向量基本定理.9. 【江苏省兴化市安丰高级中学2014届高三12月月考】若向量a ,b 满足1=a ,2=b ,且a ,b 的夹角为3π,则+=a b .10. 【江苏省扬州中学2013—2014学年第一学期月考】 设向量),cos ,(sin x x =),sin 3,(sin x x =x ∈R ,函数)2()(x f +⋅=.(1)求函数)(x f 的单调递增区间;(2)求使不等式()2f x '≥成立的x 的取值集合.试题解析:(1) )2()(x f +⋅=222sin cos 2(sin cos )x x x x x =++二.能力题组1. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】设O 是ABC ∆的三边中垂线的交点,,,a b c 分别为角,,A B C 对应的边,已知2220b b c -+=,则BC AO --→--→⋅的范围是_____________.2220,c b b =->解得02b <<,结合2BC AD b b ⋅=- 可求得1<24BC AD -≤⋅ ,考点:1.向量数量积;2.二次函数的性质2. 【苏北四市2014届高三第一次质量检测】在平面四边形ABCD 中,已知3AB =,2DC =,点,E F 分别在边,AD BC 上,且3AD AE = ,3BC BF = ,若向量AD 与DC的夹角为060,则AB EF ⋅的值为 .3. 【苏北四市2014届高三第一次质量检测】 已知向量(cos ,sin )θθ=a ,(2,1)=-b .(1)若⊥a b ,求sin cos sin cos θθθθ-+的值;(2)若2-=a b ,(0,)2θπ∈,求sin()4θπ+的值.三.拔高题组1.2.3.。
四川省南充市南充高级中学2024-2025学年高三上学期10月检测数学试题(含答案)
南充高中高2023级上期第一次月考数学试卷考试时间:120分钟 满分:150分注意事项:1.答题前,务必将自己的姓名、班级、考号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,将答案书写在答题卡相应位置上,写在本试卷上无效.4.考试结束后将答题卡交回.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.“”是“”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件2.设l ,m 是两条不同的直线,,,是三个不同的平面,下列说法正确的是( )A .若,,则B .若,,则C .若,,则D .若,,则3.若,则( )ABC .D .4.如图,在正方体中,M ,N 分别为DB,的中点,则直线和BN 夹角的余弦值为( )ABC .D .sin θ=π4θ=αβγl α∥m α∥l m ∥l α∥l β∥αβ∥l α⊥m α⊥l m∥αγ⊥βγ⊥αβ∥sin 2αα-+=()tan πα-=1111ABCD A B C D -11AC 1A M 23135.在三棱锥中,,则是( )A .等边三角形B .直角三角形C .等腰直角三角形D .等腰三角形6.杭州亚运会的三个吉祥物分别取名“琮琮”“宸宸”“莲莲”,如图,现将三张分别印有“琮踪”“宸宸”“莲莲”图案的卡片(卡片的形状、大小和质地完全相同)放入盒子中.若从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是( )A.B .C .D .7.已知函数,若正实数a ,b 满足,则的最小值为( )A .1B .3C .6D .98.已知正三棱锥的六条棱长均为6,S 是及其内部的点构成的集合.设集合,则集合T 所表示的曲线长度为( )A .B .CD .二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部份分分,有选错的得0分.)9.函数的部分图象如图所示,则( )A .B .C .的图象关于点对称D .在区间上单调递增10.对于随机事件A 和事件B ,,,则下列说法正确的是( )A .若A 与B 互斥,则B .若A 与B 互斥,则C .若A 与B 相互独立,则D .若A 与B 相互独立,则11.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 在平面互相垂直,动点M ,N 分别在正方形对S ABC -()()20SC SA BS SC SA ++-=ABC △38295934()3f x x =()()490f a f b +-=11a b+P ABC -ABC △{}5T Q S PQ =∈=5π2ππ()()πsin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭2ω=π6ϕ=()f x π,012⎛⎫⎪⎝⎭()f x 5ππ,4⎛⎫⎪⎝⎭()0.3P A =()0.4P B =()0.3P AB =()0.7P A B = ()0.12P AB =()0.7P A B =角线AC 和BF 上移动,且,则下列结论中正确的有( )A .,使B .线段MN存在最小值,最小值为C .直线MN 与平面ABEF 所成的角恒为45°D .,都存在过MN 且与平面BEC 平行的平面三、填空题(本题共3小题,每小题5分,共15分.)12.复数的共轭复数______.13.已知向量,,,当时,向量在向量上的投影向量为______.(用坐标表示)14.已知在中,满足,点M 为线段AB 上的一个动点,若的最小值为-3,则BC 边的中线长为______.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)如图,四边形ABCD 为矩形,且,,平面ABCD ,,E 为BC 的中点.(1)求证:;(2)求四棱锥的外接球体积.16.(15分)的内角A ,B ,C 的对边分别为a ,b ,c ,已知.(1)求角A 的值;(2)若,,求b ,c .17.(15分)全国执业医师证考试分实践技能考试与医学综合笔试两部分,每部分考试成绩只记“合格”与(0CM BN a a ==<<(a ∃∈12MN CE=23(a ∀∈2i12iz +=-z =()2,1,1a =- ()1,,1b x = ()1,2,1c =-- a b ⊥b c ABC △34AB ACAB AC +=MA MC ⋅ 2AD =1AB =PA ⊥1PA =PE DE ⊥P ABCD -ABC △cos cos a B b A b c -=+a =ABC △“不合格”,两部分考试都“合格”者,则执业医师考试“合格”,并颁发执业医师证书.甲、乙、丙三人在医学综合笔试中“合格”的概率依次为,,,在实践技能考试中“合格”的概率依次为,,,所有考试是否合格互不影响.(1)求甲没有获得执业医师证书的概率;(2)这三人进行实践技能考试与医学综合理论考试两项考试后,求恰有两人获得执业医师证书的概率.18.(17分)为深入学习贯彻习近平总书记关于禁毒工作重要指示精神,切实落实国家禁毒委员会《关于加强新时代全民禁毒宣传教育工作的指导意见》,巩固青少年毒品预防教育成果,大力推进防范青少年滥用涉麻精药品等成瘾性物质宣传教育活动,进一步增强青少年学生识毒防毒拒毒意识和能力,某市每年定期组织同学们进行禁毒知识竞赛活动,为了解同学们对禁毒知识的掌握情况,现从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值;(2)求样本成绩的第75百分位数;(3)已知落在的平均成绩是56,方差是7,落在的平均成绩为65,方差是4,求两组成绩的总平均数和总方差.19.(17分)如图,三棱柱中,,且与均为等腰直角三角形,.(1)若为等边三角形,证明:平面平面ABC ;(2)若二面角的平面角为,求以下各值:①求点到平面的距离;②求平面与平面所成角的余弦值.453423122323[)40,50[)50,60[]90,100[)50,60[)60,70z 2s 111ABC A B C -2AB =ABC △1ABA △1π2ACB AA B ∠=∠=1A BC △1AAB ⊥1A AB C --π31B 1ACB 11B AC 1ACB南充高中高2023级上期第一次月考数学试卷参考答案题号1234567891011选项BCACDBABACDBCAD12.-i 13. 1415.【详解】(1)连结AE ,∵E 为BC 的中点,,∴为等腰直角三角形,则,同理可得,∴,∴,又平面ABCD ,且平面ABCD ,∴,又∵,∴平面PAE ,又平面PAE ,∴.(2)∵平面ABCD ,且四边形ABCD 为矩形∴的外接球直径∴,故:∴四棱锥.16.【答案】(1)(2)2,2【分析】(1)∵,由正弦定理可得:,∵,∴,即,∵,∴,∵,∴.(2)由题意,,所以,由,得,所以,解得:.17.【详解】(1)记甲,乙,丙三人在医学综合笔试中合格依次为事件,,,在实践考试中合格依次为,,,设甲没有获得执业医师证书的概率为P.()1,2,1-1EC CD ==DCE △45DEC ∠=︒45AEB ∠=︒90AED ∠=︒DE AE ⊥PA ⊥DE ⊂PA DE ⊥AE PA A = DE ⊥PE ⊂DE PE ⊥PA ⊥P ABCD -2R R =3344ππ33V R ===P ABCD -2π3cos cos a B b A b c -=+sin cos sin cos sin sin A B B A B C -=()sin sin sin cos cos sin C A B A B A B =+=+sin cos sin cos sin sin cos cos sin A B B A B A B A B -=++2sin cos sin B A B -=sin 0B ≠1cos 2A =-()0,πA ∈2π3A =1sin 2ABC S bc A ===△4bc =222222cos a b c bc A b c bc =+-=++()2216b c a bc +=+=4b c +=2b c ==1A 1B 1C 2A 2B 2C ()1241311525P P A A =-=-⨯=(2)甲、乙、丙获得执业医师证书依次为,,,并且与,与,与相互独立,则,,由于事件,,彼此相互独立,“恰有两人获得执业医师证书”即为事件:,概率为18.【答案】(1)0.030 (2)84 (3)平均数为62;方差为23【详解】(1)由每组小矩形的面积之和为1得,,解得.(2)成绩落在内的频率为,落在内的频率为,显然第75百分位数,由,解得,所以第75百分位数为84;(3)由频率分布直方图知,成绩在的市民人数为,成绩在的市民人数为,所以;由样本方差计算总体方差公式,得总方差为19.【答案】(1)见解析【分析】(1)设AB 的中点为E ,连接CE ,,如图所示,因为与均为等腰直角三角形,,故,且,,因为为等边三角形,故,12A A 12B B 12C C 1A 2A 1B 2B 1C 2C ()12412525P A A =⨯=()12321432P B B =⨯=()12224339P C C =⨯=12A A 12B B 12C C ()()()()()()()()()121212121212121212A A B B C C A A B B C C A A B B C C ++21421421411115295295293P ⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯-⨯+-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0.050.10.2100.250.11a +++++=0.030a =[)40,800.050.10.20.30.65+++=[)40,900.050.10.20.30.250.9++++=()80,90m ∈()0.65800.0250.75m +-⨯=84m =[)50,601000.110⨯=[)60,701000.220⨯=10562065621020z ⨯+⨯==+()(){}222110756622046562231020s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦+1A E ABC △1ABA △1π2ACB A AB ∠=∠=cos 45BC AB ==︒=CE AB ⊥112CE AB ==1112A E AB ==1A BC △1AC BC ==故,即,且AB ,平面,,故平面,且平面ABC ,故平面平面ABC .(2)①由(1)知,,,且平面平面,故即二面角的平面角,即,故为等边三角形,则,因为,,,且CE ,平面,所以平面设线段中点为F ,则,,而AB ,平面∴平面,又在三角形中易知:∴又在三角形中,由,,又由知:∴求点到平面.②由①知,平面,而,故平面,且平面,故,则,设和的中点分别为M ,N ,连接MN ,BN ,BM ,则,,故,又因为故,且平面,平面,22211AC CE A E =+1CE A E ⊥1A E ⊂1AA B 1A E AB E = CE ⊥1AA B CE ⊂1AA B ⊥CE AB ⊥1A E AB ⊥1AA B ABC AB =1CEA ∠1A AB C --1π3CEA ∠=1CEA △11CA CE ==CE AB ⊥1A E AB ⊥1A E CE E = 1A E ⊂1CA E AB ⊥1CA E 1A E 1CF A E ⊥AB CF ⊥1A E ⊂11ABB A CF ⊥11ABB A 1CEA △CF =1111111332A BB VC A BB CF S -=⋅==△1A BC 11AC =1BC A B ==1A BC S =△1111113C A BB B A BC A BC V V S d --==⋅⋅△d =1B 1ACB AB ⊥1CA E 1AB A B ∥11A B ⊥1CA E 1AC 1CA E 111A B AC ⊥1B C ==1AC 1B C 11MN A B ∥11112MN A B ==1MN AC ⊥1BC A B ==1BM AC ⊥MN ⊂11A B C BM ⊂1A BC故∠BMN 即二面角-的平面角,且因为,故,则所以.故平面与平面.11B AC B --MN ===11BB AA BC ===1BN B C ⊥BN ===222cos 2BM MN BN BMN BM MN +-∠===⋅11B AC 1ACB。
