数学模型实例

合集下载

数学建模 几何在生活中应用

数学建模 几何在生活中应用

数学建模几何在生活中应用
数学建模在几何学的应用在生活中非常广泛,以下是一些具体的应用实例:
1.购房贷款:在购房过程中,数学模型可以帮助我们理解和分析贷款的各种可能方案。


如,利用数学模型,我们可以比较等额本金和等额本息这两种不同的还款方式,并计算出在不同利率和还款期限下,每种方式的还款总额和每月还款金额。

这样,我们就可以选择最适合自己的还款方案。

2.时尚穿搭:高跟鞋是一种时尚单品,但穿多高的高跟鞋才能达到最佳的视觉效果呢?这
时,我们可以借助数学模型来解决这个问题。

根据黄金分割原理,当女生的腿长和身高比值是0.618时,身材会显得最迷人。

因此,我们可以计算出最适合女生身高的高跟鞋高度,使她们在穿搭上更加出彩。

3.银行利率:在金融领域,数学建模也发挥着重要作用。

例如,我们可以通过建立数学模
型来分析银行利率的变化对存款或贷款的影响。

这种分析可以帮助我们更好地理解金融市场的运作,从而做出更明智的决策。

数学模型—数学模型实例(小学数学课件)

数学模型—数学模型实例(小学数学课件)

A 103
B
63
C
34
总和 200
学生人数 比例
103/200 63/200 34/200
20个代表的分配
比例分配的代表数
10.3 6.3 3.4 20
提出疑问:还能按照原来的方法公平分配吗?
情景变化,新的尝试
103 10.3 10
63
6.3
6
34
3.4 3 +
200
20
210
高维空间中的“四舍五入”。
难度升级,寻求方法
总结,例如:制定席位相对公平方案的原则 是对谁“不公平”,也就是谁“吃亏”了,谁就 应该得到下一席。
席位分配模型中,按比例分配法存在较大缺 陷,惯例(最大剩余法)出现了悖论 , 最后提出 “相对不公平度”指标,在这个前提下得到的方 法基本是公平的。
公说公有理 婆说婆有理
数学建模
63
6.615 6+1
C
34
3.570
3
总和 200
21
21
C教学点要找校长评理了!学生看到“不公平”。
舍弃常规,建立指标
总结:解决这个问题必须舍弃所谓惯例,找到衡量公平分配席位的指标,并由此建
立新的分配方法。
讲解: 建立数量指标 人数和席位都是整数就不会发生争议,但按比例分配通常 会出现席位数不是整数,这时席位分配可能出现不公平。 记P=人数/席位,P的意义就是一个“代表”所代表的人数。P 的值较大(就是说, 平均每个代表的人数越多),他这一方就“吃亏”,或者说对这一方不公平。 以A教学点为例,教学点的固定人数,分配的席位(可变)。比如: A教学点只得1个席位,P=103/1=103; A教学点只得2个席位,P=103/2=51.5; A教学点只得3个席位,P=103/3=34.33 ;……

