高三数学上学期第二次月考试题 理6
三明一中2022-2023学年上学期月考二高三数学科试卷含答案
三明一中2022-2023学年上学期月考二高三数学科试卷(考试时间:120分钟,满分150分)注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的姓名、准考证号.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.非选择题用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,仅有一项是符合题目要求的.)1.已知集合{}{}22,3,4,230A B x x x ==∈+-<N ,则A B 中元素的个数是A.2B.3C.4D.52.复平面内表示复数622iz i+=-,则z =A. B. C.4 D.3.若非零实数,a b 满足a b >,则A.22ac bc> B.2b a a b+> C.e1a b-> D.ln ln a b>4.函数()cos f x x x =的图像大致是A .B .C .D .5.如图,在矩形ABCD 中,2AD =,点M ,N 在线段AB 上,且1AM MN NB ===,则MD 与NC所成角的余弦值为A .13B .45C .23D .356.足球起源于中国古代的蹴鞠游戏.“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动.已知某“鞠”的表面上有四个点,,,P A B C ,满足1,PA PA =⊥面ABC ,AC BC ⊥,若23P ABC V -=,则该“鞠”的体积的最小值为A.256π B.9π C.92π D.98π7.如图,在杨辉三角形中,斜线l 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,记其前n 项和为n S ,则22S =A.361B.374C.385D.3958.在ABC 中,角A、B 、C 所对的边分别为a 、b 、c ,若sin c A =,b a λ=,则实数λ的最大值是A.B.32+C.D.2二、多选题(本题共4小题,每小题5分,共20分。
2022-2023学年天津市南开中学高三上学期第二次月考数学试卷带讲解
再把所得函数图象上每一个点的横坐标变为原来的2倍,纵坐标不变,得到 的图象;
故 .
故选:C.
8.已知 是等差数列 的前 项和,公差 , ,若 成等比数列,则 的最小值为
A. B.2C. D.
【答案】A
【解析】【分析】
由 成等比数列可得数列的公差,再利用等差数列的前 项和公式及通项公式可得 为关于 的式子,再利用对勾函数求最小值.
三、解答题
16.在 中,角 , , 的对边分别为 , , ,且 .
(1)求 ;
(2)如图,若 为 外一点,且 , , , ,求 .并求 .
【答案】(1)
(2) ,
【解析】
【分析】(1)根据条件,运用倍角公式和差公式正弦定理化简即可;
(2)连接 ,先求出 ,再求出 ,利用两角差的正弦公式求出 ,运用正弦定理求出BC即可.
∵ ,
∴ 是奇函数,图像关于原点对称,排除A,
令 ,得 ,
∴ , ,∴ , ,
∴函数 有无数个零点,排除D.
当 , ,排除C.
故选:B.
5.三个数a=0.42,b=log20.3,c=20.6之间的大小关系是()
A.a<c<bB.a<b<cC.b<a<cD.b<c<a
【答案】C
【解析】
【分析】根据指数函数、对数函数的单调性得0<a<1,b<0,c>1,由此可判断得选项.
【分析】等价转化 ,再从集合的包含关系即可判断和选择.
【详解】因为 ,即 ,又 是 的真子集,
故“ ”是“ ”的必要不充分条件.
故选:B.
