齿轮设计说明书

合集下载

设计说明书-齿轮

设计说明书-齿轮
1.选择材料和精度等级
小齿轮:40Cr,调质处理,硬度241~286HB,平均取为260HB
大齿轮:45#钢,调质处理,硬度229~286HB,平均取为240HB
精度:8级
2. 初步估算小齿轮的直径
采用闭式齿轮传动,按齿面接触强度初步估算小齿轮分度圆直径。
由附录B式(B-2)
由附录B表B-1,初取 ,Ad=756,k=1.4
螺旋角系数
使用系数 : 查表27-7,
动载系数 :查图27-6,
齿间载荷分配系数 :查表27-8得
齿向载荷分配系数 ,查表27-9.其中:对称支承,调质齿轮精度等级8级。
齿面接触应力为
②计算许用应力,由式(27-16)
计算许用接触应力 。
工作总时间
(使用10年,每年300个工作日,每日8小时,)
应力循环次数为
端面模数:
小齿轮直径:大齿轮直径:齿宽:源自所以:小齿轮当量齿数:
大齿轮的当量齿数:
圆整中心距
螺旋角
齿宽
6.齿根弯曲疲劳强度验算
由式27-11
校验齿根弯曲疲劳强度
计算齿根弯曲应力
由此前计算可知
查图27-9,其中:
齿向载荷分布系数
齿形系数 由图27-10(非变位)查得
同时外应力修正系数 由图27-21得 。
弯曲疲劳强度校核
合格
7.静强度校核
因无严重过载,故不作静强度校核。
初步齿宽
校核传动比误差:因齿数未做圆整,传动比不变
=4
4.校核齿面接触疲劳强度
由式27-5
计算齿面接触应力
节点区域系数 ,查图27-18非变位斜齿轮
弹性系数 ,查表27-15,得:
重合度系数 的计算公式由端面重合度 和纵向重合度 确定。

齿轮机械设计课程设计说明书

齿轮机械设计课程设计说明书

机械基础课程设计说明书设计题目机械传动设计生物与化学工程学院食品工程专业班级 17食品学号设计人杨某人指导老师李党育完成日期 2019 年 6 月 21 日南阳理工学院目录设计任务 (1)1.设计题目 (1)2.设计任务 (1)3.具体要求 (1)电动机的选择 (2)1.拟定传动方案 (2)2.选择电动机 (3)3.计算传动装置的总传动比及其分配各级传动比 (4)4.传动装置的运动和动力学参数 (4)传动零件的设计计算 (5)1.V带传动 (5)2.减速箱内的单级圆柱齿轮传动 (6)齿轮参数的计算 (8)1.小齿轮的计算 (8)2.大齿轮的计算 (8)设计小结 (10)参考资料 (10)1设计任务1.设计题目带式运输机传动装置设计,运动见图如下:(1)带式运输机数据(见数据表)(2)工作条件:用于锅炉房运煤,三班制工作,每班工作4小时,空载启动,单向、连续运转,载荷平稳。

(3)使用期限:工作期限为10年,每年工作300天。

(4)生产批量及加工条件:小批量生产,无铸造设备。

2.设计任务(1)选择电动机型号;(2)确定带传动的主要参数及尺寸; (3) 确定齿轮传动的主要参数及尺寸;;3.具体要求(1)零件(齿轮)图二张(A3); (2)设计说明书一份,不少于2000字。

电动机的选择1.拟定传动方案为了估计传动装置的总传动比范围,以便合理的选择合适的传动机构和拟定传动方案。

可先由已知条件计算出驱动卷筒的转速,即一般常选用转速为1000r/min或1500r/min的电动机作为原动机,因此传动装置总传动比约为8.1或12,根据总传动比数值,可初步拟定出以二级传动为主的多种传动方案。

先考虑有以下集中传动方案进行选择,如图所示带式运输机传动方案比较传动方案应满足工作机的性能要求,适应工作条件,工作可靠,而且要求结构简单,尺寸紧凑,成本低,传动效率高,操作维护方便。

通过分析比较最后选择其中较合理的一种。

a.方案:宽度和长度尺寸较大,带传动不适应繁重的工作条件和恶劣的环境,但有过载保护作用,还可以缓和冲击和振动,因此这种方案得到广泛应用;b.方案:结构紧凑,若在大功率和长期运转条件下使用,则由于蜗杆传动效率低,功率损耗大,很不经济;c. 方案:宽度尺寸小,适于在恶劣环境下长期连续工作,但圆23锥齿轮加工比圆柱齿轮闲难;d.方案:与b 方案相比较,宽度尺寸较大,输人轴线与工作机位置是水平位置。