广东省深圳市高级中学2014届高三物理上学期第一次月考试题新人教版
高级中学2014年高三第一次月考理综物理试题可能用到的原子量:H-1 C-12 O-16 Mg-24 S-32选择题(118分)一、单项选择题:本大题共16小题,每小题小题,每小题4分,共64分。
在每小题给出的四个选项中,只有一个符合题目要求,选对的得4分,选错或不答的得0分。
13.如图所示,滑雪运动员由斜坡高速向下滑行时其v —t 图象如图示,则由图象中AB 段曲线可知,运动员在此过程中( )A. 机械能守恒B .做变加速运动C .做曲线运动D .所受的合力不断增大14.长度为0.2m 的轻质细杆OA ,A 端有一质量为1kg 的小球,以O 点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时的速度为2m/s ,取g=10m/s 2,则此时轻杆OA 将( )A .受到10N 的拉力B .受到10N 的压力C .受到20N 的拉力D .受到20N 的压力15.如图,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块。
现假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t 增大的水平力F=kt (k 是常数),木板和木块加速度大小分别为a 1和a 2。
下列反映a 1和a 2变化的图线正确的是( )16.一光滑圆环固定在竖直平面内,环上套着两个小球A 和B (中 央有孔),A 、B 间由细绳连接着,它们处于图中所示位置时恰好都能保持静止状态。
此情况下,B 球与环中心O 处于同一水平面上,A 、B 间的细绳呈伸直状态,与水平线成300夹角。
已知A 、B 球的质量分别为m A 和m B , 则( )A .m A > mB B .m A < m BC .m A =m BD .无法比较m A 和m B 的大小Om A A二、双项选择题:本大题共9小题,共54分。
在每小题给出的四个选项中,有两个选项符合题目要求,全部选对的得6分,只选1个且正确的得3分,有选错或不答的得0分。
2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量
2014届高三数学一轮复习考试试题精选(1)分类汇编10:平面向量一、填空题 1 .(江苏省宿迁市2014届高三上学期第一次摸底考试数学试卷)已知非零向量,a b 满足(2)(2)-⊥-⊥,,a b a b a b 则向量a 与b 的夹角为______.【答案】π32 .(江苏省南京市2014届高三9月学情调研数学试题)如图,在△ABC 中,D,E 分别为边BC,AC的中点. F 为边AB 上. 的,且,则x+y 的值为____【答案】523 .(江苏省徐州市2014届高三上学期期中考试数学试题)已知O 是ABC ∆的外心,10,6==AC AB ,若ACy AB x AO ⋅+⋅=且5102=+y x ,则=∠BAC cos _____________.【答案】314 .(江苏省盐城市2014届高三上学期期中考试数学试题)在ABC ∆中,若22()||5CA CB AB AB +⋅= ,则tan tan AB= ________. 【答案】735 .(江苏省兴化市2014届高三第一学期期中调研测试)已知在ABC∆中,3==BC AB ,4=AC ,设O 是ABC ∆的内心,若AC n AB m AO +=,则=n m :__★__.【答案】3:4 提示一:利用夹角相等,则有ACAC AO AB AB AO ⋅=⋅||.提示二:利用角平分线定理,根据相似比求得AC AB AO 103104+=6 .(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知非零向量a ,b 满足|a |=|a +b |=1,a 与b 夹角为120°,则向量b 的模为________.【答案】17 .(江苏省启东中学2014届高三上学期期中模拟数学试题)如图, 在等腰三角形ABC 中, 底边2=BC , DC AD =, 12AE EB = , 若12BD AC ⋅=- , 则AB CE ⋅=_____.【答案】43-8 .(江苏省无锡市2014届高三上学期期中调研考试数学试题)在ABC ∆中,M 为AB 的的三等分点,:1:3,AM AB N =为AC 的中点,BN 与CM 交于点E ,,AB m AC n ==,则AE =_____________________.【答案】1255m n +9 .(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)在平面直角坐标系中,O是坐标原点,()2,0A ,()0,1B ,则点集{},1,,P OP OA OB R λμλμλμ=++≤∈所表示的平面区域的面积是________.【答案】410.(江苏省兴化市2014届高三第一学期期中调研测试)设向量a 、b 满足:|a |3=,|b |1=,a·b 23=,则向量a 与b 的夹角为__★__. 【答案】6π 11.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)向量b n a m b a --==若),3,2(),2,1(与b a 2+共线(其中,,0m m n R n n∈≠且)则等于_.【答案】21-12.(江苏省无锡市市北高中2014届高三上学期期初考试数学试题)已知a 、b 、c都是单位向量,且a b c += ,则a c ⋅的值为_________.【答案】1213.(江苏省盐城市2014届高三上学期期中考试数学试题)在ABC ∆中,6BC =,BC 边上的高为2,则AB AC ⋅的最小值为________.【答案】5-14.(江苏省无锡市市北高中2014届高三上学期期初考试数学试题)已知ABC ∆是边长为4的正三角形,D 、P 是ABC ∆内部两点,且满足11(),48AD AB AC AP AD BC =+=+,则APD ∆的面积为__________.【答案】3415.(江苏省南京市第五十五中学2014届高三上学期第一次月考数学试题)P 是ABC ∆所在平面内一点,若PB PA CB +=λ,其中R ∈λ,则P 点一定在(A)ABC ∆内部 (B)AC 边所在直线上 (C)AB 边所在直线上 (D)BC 边所在直线上【答案】B16.(江苏省启东中学2014届高三上学期期中模拟数学试题)已知)2s i n ,2(),sin ,1(2x b x a ==,其中()0,x π∈,若a b a b ⋅=⋅,则tan x =_____. 【答案】1;17.(江苏省泰州中学2014届第一学学期高三数学摸底考试)在平面直角坐标系x O y 中,已知=(3,﹣1),=(0,2).若•=0,=λ,则实数λ的值为__________.【答案】218.(江苏省泰州市姜堰区2014届高三上学期期中考试数学试题)如图,,,A B C 是直线上三点,P 是直线外一点,1==BC AB ,︒=∠90APB ,︒=∠30BPC ,则PA PC ⋅=________.【答案】74-19.(江苏省南莫中学2014届高三10月自主检测数学试题)已知向量a 的模为2,向量e 为单位向量,)(e a e -⊥,则向量a 与e 的夹角大小为_______.【答案】3π; 20.(江苏省诚贤中学2014届高三上学期摸底考试数学试题)已知向量a 与b 的夹角为60º,300lABCP且|a |=1,|b |=2,那么2()+a b 的值为________.【答案】721.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知O 为△ABC 的外心,,120,2,20=∠==BAC aAC a AB 若AC AB AO βα+=,则βα+的最小值为____【答案】222.(江苏省泰州市姜堰区张甸中学2014届高三数学期中模拟试卷)已知平面向量(1,2)a = ,(1,3)b =-,则a 与b 夹角的余弦值为___________【答案】22; 23.(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)已知b a ,是非零向量且满足a b a ⊥-)(2,b a b ⊥-)(2,则a 与b 的夹角是________.【答案】3π24.(江苏省扬州中学2014届高三开学检测数学试题)已知正方形ABCD 的边长为1,若点E 是AB 边上的动点,则DC DE ⋅的最大值为 ▲ .【答案】125.(江苏省淮安市车桥中学2014届高三9月期初测试数学试题)若向量→a 、→b 满足|→a |=1,|→b|=2,且→a 与→b 的夹角为π3,则|→a +2→b |=_______【答案】2126.(江苏省连云港市赣榆县清华园双语学校2014届高三10月月考数学试题)已知向量a =(2,1),a ·b =10,|a +b |52=,则|b |=__________【答案】527.(江苏省盐城市2014届高三上学期期中考试数学试题)设向量(1,),(3,4)a x b ==- ,若//a b,则实数x 的值为________.【答案】43-28.(江苏省常州市武进区2014届高三上学期期中考试数学(理)试题)已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k =________. 【答案】1-29.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)若等腰梯形ABCD中,//AB CD ,3AB =,2BC =,45ABC ∠=,则AC BD ⋅的值为____________【答案】330.(江苏省苏州市2014届高三暑假自主学习测试(9月)数学试卷)设x ∈R,向量(,1),(3,2)x ==-a b 且⊥a b ,则x = ______. 【答案】2331.(江苏省无锡市洛社高级中学2014届高三10月月考数学试题)设平面向量(1,2)a =,与向量(1,2)a =共线的单位向量坐标为_______.【答案】525(,)55或255(,)55-- 32.(江苏省扬州市扬州中学2014届高三10月月考数学试题)已知向量(12,2)a x =-,()2,1b - =,若→→b a //,则实数x =______.【答案】25 二、解答题33.(江苏省南莫中学2014届高三10月自主检测数学试题)设(,1)a x = ,(2,1)b =- ,(,1)c x m m =--(,x m ∈∈R R ). (Ⅰ)若a 与b的夹角为钝角,求x 的取值范围; (Ⅱ)解关于x 的不等式a c a c +<- .【答案】(1)由题知:210a b x ⋅=-< ,解得12x <;又当2x =-时,a 与b 的夹角为π,所以当a 与b 的夹角为钝角时, x 的取值范围为1(,2)(2,)2-∞-⋃-(2)由a c a c +<-知,0a c ⋅< ,即(1)[(1)]0x x m ---<;当2m <时,解集为{11}x m x -<<; 当2m =时,解集为空集;当2m >时,解集为{11}x x m <<-34.(江苏省徐州市2014届高三上学期期中考试数学试题)设向量(2,sin ),(1,cos ),a b θθθ==为锐角.(1)若136a b ⋅= ,求sin cos θθ+的值;(2)若//a b ,求sin(2)3πθ+的值.【答案】解:(1)因为a ·b =2 + sin θcos θ =136 , 所以sin θcos θ = 16, 所以(sin θ +cos θ)2= 1+2sin θcos θ = 34 .又因为θ为锐角,所以sin θ + cos θ =233(2)因为a ∥b ,所以tan θ = 2,所以sin2θ = 2sin θcos θ = 2sin θcos θsin 2θ+cos 2θ = 2tan θtan 2θ+1 = 45 , cos2θ = cos 2θ-sin 2θ = cos 2θ-sin 2θsin 2θ+cos 2θ = 1-tan 2θtan 2θ+1 = — 35所以sin(2θ+ π3 ) = 12 sin2θ + 32 cos2θ = 12 ×45+32 ×(-35) = 4-331035.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)已知在等边三角形ABC中,点P 为线段AB 上一点,且(01)AP AB =≤≤λλ.(1)若等边三角形边长为6,且13=λ,求CP ; (2)若CP AB PA PB ⋅≥⋅,求实数λ的取值范围.【答案】(1)当13=λ时,13AP AB = , 2222221()262622282CP CA AP CA CA AP AP =+=+⋅+=-⨯⨯⨯+= .∴||27CP =(2)设等边三角形的边长为a ,则221()()2CP AB CA AP AB CA AB AB a a ⋅=+⋅=+λ⋅=-+λ ,222()()PA PB PA AB AP AB AB AB a a ⋅=⋅-=λ⋅-λ=-λ+λ即2222212a a a a -+λ≥-λ+λ,∴21202λ-λ+≤,∴222222-+≤λ≤. 又00≤λ≤,∴2212-≤λ≤. 36.(江苏省无锡市2014届高三上学期期中调研考试数学试题)已知向量,m n的夹角为45︒,则||1,||2m n == ,又2,3a m n b m n =+=-+ .(1)求a 与b 的夹角;(2)设,2c ta b d m n =-=-,若//c d ,求实数t 的值.【答案】37.(江苏省沛县歌风中学(如皋办学)2014届高三10月月考数学试题)设(cos ,(1)sin ),(cos ,sin ),(0,0)2a b παλαββλαβ=-=><<< 是平面上的两个向量,若向量a b + 与a b -互相垂直.(Ⅰ)求实数λ的值;(Ⅱ)若45a b ⋅= ,且4tan 3β=,求tan α的值.【答案】(Ⅰ)由题设可得()()0,a b a b +⋅-=即220,a b -= 代入,a b 坐标可得22222cos +(1)sin cos sin 0αλαββ---=.222(1)sin sin 0,λαα∴--=0,0,22παλλ<<>∴= .(Ⅱ)由(1)知,4cos cos sin sin cos(),5a b αβαβαβ⋅=+=-=02παβ<<<∴ 02παβ-<-<33sin(),tan()54αβαβ∴-=--=-.34tan()tan 743tan tan[()]=341tan()tan 241()43αββααββαββ-+-+∴=-+==--⋅--⨯. 