3.已知一组数据的频率分布直方图如图所示,则数据的中位数估计值为()
A.64B.65C.64.5D.66
高三数学理科第二次月考试题及答案
从化中学高三数学月考理科试题(/9)命题:黄小斌 审题: 李希胜一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、若i 为虚数单位,图中复平面内点Z 表示复数Z , 则表示复数的点是( ) (A) E (B) F (C) G (D) H2、若集合,则=A C R ( )(A ) (B ) (C ) (D ) 3、设是首项大于零的等比数列,则“”是“数列是递增数列”的( ) (A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件4、 下列函数中,周期为,且在上为减函数的是( ) (A ) (B ) (C ) (D )5、已知和点M 满足.若存在实数m 使得成立,则m 的值为( )(A) 2 (B )3 (C )4 (D )56、设0a >,0b >,则以下不等式中,不恒成立的是( )(A) 114a b a b++≥()() (B)22b ba a+>+ (C)111a b a b a b a b+<+++++ (D)a b b aa b a b ≥7、在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )(A) 10 (B) 11 (C) 12 (D) 151zi+121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭2(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭22⎛⎫+∞ ⎪ ⎪⎝⎭2(,0][,)2-∞+∞2)2+∞{}n a 12a a <{}n a π[,]42ππsin(2)2y x π=+cos(2)2y x π=+sin()2y x π=+cos()2y x π=+ABC ∆0MA MB MC --→--→--→+=+AB AC AM m --→--→--→+=8、已知,函数,若满足关于的方程,则下列选项的命题中为假命题的是( )(A )(B )(C ) (D )二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分(一) 必做题(9~13题)9、若点p (m ,3)到直线的距离为4,且点p 在不等式<3表示的平面区域内,则m= 。
安徽省六安第一中学2025届高三上学期第二次月考(9月)数学试卷
安徽省六安第一中学2025届高三上学期第二次月考(9月)数学试卷一、单选题1.已知集合(){}ln 4A x y x ==-,{}1,2,3,4,5B =,则A B =I ( ) A .{5}B .{1,2,3}C .{1,2,3,4}D .{1,2,3,4,5}2.已知31cos(),cos()55αβαβ-=-+=,则sin sin αβ=( )A .35-B .25-C .25D .353.已知命题p :“tan 2α=”,命题q :“3cos25α=-”,则命题p 是命题q 的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.已知角α,β的顶点均为坐标原点,始边均为x 轴正半轴,终边分别过点()1,2A ,()2,1B -,则tan2αβ+=( )A .3-或13B .3或13- C .3- D .135.已知函数()()πsin 03f x x ωω⎛⎫=+> ⎪⎝⎭在π0,2⎛⎫ ⎪⎝⎭上没有零点,则ω的取值范围是( )A .(]0,1B .40,3⎛⎤⎥⎝⎦ C .30,2⎛⎫ ⎪⎝⎭D .2,13⎛⎫ ⎪⎝⎭6.当x θ=时,()26sin 2sin cos 3222x x xf x =+-取得最大值,则tan θ=( )A .3B .3-C .13D .13-7.已知23ln 2,2ln3,3ln a b c πππ===,则( ) A .b c a >>B .c b a >>C .b a c >>D .a b c >>8.已知函数()(),f x g x 的定义域均为R ,()g x '为()g x 的导函数,且()()()()2,42f x g x f x g x ''+=--=,若()g x 为偶函数,则()()20222024f g '+=( ) A .0B .1C .2D .4二、多选题9.先将函数()sin f x x =图象上所有点的横坐标缩小到原来的12,纵坐标不变,再把图象向右平移π12个单位长度,最后把所得图象向上平移一个单位长度,得到函数()g x 的图象,则关于函数()g x ,下列说法正确的是( ) A .最小正周期为πB .在π0,4⎛⎫⎪⎝⎭上单调递增C .,42x ππ⎛⎫∈ ⎪⎝⎭时()2g x ⎤∈⎥⎝⎦D .其图象关于点π,012⎛⎫⎪⎝⎭对称10.