单级圆柱齿轮减速器设计说明书

单级圆柱齿轮减速器设计说明书

单级圆柱齿轮减速器设计说明书设计说明书:单级圆柱齿轮减速器引言:圆柱齿轮减速器作为一种常见的传动装置,广泛应用于机械设备中的减速传动系统中。

本设计说明书旨在详细介绍单级圆柱齿轮减速器的设计原理、结构特点、性能参数以及选型要点,为读者提供有关该减速器的全面指导和参考。

一、设计原理及结构特点:单级圆柱齿轮减速器是由一个输入轴和一个输出轴组成。

其中输入轴与电机相连,输出轴与被驱动机械设备相连。

通过齿轮传递动力,实现减速效果。

该减速器结构简单,耐久性强,承载能力较大,传动效率较高,对于大功率传动系统非常适用。

二、性能参数:1. 传动比:传动比是指减速器输入轴转速与输出轴转速之间的比值。

在设计中,通过合理选择齿轮模数、齿数等参数来确定传动比。

传动比的选择直接影响到输出扭矩和转速,需要根据实际应用需求进行优化设计。

2. 承载能力:减速器的承载能力是指其可以承受的最大轴向和径向力矩。

在设计中,需要考虑被驱动机械设备的扭矩要求,并确保减速器可以承受该扭矩而不损坏。

3. 效率:减速器的效率是指输入功率与输出功率之间的比值。

高效率的减速器能够最大程度地将电机输入的功率转化为机械设备需要的输出功率,减少能量损失。

三、选型要点:在选型过程中,需要综合考虑以下几个要点,以确保减速器的使用效果和寿命:1. 转速要求:根据被驱动机械设备的转速要求,选择合适的传动比,使得输出轴转速满足要求。

2. 扭矩要求:根据被驱动机械设备的扭矩要求,选择合适的减速器承载能力,保证减速器不会因为超负荷工作而损坏。

3. 空间限制:考虑被安装环境的空间限制,选择适当大小的减速器尺寸,以便于安装和维护。

4. 质量和可靠性:选择优质的材料和制造工艺,确保减速器的质量和可靠性,以减少故障概率和维修次数。

结论:单级圆柱齿轮减速器是一种可靠、高效的传动装置,广泛应用于各种机械设备中的减速传动系统。

通过本设计说明书的介绍,读者对单级圆柱齿轮减速器的设计原理、结构特点、性能参数以及选型要点有了更全面的了解,并可以根据实际需求进行合理的设计和选型,以满足各类机械设备的传动需求。

变位齿轮课程设计 说明书

变位齿轮课程设计 说明书

1.设计任务及要求已知: 齿数:1z =15 2z =57,模数: m=10, 压力角: 20=α ,齿轮为正常齿制,工作情况位闭式传动。

要求:1) 选择变位系数21x x 、。

2) 计算该对齿轮传动的各部分尺寸。

3) 以2号图纸绘制齿轮传动的啮合图。

2.数学模型1) 际中心距a '的确定:2)(21z z m a +⨯= ; a '=(a/5+1)⨯5; 2) 啮合角α': ;)cos(2)()cos(21ααα⨯'⨯+='z z m 实αααinv z z x x inv +++=')/()(tan 22121;3) 分配变位系数21x x 、;17sin 22min ≈=*αa h z min 1min min 1/)(z z z h x a -=*;min 2min min 2/)(z z z h x a -=*;;αααtan 2))((2121z z inv inv x x +-'=+ 4)中心距变动系数 y=(a a -')/m ;5) 齿轮基本参数:注:下列尺寸单位为mm模数: m=10压力角: 20=α齿数: 1z =15 2z =57齿顶高系数: 0.1=*a h齿根高系数: 25.0=*c传动比: 12/z z i =齿顶高变动系数: y x x -+=21σ分度圆直径; 11mz d = 22mz d =基圆直径; αc o s 11mz d b =αc o s 22mz d b =齿顶高: )(11σ-+=*x h m h a a)(22σ-+=*x h m h a a 齿根高: )(11x c h m h a f -+=*)(22x c h m h a f -+=** 齿顶圆直径: 1112a a h d d +=2222a a h d d +=齿根圆直径; 1112f f h d d -=2222f f h d d -=节圆直径: αα'='c o s c o s 11d d αα'='cos cos 22d d4) 重合度:)]tan (tan )tan (tan [212211ααααπε'-+'-=a a z z )/(cos 1111a b a d d -=α )/(c o s 2212a b a d d -=α5) 一般情况应保证2.1≥ε6) 齿距: m p π=7) 节圆齿距: αα'='c o s c o s p p 8) 基圆齿距: απc o s m p b =9)齿顶圆齿厚: )(2111111ααi n v i n v r r r s s a a a a --= )(2222222ααinv inv r r r s s a a a a --=一般取25.0≥a s10) 基圆齿厚:)(tan arccos )s [tan(arcco 111111111αα----=a b a b b b b d d d d d d d s s )(tan arccos )s [tan(arcco 222222222αα----=a b a b b b b d d d d d d d s s 11) 分度圆齿厚:απtan 22111m x m s +=απtan 22122m x m s +=12) 展角: '-'=11111a r c c o s )t a n (a r c c o s d d d d b b θ '-'=22222a r c c o s )t a n (a r c c o s d dd d b b θ 设计总结通过此次课程设计,我对机械设计和制造有了深入的了解,对本专业的有了更深入的了解。