数学建模实例

数学建模实例

数学建模实例
数学建模是将实际问题转化为数学模型,通过对模型进行分析和求解来解决问题的一种方法。

以下是数学建模的一些实例:
1. 客流热力学模型:在城市轨道交通拥挤情况下,建立客流热力学模型,分析出客流分布的状况,有效提高轨道交通系统的运行性能。

2. 互联网广告投放模型:针对互联网广告投放的问题,建立数学模型,分析各种广告投放策略的影响,提出最佳的广告投放策略。

3. 股票价格预测模型:针对股票市场,建立数学模型,通过对历史数据的分析和预测,预测未来股票价格的走势,为投资决策提供科学依据。

4. 生态系统模型:建立生态系统稳定性数学模型,探究物种间相互作用的影响,预测生态系统发展趋势,为环境保护提供科学依据。

5. 智能交通路网模型:建立智能交通路网数学模型,分析路网拥堵状况,提出最优路径,实现交通系统的智能化管理。

6. 供应链管理模型:建立供应链管理数学模型,分析供应链各环节的影响,优化供应链各环节的质量和效率,提升企业综合效益。

7. 机器学习模型:应用机器学习算法,通过对大量历史数据的分析和学习,预测未来数据的走势,为商业决策提供科学依据。

利用数学模型解决实际问题

利用数学模型解决实际问题

利用数学模型解决实际问题数学模型在解决实际问题中起着至关重要的作用。

通过建立适当的方程或函数,可以把实际问题的本质抽象出来,并通过求解这些数学模型,获得对问题的理解和解决方案。

本文将详细介绍数学模型的应用,并通过几个具体的实例来说明其在解决实际问题中的作用。

一、简单的线性模型线性模型是最基本的数学模型之一,在许多实际问题中都能得到广泛应用。

例如,假设我们要建立一个销售预测模型,预测某种产品的销售量与时间的关系。

我们可以采用线性回归模型,建立销售量与时间的线性关系方程。

通过对历史销售数据进行拟合,可以得到最佳的线性回归方程,从而进行未来销售的预测。

二、优化问题的模型优化问题是实际问题中常见的一类问题,通过建立数学模型,可以求解问题的最优解。

例如,假设我们要在一定的预算约束下,确定一家工厂的产能配置,使得利润最大化。

我们可以建立一个线性规划模型,将工厂的产能配置作为决策变量,利润作为目标函数,将预算约束表示为线性约束条件。

通过求解该线性规划模型,可以得到使得利润最大化的最优产能配置方案。

三、动力学模型动力学模型可以描述系统随时间变化的行为,并通过数学模拟来预测系统的未来状态。

例如,假设我们要研究城市的交通拥堵问题,我们可以建立一个动力学模型,描述车辆流量随时间的变化。

通过对该动力学模型进行求解,可以获得不同时间段的交通流量分布,从而制定相应的交通管理策略。

四、随机模型随机模型是考虑不确定性因素的数学模型。

在实际问题中,许多因素是不确定的,例如,股票价格、天气等。

通过建立随机模型,可以对不确定因素进行建模和分析。

例如,假设我们要对某个股票的未来价格进行预测,我们可以通过建立随机模型,考虑股票价格的波动性、相关因素等。

通过对随机模型进行求解,可以获得对股票价格未来走势的预测。

通过以上几个实例的介绍,我们可以看到数学模型在解决实际问题中的重要性和应用价值。

数学模型可以把实际问题进行抽象,并通过求解模型来得到问题的解决方案。

常见的数学模型

常见的数学模型
定义:线性代数方程是包含一 个或多个未知数的方程,其系 数是常数且最高次幂为一次
解法:通过矩阵运算或迭代法 求解线性代数方程
形式:Ax=b,其中A是矩阵,x 是未知数向量,b是常数向量
应用:在物理、工程、经济等 领域有广泛应用
多项式方程
定义:多项式方程 是数学中常见的方 程形式,一般形如 ax^n + bx^(n1) + ... + z = 0
积分公式:常见 的积分公式包括 牛顿-莱布尼茨公 式、换元积分公 式、分部积分公 式等。
01
0 2
03
04
级数与无穷级数
定义:级数是无穷多个数相加的结果,无穷级数是级数的极限状态。 类型:有正项级数、交错级数、幂级数等。
应用:在数学、物理、工程等领域有广泛应用,如计算曲线的长度、求解微分方程等。 收敛与发散:级数收敛时,所有项的和是有限的;发散时,所有项的和是无穷大。
值。
特征值与特征向量 的应用:在解决实 际问题时,特征值 和特征向量可以用 于分析系统的稳定
性和动态行为。
计算方法:通过求 解矩阵的特征方程, 可以得到矩阵的特 征值和特征向量。
添加标题
添加标题
添加标题
添加标题
线性变换与矩阵运算
矩阵运算:基本的矩阵加法、 减法、乘法等运算规则
线性变换:通过矩阵表示几 何变换的过程
微分方程
定义:微分方程是 描述数学模型中变 量之间变化关系的 方程
类型:常微分方程、 偏微分方程等
解法:常用的解法 包括分离变量法、 常数变异法等
应用:在物理学、 工程学、经济学等 领域有广泛应用
线性代数模型
向量与矩阵
向量:由一组有序 数构成的数学对象, 可以表示空间中的 点或方向

八年级数学第八章 中点四大模型

八年级数学第八章 中点四大模型

第八章中点四大模型模型1【倍长中线或类中线(与中点有关的线段)构造全等三角形】模型分析如图①,AD是△ABC的中线,延长AD至点E使DE=AD,易证:△ADC≌△EDB(SAS)。

如图②,D是BC中点,延长FD至点E使DE=FD,易证:△FDB≌△FDC(SAS)。

当遇见中线或者中点的时候,可以尝试倍长中线或类中线,构造全等三角形,目的是对已知条件中的线段进行转移。

模型实例例1.如图,已知在△ABC中,AD是BC边上的中线,E是AD上一点,连接BE并延长AC于点F,AF=EF。

求证:AC=BE。

热搜精练1.如图,在△ABC 中,AB=12,AC=20,求BC 边上中线AD 的范围。

2.如图,在△ABC 中,D 是BC 的中点,DM⊥DN,如果2222B M C N D M D N +=+。

求证:()22214A D AB AC =+。

模型2【已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”】模型分析等腰三角形中有底边中点时,常作底边的中线,利用等腰三角形“三线合一”的性质得到角相等或边相等,为解题创造更多的条件,当看见等腰三角形的时候,就应想到:“边等、角等、三线合一”。

模型实例例1.如图,在△ABC中,AB=AC-5,BC=6,M为BC的中点,MN⊥AC于点N,求MN的长度。

热搜精练1.如图,在△ABC中,AB=AC,D是BC的中点,AE⊥DE,AF⊥DF,且AE=AF。

求证:∠EDB=∠FDC。

2.已知Rt△ABC 中,AC=BC,∠C=90°,D 为AB 边的中点,∠EDF=90°,∠EDF 绕点D 旋转,它的两边分别交AC、CB(或它们的延长线)于E、F。

(1)当∠EDF 绕点D 旋转到DE⊥AC 于E 时(如图①),求证:12DEF CEF ABC S S S += ;(2)当∠EDF 绕点D 旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S 、CEF S 、ABC S 又有怎样的数量关系?请写出你的猜想,不需证明。