设函数2()(1)(4)f x x x =--,则( )A .1x =是()f x 的的极小值点B .(2)(2)4f x f x ++-=-C .当π02x <<时,()2(sin )sin f x f x >D .不等式4(21)0f x -<-<的解集为{}12x x <<11.在ABC V 中,7AB =,5AC =,3BC =,点D 在线段AB 上,下列结论正确的是( )A .若CD 是高,则1514CD =B .若CD 是中线,则CD =C .若CD 是角平分线,则158CD =D .若3CD =,则D 是线段AB 的三等分点三、填空题12.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为. 13.已知a 、b 、c 分别为ABC V 的三个内角A 、B 、C 的对边,2a =,且()(sin sin )()sin a b A B c b C +-=-,则ABC V 面积的最大值为.14.若12,x x 是函数()()21e 12xf x ax a =-+∈R 的两个极值点且212x x ≥,则实数a 的取值范围为.四、解答题15.已知函数()()sin f x A x ωϕ=+(0A >,0ω>,ππ22ϕ-<<),函数()f x 和它的导函数f ′ x 的图象如图所示.(1)求函数()f x 的解析式; (2)已知()65f α=,求π212f α⎛⎫- ⎪⎝⎭'的值.16.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B . (1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC V 存在,求ABC V 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.17.在锐角三角形ABC 中,角,,A B C 的对边分别为,,a b c ,且满足sin cos sin2cos sin 1cos2A A BA A B+=-+.(1)若π3C =,求A 的大小; (2)求222c a b+的取值范围.18.设函数2π()(sin cos )22f x x x x ⎛⎫=++ ⎪⎝⎭.(1)求函数()f x 单调递减区间. (2)已知函数21π()()1sin 26g x f x x ⎡⎤=--⋅⎢⎥⎣⎦, ①证明:函数()g x 是周期函数,并求出()g x 的一个周期; ②求函数()g x 的值域.19.已知函数()ln(1)sin f x x x λ=+-. (1)求函数()f x 在0x =处的切线方程;(2)当1λ=时,判断函数()f x 在π,2⎡⎫+∞⎪⎢⎣⎭上零点的个数;(3)已知()()21e xf x ≥-在[0,π]x ∈上恒成立,求实数λ的取值范围.。
湖南省长沙市2025届高三上学期第二次月考数学试卷含答案
湖南2025届高三月考试卷(二)数学(答案在最后)命题人、审题人:高三数学备课组时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11i z =+的虚部是()A.1 B.12 C.12- D.1-【答案】C【解析】【分析】先化简给定复数,再利用虚部的定义求解即可.【详解】因为()()11i 1i 1i 1i 1i 1i 222z --====-++-,所以其虚部为12-,故C 正确.故选:C.2.已知a 是单位向量,向量b 满足3a b -= ,则b 的最大值为()A.2B.4C.3D.1【答案】B【解析】【分析】设,OA a OB b == ,由3a b -= ,可得点B 在以A 为圆心,3为半径的圆上,利用向量的模的几何意义,可得 b 的最大值.【详解】设,OA a OB b == ,因为3a b -= ,即3OA OB BA -== ,即3AB = ,所以点B 在以A 为圆心,3为半径的圆上,又a 是单位向量,则1OA = ,故OB 最大值为134OA AB +=+= ,即 b 的最大值为4.故选:B.3.已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为()A.23- B.13- C.23 D.13【答案】D【解析】【分析】由角θ的终边,得tan 2θ=,由同角三角函数的关系得cos 1sin cos 1tan θθθθ=++,代入求值即可.【详解】因为角θ的终边在直线2y x =上,所以tan 2θ=.所以cos 111sin cos 1tan 123θθθθ===+++.故选:D.4.已知函数()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x ->-,则实数a 的取值范围为()A.34a ≤ B.34a ≥ C.1a ≤ D.1a ≥【答案】D【解析】【分析】由条件判定函数的单调性,再利用指数函数、二次函数的性质计算即可.