7tan 24α∴= 38.(江苏省淮安市车桥中学2014届高三9月期初测试数学试题)已知平面向量a =(1,2sin θ),b =(5cos θ,3).(1)若a ∥b ,求sin2θ的值; (2)若a ⊥b ,求tan(θ+π4)的值.【答案】 (1)因为a ∥b ,所以1×3-2sin θ×5cos θ=0,即5sin2θ-3=0,所以sin2θ=35(2)因为a ⊥b ,所以1×5cos θ+2sin θ×3=0 所以tan θ=-56所以tan(θ+π4)=tan θ+tanπ41-tan θtanπ4=11139.(江苏省启东中学2014届高三上学期期中模拟数学试题)已知,,a b c是同一平面内的三个向量,其中(1,2)a =(1)若||25c =,且//c a ,求:c 的坐标(2)若5||2b = ,且2a b + 与2a b - 垂直,求a 与b 的夹角【答案】解:设(,)c x y = 由//||25c a c =及得2212022,4420y x x x y y x y ⋅-⋅===-⎧⎧⎧∴⎨⎨⎨==-+=⎩⎩⎩或 所以,(2,4)(2,4)c c ==-- 或 (2)∵2a b + 与2a b - 垂直,∴(2)(2)0a b a b +⋅-=即222320a a b b +⋅-= ;∴52a b ⋅=-∴cos 1||||a ba b θ⋅==- ,∵[0,]θπ∈∴θπ=40.(江苏省泰州市姜堰区2014届高三上学期期中考试数学试题)设平面向量)23,21(),1,3(=-=b a ,若存在实数)0(≠m m 和角θ,其中)2,2(ππθ-∈,使向量θθtan ,)3(tan 2⋅+-=-+=b a m d b a c ,且d c ⊥.(Ⅰ)求)(θf m =的关系式; (Ⅱ)若]3,6[ππθ-∈,求)(θf 的最小值,并求出此时的θ值. 【答案】解: (Ⅰ)∵dc ⊥,且1,2,0===⋅b a b a ,∴0)tan 3(tan 232=-+-=⋅b a m d c θθ∴)2,2(),tan 3(tan 41)(3ππθθθθ-∈-==f m (Ⅱ)设θtan =t ,又∵]3,6[ππθ-∈,∴]3,33[-∈t ,则)3(41)(3t t t g m -== )1(43)(''2-==t t g m 令0)('=t g 得1-=t (舍去) 1=t ∴)1,33(-∈t 时0)('<t g ,)3,1(∈t 时0)('>t g ,∴1=t 时,即4πθ=时, )1(g 为极小值也是最小值,)(t g 最小值为21- 41.(江苏省如皋中学2014届高三上学期期中模拟数学试卷)如图,在△OAB 中,已知P 为线段AB 上的一点,.OP x OA y OB =⋅+⋅(1)若BP PA =,求x ,y 的值;(2)若3BP PA = ,||4OA = ,||2OB =,且OA 与OB 的夹角为60°时,求OP AB ⋅ 的值.【答案】(1)∵BP PA =,∴BO OP PO OA +=+ ,即2OP OB OA =+ ,∴1122OP OA OB =+ ,即12x =,12y =(2)∵3BP PA = ,∴33BO OP PO OA +=+,即43OP OB OA =+∴3144OP OA OB =+∴34x =,14y =31()()44OP AB OA OB OB OA ⋅=+⋅-131442OB OB OA OA OA OB =⋅-⋅+⋅221311244294422=⨯-⨯+⨯⨯⨯=-。
广东省深圳市第三高级中学2025届高三第一次调研考试数学试题
广东省深圳市第三高级中学2025届高三第一次调研考试数学试题一、单选题1.已知集合{}log 5x A x =,集合{2,1,0,1,2}B =--,则A B ⋂=( ) A .{2-}B .{2-,1-,0}C .{2}D .{0,1}2.某高校要求学生除了学习第二语言英语,还要求同时进修第三语言和第四语言,其中第三语言可从A 类语言:日语,韩语,越南语,柬埔寨语中任选一个,第四语言可从E 类语言:法语,德语,俄语,西班牙语,意大利语,则学生可选取的语言组合数为( ) A .20B .25C .30D .353.已知 1.20.9a =,3log 4b =,ln 0.1c =,则,,a b c 的大小关系为( ) A .a b c >>B .b a c >>C .c b a >>D .b c a >>4.已知直线20kx y -+=和以()3,2M -,()2,5N 为端点的线段相交,则实数k 的取值范围为( ) A .4,3⎛⎤-∞- ⎥⎝⎦B .3,2⎡⎫+∞⎪⎢⎣⎭C .43,32⎡⎤-⎢⎥⎣⎦D .43,,32⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭U5.已知圆柱和圆锥的底面半径相等,侧面积相等,则圆锥的体积为( )A .B .C .D .6.设F 为抛物线2:C y ax =的焦点,若点(1,2)P 在C 上,则||PF =( ) A .3B .52C .94D .1787.已知随机事件A ,B 满足()13P A =,()34P AB =∣,()716P B A =∣,则()P B =( ) A .14B .316C .916D .41488.已知直线y =ax -a 与曲线ay x x=+相切,则实数a =( ) A .0B .12C .45D .32二、多选题9.已知(cos ,sin ),(cos )a x x b x x ==r r ,函数()f x a b =⋅rr ,则下列选项正确的是( )A .函数()f x 的值域为13,22⎡⎤-⎢⎥⎣⎦B .将函数1sin 2y x =+图像上各点横坐标变为原来的12(纵坐标不变),再将所得图像向左平移12π个单位长度,可得函数()f x 图像 C .函数()f x 是奇函数D .函数()f x 在区间[0,2]π内所有零点之和为143π10.已知椭圆2212:1(0x C y m m+=>且1)m ≠与双曲线2222:1(0)x C y n n -=>的焦点重合,12,e e 分别为椭圆1C ,双曲线2C 的离心率,则( )A .01m <<B .121e e >C .m n >D .当1n =时,3m =11.如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =三、填空题12.已知i 为虚数单位,复数z ,满足5z =,z 在复平面中的第一象限,且实部为3,则z 为 13.现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ==,()E ξ=.14.已知函数()2e 1xf x x m =+-有两个极值点1x ,2x ,且212x x ≥,则实数m 的取值范围是.四、解答题15.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表.(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)依据小概率值0.010α=的独立性检验,分析甲机床的产品质量是否与乙机床的产品质量有差异.附:χ2=2(-))n ad bc d .16.如图,在三棱锥P ABC -中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥P ABC -的体积.17.已知曲线C 上任意一点P 到点()2,0F 的距离比它到直线:1l x =-的距离大1. (1)求曲线C 的方程;(2)若直线:80l x my +-=与曲线C 交于A ,B 两点,求证:OA OB ⊥.18.已知函数()()()2e 32e 10,xf x ax b x b a a b =+-++-+>∈R ,且()00f >,()10f >.(1)若2a =,函数()f x 在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,求实数b 的取值范围;(2)证明:对于任意实数x ∈R ,()()()20310f x f f ++>.参考数据:e 2.7182818≈. 19.已知数列{}n a 的前n 项和为n S ,若存在常数(0)λλ>,使得1n n a S λ+≥对任意*n ∈N 都成立,则称数列{}n a 具有性质()P λ.(1)若数列{}n a 为等差数列,且359,25S S =-=-,求证:数列{}n a 具有性质(3)P ; (2)设数列{}n a 的各项均为正数,且{}n a 具有性质()P λ. ①若数列{}n a 是公比为q 的等比数列,且4λ=,求q 的值; ②求λ的最小值.。
深圳市布吉高级中学高三文科数学第一学期第一次月考(附答案)
布吉高级中学2013--2014学年度第一学期月考试卷高三(文科)数学满分:150分 时间:120分钟考生注意:客观题请用2B 铅笔填涂在答题卡上,主观题用黑色的水笔书写在答题卡上。
一、选择题:(本大题共10小题,每小题5分,共50分。
) 1. 已知全集{}1,2,3,4U =,集合{}{}1,3,4,2,3A B ==,则图中阴影部分表示的集合为A .{2}B .{3}C .{1,4}D .{1,2,3,4}2. 已知i 是虚数单位,则复数1-2i 的虚部为A .2B .1C .1-D .2-3. 已知曲线281x y =的一条切线的斜率为12,则切点的横坐标为A .4B .3C .2 D.124. 函数lg(1)()1x f x x +=-的定义域是A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞D .[1,1)(1,)-+∞ 5. 已知51)2cos(=+απ,那么=αsin A .25- B .15- C .15 D .256. 某程序框图如图所示,该程序运行后,输出s 的值是A .10B .15C .20D .307. 将函数y=sinx 图象上所有的点向左平移3π个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象 的函数解析式为A .)(32sin π+=x yB .)(62sin π+=x yC .)(32sinπ+=x y D .)(32sin π-=x y 8.若a>0,b>0,且函数f (x )=3242x ax bx --在x=1处有极值,则a+b 等于A .2B .3C .6D .99. 已知函数22,0()log ,0x x f x x x ⎧≤=⎨>⎩,则[(1)]f f -=A .2-B .1-C .1D .210. 设函数()fx 的定义域为D ,如果x D y D ,∀∈∃∈,使()()2f x fy C C (+= 为常数)成立,则称函数()fx 在D 上的均值为C . 给出下列四个函数:①3yx =;②12xy ⎛⎫= ⎪⎝⎭;③y x ln =;④21y x sin =+, 则满足在其定义域上均值为1的函数的个数是A .1B .2C .3D .4二、填空题:(本大题共5小题.考生作答4小题.每小题5分,满分20分.)(一)必做题(11~13题) 11. =32sinπ12. cos 25cos35sin 25sin35-=_____________13. 函数()y f x =的图象在点(1,(1))M f 处的切线方程是y ex e =-,则(1)f '= (二)选做题(14、15题,考生只能从中选做一题;两道题都做的,只记第一题的分) 14.(坐标系与参数方程选做题)过点(2,)3π且平行于极轴的直线的极坐标方程为________.15.(几何证明选讲选做题) 已知PA 是圆O 的切线,切点为A , 直线PO 交圆O 于,B C 两点,2AC =,120PAB ∠=, 则圆O 的面积为 .三、解答题:(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)16. (本小题满分12分)已知54sin =α,),2(ππ∈α.试求:(1)αtan 的值;(2)sin2α的值;PABOC17.(本小题满分12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.18.(本小题满分14分)已知函数a x x x x f +++-=93)(23. (1)求f (x )的单调递减区间;(2)若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值19.(本小题满分14分)已知函数(),12f x x x R π⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭的值; (2) 若33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.20.(本小题满分14分)数列{}n a 的前n 项和为22n n S a =-,数列{}n b 是首项为1a ,公差不为零的等差数列,且1311,,b b b 成等比数列. (1)求123,,a a a 的值;(2)求数列{}n a 与{}n b 的通项公式; (3)求证:3121235n nb b b b a a a a ++++< .21. (本小题满分14分)已知函数3211()(,)32a f x x x bx a ab +=-++∈R ,且其导函数()f x '的图像过原点.(1)当1a =时,求函数()f x 的图像在3x =处的切线方程; (2)若存在0x <,使得()9f x '=-,求a 的最大值; (3)当0a >时,求函数()f x 的零点个数。
广东省深圳市高级中学2014届高三上学期第一次月考文综试题 Word版含答案
高级中学2013—2014学年第一学期第一次测试高三文科综合2013.9.23本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为1—35题,共140分,第Ⅱ卷为36—41题,共160分。
全卷共计300分。
考试时间150分钟。
第Ⅰ卷(选择题共140分)一、单项选择题(每小题4分。
在每小题的四个选项中,只有一个选项最符合题目要求。
)下面是我国部分地区1951~1988年旱灾频次等值线图(单位:次),读图回答1~2题。