数学教学中的数学建模案例

数学教学中的数学建模案例

数学教学中的数学建模案例数学建模是指运用数学原理与方法解决实际问题的过程。

在数学教学中,数学建模可以帮助学生将抽象的数学概念与实际问题相结合,提高他们解决问题的能力和应用数学的能力。

本文将介绍几个数学建模在数学教学中的典型案例。

案例一:用数学建模解决实际问题我们以一个实例开始,假设一个园区的供电系统需要进行优化和改造,以降低能耗和成本。

为了解决这个问题,我们可以通过数学建模来分析和优化供电系统。

首先,我们可以收集园区的用电数据,包括用电量、峰谷电价等信息。

然后,我们可以建立数学模型,使用线性规划等方法来优化供电系统的运行。

通过调整供电系统的负荷分配和电源配置,我们可以找到一种最优方案,以达到降低能耗和成本的目标。

在数学教学中,我们可以通过这个案例引导学生运用数学知识和方法解决实际问题。

学生可以根据实际场景,收集数据,建立数学模型,并利用计算机软件进行模拟和优化。

这样,学生不仅可以巩固数学知识,还可以提高他们的问题解决能力和创新思维。

案例二:用数学建模解决交通流问题交通流问题是城市规划中的一个重要问题。

如何合理安排信号灯的时序,以及交通流的优化调度,都是需要运用数学建模来解决的。

我们可以以某个路口的交通流问题为例。

假设某个路口存在交通拥堵问题,我们需要通过数学建模来优化车辆的行驶路径和交通信号。

首先,我们可以通过收集交通流数据,包括车辆数量、车速等信息。

然后,我们可以建立数学模型,使用图论等方法来分析交通网络的拓扑结构,考虑车辆的速度、密度等因素,并结合交通信号的控制,来优化交通流的调度和路口的通行效率。

在数学教学中,我们可以通过这个案例让学生了解到数学在交通规划中的应用。

学生可以通过收集数据、建立数学模型,运用图论等数学知识,来解决交通流问题。

通过这种实践性的学习,学生可以更好地理解数学的应用和实际问题的解决方法。

案例三:用数学建模解决金融风险问题金融风险管理是银行和其他金融机构需要处理的一个重要问题。

数学模型经典实例

数学模型经典实例





令 f(θ)= xA( θ ) + xC( θ ), g(θ)= xB( θ )+ xD( θ ) 则有 f(θ), g(θ)连续且 f(θ) g(θ)≡0. 桌子在位置 θ* 四脚落地,则有f(θ*) = 0, g(θ*) = 0. 若 f(θ0) = 0, g(θ0) > 0, 则有 f(θ1) > 0, g(θ1) = 0 令 h(θ) = f(θ) - g(θ), 则有 h(θ) 连续 且 h(θ0) < 0, h(θ1) > 0.




1. 模型分析 :T=(nd+L)/v, v↗, 则T↘; d↗, 则 T↗. 2. 多行行进 3. d ↘, 则T↘ . 令d=0, 则有T=L/v。 疏散时间与人数无关! 假设中忽略了人体的厚度!!
修 改 假 设
1.单排教室,直走道,一个出口。 2.人员撤离时, 单行、有序、间隔
d x F ma m 2 dt
2
例2:哥尼斯堡七桥问题
1736 Konigsberg Pregel Euler
数学模型
数学模型是架于数学与实际 问题之间的桥梁 在数学发展的进程中无时无 刻不留下数学模型的印记。

三. 数 学 模 型 的特征
1. 实践性:有实际背景,有 针对性。接受实践的检验。 2. 应用性:注意实际问题的 要求。强调模型的实用价值。 3. 综合性:数学知识的综合。 模型的综合。





问题:求出售时间使净收益最高 令 P’(t)=0 则有 0.8 t - 2×0.05 t = 0 得 t=8 P(8)=130+0.8×8-0.05×82= 133.2 结论: 饲养8天后出售,收益最高为133.2美元