【详解】()()()12120f x f x f x x x ->⇒- 在上单调递增,又()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩,当0x <时,()e 33xf x a =+-单调递增,当0x ≥时,()f x 单调递增,只需1330a a +-≤+,解得1a ≥.故选:D.5.如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD -的体积为83,则圆柱的表面积为()A.10πB.9π2C.4πD.8π【答案】A【解析】【分析】取AB 的中点O ,由13A BCD OCD V S AB -=⋅△,可求解底面半径,即可求解.【详解】设底面圆半径为r ,由AB CD ⊥,易得BC AC BD AD ===,取AB 的中点O ,连接,OC OD ,则,AB OC AB OD ⊥⊥,又OC OD O,OC,OD =⊂ 平面OCD ,所以AB ⊥平面OCD ,所以,11182423323A BCD OCD V S AB r r -=⋅=⨯⨯⨯⨯= ,解得=1,所以圆柱表面积为22π42π10πr r +⨯=.故选:A.6.已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为()A.52+ B.5 C.10 D.11【答案】B【解析】【分析】(方法一)首先求出抛物线C 的方程为24y x =,设直线l 的方程为:1x ty =+,与抛物线C 的方程联立,利用根与系数的关系求出21x x 的值,再根据抛物线的定义知11AF x =+,21BF x =+,从而求出23AF BF +的最小值即可.(方法二)首先求出111AF BF+=,再利用基本不等式即可求解即可.【详解】(方法一)因为抛物线C 的焦点到准线的距离为2,故2p =,所以抛物线C 的方程为24y x =,焦点坐标为1,0,设直线l 的方程为:()()11221,,,,x ty A x y B x y =+,不妨设120y y >>,联立方程241y x x ty ⎧=⎨=+⎩,整理得2440y ty --=,则12124,4y y t y y +==-,故221212144y y x x =⋅=,又B =1+2=1+1,2212p BF x x =+=+,则()()12122321312352525AF BF x x x x +=+++=++≥=,当且仅当12,23x x ==时等号成立,故23AF BF +的最小值为5.故选:B.(方法二)由方法一可得121x x =,则11AF BF +211111x x =+++121212211x x x x x x ++==+++,因此23AF BF +()1123AF BF AF BF ⎛⎫=++ ⎪ ⎪⎝⎭235AF BF BF AF =++55≥+=+,当且仅当661,123AF BF =+=+时等号成立,故23AF BF +的最小值为5.故选:B.7.设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()y f x =的图象与直线114y x =-的交点个数为()A.1B.2C.3D.4【答案】C【解析】【分析】利用给定条件求出()πcos 4f x x ⎛⎫=- ⎪⎝⎭,再作出图像求解交点个数即可.【详解】对R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以π4x =是=的一条对称轴,所以()ππZ 4k k ϕ+=∈,又π2ϕ<,所以π4ϕ=-.所以()πcos 4f x x ⎛⎫=- ⎪⎝⎭,在平面直角坐标系中画出()πcos 4f x x ⎛⎫=-⎪⎝⎭与114y x=-的图象,当3π4=-x 时,3π14f ⎛⎫-=- ⎪⎝⎭,11113π3π4164y --=⨯(-=-<-,当5π4x =时,5π14f ⎛⎫=- ⎪⎝⎭,5π5π14111461y =⨯-=->-,当9π4x =时,9π14f ⎛⎫= ⎪⎝⎭,11119π9π4416y =⨯-=-<,当17π4x =时,17π14f ⎛⎫= ⎪⎝⎭,111117π17π4416y =⨯-=->所以如图所示,可知=的图象与直线114y x =-的交点个数为3,故C 正确.故选:C.8.已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠-⋅=-,且()()()()()g x g y f x f y g x y -=-,则下列说法正确的是()A.()01f =B.()f x 是偶函数C.若()()1112f g +=,则()()2024202420242f g -=-D.若()()111g f -=,则()()202420242f g +=【答案】C【解析】【分析】对A ,利用赋值法令0,0x y ==即可求解;对B ,根据题中条件求出()f y x -,再利用偶函数定义即可求解;对C ,先根据题意求出()()001f g -=-,再找出()()11f x g x ---与()()f x g x ⎡⎤-⎣⎦的关系,根据等比数列的定义即可求解;对D ,找出()()11f x g x -+-与()()f x g x ⎡⎤+⎣⎦的关系,再根据常数列的定义即可求解.