1.图中M地的旱灾频次可能为()A.25次B.30次C.35次D.40次2.图中①地的旱灾多发生在7~8月,其主要原因是()ks5uA.河流径流量小B.受高气压控制C.地下水位下降D.工业用水增大3.图中4条曲线分别示意北半球中纬度某湖泊的浮游植物生物量与光照、营养物质含量、气温的年变化。
若营养物质供应充足,则该湖泊浮游植物大量繁殖大约会持续()A.1个月 B.3个月 C.6个月 D.12个月4.依据地球大气受热过程示意图,分析大气中()A.臭氧层遭到破坏,会导致①增加 B.二氧化碳浓度降低,会使②减少ks5u C.可吸入颗粒物增加,会使③增加 D.出现雾霾,会导致④在夜间减少5.由于印度洋板块向北漂移与挤压,在第四纪青藏高原隆起,从而改变了区域大气环流格局。
青藏高原隆起后,下列区域的气候变化正确的是()ks5uA.柴达木盆地变冷、变湿B.四川盆地变变冷、变湿C.塔里木盆地变暖、变干D.华北平原夏季降水量增多o o~7题。
6.该气象站所在地的气候类型是()A.热带雨林气候B.热带草原气候C.热带季风气候D.热带沙漠气候7.该气象站1月日平均日照时数高于7月,主要是因为该地1月()A.正午太阳高度大B.白昼时间长C.太阳辐射强D.晴朗天气多8.下列4幅图中,一定表示冷锋天气的是()A B C D9.下图表示“四个地区农业产值结构和商品率示意图”,关于四个农业类型所在地区农业生产特点的说法,最可能正确的是()ks5uA .甲主要生产水稻,只分布在东亚季风区ks5uB .乙主要生产小麦和玉米,多分布在地广人稀的地区ks5uC .丙主要种植小麦和玉米.饲养牛羊,机械化水平很低D .丁主要生产鲜奶及乳产品,分布在地广人稀的干旱地区10.下图为某城市三种行业付租能力随距离变化示意图,该城市规模扩大和地价上涨将导致A .①、③的用地面积缩小,②的用地面积扩大B .①、②的用地面积缩小,③的用地面积扩大C .①、②、③的用地面积均扩大,①扩大得最多D .①、②的用地面积扩大,部分③用地转变为②11.右图是一位驴友在别德马(64°W ,40°30′S)拍摄的景观图片:( )A .1月1日日出B .4月1日日落C .7月1日日出D .10月1日日落12.《荀子·王制》:“凡农之道,厚(候)之为宝。
广东省深圳第二高级中学2014届高三上学期第一次月考文科数学试卷(解析版)
广东省深圳第二高级中学2014届高三上学期第一次月考文科数学试卷(解析版)一、选择题1【答案】C【解析】考点:集合的运算(补集、交集)2,A【答案】D【解析】试题分析:分子、分母同乘以-i得(3+4i)(-i)=4-3i.考点:复数的运算3( )A B D【答案】A【解析】也可以直接验证得到。
考点:导数求法及几何意义4,,角形,则该椭圆的离心率为( )A B C【答案】B【解析】从而离心率为考点:椭圆及其几何性质5,俯视图为圆,则该几何体的体积是( )A【答案】D【解析】试题分析:该几何体是一个底面半径为1,母线长为2考点:三视图、体积计算6.定义的偶函足:对任+∞),有则( ) ACD【答案】B【解析】考点:函数的奇偶性、单调性7,( )【答案】D【解析】试题分析:由对数函数与指数函数互为反函数得,,从而,0,2)与(1,1)即可验证.也可以利用图像变换画出.考点:1.指数函数与对数函数 2.图像变换8.有下列四个命题:2;9;.其中真命题的个数为( )A.0B.1C.2D.3【答案】C【解析】对②,这是指数函数的性质;对③,条件应为,.因此②④两个命题正确. 考点:函数的对称性、周期性;指数函数的性质;基本不等式的应用;向量垂直的判定9( ) A .6 B .3C .D .1 【答案】A【解析】试题分析:这是线性规划的应用.原点的连线的斜率.(1,6).考点:线性规划的应用.10,取值范围是( )A.B.. D.(-2,3)【答案】A 【解析】试题分析:又奇函数满足-1,1)上的减函数,所以考点:函数的奇偶性、单调性的应用,解不等式(组).二、填空题11的定义域为 .【解析】考点:定义域的求法、解不等式12的单调递增区间是 .-1可以取等号,1不可以)【解析】试题分析:上是减函数,利用复合函数单调性的判定得,函数的单调递增区间是(-1,1).考点:复合函数单调性的判定13则____________.【答案】9【解析】2画出两个函数在区间(0,10]的图像即可.考点:函数的周期性、函数与方程的应用14.在极坐标系中,的距离为. 【答案】1【解析】,,若【解析】考点:圆的切线,圆周角与圆心角的关系三、解答题16(1(2.【答案】(1(2【解析】试题分析:(1(2)利用角围,再代入两角和的正弦公式计算求值.试题解析:(112-⎣分分(2分分 考点:1.三角函数的图像与性质 2.三角恒等变换 3.三角函数的基本运算17,(1(2.【答案】(1)详见解析,(2【解析】试题分析:(1)转化三角形问题中的边角关系式,首先要选择定理.由正弦定理(2)解三角形问题应灵活应用边角的计算公式.在(1.试题解析:(1)根据正弦定理,分又在△ABC中分5分(2)由(1分分分分考点:解三角形,三角恒等变换18,,其成绩的频率分布如下表所示:(1;(2)考生A填报志愿后,得知另外有4名同分数考生也填报了该志愿.若该志愿计划录取2人,并在同分数考生中随机录取,求考生A被该志愿录取的概率.(参考数据:610×0.061+570×0.154+530×0.193+490×0.183+450×0.161+410×0.133=443.93)【答案】(1)约488.4分(2)0.4【解析】试题分析:(1)解决实际应用问题,一要审清题意、二要构建模型、三规范解答、四要回归实际.用分数段的中点及频率估计平均分,注意利用试题给出的参考数据,还要考虑实际问题对结果数值的要求(2)这是一个古典模型,分别计算出基本事件总数及所求事件包含的基本事件数,代入公式进行计算.试题解析:(16分(列式3分,计算2分,近似值1分.1分;列式无计算而写2分)(2)设另外4名考生分别为、、、,则基本事件有:共10种11分4种 13分分考点:1.用样本估计总体 2.古典概型19.(1,.(2,..,.【答案】(1(2【解析】试题分析:(1)解决命题问题,首先要转化为相应的数学问题进行解答,然后再利用命题的逻辑关系列式求解.先解二次不等式,求出两个命题对应的范围,然后利用集合关系判断充要条件的方法列不等式组求解;判断充要条件要注意“方向性”.(2)内的实数根判定,要结合二次函数图像的特征考虑三个条件:判别式的符号、对称轴与区间的位置关系、区间端点的函数值的符号.的条件,求出两个命题对应的范围,然后利用“或”命题为真命题列不等式组求解.试题解析:(1)分分分分(2分分分分分考点:1.命题真假的判定 2.充要条件的判定 3.二次方程实数根的判定20..(1(2≠≠(3n 项和,【答案】(1(2(3)10【解析】试题分析:(1)利用导函数及待定系数法求解;(2)利与的关系(3)数列求和的方法由数列的通项公式决定.常用的方法有:公式求和法、倒序相加法、错位相减法、裂项相消法、分组.试题解析:(1分分分(2分分分分(3)由(2分11分分13分m为10. 14分考点:1.导数运算 2.通项公式、前n项和的求法 3.函数(数列)最值的求法21(1,(2(3.【答案】(1)单调递增(2(3【解析】试题分析:(1)判断函数的单调性常用作差比较法、导函数法.其共同点都是与0比大小确定单调性.也可以利用基本初等函数的单调性判断:(2)利用导函数法求闭区间上的最值,首先要求出极值,然后再与两个端点函数值比较得出最值;既要灵活利用单调性,(3)解决“恒成立”问题,常用分离参数法,转化为求新构造函数的最值(或值域).试题解析:(1)由题意得,且1分3分(2)1; 5分0,不合题意; 6分;;; 9分10分(3),(分离参数求解)令. 则;11分即恒成立,说明在单调递减,; 13分所以.14分考点:1.函数的单调性 2.导数及其应用。
广东深圳高级中学2025届高三上学期第一次诊断测试数学试题+答案
(本试卷共3页,19小题,满分150分。
考试用时120分钟。
) 2024.深圳市高级中学2025届高三第一次诊断考试数学10一、单项选择题:本题共8小题,每小题5分,共40分。
1.已知集合{}2,1,0,1,2,3U =−−,{}1,2A =,{}1,0,1B −,则()U A B = ( )A .{}2,3−B .{}2,2,3−C .{}2,1,0,3−−D .{}2,1,0,2,3−−2.1e ,2e是平面内不共线两向量,已知12AB e ke =− ,122CB e e =+ ,123CDe e =− ,若A ,B ,D 三点共线,则k 的值是( ) A .2−B .2C .3−D .33.若α是第三象限角,且()()5sin cos cos sin 13αββαββ+−+=−,则tan 2α的值为( )A .5−B .5C .513−D .5134.已知函数()f x 的定义域为[]2,2−,则函数()()1f x F x x+=的定义域为( )A .[]1,3−B .[]3,1−C .[)(]1,00,3−D .[)(]3,00,1−5.已知函数()()22ln 3f x x ax a =−−在[)1,+∞上单调递增,则a 的取值范围是( ) A .(],1−∞−B .(),1−∞−C .(],2−∞D .()2,+∞6.已知平面向量1e 和2e 满足2122e e == ,2e 在1e 上的投影向量为1e − ,则1e 在2e 上的投影向量为( )A .212e −B .12−C .214e −D .2e −7.已知关于x 不等式()()20x ax b x c−+≥−的解集为(](],21,2−∞− ,则( )A .2c =B .点(),a b 在第二象限C .22y ax bx a =+−的最大值为3aD .关于x 的不等式20ax ax b +−≥的解集为[]2,1−8.已知0a >,1x ,2x 分别是函数()e xf x x a =−与()ln xg x a x=−−的零点,则1212e a x x x −的最大值为( )A .2B .22e C .24e D .28e二、多项选择题:本题共3小题,每小题6分,共18分。
广东省深圳市高级中学高一数学文月考试题含解析
广东省深圳市高级中学高一数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 是,的平均数,是,,,的平均数,是,,的平均数,则下列各式正确的是()A.B.C.D.参考答案:A略2. 设函数,对于给定的正数K,定义函数,若对于函数定义域内的任意,恒有,则( )A.K的最小值为1 B.K的最大值为1C.K的最小值为 D. K的最大值为参考答案:C略3. 设y1=40.9,y2=80.48,y3=,则()A.y3>y1>y2 B.y2>y1>y3 C.y1>y3>y2 D.y1>y2>y3参考答案:【考点】指数函数的单调性与特殊点.【分析】化简这三个数为2x的形式,再利用函数y=2x在R上是增函数,从而判断这三个数的大小关系.【解答】解:∵=21.8,=(23)0.48=21.44,=21.5,函数y=2x在R上是增函数,1.8>1.5>1.44,∴21.8>21.5>21.44,故y1>y3>y2,故选C.4. .若函数f(x)=log a(x+1)(a>0且a≠1)的定义域和值域都为[0,1],则a的值是( )A.2B.C. 3 D参考答案:A略5. 关于函数的四个结论:①最大值为;②把函数的图象向右平移个单位后可得到函数的图象;③单调递增区间为,;④图象的对称中心为,.其中正确的结论有()A.1个B.2个C.3个D.4个参考答案:根据题意,由于,然后根据三角函数的性质可知,P1:最大值为成立;P2:把函数的图象向右平移个单位后可得到函数的图象,故错误;P3:单调递增区间为[],;不成立P4:图象的对称中心为(),,成立故正确的有2个,选B.6. 如图,已知圆,四边形ABCD为圆M的内接正方形,E,F 分别为边AB,AD的中点,当正方形ABCD绕圆心M转动时,的取值范围是()A. B.[-8,8] C. D. [-4,4]参考答案:B【分析】由平面向量基本定理可知,结合垂直关系和数量积运算性质可知,根据数量积的定义,可得,从而求得范围.【详解】由题意可得:,的半径为又,∴本题正确选项:【点睛】本题考查向量数量积取值范围的求解问题,关键是能够通过平面向量基本定理和垂直关系将所求数量积转化为,通过数量积的定义,结合三角函数的范围求得对应的取值范围.7. 已知寞函数f(x)=的图象过点(2,),则函数f(x)的定义域为A.(一,0)B.(0,+)C.(一,0)U(0,+)D.(一,+)参考答案:C8. 已知扇形的圆心角为,半径为,则扇形的面积是参考答案:略9. 若为等差数列,是其前n项和,且,则的值为( )A. B.C.D.参考答案:B10. 函数(其中)的大致图像为()A B.C. D.参考答案:A【分析】对函数表达式进行化简可得到函数的单调性【详解】函数,有函数表达式知道,当x>0时,x值越大,函数值越小,故函数是减函数。
广东省深圳市高级中学2014届高三上学期第一次月考数学文试题-Word版含答案
2014届高三第一次月考试题数 学(文科)2013。
09一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知全集U =R ,集合{10}A x x =+<,{30}B x x =-<,则集合()()U C A B ⋂=A .{13}x x -≤<B .{13}x x -<<C .{1}x x <-D .{3}x x >2.如果函数2()3(,4]f x x ax =---∞在区间上单调递减,则实数a 满足的条件是( ) A. 8a ≥ B .8a ≤ C .4a ≥ D .4a ≥-3.设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q = ( )A .3B .4C .5D .64.在△ABC 中,若60A ∠=o ,45B ∠=o ,BC =AC = ( )A. B. C. D.5. 设25abm ==,且112a b+=,则m = ( )6.已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,下面结论错误..的是 A .函数)(x f 的最小正周期为π B .函数)(x f 是偶函数 C .函数)(x f 的图象关于直线4x π=对称 D .函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数 7.直线20ax y a -+=与圆229x y +=的位置关系是 ( )A .相离B .相切C .相交D .不确定 8. 给出如下三个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”;③在ABC ∆中,“45A >o ”是“sin A >的充要条件。