齿轮齿条传动机构设计说明书

齿轮齿条传动机构设计说明书

专业资料齿轮齿条传动机构的设计和计算1. 齿轮1,齿轮2与齿轮3基本参数的确定由齿条的传动速度为500mm/s,可以得到齿轮3的速度为500m/s,即,/5003s mm V =又()160d 333n V π=,取,25,25.3202131mm B B mm m Z Z =====,由此可得()265d 31mm mZ d ===,由(1)与(2)联立解得min /r 147n 32==n ,取4i 12=则由4i 211212===n n z z 得80min,/58821==z r n 2. 齿轮1齿轮2与齿轮3几何尺寸确定齿顶高 ()()mm x h m h h h n an a a a 525.57.0125.3321=+⨯=+===* 齿根高 ()()mm x c h m h h n n an f f f 79.17.025.0125.3h 321=-+⨯=-+===** 齿高 mm h h h h f a 315.7h 321=+=== 分度圆直径mmmz d mm mz d 84.26512cos /8025.3cos /,46.6612cos /2025.3cos /d 0220131=⨯===⨯===ββ齿顶圆直径 mm h d d mm h d d a a a a a 34.2772,51.772d 2221131=+==+== 齿根圆直径 mm h d d mm h d d f f f f f 26.2622,88.622d 2221131=-==-== 基圆直径 mm d d mm d d b b b 8.249cos ,45.6220cos 46.66cos d 220131===⨯===αα 法向齿厚为mm m x s s n n n n n n 759.625.3364.07.022tan 22s 1321=⨯⎪⎭⎫⎝⎛⨯⨯+=⎪⎭⎫ ⎝⎛+===παπ端面齿厚为mm m x s s t t t t t t 94.632.3367.0cos 7.022tan 22s 2321=⨯⎪⎪⎭⎫ ⎝⎛⨯⨯+=⎪⎭⎫⎝⎛+===βπαπ齿距 mm m p p 205.1025.314.3p 321=⨯====π 3. 齿轮材料的选择及校核齿轮选用45号钢或41Cr4制造并经调质,表面硬度均应在56HRC 以上。

机械设计基础课程设计-一级齿轮减速器设计说明书

机械设计基础课程设计-一级齿轮减速器设计说明书

机械设计基础课程设计-一级齿轮减速器设计说明书正文:一级齿轮减速器设计说明书设计目标:本次设计旨在设计一个一级齿轮减速器,实现指定输入转速和输出转速之间的减速比。

同时,考虑到传动效率、轴向和径向载荷的承载能力以及噪音等因素。

1.引言1.1 背景介绍在机械传动领域中,齿轮减速器是一种常用的传动装置。

通过合理的齿轮设计,可以实现高效的转速调节和转矩变化。

一级齿轮减速器作为齿轮传动系统的基本组成部分,在工程领域中得到广泛应用。

1.2 设计范围本设计范围包括齿轮的型号选择、齿轮几何参数的计算与设计、强度校核、噪声分析以及轴承和润滑油的选择等内容。

2.齿轮型号选择与齿轮几何参数计算2.1 输入参数2.1.1 输入转速:N1 = 1500 rpm2.1.2 输出转速:N2 = 300 rpm2.1.3 传动功率:P = 10 kW2.2 齿轮型号选择根据输入转速和输出转速的减速比以及传动功率的要求,选择适当的齿轮型号。

2.3 齿轮几何参数计算2.3.1 主传动齿轮参数计算根据减速比和输入、输出转速的关系,计算主传动齿轮的模数、齿数等几何参数。

2.3.2 从动齿轮参数计算根据主传动齿轮参数和减速比,计算从动齿轮的几何参数。

3.齿轮强度校核3.1 材料选择根据齿轮所承载的传动功率和工作条件,选择合适的材料。

3.2 强度计算根据齿轮几何参数、材料性能和工作条件,进行应力和变形的计算,检查设计的齿轮是否满足强度要求。

4.噪声分析与控制4.1 噪声来源分析通过对齿轮传动系统的分析,确定噪声的主要来源。

4.2 噪声控制措施针对噪声来源,提出相应的控制措施,以降低噪声水平。

5.轴承与润滑油选择5.1 轴承选择根据齿轮传动系统的径向和轴向载荷要求,选择相应的轴承类型和规格。

5.2 润滑油选择根据齿轮传动系统的工作条件和轴承要求,选择合适的润滑油类型。

6.结论通过对一级齿轮减速器的设计、强度校核、噪声分析以及轴承和润滑油的选择等方面的研究,本次设计满足了预期的减速比要求,并具备足够的强度和稳定性,同时在噪声和摩擦方面也做出了相应的控制。

齿轮设计计算说明书

齿轮设计计算说明书

齿轮设计计算说明书一、设计任务与要求本次设计任务为一对圆柱齿轮减速器的设计,要求如下:1. 减速器传动类型为圆柱齿轮减速器;2. 输入功率为15kW,输入转速为1500r/min;3. 齿轮材料为40Cr,调质处理,硬度为229~269℃;4. 齿轮精度等级为6级,接触疲劳寿命不小于50万转。

二、几何尺寸计算根据设计要求,输入轴的设计几何尺寸如下:1. 齿数:z=38;2. 压力角:α=20°;3. 模数:m=2mm;4. 齿轮宽度:b=30mm;5. 齿顶圆直径:da=z+2m=42mm;6. 齿根圆直径:df=z-2.5m=35mm。

三、材料选择与热处理要求本次设计选用40Cr钢作为齿轮材料,经过调质处理后,其硬度范围为229~269℃,可满足设计要求。

四、接触疲劳强度计算根据国家标准GB19060-2003,计算齿轮的接触疲劳强度。

计算公式为:σHmax =K·95·fp·N·μ·δt·τcos∅/D·δH。

经过计算,该齿轮的接触疲劳强度满足设计要求。

其中,K为安全系数,取值1.8;fp为材料抗弯强度,取值185MPa;N为许用载荷系数,一般可取值1;μ为载荷集中系数,可取值1.2;δt为变位系数上限值,取值1mm;τcos∅为载荷组合系数,一般可取值1。