数学模型在自然科学中的应用实例

数学模型在自然科学中的应用实例

数学模型在自然科学中的应用实例自然科学研究是人类对自然界规律的追求和探索。

在这个过程中,数学模型作为一种重要的工具和方法,发挥着重要的作用。

本文将通过几个具体的应用实例,探讨数学模型在自然科学中的应用。

一、生态系统中的物种竞争模型生态系统是由各种生物和非生物因素相互作用而形成的复杂系统。

物种竞争是生态系统中一种常见的现象,它关系到物种的存活和繁衍。

为了研究物种竞争的规律,科学家们运用数学模型来模拟和预测不同物种之间的相互作用。

以狮子和斑马为例,狮子是食肉动物,斑马是草食动物。

它们之间存在着捕食关系,狮子捕食斑马,而斑马则需要躲避狮子的捕食。

通过建立捕食者-被捕食者模型,可以描述狮子和斑马数量的动态变化。

模型中考虑到了狮子和斑马的出生率、死亡率、捕食率等因素,并通过微分方程对它们的数量进行建模和预测。

二、物理学中的运动模型物理学研究物质的运动规律,数学模型在物理学中有着广泛的应用。

以自由落体运动为例,通过数学模型可以准确地描述物体在重力作用下的运动轨迹。

根据牛顿第二定律,物体的运动可以用加速度来描述,而加速度与物体所受的力成正比。

通过建立运动方程,可以计算出物体在不同时刻的位置和速度。

除了自由落体运动,数学模型还可以应用于其他物理学问题。

例如,通过建立电磁场方程,可以研究电磁波的传播规律;通过建立热传导方程,可以研究物体的热传导过程。

这些数学模型为物理学研究提供了重要的工具和方法。

三、化学反应动力学模型化学反应动力学研究化学反应速率与反应物浓度之间的关系。

数学模型在化学反应动力学中起着重要的作用。

以一级反应为例,一级反应的速率与反应物浓度成正比。

通过建立一级反应动力学模型,可以计算出反应的速率常数和反应物浓度随时间的变化。

化学反应动力学模型不仅可以用于描述简单的一级反应,还可以应用于复杂的反应过程。

例如,通过建立酶动力学模型,可以研究酶催化反应的速率与底物浓度之间的关系。

这些数学模型为化学反应的研究提供了重要的工具和方法。

数学建模建模实例

数学建模建模实例
min f = ∑∑ cij xij
s.t.
m n
n
i =1 j =1
∑x
j =1 m i =1
ij
≤ ai = bj
i=1,2,…,m J=1,2,…,n i=1,…,m;j=1,…,n
∑x
ij
xij ≥ 0
ห้องสมุดไป่ตู้
5.当销量之和大于产量之和时 这类运输问 当销量之和大于产量之和时,这类运输问 当销量之和大于产量之和时 题称为销大于产的运输问题,其数学模型为 销大于产的运输问题 题称为销大于产的运输问题 其数学模型为
min f = ∑∑ cij xij
s.t.
m n
∑x
j =1 m i =1
n
i =1 j =1
ij
= ai = bj
i=1,2,…,m J=1,2,…,n i=1,…,m;j=1,…,n
∑x
ij
xij ≥ 0
1.产地产量之和与销地销量之和相等的运输 产地产量之和与销地销量之和相等的运输 产地产量之和与销地销量之和 产销平衡运输问题. 问题称为产销平衡运输问题 问题称为产销平衡运输问题 2.约束条件数是产地数与销地数之和 约束条件数是产地数与销地数之和m+n 约束条件数是产地数与销地数之和 3.决策变量数是产地数与销地数之积 决策变量数是产地数与销地数之积m n 决策变量数是产地数与销地数之积 4. 产量之和大于销量之和时 有产大于销的运 产量之和大于销量之和时,有产大于销的运 输问题,其数学模型为 输问题 其数学模型为
f =21x11+25x12+7x13+15x14+51x21+51x2237x23+15x24 约束条件: 约束条件 x11+x12+x13+x14=2000 x21+x22+x23+x24=1100 x11+x21=1700 x12+x22=1100 x13+x23=200 x14+x24=100 xij ≥ 0, i=1,2; j= 1,2,3,4

简单数学建模应用例子

简单数学建模应用例子

2024/1/713Fra bibliotek建模实例
这里是要用数学方法求解,一是为了给出建模 的示例,二是因为这类模型可以解决相当广泛 的一类问题,比逻辑思索的结果容易推广。
由于问题已经理想化了,所以不必再作假设。 安全渡河问题可以视为一个多步决策过程。每 一步即船由此岸驶向彼岸或从彼岸驶回此岸, 都要对船上的人员作出决策,在保证安全的前 题下,在有限步内使人员全部过河,
x(t t) x(t) rx(t)t
2024/1/7
24
建模实例
于是x(t)满足如下方程:
dx rx dt x(0) x0
易知其解为 x(t) x0ert
(2) (3)
2024/1/7
25
建模实例
上式表明了人口增长的指数规律,此时将t离 散化,并认为r较小,则可得(1)式,即(1) 为指数增长模型的一种离散形式的近似表示。 人们发现,在地广人稀的加拿大领土上,法国 移民后代的人口比较符合指数增长模型,而同 一血统的法国本土居民人口的增长却远低于这 个模型。
2024/1/7
7
建模实例
虽然椅子只有四个距离,但是由于正方形的中 心对称性,只要设两个距离函数就行了,记A, C两脚与地面的距离之和为f( ),B,D两脚与 地面的距离之和为g( ), f( ),g ( )≥0,由假设2, f与g均是连续函数。由假设3,椅子在任何位 置至少有三只脚着地,所以对于任意的 , f( ), g( )中至 少有一个为零,当 =0时 不妨设g( )=0, f( )>0。
数学建模
简单建模实例
1
建模实例
实例一:椅子能在不平的地面上放稳吗? 把椅子往不平的地面上放,通常只有三只脚着 地,放不稳,然而只需挪动几次,就可以使四 脚同时着地,放稳了。这看来似乎与数学无关 的现象能够用数学语言以表述,并用数学工具 来证实吗?

高中数学学习中的数学模型构建实例

高中数学学习中的数学模型构建实例

高中数学学习中的数学模型构建实例数学模型是数学在实际问题中的应用,通过建立数学模型,我们能够更好地理解和解决现实生活中的各种问题。

在高中数学学习中,数学模型构建是一个重要的环节,它能够帮助学生将数学知识与实际问题相结合,提高数学学习的深度和广度。

本文将通过几个实例,介绍高中数学学习中的数学模型构建。

实例一:人口增长模型假设某城市的人口增长率与城市的发展速度和工作机会数量成正比,与老年人口比例和生育率成负比。

我们可以通过建立数学模型来分析该城市的人口增长趋势。

首先,假设城市当前的总人口为P,年人口增长率为r,老年人口比例为a,生育率为b,工作机会数量为c,那么可以表示人口增长模型为:P' = P + rP - aP - bP + cP。