其中不正确的命题的个数是( ) A. 3 B. 2 C. 1 D. 014第题图9.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为 ( )A .1B .12C .52D .2210.定义:若函数)(x f 的图像经过变换T 后所得图像对应函数的值域与)(x f 的值域相同,则称变换T 是)(x f 的同值变换.下面给出四个函数及其对应的变换T ,其中T 不属于)(x f 的同值变换的是A .2)1()(-=x x f ,T 将函数)(x f 的图像关于y 轴对称 B .12)(1-=-x x f ,T 将函数)(x f 的图像关于x 轴对称C .32)(+=x x f ,T 将函数)(x f 的图像关于点()1,1-对称D .()sin 3f x x π⎛⎫=+⎪⎝⎭,T 将函数)(x f 的图像关于点()1,0-对称 二、填空题:本大题共4小题,每小题5分,11.若数列}{n a 的通项公式是()()n a n =-1⋅3-2,则a a a 1210++=L . 12.若方程2210ax -=在(0,1)内恰有一解,则实数a 的取值范围是 .13.已知双曲线22221x y a b-=()0,0a b >>的一条渐近线方程是3y x =,它的一个焦点与抛物线216y x=的焦点相同,则双曲线的方程为 .14.函数()sin(),(,,f x A x A ωϕωϕ=+是常数,0,0)A ω>>的部分图象如图所示,则____)0(=f三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分12分)已知函数21()cos sin cos 2222x x x f x =--. (Ⅰ)求函数()f x 的最小正周期和值域; (Ⅱ)若32()f α=,求sin 2α的值.16. (本小题满分13分)在ABC ∆中,c b a 、、分别为角A B C 、、的对边, 已知)2sin ,2(cosC C = ,)2sin ,2(cos C C -=,且21=⋅. (1) 求角C ;(2) 若112a b +=,ABC ∆的面积233=S ,求边c 的值.17. (本小题满分13分)如图,直线l :y =x +b 与抛物线C :x 2=4y 相切于点A 。
广东深圳高级中学2024-2025学年高一上学期第一次月考试数学试卷
2024-2025学年深圳市高一上第一次月考试卷数学试卷注意事项:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.本卷考试时间120分钟,满分150分.3.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔将答写在答题卡指定区域内.作答综合题时,把所选题号的信息点框涂黑,并作答.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,谙将答题卡交回. 一、单选题(共8小题,共40分)1. 命题“210,0x x x ∃>−<”的否定为( )A. 210,0x x x ∃>−≥ B. 210,0x x x ∃≤−≥ C 210,0x x x∀>−≥ D. 210,0x x x∀≤−≥ 2. 从甲地到乙地通话m 分钟的电话费由() 1.0612m f m <>=+(元)决定,其中0m >,m <>是不小于m 的最小整数(如:33<>=, 3.84<>=, 5.16<>=), 则从甲地到乙地通话时间为7.3分钟的电话费为( ) A. 4.24元B. 4.77元C. 5.30元D. 4.93元3. 若函数()f x 定义域为R ,则“(2)(3)f f <”是“()f x 是增函数”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件4. 甲、乙两人解关于x 的不等式20x bx c ++<,甲写错了常数b ,得到的解集为{}6<<1x x −;乙写错了常数c ,得到的解集为{}1<<4x x .那么原不等式的解集为( ) A. {}1<<6x xB. {}1<<4x x −C. {}4<<1x x − D. {}1<<6x x −.的5. 函数[)2235,4,22x yx x +∈−−−的值域为( ). A. 5317,142B. 5317,142C. 5317,142D. 5317,1426. 已知不等式2320ax x −+>的解集为(,1)(,)b −∞+∞ ,则,a b 的取值分别为( ) A. 3,1−B. 2,1C. 1−,3D. 1,27. 设()f x 是定义在R 上奇函数,在(,0)−∞上递减,且(3)0f −=, 则不等式()0xf x <的解集为( )A. {|30x x −<<或3}x >B. {|3x x <−或3}x >C. {|3x x <−或03}x <<D. {|30x x −<<或03}x <<8. 对于集合M ,N ,定义{},M N x x M x N −=∈∉且,()()M N M N N M ⊕−− ,设94A y y=≥−,{}0B y y =<,则A B ⊕=A. 9,04 −B. 9,04−C. [)9,0,4−∞−+∞D. ()9,0,4−∞−+∞二、多选题(共4小题,共20分)9. 下表表示y 是x 的函数,则( )x 05x <<510x ≤<1015x ≤<1520x ≤≤y2345A. 函数的定义域是(0,20]B. 函数的值域是[2,5]C. 函数的值域是{}2,3,4,5D. 函数是增函数10. 已知243fx =−,则下列结论错误的是( )的A. ()11f =B. 2()21f x x =−C. ()f x 是偶函数D. ()f x 有唯一零点11. 给出以下四个命题,其中为真命题的是( ) A. 函数y与函数y表示同一个函数B. 若函数(2)f x 的定义域为[0,2],则函数()f x 的定义域为[0,4]C. 若函数()y f x =奇函数,则函数()()yf x f x =−−也是奇函数D. 函数1y x=−在(,0)(0,)−∞+∞ 上是单调增函数 12. 下列命题正确的是( )A. 若对于1x ∀,2x ∈R ,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+,则函数yy =ff (xx )在R 上是增函数B. 若对于1x ∀,2x ∈R ,12x x ≠,都有()()12121f x f x x x −>−−,则函数()y f x x =+在R 上是增函数 C. 若对于x ∀∈R ,都有()()1f x f x +<成立,则函数yy =ff (xx )在R 上是增函数D. 若对于x ∀∈R ,都有()f x ,()g x 为增函数,则函数()()y f x g x =⋅在R 上也是增函数三、填空题(共4小题,共20分)13. A ={}|03x x << ,{}|24B x x =<<,则A B ∪=___________.14. 若“2,1000x mx mx ∀∈++>R ”是真命题,则m 的取值范围是__________.15. 已知函数()()11xf x x x =>−,())2g x x =≥,若存在函数()(),F x G x 满足:()()()()()(),G x F x f x g x g x f x =⋅=,学生甲认为函数()(),F x G x 一定是同一函数,乙认为函数()(),F x G x 一定不是同一函数,丙认为函数()(),F x G x 不一定是同一函数,观点正确的学生是_________.16. 已知函数()2cos ,,22f x x x x ππ=−∈−,则满足()06f x f π >的0x 的取值范围为__________. 四、解答题(共6小题,共70分)17. (1)设0x y <<,试比较22()()x y x y +−与22()()x y x y −+大小;是的(2)已知a ,b ,x ,(0,)∈+∞y 且11,x y a b>>,求证:x y x a y b >++.18. 求下列不等式的解集. (1)202735x x <−−−<; (2)1123x x +≤− 19. 冰墩墩(Bing Dwen Dwen )、雪容融(Shuey Rhon Rhon )分别是2022年北京冬奥会、冬残奥会的吉祥物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶,决定从该网店进货并销售,第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶的进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共4020. 某单位有员工1000名,平均每人每年创造利润10万元,为了增加企业竞争力,决定优化产业结构,调整出()*N x x ∈名员工从事第三产业,调整出的员工平均每人每年创造利润为310500x a −万元()0a >,剩余员工平均每人每年创造的利润可以提高0.2%x .(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少? 21. 已知函数()2f x x x=+. (1)判断()f x 的奇偶性,并证明你的结论;(2)用函数单调性的定义证明函数()f x 在)+∞上是增函数;(3)当[]1,3x ∈时,求函数()f x 的值域.22. 某企业用1960万元购得一块空地,计划在该空地建造一栋8,()x x x N ≥∈层,每层2800平方米的楼房.经测算,该楼房每平方米的平均建筑费用为56570x +(单位:元). (1)当该楼房建多少层时,每平方米的平均综合费用最少?最少为多少元?(2)若该楼房每平方米的平均综合费用不超过2000元,则该楼房最多建多少层?(注:综合费用=建筑费用+购地费用)。
高三数学上学期第一次月考试卷(含解析)-人教版高三全册数学试题
2015-2016学年某某省某某市姜堰市区罗塘高级中学高三(上)第一次月考数学试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.已知A={1,3,4},B={3,4,5},则A∩B=.2.命题”∀x>0,x3﹣1>0”的否定是.3.命题:“若a>0,则a2>0”的否命题是.4.函数y=的定义域为.5.函数f(x)=log5(2x+1)的单调增区间是.6.函数y=(x≥e)的值域是.7.设f(x)=4x3+mx2+(m﹣3)x+n(m,n∈R)是R上的单调增函数,则m的值为.8.若命题“∃x∈R,使得x2+(a﹣1)x+1≤0”为假命题,则实数a的X围.9.若曲线C1:y=ax3﹣6x2+12x与曲线C2:y=e x在x=1处的两条切线互相垂直,则实数a的值为.10.已知函数f(x)=x|x﹣2|,则不等式的解集为.11.下列四个命题:(1)“∃x∈R,x2﹣x+1≤0”的否定;(2)“若x2+x﹣6≥0,则x>2”的否命题;(3)在△ABC中,“A>30°”是“sinA>”的充分不必要条件;(4)“k=2”是“函数f(x)=2x﹣(k2﹣3)•2﹣x为奇函数”的充要条件.其中真命题的序号是(真命题的序号都填上)12.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<﹣e的解集为.13.已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值X围是.14.已知函数f(x)=3x+a与函数g(x)=3x+2a在区间(b,c)上都有零点,则的最小值为.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤15.已知集合A={x||x﹣4|≤2,x∈R},B={x|>0,x∈R},全集U=R.(1)求A∩(∁U B);(2)若集合C={x|x<a,x∈R},A∩C=∅,某某数a的取值X围.16.设命题P:“任意x∈R,x2﹣2x>a”,命题Q“存在x∈R,x2+2ax+2﹣a=0”;如果“P 或Q”为真,“P且Q”为假,求a的取值X围.17.p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足(1)若a=1,且p∧q为真,某某数x的取值X围;(2)¬p是¬q的充分不必要条件,某某数a的取值X围.18.如图,有一个长方形地块ABCD,边AB为2km,AD为4km.,地块的一角是湿地(图中阴影部分),其边缘线AC是以直线AD为对称轴,以A为顶点的抛物线的一部分.现要铺设一条过边缘线AC上一点P的直线型隔离带EF,E,F分别在边AB,BC上(隔离带不能穿越湿地,且占地面积忽略不计).设点P到边AD的距离为t(单位:km),△BEF的面积为S (单位:km2).(1)求S关于t的函数解析式,并指出该函数的定义域;(2)是否存在点P,使隔离出的△BEF面积S超过3km2?并说明理由.19.设函数f(x)=lnx+,m∈R(1)当m=e(e为自然对数的底数)时,求f(x)的最小值;(2)讨论函数g(x)=f′(x)﹣零点的个数;(3)(理科)若对任意b>a>0,<1恒成立,求m的取值X围.20.已知函数f(x)=1+lnx﹣,其中k为常数.(1)若k=0,求曲线y=f(x)在点(1,f(1))处的切线方程.(2)若k=5,求证:f(x)有且仅有两个零点;(3)若k为整数,且当x>2时,f(x)>0恒成立,求k的最大值.2015-2016学年某某省某某市姜堰市区罗塘高级中学高三(上)第一次月考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.已知A={1,3,4},B={3,4,5},则A∩B={3,4} .【考点】交集及其运算.【专题】集合.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={1,3,4},B={3,4,5},∴A∩B={3,4}.故答案为:{3,4}【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.