另外,还需要考虑疲劳折断的安全余量,一般可取值1.5~3。

五、齿轮精度等级选择本次设计要求齿轮精度等级为6级,符合国家标准GB/T6403.1的要求。

齿轮的测量参数包括圆跳动、螺旋线、接触斑点和径向跳动等。

为了保证齿轮的精度等级,需要进行相应的测量和调整。

六、其他注意事项在齿轮设计中,还需要考虑润滑方式、齿轮的表面处理、热处理工艺等其他因素。

为了保证齿轮的性能和使用寿命,需要综合考虑各种因素,并进行合理的选择和设计。

总结:本次设计的圆柱齿轮减速器,输入功率为15kW,输入转速为1500r/min,选用40Cr钢作为齿轮材料,经过调质处理后硬度范围为229~269℃,接触疲劳强度满足设计要求。

齿轮设计计算说明书

齿轮设计计算说明书

齿轮设计计算说明书齿轮设计计算说明书设计背景:齿轮是广泛应用于机械传动系统中的一种重要零件,常用于减速器、变速器、转向器等机械装置中。

在机械设计中,齿轮需要满足一定的强度和耐久性要求,因此需要进行齿轮设计计算。

本说明书将对齿轮设计的相关计算进行详细介绍。

设计计算:1.齿轮参数计算:1.1 齿轮模数(m)的计算公式为:m = K * (√(T_s / (Y * σ))) / (n * z)其中,K为修形系数,取值1.25;T_s为传递的扭矩;Y为齿轮面展向材料的弹性模量;σ为齿轮材料抗弯应力;n为齿轮转速(rpm);z为齿轮的齿数。

1.2 中心距(a)的计算公式为:a = ((z1 + z2) * m) / 2其中,z1和z2分别为两个齿轮的齿数。

1.3 齿轮模数(m)取值范围为0.5mm至50mm。

1.4 中心距(a)的设计范围应满足:1.4.1 当m≤3mm时,a≥2.5m。

1.4.2 当m>3mm时,a≥2.2m。

2.齿轮几何参数计算:2.1 齿高(h)的计算公式为:h = 2.25 * m2.2 齿宽(b)的计算公式为:b = 0.85 * m * z2.3 压力角(α)的计算公式为:α = cos^(-1)((a * sin(β)) / ((z1 + z2) / 2))其中,β为齿轮的压力角。

3.齿轮强度计算:3.1 计算传递的扭矩(T_s):T_s = (P * 60) / (2 * π * n)其中,P为传递的功率(kW);n为齿轮转速(rpm)。

3.2 计算齿轮面弯矩(F)的公式为:F = (T_s * K_f) / (d1 * m)其中,K_f为齿轮面弯曲系数;d1为齿轮1的基圆直径。

3.3 计算转矩系数(K_v):K_v = 1.5 * C_v * (b / m)^(0.25)其中,C_v为转矩载荷系数。

3.4 计算齿轮面张力(F_t)的公式为:F_t = (K_v * F) / b3.5 计算齿轮失效应力(σ_f)的公式为:σ_f = (F_t * K_H) / (b * m)其中,K_H为齿轮荷载分布系数。

单级圆柱齿轮减速器设计说明书

单级圆柱齿轮减速器设计说明书

单级圆柱齿轮减速器设计说明书设计说明书:单级圆柱齿轮减速器1.引言本设计说明书旨在详细说明单级圆柱齿轮减速器的设计方案、工作原理以及相关参数,并给出制造和装配的指导。