接下来,我们可以通过观察和调查得到一些初始条件和参数值,比如P=10000,r=0.02,a=0.15,b=0.01,c=500。

将这些数值代入到人口增长模型中,可以计算得到不同时期城市的人口情况。

实例二:投资回报模型假设某人投资一笔钱到一个项目中,该项目每年回报率为r,投资时间为t年。

我们可以建立一个数学模型来分析投资回报的变化。

首先,假设初始投资金额为P,年回报率为r,投资时间为t年,那么可以表示投资回报模型为:R = P(1+r)^t。

接下来,我们可以通过设定不同的初始投资金额、回报率和投资时间,计算得到不同情况下的投资回报。

比如,当P=1000,r=0.1,t=5时,代入模型计算可得回报R=1610.51。

实例三:物体运动模型假设某物体从静止开始,以初速度v0经过时间t后速度变为v,我们可以建立数学模型来分析物体的运动情况。

首先,根据牛顿第二定律,可以得到速度变化的方程为:v = v0 + at,其中a为加速度。

接下来,我们可以通过设定不同的初速度、加速度和时间,计算得到不同情况下物体的速度。

比如,当v0=0,a=2,t=5时,代入模型计算可得速度v=10。

数学建模与实例分析的案例展示

数学建模与实例分析的案例展示

数学建模与实例分析的案例展示数学建模是一种将实际问题通过数学方法进行描述、分析、求解的过程。

通过建立数学模型,可以对问题进行系统、科学的研究和分析。

本文将通过实例展示数学建模的应用,以及如何进行实例分析。

【引言】数学建模的目的在于用数学的语言和方法来解释和解决实际问题,可以应用于各个领域,如经济、金融、环境、物流等。

下面将分别从不同领域的实例进行展示。

【实例一:经济领域】在经济领域中,数学建模可以帮助我们理解经济运行机制、预测市场走势等。

以股票市场为例,我们可以通过建立数学模型来分析股市变动的规律和预测未来的趋势。

通过对历史数据的分析和统计,我们可以选取合适的模型,并通过参数估计和预测方法来得出结果。

这种方法可以为投资者提供决策依据,帮助其降低风险、提高收益。

【实例二:环境领域】在环境领域中,数学建模可以帮助我们分析和解决一些环境问题,如空气质量监测、水资源管理等。

以空气质量监测为例,我们可以利用数学建模来预测和评估空气质量的变化趋势。

通过对大量的监测数据进行分析,我们可以建立空气质量模型,并通过模型的模拟和验证来预测和评估不同因素对空气质量的影响。

这种方法可以帮助环保部门及时采取措施,改善和保护环境质量。

【实例三:物流领域】在物流领域中,数学建模可以帮助我们提高物流效率、降低成本。

以物流路径规划为例,我们可以利用数学建模来确定最优的物流路径和调度方案。

通过建立数学模型,我们可以考虑到不同的约束条件,如时间、成本、距离等,以及考虑不同的变量和参数,如车辆数量、货物数量等。

通过模型求解的过程,我们可以得到最优的物流路径和调度方案,从而提高物流效率、降低成本。

【结论】数学建模是一种将实际问题转化为数学问题的过程,通过建立数学模型来分析和解决问题。

本文通过经济、环境和物流领域的实例展示,说明了数学建模的应用和意义。

通过数学建模,我们可以更加科学地理解和解决实际问题,为决策提供参考和支持。

因此,数学建模在现代社会中具有重要的推广和应用价值。

常用数学建模方法及实例

常用数学建模方法及实例

常用数学建模方法及实例数学建模是将实际问题转化为数学模型,通过数学方法进行求解和分析的过程。

常用的数学建模方法包括线性规划、整数规划、非线性规划、图论、动态规划等。

一、线性规划线性规划是一种用于求解线性约束下目标函数的最优值的方法。

它常用于资源分配、生产计划、供应链管理等领域。

例1:公司有两个工厂生产产品A和产品B,两种产品的生产过程需要使用原材料X和Y。

产品A和产品B的利润分别为10和8、工厂1每小时生产产品A需要1个单位的X和2个单位的Y,每小时生产产品B需要2个单位的X和1个单位的Y。

工厂2每小时生产产品A需要2个单位的X和1个单位的Y,每小时生产产品B需要1个单位的X和3个单位的Y。

公司给定了每种原材料的供应量,求使公司利润最大化的生产计划。

二、整数规划整数规划是线性规划的一种扩展,要求变量的取值为整数。

整数规划常用于离散决策问题。

例2:公司有5个项目需要投资,每个项目的投资金额和预期回报率如下表所示。

公司有100万元的投资资金,为了最大化总回报率,应该选择哪几个项目进行投资?项目投资金额(万元)预期回报率1207%2306%3409%4104%5508%三、非线性规划非线性规划是一种求解非线性目标函数下约束条件的最优值的方法。

它广泛应用于经济、金融和工程等领域。

例3:公司通过降低售价和增加广告费用来提高销售额。

已知当售价为p时,销量为q=5000-20p,广告费用为a时,销售额为s=p*q-2000a。

已知售价的范围为0≤p≤100,广告费用的范围为0≤a≤200,公司希望最大化销售额,求最优的售价和广告费用。

四、图论图论是一种用于研究图(由节点和边组成)之间关系和性质的数学方法,常用于网络分析、路径优化、社交网络等领域。

例4:求解最短路径问题。

已知一个有向图,图中每个节点表示一个城市,每条边表示两个城市之间的道路,边上的权重表示两个城市之间的距离。

求从起始城市到目标城市的最短路径。

五、动态规划动态规划是一种通过将问题划分为子问题进行求解的方法,常用于求解最优化问题。

数学建模的简单实例

数学建模的简单实例

,
x4
,
x5
)
xi xi
1,2,3,4,5,6, xi1 4, i
i
1,2,3,4,5;
1,2,3,4
求A
9
模型的递推解法
问题的工艺要求只牵涉相邻两槽中弹子个数的差异 因此, 可以考虑前n 1槽已构成锁具, 再添加第n个槽
时仍能构成锁
构造集合
An
(
x1
,
x2 ,,
xn )
xi xi
1,2,3,4,5,6, xi1 5, i
新建B5 不建B5
;
y jk B j到C k的运量;
16
2 55
5 55
min z
cij xij
dkj ykj e11 e2 2 e3 3 e5 5
s.t.
i1 j1
k 1 j6
55
xij Qi i 1,2, (生产能力限制)
j 1
55
2
ykj xik , k 1,2,3,4,5, (仓库输出限制)
3
方桌问题的数学模型
已知: f ( )及g( )非负连续 且对有f ( ) g( ) 0
求证: 存在, 使f ( ) g( ) 0
4
证明: 为确定起见, 无妨设g(0) 0
1、 若f (0) 0, 取 0, 即得证。 2、 若f (0) 0, 构造函数h( ) f ( ) g( )
)在