命题”∀x>0,x3﹣1>0”的否定是∃x>0,x3﹣1≤0.【考点】命题的否定.【专题】计算题;规律型;简易逻辑.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题”∀x>0,x3﹣1>0”的否定是:∃x>0,x3﹣1≤0.故答案为:∃x>0,x3﹣1≤0.【点评】本题考查命题的否定全称命题与特称命题的否定关系,是基础题.3.命题:“若a>0,则a2>0”的否命题是若a≤0,则a2≤0.【考点】四种命题.【专题】阅读型.【分析】写出命题的条件与结论,再根据否命题的定义求解.【解答】解:命题的条件是:a>0,结论是:a2>0.∴否命题是:若a≤0,则a2≤0.故答案是若a≤0,则a2≤0.【点评】本题考查否命题的定义.4.函数y=的定义域为[2,+∞).【考点】函数的定义域及其求法.【专题】计算题;函数的性质及应用.【分析】由根式内部的代数式大于等于0,然后求解指数不等式.【解答】解:由2x﹣4≥0,得2x≥4,则x≥2.∴函数y=的定义域为[2,+∞).故答案为:[2,+∞).【点评】本题考查了函数的定义域及其求法,考查了指数不等式的解法,是基础题.5.函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞).【考点】对数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】要求函数的单调区间,我们要先求出函数的定义域,然后根据复合函数“同增异减”的原则,即可求出函数的单调区间.【解答】解:要使函数的解析有有意义则2x+1>0故函数的定义域为(﹣,+∞)由于内函数u=2x+1为增函数,外函数y=log5u也为增函数故函数f(x)=log5(2x+1)在区间(﹣,+∞)单调递增故函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞)故答案为:(﹣,+∞)【点评】本题考查的知识点是对数函数的单调性与特殊点,其中本题易忽略定义域,造成答案为R的错解.6.函数y=(x≥e)的值域是(0,1].【考点】函数的值域.【专题】函数的性质及应用.【分析】根据函数y=lnx的单调性,判定y=在x≥e时的单调性,从而求出函数y的值域.【解答】解:∵对数函数y=lnx在定义域上是增函数,∴y=在(1,+∞)上是减函数,且x≥e时,l nx≥1,∴0<≤1;∴函数y的值域是(0,1].故答案为:(0,1].【点评】本题考查了求函数的值域问题,解题时应根据基本初等函数的单调性,判定所求函数的单调性,从而求出值域来,是基础题.7.设f(x)=4x3+mx2+(m﹣3)x+n(m,n∈R)是R上的单调增函数,则m的值为 6 .【考点】利用导数研究函数的单调性.【专题】函数的性质及应用.【分析】由函数为单调增函数可得f′(x)≥0,故只需△≤0即可.【解答】解:根据题意,得f′(x)=12x2+2mx+m﹣3,∵f(x)是R上的单调增函数,∴f′(x)≥0,∴△=(2m)2﹣4×12×(m﹣3)≤0即4(m﹣6)2≤0,所以m=6,故答案为:6.【点评】本题考查函数的单调性,利用二次函数根的判别式小于等于0是解决本题的关键,属中档题.8.若命题“∃x∈R,使得x2+(a﹣1)x+1≤0”为假命题,则实数a的X围(﹣1,3).【考点】特称命题.【专题】计算题;转化思想.【分析】不等式对应的是二次函数,其开口向上,若“∃x∈R,使得x2+(a﹣1)x+1≤0”,则相应二次方程有实根.求出a的X围,然后求解命题“∃x∈R,使得x2+(a﹣1)x+1≤0”为假命题,实数a的X围.【解答】解:∵“∃x∈R,使得x2+(a﹣1)x+1≤0∴x2+(a﹣1)x+1=0有两个实根∴△=(a﹣1)2﹣4≥0∴a≤﹣1,a≥3,所以命题“∃x∈R,使得x2+(a﹣1)x+1≤0”为假命题,则实数a的X围(﹣1,3).故答案为:(﹣1,3).【点评】本题主要考查一元二次不等式,二次函数,二次方程间的相互转化及相互应用,这是在函数中考查频率较高的题目,灵活多变,难度可大可小,是研究函数的重要方面.9.若曲线C1:y=ax3﹣6x2+12x与曲线C2:y=e x在x=1处的两条切线互相垂直,则实数a的值为﹣.【考点】利用导数研究曲线上某点切线方程.【专题】导数的概念及应用;直线与圆.【分析】分别求出两个函数的导函数,求得两函数在x=1处的导数值,由题意知两导数值的乘积等于﹣1,由此求得a的值.【解答】解:由y=ax3﹣6x2+12x,得y′=3ax2﹣12x+12,∴y′|x=1=3a,由y=e x,得y′=e x,∴y′|x=1=e.∵曲线C1:y=ax3﹣6x2+12x与曲线C2:y=e x在x=1处的切线互相垂直,∴3a•e=﹣1,解得:a=﹣.故答案为:﹣.【点评】本题考查利用导数研究曲线上某点处的切线方程,函数在某点处的导数,就是曲线在该点处的切线的斜率,同时考查两直线垂直的条件,属于中档题.10.已知函数f(x)=x|x﹣2|,则不等式的解集为[﹣1,+∞).【考点】函数的图象.【专题】函数的性质及应用.【分析】化简函数f(x),根据函数f(x)的单调性,解不等式即可.【解答】解:当x≤2时,f(x)=x|x﹣2|=﹣x(x﹣2)=﹣x2+2x=﹣(x﹣1)2+1≤1,当x>2时,f(x)=x|x﹣2|=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1,此时函数单调递增.由f(x)=(x﹣1)2﹣1=1,解得x=1+.由图象可以要使不等式成立,则,即x≥﹣1,∴不等式的解集为[﹣1,+∞).故答案为:[﹣1,+∞).【点评】本题主要考查不等式的解法,利用二次函数的图象和性质是解决本题的关键,使用数形结合是解决本题的基本思想.11.下列四个命题:(1)“∃x∈R,x2﹣x+1≤0”的否定;(2)“若x2+x﹣6≥0,则x>2”的否命题;(3)在△ABC中,“A>30°”是“sinA>”的充分不必要条件;(4)“k=2”是“函数f(x)=2x﹣(k2﹣3)•2﹣x为奇函数”的充要条件.其中真命题的序号是(1),(2)(真命题的序号都填上)【考点】命题的真假判断与应用.【专题】转化思想;数学模型法;简易逻辑.【分析】(1)原命题的否定为“∀x∈R,x2﹣x+1>0”,由于△=﹣3<0,即可判断出正误;(2)由于原命题的逆命题为:“若x>2,则x2+x﹣6≥0”,是真命题,进而判断出原命题的否命题具有相同的真假性;(3)在△ABC中,“sinA>”⇒“150°>A>30°”,即可判断出正误;(4)“函数f(x)=2x﹣(k2﹣3)•2﹣x为奇函数”则f(﹣x)+f(x)=0,化为(k2﹣4)(22x+1)=0,此式对于任意实数x成立,可得k=±2,即可判断出真假.【解答】解:(1)“∃x∈R,x2﹣x+1≤0”的否定为“∀x∈R,x2﹣x+1>0”,由于△=﹣3<0,因此正确;(2)“若x2+x﹣6≥0,则x>2”的逆命题为:“若x>2,则x2+x﹣6≥0”,是真命题,因此原命题的否命题也是真命题,正确;(3)在△A BC中,“sinA>”⇒“150°>A>30°”,因此“A>30°”是“sinA>”的既不充分也不必要条件,不正确;(4)“函数f(x)=2x﹣(k2﹣3)•2﹣x为奇函数”则f(﹣x)+f(x)=2﹣x﹣(k2﹣3)•2x+2x ﹣(k2﹣3)•2﹣x=0,化为(k2﹣4)(22x+1)=0,此式对于任意实数x成立,∴k=±2,因此“k=2”是“函数f(x)=2x﹣(k2﹣3)•2﹣x为奇函数”的充分不必要条件,不正确.其中真命题的序号是(1),(2)故答案为:(1),(2).【点评】本题考查了简易逻辑的判定方法、函数的奇偶性、三角函数的单调性、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.12.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<﹣e的解集为(﹣∞,﹣e).【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】由奇函数的性质f(﹣x)=﹣f(x),求出函数f(x)的解析式,对x>0时的解析式求出f′(x),并判断出函数的单调性和极值,再由奇函数的图象特征画出函数f(x)的图象,根据图象和特殊的函数值求出不等式的解集.【解答】解:设x<0,则﹣x>0,∵当x>0时,f(x)=xlnx,∴f(﹣x)=﹣xln(﹣x),∵函数f(x)是奇函数,∴f(x)=﹣f(﹣x)=xln(﹣x),则,当x>0时,f′(x)=lnx+=lnx+1,令f′(x)=0得,x=,当0<x<时,f′(x)<0;当x>时,f′(x)>0,∴函数f(x)在(0,)上递减,在(,+∞)上递增,当x=时取到极小值,f()=ln=﹣>﹣e,再由函数f(x)是奇函数,画出函数f(x)的图象如图:∵当x>0时,当x=时取到极小值,f()=ln=﹣>﹣e,∴不等式f(x)<﹣e在(0,+∞)上无解,在(﹣∞,0)上有解,∵f(﹣e)=(﹣e)ln[﹣(﹣e)]=﹣e,∴不等式f(x)<﹣e解集是:(﹣∞,﹣e),故答案为:(﹣∞,﹣e).【点评】本题考查函数的奇偶性的综合运用,以及导数与函数的单调性的关系,考查数形结合思想.13.已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值X围是{a|a<0或a>1} .【考点】函数的零点.【专题】计算题;创新题型;函数的性质及应用.【分析】由g(x)=f(x)﹣b有两个零点可得f(x)=b有两个零点,即y=f(x)与y=b 的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a的X围【解答】解:∵g(x)=f(x)﹣b有两个零点,∴f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,由x3=x2可得,x=0或x=1①当a>1时,函数f(x)的图象如图所示,此时存在b,满足题意,故a>1满足题意②当a=1时,由于函数f(x)在定义域R上单调递增,故不符合题意③当0<a<1时,函数f(x)单调递增,故不符合题意④a=0时,f(x)单调递增,故不符合题意⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得,y=f(x)与y=b有两个交点综上可得,a<0或a>1故答案为:{a|a<0或a>1}【点评】本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.14.已知函数f(x)=3x+a与函数g(x)=3x+2a在区间(b,c)上都有零点,则的最小值为﹣1 .【考点】函数零点的判定定理;基本不等式.【专题】函数的性质及应用;不等式的解法及应用.【分析】根据函数f(x)=3x+a,与函数g(x)=3x+2a在区间(b,c)上都有零点,可得a+2b<0,a+2c>0恒成立,进而根据==,结合基本不等式可得的最小值.【解答】解:∵函数f(x)=3x+a,与函数g(x)=3x+2a在区间(b,c)上都有零点,且f (x)与g(x)均为增函数∴f(b)=3b+a<0,即b<﹣,g(b)=3b+2a<0,即b<﹣,f(c)=3c+a>0,即c>﹣,g(c)=3c+2a>0,即c>﹣,∵当a>0时,a+2b<0,a+2c>0,当a<0时,a+2b<0,a+2c>0,当a=0时,a+2b<0,a+2c>0,即a+2b<0,a+2c>0恒成立,即﹣a﹣2b>0,a+2c>0恒成立,∴=====≥=﹣1,∴的最小值为﹣1,故答案为:﹣1【点评】本题考查的知识点是函数零点的判定定理,基本不等式,其中对式子==的分解变形是解答的关键.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤15.已知集合A={x||x﹣4|≤2,x∈R},B={x|>0,x∈R},全集U=R.(1)求A∩(∁U B);(2)若集合C={x|x<a,x∈R},A∩C=∅,某某数a的取值X围.【考点】交、并、补集的混合运算;交集及其运算.【专题】集合思想;定义法;集合.【分析】(1)根据集合的基本运算进行求解即可.(2)根据集合的关系建立不等式关系进行求解即可.【解答】解:(1)∵A={x|2≤x≤6,x∈R},B={x|﹣1<x<5,x∈R},∴C U B={x|x≤﹣1或x≥5},…,∴A∩(C U B)={x|5≤x≤6}.…(2)∵A={x|2≤x≤6,x∈R},C={x|x<a,x∈R},A∩C≠∅,∴a的取值X围是a≤2.…【点评】本题主要考查集合的基本运算,比较基础.16.设命题P:“任意x∈R,x2﹣2x>a”,命题Q“存在x∈R,x2+2ax+2﹣a=0”;如果“P 或Q”为真,“P且Q”为假,求a的取值X围.【考点】复合命题的真假.【专题】函数的性质及应用.【分析】由命题 P成立,求得a<﹣1,由命题Q成立,求得a≤﹣2,或a≥1.由题意可得p真Q假,或者 p假Q真,故有,或.解这两个不等式组,求得a的取值X围.【解答】解:由命题 P:“任意x∈R,x2﹣2x>a”,可得x2﹣2x﹣a>0恒成立,故有△=4+4a <0,a<﹣1.由命题Q:“存在x∈R,x2+2ax+2﹣a=0”,可得△′=4a2﹣4(2﹣a)=4a2+4a﹣8≥0,解得a≤﹣2,或a≥1.再由“P或Q”为真,“P且Q”为假,可得 p真Q假,或者 p假Q真.故有,或.求得﹣2<a<﹣1,或a≥1,即 a>﹣2.故a的取值X围为(﹣2,+∞).【点评】本题主要考查命题真假的判断,二次不函数的性质,函数的恒成立问题,体现了分类讨论的数学思想,属于基础题.17.p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足(1)若a=1,且p∧q为真,某某数x的取值X围;(2)¬p是¬q的充分不必要条件,某某数a的取值X围.【考点】必要条件、充分条件与充要条件的判断;复合命题的真假.【专题】简易逻辑.【分析】(1)若a=1,分别求出p,q成立的等价条件,利用且p∧q为真,某某数x的取值X围;(2)利用¬p是¬q的充分不必要条件,即q是p的充分不必要条件,某某数a的取值X 围.【解答】解:(1)由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0.又a>0,所以a<x<3a.当a=1时,1<x<3,即p为真时实数x的取值X围是1<x<3.