2.设计目标在本节中,将阐明设计减速器所需要达到的目标,包括但不限于输出转矩、输入转速、轴向力等。

3.工作原理描述单级圆柱齿轮减速器的工作原理,包括输入和输出轴的运动相对方向、齿轮的传动方式以及摩擦损失等。

4.构成要素及材料选择本节将介绍单级圆柱齿轮减速器的构成要素,包括齿轮、轴承、壳体等,并对每个要素所选择的材料进行说明。

5.减速器的设计过程详细描述单级圆柱齿轮减速器的设计过程,包括齿轮参数的计算、齿轮副的布置设计、轴的选取及布置、轴承的选用等。

6.制造和装配指南给出制造和装配单级圆柱齿轮减速器的指导,包括零件的加工工艺、装配顺序、紧固力矩等。

7.性能测试方法及标准描述对单级圆柱齿轮减速器进行性能测试的方法和标准,包括转矩测试、转速测试以及噪音测试等。

8.质量控制说明质量控制的准则和方法,包括零部件的检验、装配质量检查以及出厂前的整机测试等。

9.维护与维修介绍单级圆柱齿轮减速器的维护与维修方法,包括常见故障的诊断和处理、润滑油更换周期等。

10.安全注意事项列出使用单级圆柱齿轮减速器时需要注意的安全事项,包括操作注意事项、维护保养注意事项以及紧急情况处理措施等。

11.附件提供与本文档有关的附件,包括技术图纸、设计计算表格、实验数据等。

12.法律名词及注释列出本文档中涉及的法律名词,并提供相应的注释和解释,以确保读者对相关法律概念有准确的理解。

【附件】1.技术图纸2.设计计算表格3.试验报告【法律名词及注释】1.版权:指对著作权人就其作品享有的法律权利,包括复制权、发行权、表演权等。

2.专利:指对于发明的技术解决方案的一种保护形式,授予专利权人在一定期限内对其发明进行独占性使用的权利。

3.商标:指对于产品或服务的标志,授予商标权人在特定领域内以独占性方式使用该标志的权利。

一级圆柱齿轮减速器设计说明书

一级圆柱齿轮减速器设计说明书

一级圆柱齿轮减速器设计说明书一级圆柱齿轮减速器是工业制造中常见的减速机构之一,主要用于降低传动系统的转速和增加扭矩。

本文将从设计原理、结构特点、选型注意事项、维护保养等方面进行详细介绍,希望能为广大读者提供一些指导意义。

一、设计原理一级圆柱齿轮减速器主要由主动轮、从动轮、轴、轴承和外壳等组成。

当主动轮转动时,经过轴进行传动作用,从动轮便跟随主动轮转动,此时将转速减少了,同时扭矩增大。

主要减速原理是利用两个圆柱齿轮之间的接触来传递动力,其减速比决定于主动轮和从动轮的齿轮数。

二、结构特点一级圆柱齿轮减速器是传统减速器中使用最广泛的一种,其结构特点主要有以下几点:1.结构简洁,制造成本低廉。

2.转速范围广,适用性强。

3.减速比大,输出扭矩大。

4.传动效率高,一般可达到95%以上。

5.运转平稳,噪声小,寿命长。

三、选型注意事项在选择一级圆柱齿轮减速器时,需注意以下几点:1.确定所需的减速比和输出扭矩。

2.确定输入轴的转速和功率,以便选型时能满足要求。

3.考虑运转环境和工作负载,选择合适的安装方式和轴承类型。

4.测试和评估减速器的传动效率,以确定其性能是否符合要求。

四、维护保养一级圆柱齿轮减速器在使用过程中需要定期进行维护保养,以确保其长期稳定运行。

常见的维护保养措施包括:1.定期检查润滑油的油位和质量,需要及时更换。

2.检查齿轮和轴承的磨损情况,如有需要应及时更换。

3.定期清洗减速器内部,确保齿轮和轴承处于良好的工作状态。

4.注意减速器的运转状态,及时发现并排除故障。

综上所述,一级圆柱齿轮减速器是一种经济实用、可靠耐用的传动设备,其结构简洁、减速比大、传动效率高等特点使其在各种行业中广泛应用。

在选型、安装和使用过程中需注意各种因素,合理维护保养可延长其使用寿命,提高生产效率。

二级圆锥圆柱齿轮减速器设计说明书

二级圆锥圆柱齿轮减速器设计说明书

二级圆锥圆柱齿轮减速器设计说明书一、概述本设计说明书主要介绍二级圆锥圆柱齿轮减速器的设计过程、原理及关键技术。

该减速器采用高效、高精度的圆锥圆柱齿轮设计,结合二级行星减速结构,实现了高效、高扭矩、低噪音的传动效果。