间[0,
2
]上








部条

于 是存 在 (a, b)使h( ) f ( ) g( ) 0 又由已知有f ( ) g( ) 0

高中数学-函数模型的应用实例

高中数学-函数模型的应用实例
y0 55196,则我国在1951~1959年期间的人 口增长模型为
y 55196e0.0221t,t N
从该图可以看出,所得模型与1950~1959 年的实际人口数据基本吻合。
y
70000 65000 60000 55000 50000
0
2
4
6
8
t
(2)将y=130 000代入
y 55196e0.0221t
(1)如果以各年人口增长率的平均值作为我国这 一时期的人口增长率(精确到0.0001),用马尔萨 斯人口增长模型建立我国在这一时期的具体人口 增长模型,并检验所得模型与实际人口数据是否 相符;
(2)如果按表中数据的增长趋势,大约在哪一年 我国的人口达到13亿?
因为 Байду номын сангаасi
ai ai 1 ,所以可以得出 ai 1
路程前的读数为2004km,试建立汽车行
驶这段路程时汽车里程表读数 s km与时
间 t h的函y数解析式,并作出相应的图像。
90 80 70
60
50
40
30
20
10
t
123 45
y
2400 2300
2200
2100
2000
x
123 45
2:人口问题是当今世界各国普遍关注 的问题。认识人口数量的变化规律,可以 为有效控制人口增长提供依据。早在1798 年,英国经济学家马尔萨斯就提出了自然 状态下的人口增长模型:
函数模型的应用实例
1:一辆汽车在某段路程中的行驶速
度与时间的关系如图:
y (Km/h)
90
90
80
80
75
70
65
60 50 50

利用数学模型解决生活实际问题实例

利用数学模型解决生活实际问题实例

利用数学模型解决生活实际问题实例随着科学技术特别是信息技术的高速发展,数学的应用价值越来越受到人们的重视。

利用数学知识解决生活中的实际问题已成为当今数学界普遍关注的课题。

因此,学生只掌握书本知识已不能满足社会的需求。

教师应引导学生把所学的数学知识与生活中的实际问题相结合,开展数学建模活动应成为数学教学的重要方法之一。

所谓数学建模是用数学方法建立数学模型。

数学模型是反映特定的具体实体的内在规律性的数学结构,它是从客观原型中抽象概括出来的完全形式化和符号化了的模型,它比原形简单,又高于原形。

因此,利用数学建模解决数学问题,往往会收到事半功倍的效果,下面举例对其加以浅析。

【图1】例1:(如图1),是一块长方形绿地,如果绿地长AB=40米,宽BC=20米,那么A、C两点间的距离是多少?解析:要解决上述问题,只需以AB、BC为直角边,AC为斜边建立一个直角三角形数学模型(如图2所示),然后利用勾股定理进行计算。

【图2】例2:一个游戏题,甲、乙、丙、丁与小强五位同学一起比赛下象棋,到现在为止,甲赛了四盘,乙赛了三盘,丙赛了两盘,丁赛了一盘,小强赛了几盘?解析:此题若建立数学模型,画出图形,答案将一目了然。

用点A、B、C、D、E分别表示甲、乙、丙、丁、小强,两人间的比赛用线段连接,那么根据题意,可建立如图3所示的数学模型,这样,小强赛了几盘的问题就转变成了从E点出发连了几条线段的问题。

由图3可知,从E点出发的线段有两条,所以小强只赛了两盘。

【图3】例3:某校参加数学竞赛的学生中有120名男生、80名女生,参加英语竞赛的有120名女生、80名男生,已知该校共有260名学生参加了竞赛,其中有75名男生两科竞赛都参加了,那么参加了数学竞赛而没有参加英语竞赛的女生有多少人?解析:这个问题的已知条件比较复杂,但倘若我们画出如图4所示的数学模型,用A、B两个圆分别表示参加数学竞赛的男、女生人数,C、D两个圆分别表示参加英语竞赛的男、女生人数,那么问题将迎刃而解。