由得得2<x≤3,即q为真时实数x的取值X围是2<x≤3.若p∧q为真,则p真且q真,所以实数x的取值X围是2<x<3.(2)¬p是¬q的充分不必要条件,即¬p⇒¬q,且¬q推不出¬p.即q是p的充分不必要条件,则,解得1<a≤2,所以实数a的取值X围是1<a≤2.【点评】本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件是解决本题的关键,18.如图,有一个长方形地块ABCD,边AB为2km,AD为4km.,地块的一角是湿地(图中阴影部分),其边缘线AC是以直线AD为对称轴,以A为顶点的抛物线的一部分.现要铺设一条过边缘线AC上一点P的直线型隔离带EF,E,F分别在边AB,BC上(隔离带不能穿越湿地,且占地面积忽略不计).设点P到边AD的距离为t(单位:km),△BEF的面积为S (单位:km2).(1)求S关于t的函数解析式,并指出该函数的定义域;(2)是否存在点P,使隔离出的△BEF面积S超过3km2?并说明理由.【考点】导数在最大值、最小值问题中的应用;函数解析式的求解及常用方法.【专题】导数的综合应用.【分析】(1)如图,以A为坐标原点O,AB所在直线为x轴,建立平面直角坐标系,则C 点坐标为(2,4).设边缘线AC所在抛物线的方程为y=ax2,把(2,4)代入,可得抛物线的方程为y=x2.由于y'=2x,可得过P(t,t2)的切线EF方程为y=2tx﹣t2.可得E,F点的坐标,,即可得出定义域.(2),利用导数在定义域内研究其单调性极值与最值即可得出.【解答】解:(1)如图,以A为坐标原点O,AB所在直线为x轴,建立平面直角坐标系,则C点坐标为(2,4).设边缘线AC所在抛物线的方程为y=ax2,把(2,4)代入,得4=a×22,解得a=1,∴抛物线的方程为y=x2.∵y'=2x,∴过P(t,t2)的切线EF方程为y=2tx﹣t2.令y=0,得;令x=2,得F(2,4t﹣t2),∴,∴,定义域为(0,2].(2),由S'(t)>0,得,∴S(t)在上是增函数,在上是减函数,∴S在(0,2]上有最大值.又∵,∴不存在点P,使隔离出的△BEF面积S超过3km2.【点评】本题考查了利用导数研究函数的单调性极值与最值切线的方程、抛物线方程,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于中档题.19.设函数f(x)=lnx+,m∈R(1)当m=e(e为自然对数的底数)时,求f(x)的最小值;(2)讨论函数g(x)=f′(x)﹣零点的个数;(3)(理科)若对任意b>a>0,<1恒成立,求m的取值X围.【考点】导数在最大值、最小值问题中的应用;根的存在性及根的个数判断;利用导数研究函数的极值.【专题】导数的综合应用.【分析】(1)当m=e时,,x>0,由此利用导数性质能求出f(x)的极小值.(2)由g(x)===0,得m=,令h(x)=x﹣,x>0,m∈R,则h(1)=,h′(x)=1﹣x2=(1+x)(1﹣x),由此利用导数性质能求出函数g(x)=f′(x)﹣零点的个数.(3)(理)当b>a>0时,f′(x)<1在(0,+∞)上恒成立,由此能求出m的取值X 围.【解答】解:(1)当m=e时,,x>0,解f′(x)>0,得x>e,∴f(x)单调递增;同理,当0<x<e时,f′(x)<0,f(x)单调递减,∴f(x)只有极小值f(e),且f(e)=lne+=2,∴f(x)的极小值为2.(2)∵g(x)===0,∴m=,令h(x)=x﹣,x>0,m∈R,则h(1)=,h′(x)=1﹣x2=(1+x)(1﹣x),令h′(x)>0,解得0<x<1,∴h(x)在区间(0,1)上单调递增,值域为(0,);同理,令h′(x)<0,解得x>1,∴g(x)要区是(1,+∞)上单调递减,值域为(﹣∞,).∴当m≤0,或m=时,g(x)只有一个零点;当0<m<时,g(x)有2个零点;当m>时,g(x)没有零点.(3)(理)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),则h(b)<h(a).∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值X围是[,+∞).【点评】本题考查函数的极小值的求法,考查函数的零点的个数的讨论,考查实数值的求法,解题时要注意构造法、分类讨论思想和导数性质的合理运用.20.已知函数f(x)=1+lnx﹣,其中k为常数.(1)若k=0,求曲线y=f(x)在点(1,f(1))处的切线方程.(2)若k=5,求证:f(x)有且仅有两个零点;(3)若k为整数,且当x>2时,f(x)>0恒成立,求k的最大值.【考点】利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.【专题】函数的性质及应用;导数的概念及应用;导数的综合应用.【分析】(1)求出f(x)的解析式,求出导数和切线的斜率和切点坐标,由点斜式方程即可得到切线方程;(2)求出k=5时f(x)的解析式和导数,求得单调区间和极小值,再由函数的零点存在定理可得(1,10)之间有一个零点,在(10,e4)之间有一个零点,即可得证;(3)方法一、运用参数分离,运用导数,判断单调性,求出右边函数的最小值即可;方法二、通过对k讨论,运用导数求出单调区间,求出f(x)的最小值,即可得到k的最大值为4.【解答】解:(1)当k=0时,f(x)=1+lnx.因为f′(x)=,从而f′(1)=1.又f (1)=1,所以曲线y=f(x)在点(1,f(1))处的切线方程y﹣1=x﹣1,即x﹣y=0.(2)证明:当k=5时,f(x)=lnx+﹣4.因为f′(x)=,从而当x∈(0,10),f′(x)<0,f(x)单调递减;当x∈(10,+∞)时,f′(x)>0,f(x)单调递增.所以当x=10时,f(x)有极小值.因f(10)=ln10﹣3<0,f(1)=6>0,所以f(x)在(1,10)之间有一个零点.因为f(e4)=4+﹣4>0,所以f(x)在(10,e4)之间有一个零点.从而f(x)有两个不同的零点.(3)方法一:由题意知,1+lnx﹣>0对x∈(2,+∞)恒成立,即k<对x∈(2,+∞)恒成立.令h(x)=,则h′(x)=.设v(x)=x﹣2lnx﹣4,则v′(x)=.当x∈(2,+∞)时,v′(x)>0,所以v(x)在(2,+∞)为增函数.因为v(8)=8﹣2ln8﹣4=4﹣2ln8<0,v(9)=5﹣2ln9>0,所以存在x0∈(8,9),v(x0)=0,即x0﹣2lnx0﹣4=0.当x∈(2,x0)时,h′(x)<0,h(x)单调递减,当x∈(x0,+∞)时,h′(x)>0,h(x)单调递增.所以当x=x0时,h(x)的最小值h(x0)=.因为lnx0=,所以h(x0)=∈(4,4.5).故所求的整数k的最大值为4.方法二:由题意知,1+lnx﹣>0对x∈(2,+∞)恒成立.f(x)=1+lnx﹣,f′(x)=.①当2k≤2,即k≤1时,f′(x)>0对x∈(2,+∞)恒成立,所以f(x)在(2,+∞)上单调递增.而f(2)=1+ln2>0成立,所以满足要求.②当2k>2,即k>1时,当x∈(2,2k)时,f′(x)<0,f(x)单调递减,当x∈(2k,+∞),f′(x)>0,f(x)单调递增.所以当x=2k时,f(x)有最小值f(2k)=2+ln2k﹣k.从而f(x)>0在x∈(2,+∞)恒成立,等价于2+ln2k﹣k>0.令g(k)=2+ln2k﹣k,则g′(k)=<0,从而g(k)在(1,+∞)为减函数.因为g(4)=ln8﹣2>0,g(5)=ln10﹣3<0,所以使2+ln2k﹣k>0成立的最大正整数k=4.综合①②,知所求的整数k的最大值为4.【点评】本题考查导数的运用:求切线方程和求单调区间及极值、最值,主要考查导数的几何意义和函数的单调性的运用,不等式恒成立问题转化为求函数的最值问题,运用分类讨论的思想方法和函数方程的转化思想是解题的关键.。
广东省深圳高级中学2014届高三高考前最后模拟试卷(语文)
广东省深圳高级中学2014届高三高考前最后模拟试卷(语文)高考语文2014-06-03 2014052014届深圳市高级中学高三第二次模拟考试试卷语文命题人:语文教研组本试卷分选择题和非选择题两部分,共8页,满分150分,考试用时150分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的校名、姓名、考号填写在答题卡的密封线内。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将答题卷和答题卡一并收回。
一、本大题4小题,每小题3分,共12分。
1.下列词语中加点的字,每对读音都不相同的一组是(3分)A豆豉/训诂咋舌/欺诈载歌载舞/风雨载途B躯壳/翘楚香蒲/鸡脯大发横财/横征暴敛C曲线/龋齿蒙古/朦胧解甲归田/浑身解数D供应/股肱披靡/糜烂大腹便便/便宜行事2.下面语段中画线的词语,使用不恰当的一项是(3分)高晓松醉驾肇事之所以闹得满城风雨,绝不仅是因为其将可能成为“公众人物醉驾入刑第一人”,也不是因为这可能引起如两年前演员周杰醉驾肇事案的司法之争。
人们关注的焦点恐怕在于:这名曾在药家鑫一案中义愤填膺,发出“生命都漠视的人会爱音乐吗”的道德名言,并倡议音乐界封杀药家鑫校友的公众人物,前后角色怎么会如此大相径庭?加上之前的孙兴、莫少聪涉毒事件,三人成虎,如今明星的素质真是令人担忧。
A满城风雨 B义愤填膺 C大相径庭 D三人成虎3.下列句子中,没有语病的一项是(3分)A“故宫大盗”石柏魁似乎并无太多反侦查能力,不仅留下了指纹,甚至还无法撬开另一个存放有更贵重物品的展柜。
B因屡屡查出造假“骗购”行为,社会舆论推动了深圳在出台仅9个月后便对保障性住房条例进行修改,大幅提高对“不符合申请条件的骗房者”的惩罚措施。
广东省深圳市第二高级中学2014届高三上学期第一次月考数学(文)试卷(含答案解析)
深圳市第二高级中学2014届高三第一次月考文科数学试卷 2013年8月本试卷共4页,满分为150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。
用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
一、选择题(本大题共10小题,每小题5分,共50分. )1.设全集{}1,2,3,4,5U =,集合{}1,2A =,{}2,3B =,则()U A B = ðA . {}4,5B .{}2,3C .{}1D .{}2 2. 设i 为虚数单位,则复数3+4ii= A .43i -- B .43i -+ C .43i + D .43i - 3. 函数2()f x x =在点(2,(2))f 处的切线方程为A .44y x =-B .44y x =+C .42y x =+D .4y =4. 已知1F 、2F 分别为椭圆C 的两个焦点,点B 为其短轴的一个端点,若12BF F ∆为等边三角形, 则该椭圆的离心率为A B .12 C .2 D 5.一个几何体的三视图中主视图和左视图是边长为2的等边三角形,俯视图为圆,则该几何体的体积是A .π3B .π334 C .π34 D .π336. 定义在R 上的偶函数()f x 满足:对任意12,x x ∈ [0,+∞),且12x x ≠都有1212()()0f x f x x x ->-,则A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-7.已知x x f 2log )(=,函数)(x g y =是它的反函数,则函数)1(x g y -=的大致图象是8. 有下列四个命题:①对于x ∀∈R ,函数()f x 满足(1)(1)f x f x +=-,则函数()f x 的最小正周期为2; ②所有指数函数的图象都经过点(0,1); ③若实数b a 、满足1=+b a ,则ba 41+的最小值为9; ④已知两个非零向量a ,b ,则“a b ⊥ ”是“a =0b”的充要条件.其中真命题的个数为A.0B.1C.2D.39. 设变量,x y 满足约束条件20701x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则yx 的最大值为A .6B .3C .95D .1 10.已知定义域在(1,1)-上的奇函数()f x 是减函数,且2(3)(9)0f a f a -+-<,则a 的取值范围是A .(22,3)B .(3,10)C .(22,4)D .(-2,3)二、填空题(本大题共5小题,其中14-15为选做题,考生选做其中一道,每小题5分,共20分.) 11.函数ln y x=的定义域为 . 12.函数212()log (23)f x x x =--+的单调递增区间是 .13. 已知函数)(x f y =()x ∈R 满足1(1)()f x f x +=-,且[1,1]x ∈-时,2)(x x f =,则)(x f y =与()lg g x x =的图象的交点个数为____________. 14.(坐标系与参数方程选做题)在极坐标系中,点)23,2(πP 到直线3sin 4cos 3:=θρ-θρl 的距离为 .15.(几何证明选讲选做题)如图, AB 是⊙O 的直 径,点C 在AB 的延长线上,CD 与⊙O 相切于点D . 若18C ∠=︒,则CDA ∠=_____________.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤) 16. (本小题满分12分)已知函数π()cos()4f x x =-. (1)求函数()f x 在区间ππ,122⎡⎤-⎢⎥⎣⎦上的最大值和最小值; (2)若3()5f α=,其中π3π,44α<<求αsin 的值.17. (本小题满分12分)A在ABC ∆中,角A B C 、、的对边分别为a b c ,,,且满足2cos .c b A = (1)求证:A B =; (2)若ABC ∆的面积152S =,4cos 5C =,c 求的值.18.(本小题满分14分)某年某省有23万多文科考生参加高考,除去成绩为670分(含670分)以上的6人与成绩为350分(不含350分)以下的38390人,还有约4.19万文科考生的成绩集中在)670 , 350[内,其成绩的频率分布如下表所示:(1)请估计该次高考成绩在)670 , 350[内文科考生的平均分(精确到1.0);(2)考生A 填报志愿后,得知另外有4名同分数考生也填报了该志愿.