二、设计目标本设计的目标是设计一款高效、高可靠性的二级圆锥圆柱齿轮减速器,满足工业机器人、机械臂等高精度、高扭矩传动要求。

三、设计原理1. 圆锥圆柱齿轮设计:采用高效、高精度的圆锥圆柱齿轮,通过优化齿轮参数和齿形设计,降低齿轮啮合间隙和噪音。

2. 二级行星减速结构:采用二级行星减速结构,通过内、外两组行星齿轮组的协同工作,实现高扭矩输出和优良的负载能力。

3. 润滑与冷却:采用强制润滑和风冷散热设计,保证减速器的正常运行和寿命。

四、关键技术1. 高效齿轮设计技术:通过优化齿轮参数和齿形设计,提高齿轮传动效率,降低噪音。

2. 高精度加工技术:采用高精度数控加工技术,确保齿轮精度和质量。

3. 可靠性设计技术:通过优化结构设计、选用高质量材料和严格的制造工艺,提高减速器的可靠性和稳定性。

五、设计流程1. 需求分析:明确减速器的设计要求、性能指标和使用环境。

2. 初步设计:确定减速器的总体结构、齿轮参数和材料等。

3. 详细设计:完成减速器的详细设计,包括齿轮、轴、轴承等部件的设计和制造工艺。

4. 制造与试验:根据详细设计图纸进行制造,完成减速器的装配和性能试验。

5. 优化与改进:根据试验结果进行优化改进,提高减速器的性能和可靠性。

六、设计结果与结论1. 设计结果:成功设计出一款高效、高精度的二级圆锥圆柱齿轮减速器,满足设计要求。

2. 设计结论:本设计采用高效、高精度的圆锥圆柱齿轮设计,结合二级行星减速结构,实现了高效、高扭矩、低噪音的传动效果。

同时,通过关键技术的应用和优化改进,提高了减速器的性能和可靠性。

本设计对于工业机器人、机械臂等高精度、高扭矩传动领域具有重要的应用价值。

七、参考文献与附录1. 参考文献:列出在设计过程中引用的相关文献。

齿轮齿条传动机构设计说明书

齿轮齿条传动机构设计说明书

专业资料齿轮齿条传动机构的设计和计算1. 齿轮1,齿轮2与齿轮3基本参数的确定由齿条的传动速度为500mm/s,可以得到齿轮3的速度为500m/s,即,/5003s mm V =又()160d 333n V π=,取,25,25.3202131mm B B mm m Z Z =====,由此可得()265d 31mm mZ d ===,由(1)与(2)联立解得min /r 147n 32==n ,取4i 12=则由4i 211212===n n z z 得80min,/58821==z r n 2. 齿轮1齿轮2与齿轮3几何尺寸确定齿顶高 ()()mm x h m h h h n an a a a 525.57.0125.3321=+⨯=+===* 齿根高 ()()mm x c h m h h n n an f f f 79.17.025.0125.3h 321=-+⨯=-+===** 齿高 mm h h h h f a 315.7h 321=+=== 分度圆直径mmmz d mm mz d 84.26512cos /8025.3cos /,46.6612cos /2025.3cos /d 0220131=⨯===⨯===ββ齿顶圆直径 mm h d d mm h d d a a a a a 34.2772,51.772d 2221131=+==+== 齿根圆直径 mm h d d mm h d d f f f f f 26.2622,88.622d 2221131=-==-== 基圆直径 mm d d mm d d b b b 8.249cos ,45.6220cos 46.66cos d 220131===⨯===αα 法向齿厚为mm m x s s n n n n n n 759.625.3364.07.022tan 22s 1321=⨯⎪⎭⎫⎝⎛⨯⨯+=⎪⎭⎫ ⎝⎛+===παπ端面齿厚为mm m x s s t t t t t t 94.632.3367.0cos 7.022tan 22s 2321=⨯⎪⎪⎭⎫ ⎝⎛⨯⨯+=⎪⎭⎫⎝⎛+===βπαπ齿距 mm m p p 205.1025.314.3p 321=⨯====π 3. 齿轮材料的选择及校核齿轮选用45号钢或41Cr4制造并经调质,表面硬度均应在56HRC 以上。