数学建模:一一对应模型

数学建模:一一对应模型

实例3:征收黄金(续)
如果秤的量程不超过5斤,还能否解答 皇帝的此问题?
实例3:征收黄金(续)
在第一个使臣的箱里拿1块,第二个拿2块,第三个拿3 块......第十个拿10块,总共55块都放在称盘里称,如 果少1钱,就是第一个大臣的黄金不足;如果少2钱, 就是第二个大臣的黄金不足;如果少3钱,就是第三 个大臣的黄金不足......。
2) 客满后又来了一个旅游团,旅游团中有无穷个客人
1 234 ↓ ↓ ↓ ↓ --- ↓ ---
24 68
--- K ----- 2k ---
空下了奇数号房间
实例4:“有限与无限”的例子(续)
3) 客满后又来了一万个旅游团,每个团中都有无穷个
客人
1 2 34
┅k ┅
↓ ↓↓ ↓ ┅↓ ┅
10001 20002 30003 40004 ┅ 10001×k ┅
实例4:“有限与无限”的例子
“有无限个房间”的旅馆
(现实的旅馆都只有 有限个房间)
实例4:“有限与无限”的例子(续)
1) 客满后又来1位客人(“客满”:无穷个客人住满了)
1 2 3 4 ┅k┅ ↓↓ ↓↓ ┅↓ ┅ 2 3 4 5 ┅ k+1 ┅
空出了1号房间
实例4:“有限与无限”的例子(续)
实例7:孩子的年龄是多大
实例8:女神救人
二面涂色的小正方体位于大正方体的棱上刨除棱的两端一共12n2个一面涂色的小正方体位于大正方体的面上刨除外面的一圈一共6n22个4各面都没图色小正方体位于大正方体的内核指刨掉露在外面一层的小正方体一共n23个
数 学 模 型(建 模) Mathematics Model(ing)
2017.2.27
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章建立数学模型1.1 从现实对象到数学模型1.2 数学建模的重要意义1.3 数学建模示例1.4 数学建模的方法和步骤1.5 数学模型的特点和分类1.6 怎样学习数学建模1.1从现实对象到数学模型我们常见的模型玩具、照片、飞机、火箭模型… …~ 实物模型水箱中的舰艇、风洞中的飞机… …~ 物理模型地图、电路图、分子结构图… …~ 符号模型模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物模型集中反映了原型中人们需要的那一部分特征你碰到过的数学模型——“航行问题”用x 表示船速,y 表示水速,列出方程:75050)(75030)(=⨯-=⨯+y x y x 答:船速每小时20千米/小时.甲乙两地相距750千米,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船的速度是多少?x =20y =5求解航行问题建立数学模型的基本步骤•作出简化假设(船速、水速为常数);•用符号表示有关量(x, y表示船速和水速);•用物理定律(匀速运动的距离等于速度乘以时间)列出数学式子(二元一次方程);•求解得到数学解答(x=20, y=5);•回答原问题(船速每小时20千米/小时)。

数学模型(Mathematical Model) 和数学建模(Mathematical Modeling)对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。

建立数学模型的全过程(包括表述、求解、解释、检验等)数学模型数学建模1.2数学建模的重要意义•电子计算机的出现及飞速发展;•数学以空前的广度和深度向一切领域渗透。

数学建模作为用数学方法解决实际问题的第一步,越来越受到人们的重视。

•在一般工程技术领域数学建模仍然大有用武之地;•在高新技术领域数学建模几乎是必不可少的工具;•数学进入一些新领域,为数学建模开辟了许多处女地。

数学建模的具体应用•分析与设计•预报与决策•控制与优化•规划与管理如虎添翼数学建模计算机技术知识经济1.3 数学建模示例1.3.1椅子能在不平的地面上放稳吗问题分析模型假设通常~ 三只脚着地放稳~ 四只脚着地•四条腿一样长,椅脚与地面点接触,四脚连线呈正方形;•地面高度连续变化,可视为数学上的连续曲面;•地面相对平坦,使椅子在任意位置至少三只脚同时着地。

模型构成用数学语言把椅子位置和四只脚着地的关系表示出来•椅子位置利用正方形(椅脚连线)的对称性x B A DC OD ´C ´B ´ A ´用θ(对角线与x 轴的夹角)表示椅子位置•四只脚着地距离是θ的函数四个距离(四只脚)A,C 两脚与地面距离之和~ f (θ)B,D 两脚与地面距离之和~ g (θ)两个距离θ椅脚与地面距离为零正方形ABCD 绕O 点旋转正方形对称性用数学语言把椅子位置和四只脚着地的关系表示出来f(θ) , g(θ)是连续函数对任意θ,f(θ), g(θ)至少一个为0数学问题已知:f(θ) , g(θ)是连续函数;对任意θ,f(θ) • g(θ)=0 ;且g(0)=0,f(0) > 0.证明:存在θ,使f(θ) = g(θ0) = 0.模型构成地面为连续曲面椅子在任意位置至少三只脚着地模型求解给出一种简单、粗糙的证明方法将椅子旋转900,对角线AC和BD互换。