若该志愿计划录取2人,并在同分数考生中随机录取,求考生A 被该志愿录取的概率.(参考数据:610×0.061+570×0.154+530×0.193+490×0.183+450×0.161+410×0.133=443.93)19.(本小题满分14分)(1)已知命题2:2310p x x -+≤和命题2:(21)(1)0q x a x a a -+++≤,若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.(2)已知命题:s 方程2(3)0x m x m +-+=的一根在(0,1)内,另一根在(2,3)内.命题:t 函数2()ln(21)f x mx x =-+的定义域为全体实数.若s t ∨为真命题,求实数m 的取值范围.20. (本小题满分14分)已知二次函数()y f x =的图象经过坐标原点,其导函数为()62f x x '=-,数列{}n a 的前n 项和为n S ,点(,)()n n S n *∈N 均在函数()y f x =的图像上.(1)求()y f x =的解析式; (2)求数列{}n a 的通项公式;(3)设13n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n *∈N 都成立的最小正整数m .21.(本题满分14分)已知()ln af x x x=-(a ∈R ). (1)当0a >时,判断()f x 在定义域上的单调性;(2)若()f x 在[]1,e 上的最小值为23,求a 的值;(3)若2()f x x <在(1,)+∞上恒成立,试求a 的取值范围.深圳市第二高级中学2014届高三8月份月考 文科数学 参考答案 2013.8.29二、选择题11. (0,1)(1)+∞ ,; 12. (1,1)-(1-可以取等号,1不可以); 13. 9; 14.1; 15.︒126 三、解答题16. 解:(1)ππ,122x ⎡⎤∈-⎢⎥⎣⎦ ………………………………………………1分 ππ,434x π⎡⎤∴-∈-⎢⎥⎣⎦………………………………………………………………2分 当43x ππ-=-时取得最小值12;………………………………4分 当04x π-=时取得最大值1. …………………………………………………6分(2) π3()cos()45f αα=-=,且ππ042α<-<, ………………………………7分 ∴π4sin 45α⎛⎫-= ⎪⎝⎭. ……………………………………8分……………………………………9分……………………………11分 ………………………………12分17. 解:(1)由2cos c b A =,根据正弦定理,得:sin 2sin cos .C B A = …………2分sin sin 44 sin cos cos sin4444 ππααππππαα⎡⎤⎛⎫∴=-+ ⎪⎢⎥⎝⎭⎣⎦⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭=又在△ABC 中 ,A B C π++=,则sin sin()C A B =+,所以sin()2sin cos .A B B A += 即sin cos cos sin 2sin cos .A B A B B A += ……………………4分 所以sin cos cos sin 0A B A B -=,即sin()0A B -=又A B 、为三角形内角,所以A B =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳高级中学2014届高三第一次月考试题数 学(文科)2013。
09一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知全集U =R ,集合{10}A x x =+<,{30}B x x =-<,则集合()()U C A B ⋂=A .{13}x x -≤<B .{13}x x -<<C .{1}x x <-D .{3}x x > 2.如果函数2()3(,4]f x x ax =---∞在区间上单调递减,则实数a 满足的条件是( ) A. 8a ≥ B .8a ≤ C .4a ≥ D .4a ≥-3.设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q = ( )A .3B .4C .5D .64.在△ABC 中,若60A ∠=,45B ∠=,32BC =,则AC = ( ) A. 43 B. 23 C. 3 D.325. 设25abm ==,且112a b+=,则m = ( ) A.10 B.10 C.20 D.100 6.已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,下面结论错误..的是 A .函数)(x f 的最小正周期为π B .函数)(x f 是偶函数 C .函数)(x f 的图象关于直线4x π=对称 D .函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数 7.直线20ax y a -+=与圆229x y +=的位置关系是 ( )A .相离B .相切C .相交D .不确定 8. 给出如下三个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”;③在ABC ∆中,“45A >”是“2sin 2A >”的充要条件。
其中不正确的命题的个数是( ) A. 3 B. 2 C. 1 D. 014第题图9.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为 ( )A .1B .12 C .52 D .2210.定义:若函数)(x f 的图像经过变换T 后所得图像对应函数的值域与)(x f 的值域相同,则称变换T 是)(x f 的同值变换.下面给出四个函数及其对应的变换T ,其中T 不属于)(x f 的同值变换的是A .2)1()(-=x x f ,T 将函数)(x f 的图像关于y 轴对称B .12)(1-=-x x f ,T 将函数)(x f 的图像关于x 轴对称C .32)(+=x x f ,T 将函数)(x f 的图像关于点()1,1-对称D .()sin 3f x x π⎛⎫=+⎪⎝⎭,T 将函数)(x f 的图像关于点()1,0-对称 二、填空题:本大题共4小题,每小题5分,11.若数列}{n a 的通项公式是()()n a n =-1⋅3-2,则a a a 1210++=L . 12.若方程2210ax -=在(0,1)内恰有一解,则实数a 的取值范围是 .13.已知双曲线22221x y a b-=()0,0a b >>的一条渐近线方程是3y x =,它的一个焦点与抛物线216y x =的焦点相同,则双曲线的方程为 .14.函数()sin(),(,,f x A x A ωϕωϕ=+是常数,0,0)A ω>>的部分图象如图所示,则____)0(=f三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分12分)已知函数21()cossin cos 2222x x x f x =--. (Ⅰ)求函数()f x 的最小正周期和值域; (Ⅱ)若32()10f α=,求sin 2α的值.16. (本小题满分13分)在ABC ∆中,c b a 、、分别为角A B C 、、的对边, 已知)2sin ,2(cosC C m = ,)2sin ,2(cos C C n -=,且21=⋅n m . (1) 求角C ;(2) 若112a b +=,ABC ∆的面积233=S ,求边c 的值.17. (本小题满分13分)如图,直线l :y =x +b 与抛物线C :x 2=4y 相切于点A 。
(Ⅰ)求实数b 的值;(Ⅱ)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程。
18. (本小题满分14分)设数列{}n a ,{}n b 满足3,4,6332211======b a b a b a ,且数列*1{}()n n a a n N +-∈是等差数列,数列*{2}()n b n N -∈是等比数列。
(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在*k N ∈,使⎪⎭⎫⎝⎛∈-21,0k k b a ,若存在,求出k ,若不存在,说明理由。
19. (本小题满分14分)设()nx mx x x f ++=2331.(1)如果()()32--'=x x f x g 在2-=x 处取得最小值5-,求()x f 的解析式; (2)如果()+∈<+N n m n m ,10,()x f 的单调递减区间的长度是正整数,试求m 和n 的值.(注:区间()b a ,的长度为a b -).20.(本小题满分14分)设a R ∈,函数()ln f x x ax =-. (1)讨论函数()f x 的单调区间和极值;(2)已知1( 2.71828)x e e ==L 和2x 是函数()f x 的两个不同的零点,求a 的值并证明:322x e >.2014届高三第一次月考试题数 学(文科)答案2013。
09一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知全集U =R ,集合{10}A x x =+<,{30}B x x =-<,则集合()U A B =ðA .{13}x x -≤<B .{13}x x -<<C .{1}x x <-D .{3}x x > 2.如果函数2()3(,4]f x x ax =---∞在区间上单调递减,则实数a 满足的条件是( ) A. 8a ≥ B .8a ≤ C .4a ≥ D .4a ≥-3.设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q = ( )A .3B .4C .5D .64.在△ABC 中,若60A ∠=,45B ∠=,32BC =,则AC = ( ) A. 43 B. 23 C. 3 D.325. 设25abm ==,且112a b+=,则m = ( ) A.10 B.10 C.20 D.100 6.已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,下面结论错误..的是 A .函数)(x f 的最小正周期为π B .函数)(x f 是偶函数 C .函数)(x f 的图象关于直线4x π=对称 D .函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数 7.直线20ax y a -+=与圆229x y +=的位置关系是 ( )A .相离B .相切C .相交D .不确定 8. 给出如下三个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”;③在ABC ∆中,“45A >”是“2sin 2A >”的充要条件。
其中不正确的命题的个数是( ) A. 3 B. 2 C. 1 D. 09.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的9第题图值为 ( )A .1B .12 C .52 D .2210.定义:若函数)(x f 的图像经过变换T 后所得图像对应函数的值域与)(x f 的值域相同,则称变换T 是)(x f 的同值变换.下面给出四个函数及其对应的变换T ,其中T 不属于)(x f 的同值变换的是A .2)1()(-=x x f ,T 将函数)(x f 的图像关于y 轴对称B .12)(1-=-x x f ,T 将函数)(x f 的图像关于x 轴对称C .32)(+=x x f ,T 将函数)(x f 的图像关于点()1,1-对称D .()sin 3f x x π⎛⎫=+⎪⎝⎭,T 将函数)(x f 的图像关于点()1,0-对称 二、填空题:本大题共4小题,每小题5分,11.若数列}{n a 的通项公式是()()n a n =-13-2g ,则a a a 1210+++=L . 145- 12.若方程2210ax -=在(0,1)内恰有一解,则实数a 的取值范围是 . 12a >.13.已知双曲线22221x y a b -=()0,0a b >>的一条渐近线方程是3y x =,它的一个焦点与抛物线216y x =的焦点相同,则双曲线的方程为 .【解】221412x y -=. 14.函数()sin(),(,,f x A x A ωϕωϕ=+是常数,0,0)A ω>>的部分图象如图所示,则____)0(=f答案:62三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分12分)已知函数21()c o s s i n c o s 2222x x x f x =--. (Ⅰ)求函数()f x 的最小正周期和值域; (Ⅱ)若32()10f α=,求s i n2α的值. 解: (1)由已知,f(x)=212x cos 2x sin 2x cos2-- 21sinx 21cosx 121--+=)()(4x cos 22π+=所以f(x)的最小正周期为2π,值域为⎥⎥⎦⎤⎢⎣⎡-22,22, (2)由(1)知,f(α)=,)(10234cos 22=+πα 所以cos(534=+πα). 所以)()(42cos 22cos 2sin πααπα+-=+-= 257251814cos 212=-=+-=)(πα 16. (本小题满分13分)在ABC ∆中,c b a 、、分别为角A B C 、、的对边,已知)2sin ,2(cos C C m = ,)2sin ,2(cos C C n -=,且21=⋅n m .(1) 求角C ;(2) 若112a b +=,ABC ∆的面积233=S ,求边c 的值. 16. 解:(1) 依题知得 21=⋅n m 即 212sin 2cos22=-C C ……3分 也就是 21cos =C ,又π<<C 0,所以3π=C ………………………6分 (2) ab C ab S 43sin 21==,且233=S ,所以 6=ab ……………8分 又222222211492cos ()33624c a b ab C a b ab a b ab ⎛⎫=+-=+-=+-=-⨯= ⎪⎝⎭得27=c .17. (本小题满分13分)如图,直线l :y =x +b 与抛物线C :x 2=4y 相切于点A 。