一级齿轮减速器设计说明书

一级齿轮减速器设计说明书

一级齿轮减速器设计说明书一级齿轮减速器设计说明书1. 引言一级齿轮减速器是机械传动装置的一种,它常用于变换机械传动的转速和扭矩,满足工艺要求。

它主要由减速器壳体、输入端减速齿轮、输出端齿轮和轴承等部件组成。

设计一级齿轮减速器需要考虑很多参数和要素,主要包括传动比、安全系数、负载承受能力、材料选择等。

本文将详细介绍如何设计一级齿轮减速器。

2. 设计要求根据工艺要求和传动负载,确定一级齿轮减速器的传动比和负载承受能力,并保证其在运转过程中的安全稳定性。

2.1 传动比传动比等于减速器输入轴转速除以输出轴转速,也就是输入轴每转一圈,输出轴转的圈数。

传动比可以用来满足减速或增速的要求,一般为整数。

在设计一级齿轮减速器时,应根据实际情况确定传动比。

2.2 负载承受能力负载承受能力是指减速器传输扭矩的能力,在设计时应根据工艺要求和负载特性来确定。

在确定负载承受能力时,需要考虑减速器的强度和硬度等因素。

2.3 安全系数在确定一级齿轮减速器的负载承受能力时,需要考虑其安全系数。

安全系数是指减速器能承受的最大负载和实际负载之比,一般应大于1.5。

2.4 材料选择在设计一级齿轮减速器时,应选择合适的材料以提高其强度和耐磨性。

常用的材料有合金钢、硬质合金、钛合金等。

3. 设计步骤3.1 确定传动参数根据工艺要求和传动负载,确定减速比、输入转速、输出转速等传动参数,以便进行后续计算。

3.2 计算输入齿轮根据输入转速、输出转速和减速比,计算输入齿轮的模数、齿数和压力角等参数,以确定输入齿轮的尺寸和材料。

3.3 计算输出齿轮根据输入齿轮的尺寸和材料,以及减速比,计算输出齿轮的模数、齿数和压力角等参数,并确定其尺寸和材料。

3.4 计算轴承根据输出齿轮的转矩和输入齿轮的转速,计算轴承的尺寸和类型,以保证减速器的稳定性和寿命。

3.5 确定减速器外形尺寸根据输入齿轮、输出齿轮和轴承的尺寸,确定减速器外形尺寸。

在此基础上,进行结构设计和细节设计,如减速器壳体、传动轴、密封机构等。

传动齿轮设计说明书

传动齿轮设计说明书

传动齿轮设计说明书摘要:随着科技技术的不断进步,生产都向着自动化、专业化和大批量化的方向发展。

这就要求企业的生产在体现人性化的基础上降低工人的生产强度和提高工人的生产效率,降低企业的生产成本。

现代的生产和应用设备多数都采用机电一体化、数字控制技术和自动化的控制模式。

在这种要求下齿轮零件越发体现出其广阔的应用领域和市场前景。

特别是近年来与微电子、计算机技术相结合后,使齿轮零件进入了一个新的发展阶段。

在齿轮零部件是最重要部分,因需求的增加,所以生产也步入大批量化和自动化。

为适应机械设备对齿轮加工的要求,对齿轮加工要求和技术领域的拓展还需要不断的更新与改进。

关键词:工艺设计齿轮零件齿轮传动abstract:Preface technology with the progress toward the production of automation, specialization and a large number of quantization direction. This requires the production of the human embodiment of the workers on the basis of reducing the intensity of production and enhance worker productivity. lower their production costs. Modern production and application of the majority of equipment used electromechanical integration, digital control technology and automation control mode. In such a request Gear institutions increasingly reflects its broad application areas and market prospects. Especially in recent years and microelectronics, computer technology integration, make technology gear drive has entered a new stage of development. Gear drive gear parts is the most important part, Gear by the relative movement of the drive to promote change in direction. Gear result of the design requirements are relatively strict, in order to adapt to the type of gear increasing and updating. Because of the increase in demand, production has entered a large number of quantitative and automation. To meet the mechanical equipment to gear machining requirements, Gear on the design requirements and technical fields is also expanding the need to constantly update and improve.Keywords:Gear Gear drive目录1毕业设计工艺要求的基本任务和要求--------------------------------------1 1.1基本任务----------------------------------------------------------------------------------1 1.1.1工艺设计的基本任务---------------------------------------------------------------- 1 1.1.2夹具设计的基本任务-----------------------------------------------------------------2 1.2设计要求----------------------------------------------------------------------------------3 1.2.1工艺设计的设计要求-----------------------------------------------------------------3 1.2.2夹具设计的设计要求-----------------------------------------------------------------32毕业设计工艺设计的方法和步骤-------- -------------------- ------- ------32.1生产纲领的计算与生产类型的确定-------------------------------------------------4 2.2分析零件图-------------------------------------------------------------------------------4 2.3确定生产类型----------------------------------------------------------------------------4 2.4确定毛坯------------------------------------------------------------------------------- --5 2.5机械加工工艺过程--------------------------------------------------------------------- -5 2.6选择机床和工艺设备---------------------------------------------------------------- ---6 2.7确定加工余量-------------------------------------------------------------------------- -7 2.8制作工艺卡片------------------------------------------------------------------------ ---7 3夹具设计--------------------------------------------------------------------------83.1夹具设计的目的和要求-------------------------------------------------------------- -8 3.2夹紧力的计算------------------------------------------------------------------------- -9 3.3夹具零件图------------------------------------------------------------------------ -----10致谢参考文献1、毕业设计工艺要求的基本任务和要求1.1、基本任务1.1.1、工艺设计的基本任务(1)绘制零件工作图一张(2)绘制毛坯-零件合图一张(3)编制机械加工工艺规程卡片一套(4)编写设计说明书一份1.1.2、夹具设计的基本任务(1)收集资料,为夹具设计做好准备(2)绘制草图,进行必要的理论计算和分析以及夹具的结构方案(3)绘制总图和主要非标准件零件图,编写设计说明书(4)编制夹具的使用说明或技术要求1.2、设计要求1.2.1、工艺设计的设计要求(1)保证零件加工质量,达到图纸的技术要求(2)在保证加工质量的前提下,尽可能提高生产效率(3)要尽量减轻工人的劳动强度,生产安全(4)在立足企业的前提下,尽可能采用国内技术和装备(5)工艺规程应正确.清晰,规范化,标准化的要求1.2.2、夹具设计的设计要求(1)保证工件的加工精度(2)提高生产效率(3)工艺性好(4)使用性好(5)经济性好2、毕业设计工艺课程设计的方法和步骤2.1、生产纲领的计算与生产类型的确定生产纲领的大小对生产组织和零件加工工艺过程起着重要的作用.它决定了各工序所需专业化和自动化的程度以及所选用的工艺方法和工艺装备.零件生产纲领可按下式计算.N=Qn(1+a%)(1+b%)式中:N-----零件的生产纲领(件/台)Q-----产品的年产量(台/年)n-----每台产品中,该零件的数量(件/台)a%----零件的备品率b% ---零件的平均废品率2.2分析零件图1、零件的作用传动齿轮,,它是齿轮的一个主要一种,其功用是传递运动和运动方向,以适应传动机构运动的需要。