由g(0)=0,f(0) > 0 ,知f(π/2)=0 , g(π/2)>0.令h(θ)= f(θ)–g(θ), 则h(0)>0和h(π/2)<0.由f, g的连续性知h为连续函数, 据连续函数的基本性, 使h(θ0)=0, 即f(θ0) = g(θ0) .质, 必存在θ因为f(θ) • g(θ)=0, 所以f(θ) = g(θ0) = 0.评注和思考建模的关键~θ和f(θ), g(θ)的确定假设条件的本质与非本质考察四脚呈长方形的椅子1.3.2 商人们怎样安全过河问题(智力游戏)∆∆∆3名商人⨯⨯⨯3名随从随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货.但是乘船渡河的方案由商人决定.商人们怎样才能安全过河?问题分析多步决策过程决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员要求~在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河.河小船(至多2人)模型构成x k ~第k 次渡河前此岸的商人数y k ~第k 次渡河前此岸的随从数x k , y k =0,1,2,3;k =1,2,⋯⋯s k =(x k , y k )~过程的状态S={(x , y )|x =0, y =0,1,2,3; x =3, y =0,1,2,3; x =y =1,2}S ~ 允许状态集合u k ~第k 次渡船上的商人数v k ~第k 次渡船上的随从数d k =(u k , v k )~决策D={(u , v )|u+v =1, 2} ~允许决策集合u k , v k =0,1,2;k =1,2,⋯⋯s k +1=s k d k+(-1)k ~状态转移律求d k ∈D(k =1,2, ⋯n), 使s k ∈S, 并按转移律由s 1=(3,3)到达s n +1=(0,0).多步决策问题模型求解xy 3322110•穷举法~ 编程上机•图解法状态s =(x,y ) ~ 16个格点~ 10个点允许决策~ 移动1或2格; k 奇,左下移; k 偶,右上移.s 1n +1d 1, ⋯,d 11给出安全渡河方案评注和思考规格化方法,易于推广考虑4名商人各带一随从的情况d 1d 11允许状态S={(x , y )|x =0, y =0,1,2,3;x =3, y =0,1,2,3; x=y =1,2}1.3.3 如何预报人口的增长世界人口增长概况背景年1625 1830 1930 1960 1974 1987 1999人口(亿) 5 10 20 30 40 50 60中国人口增长概况年1908 1933 1953 1964 1982 1990 1995 2000人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0研究人口变化规律控制人口过快增长指数增长模型——马尔萨斯提出(1798)常用的计算公式kk r x x )1(0+=x (t ) ~时刻t 的人口基本假设: 人口(相对)增长率r 是常数tr t x t x t t x ∆=-∆+)()()(今年人口x 0, 年增长率rk 年后人口0)0(,x x rx dtdx==rtex t x 0)(=t r e x t x )()(0=tr x )1(0+≈随着时间增加,人口按指数规律无限增长指数增长模型的应用及局限性•与19世纪以前欧洲一些地区人口统计数据吻合•适用于19世纪后迁往加拿大的欧洲移民后代•可用于短期人口增长预测•不符合19世纪后多数地区人口增长规律•不能预测较长期的人口增长过程19世纪后人口数据人口增长率r不是常数(逐渐下降)人口增长到一定数量后,增长率下降的原因:资源、环境等因素对人口增长的阻滞作用且阻滞作用随人口数量增加而变大假设)0,()(>-=s r sx r x r r ~固有增长率(x 很小时)x m ~人口容量(资源、环境能容纳的最大数量))1()(mx xr x r -=r 是x 的减函数mx r s =)(=m x rrx dtdx=)1()(mx x rx x x r dt dx -==dx /dtxx m m x m x t x x x emm rt()()=+--110txx (t )~S 形曲线, x 增加先快后慢x x m /2参数估计用指数增长模型或阻滞增长模型作人口预报,必须先估计模型参数r 或r, x m•利用统计数据用最小二乘法作拟合例:美国人口数据(单位~百万)1860 1870 1880 …… 1960 1970 1980 199031.4 38.6 50.2 …… 179.3 204.0 226.5 251.4专家估计阻滞增长模型(Logistic 模型)r =0.2557, x m =392.1模型检验用模型计算2000年美国人口,与实际数据比较]/)1990(1)[1990()1990()1990()2000(m x x rx x x x x -+=∆+=实际为281.4 (百万)5.274)2000(=x 模型应用——预报美国2010年的人口加入2000年人口数据后重新估计模型参数Logistic 模型在经济领域中的应用(如耐用消费品的售量)阻滞增长模型(Logistic 模型)r =0.2490, x m =434.0x (2010)=306.0数学建模的基本方法•机理分析•测试分析根据对客观事物特性的认识,找出反映内部机理的数量规律将对象看作“黑箱”,通过对量测数据的统计分析,找出与数据拟合最好的模型机理分析没有统一的方法,主要通过实例研究(Case Studies)来学习。

以下建模主要指机理分析。

•二者结合用机理分析建立模型结构,用测试分析确定模型参数1.4数学建模的方法和步骤数学建模的一般步骤模型准备模型假设模型构成模型求解模型分析模型检验模型应用模型准备了解实际背景明确建模目的搜集有关信息掌握对象特征形成一个比较清晰的‘问题’模型假设针对问题特点和建模目的作出合理的、简化的假设在合理与简化之间作出折中模型构成用数学的语言、符号描述问题发挥想像力使用类比法尽量采用简单的数学工具数学建模的一般步骤模型求解各种数学方法、软件和计算机技术如结果的误差分析、统计分析、模型对数据的稳定性分析模型分析模型检验与实际现象、数据比较,检验模型的合理性、适用性模型应用数学建模的一般步骤数学建模的全过程现实对象的信息数学模型现实对象的解答数学模型的解答表述求解解释验证(归纳)(演绎)表述求解解释验证根据建模目的和信息将实际问题“翻译”成数学问题选择适当的数学方法求得数学模型的解答将数学语言表述的解答“翻译”回实际对象用现实对象的信息检验得到的解答实践现实世界数学世界理论实践1.5数学模型的特点和分类模型的逼真性和可行性模型的渐进性模型的强健性模型的可转移性模型的非预制性模型的条理性模型的技艺性模型的局限性数学模型的特点数学模型的分类应用领域人口、交通、经济、生态… …数学方法初等数学、微分方程、规划、统计… …表现特性描述、优化、预报、决策… …建模目的了解程度白箱灰箱黑箱确定和随机静态和动态线性和非线性离散和连续1.6 怎样学习数学建模数学建模与其说是一门技术,不如说是一门艺术技术大致有章可循艺术无法归纳成普遍适用的准则想像力洞察力判断力•学习、分析、评价、改进别人作过的模型•亲自动手,认真作几个实际题目。

相关文档
最新文档