一级直齿圆柱齿轮减速器设计说明书

一级直齿圆柱齿轮减速器设计说明书

一级直齿圆柱齿轮减速器设计说明书1. 引言减速器是机械传动装置中的关键部件,广泛应用于工业生产和机械设备中。

本设计说明书将详细介绍一级直齿圆柱齿轮减速器的设计原理、结构和功能。

2. 设计原理一级直齿圆柱齿轮减速器是一种常用的传动装置,通过齿轮的啮合和相对运动,实现输入轴和输出轴之间的转速减小和扭矩增加。

其原理基于齿轮啮合的运动学和动力学分析,通过合理设计齿轮的齿数、模数、压力角等参数,来满足设计要求。

3. 结构组成一级直齿圆柱齿轮减速器主要由输入轴、输出轴、齿轮组和壳体组成。

输入轴和输出轴分别与动力源和负载相连,通过齿轮组的传动,实现输入轴和输出轴之间的转速和扭矩的变换。

齿轮组通常由一个主动齿轮和一个从动齿轮组成,其齿数比决定了减速比。

4. 设计要点在设计一级直齿圆柱齿轮减速器时,需要考虑以下要点:(1) 轴的强度计算:根据输入功率和转速,确定输入轴和输出轴的直径和长度,以满足强度和刚度要求。

(2) 齿轮参数的选择:根据减速比和传动比例,选择合适的齿数、模数和压力角,以满足传动效率和承载能力的要求。

(3) 齿轮的材料选择:根据工作环境和负载条件,选择合适的齿轮材料,以满足强度和耐磨性的要求。

(4) 轴承和润滑:选择合适的轴承类型和润滑方式,以减小摩擦损失和提高传动效率。

(5) 壳体设计:根据齿轮组的尺寸和安装要求,设计合适的壳体结构和支撑方式,以保证减速器的稳定运行。

5. 功能和应用一级直齿圆柱齿轮减速器具有转速减小、扭矩增加和传递功率的功能,广泛应用于各种机械设备中。

它可以用于工业生产中的输送机、搅拌机、提升机等设备,也可以用于家用电器中的洗衣机、食品加工机等。

6. 设计案例以某生产线上的输送机为例,设计一级直齿圆柱齿轮减速器的参数如下:输入功率:5 kW输入转速:1500 rpm输出转速:30 rpm减速比:50:1根据以上参数,进行轴的强度计算、齿轮参数的选择、材料选择、轴承和润滑设计,最终得到合适的一级直齿圆柱齿轮减速器设计方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[σH]=1350MPa
[σF]=644MPa
3.选取设计参数
取最小齿轮齿数Z1=17,则
Z2=i2Z1=5.1*17=86.7,取大齿轮齿数Z2=87Z1=17ຫໍສະໝຸດ Z2=874计算齿数比
U=Z2/Z1=5.1
U=5.1
5计算相对误差是否合理
由于传动比误差为|(u-i)/i|*100%=0.39%<3%~5%,所以齿轮数选择合理
对照表10-12,选择齿轮传动为7级精度合适。
选择7级精度
16绘制工作图
小齿轮的齿顶圆为
dd1=mn(z1/cosβ+2ha*n)
=[4*(17/cos11.15°)+2*1]=77.3mm
大齿轮的齿顶圆为
dd2=mn(z2/cosβ+2ha*n)
=[4*(87/cos11.15°)+2*1]=362.695mm
β=11.15°
13计算主要几何尺寸
d1=(mn*z1)/cosβ=(4*17)/cos11.15°=69.3mm
d2=(mn*z2)/cosβ=(4*87)/cos11.15°=354.7mm
齿宽为b=Φdd1=0.5*69.3=34.65mm
圆整后取b2=36mm,b1=42mm
d1=69.3mm
ZV2=Z2/cos3β=87/cos310°=91.1
ZV1=17.8
ZV2=91.1
11计算模数mn
根据表10—10查出复合齿形系数
YSF1=4.49,YSF2=3.85
取载荷系数K=1.2
mn≥Am FS1/Φd Z12[σF]
=12.4* =3.6
按表10—1取标准值mn=4mm
Mn=4mm
σHlim 1=σHlim 2=1500MPa σFlim 1=σFlim=460MPa [σH]=0.9σHlim 1=0.9*1500=1350MPa
[σF]=1.4σFlim 1=1.4*460=644MPa
材料:大丶小齿轮都采用CrMnTi,渗碳淬火许用应力。
σHlim1=σHlim2=1500MPa σFlim1=σFlim=460MPa
11计算中心距a
a=[mn(z1+z2)]/2cosβ
=[4*(17+87)]/2*cos10°=211.2mm
取a=212mm
a=212mm
12计算螺旋角β
β=arccos[mn(z1+z2)]/2a
=[4*(17+87)]/2*212=11.15°,β在8°~15°的范围内,故所选的计算系数Am和Ad合理
d2=354.7mm
b2=36mm
b1=42mm
14校核齿面接触强度
d1≥Ad /(Φdu[σH]2)
=756 /(0.5*5.12*13502)=66.66mm
它小于设计结果d1=69.3mm,故接触强度足够。
强度符合
15选择齿轮传动精度
齿轮圆周速度
v=(πd1n1)/6*104= =2.17(m/s)
设计计算说明书
设计题目:齿轮
学院:
专业:
班级:
学号:
姓名:
指导老师:
计算内容
计算说明
结果
1.计算齿轮传动比i2
根据ω=2πn,v=ωr,求得
n=ω/2π=1.96*60=117.6r/min
由此算出i2=1500/(2.5*117.6)=5.1
传动比i2=5.1
2选择齿轮材料,并确定许用应力
大丶小齿轮都采用CrMnTi,渗碳淬火,齿面硬度HRC60.根据参考文献[1]图10-38和图10-39查出齿轮的疲劳极限强度,确定许用应力。
n1=V/i=1500/2.5=600(r/min)
P1=27.36w
n1=600(r/min)
9计算小齿轮的转矩T1
T1=9550*(P1/n1)
=9550*(27.36/600)=435.48(N·m)
T1=435.48(N·m)
10计算当量齿数
按式(10-32)计算齿轮当量齿数
ZV1=Z1/cos3β=17/cos310°=17.8
合理
6选齿宽系数Φd
参考表10—11选齿宽系数Φd=0.5
(齿轮相对于轴承为对称布置)
Φd=0.5
7计算系数
Am、Ad
初选螺旋角β=10°,
根据表10—8,系数Am=12.4,Ad=756
Am=12.4
Ad=756
8计算小齿轮的功率P1和小齿轮的转速n1
取传动带的效率
η=0.95,P1=Pc*0.95=28.8*0.95=27.36w
dd1=77.3mm
dd2=362.695mm
17齿轮传动的润滑方式
因为V=2.17m/s,采用油浴。大齿轮浸入油中的深度约为1个齿高,但不小于10mm。
采用油浴
相关文档
最新文档