【详解】对A ,()()()()()f x g y f y g x f x y -⋅=- ,令0,0x y ==,即()()()()()00000f g f g f -⋅=,解得()00f =,故A 错;对B ,根据()()()()()f x g y f y g x f x y -=-,得()()()()()f y g x f x g y f y x -=-,即()()f y x f x y -=--,故()f x 为奇函数,故B 错;对C ,()()()()()g x g y f x f y g x y -=- 令0x y ==,即()()()()()00000g g f f g -=,()00f = ,()()200g g ∴=,又()00g ≠,()01g ∴=,()()001f g ∴-=-,由题知:()()f x yg x y ---()()()()()()()()f x g y f y g x g x g y f x f y ⎡⎤=-⋅--⎣⎦()()()()f y g y f x g x ⎡⎤⎡⎤=+-⎣⎦⎣⎦,令1y =,即()()()()()()1111f x g x f g f x g x ⎡⎤⎡⎤---=+-⎣⎦⎣⎦,()()1112f g += ,()()()()1112f xg x f x g x ⎡⎤∴---=-⎣⎦,即()(){}f xg x -是以()()001f g -=-为首项2为公比的等比数列;故()()()2024202420242024122f g -=-⨯=-,故C 正确;对D ,由题意知:()()f x yg x y -+-()()()()()()()()f xg y f y g x g x g y f x f y =-⋅+-()()()()g y f y f x g x ⎡⎤⎡⎤=-+⎣⎦⎣⎦,令1y =,得()()()()()()1111f x g x g f f x g x ⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦,又()()111g f -=,即()()()()11f x g x f x g x -+-=+,即数列()(){}f xg x +为常数列,由上知()()001f g +=,故()()202420241f g +=,故D 错.故选:C.【点睛】关键点点睛:本题的关键是对抽象函数进行赋值,难点是C ,D 选项通过赋值再结合数列的性质进行求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中正确的是()A.一个样本的方差()()()22221220133320s x x x ⎡⎤=-+-++-⎣⎦L ,则这组样本数据的总和等于60B.若样本数据1210,,,x x x 的标准差为8,则数据1221,21,x x -- ,1021x -的标准差为16C.数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D.若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小【答案】ABD【解析】【分析】对于A ,由题意可得样本容量为20,平均数是3,从而可得样本数据的总和,即可判断;对于B ,根据标准差为8,可得方差为64,从而可得新数据的方差及标准差,即可判断;对于C ,根据百分位数的定义,求出第70百分位数,即可判断;对于D ,由题意可求得新数据的平均数及方差,即可判断.【详解】解:对于A ,因为样本的方差()()()222212201333,20s x x x ⎡⎤=-+-++-⎣⎦ 所以这个样本有20个数据,平均数是3,这组样本数据的总和为32060,⨯=A 正确;对于B ,已知样本数据1210,,,x x x 的标准差为8s =,则264s =,数据121021,21,,21x x x --- 的方差为2222264s =⨯2816=⨯=,故B 正确;对于C ,数据13,27,24,12,14,30,15,17,19,23共10个数,从小到大排列为12,13,14,15,17,19,23,24,27,30,由于100.77⨯=,故选择第7和第8个数的平均数作为第70百分位数,即232423.52+=,所以第70百分位数是23.5,故C 错误;对于D ,某8个数的平均数为5,方差为2,现又加入一个新数据5,设此时这9个数的平均数为x ,方差为2S ,则2285582(55)165,2999x S ⨯+⨯+-====<,故D 正确.故选:ABD.10.已知函数()32f x ax bx =-+,则()A.()f x 的值域为RB.()f x 图象的对称中心为()0,2C.当30b a ->时,()f x 在区间()1,1-内单调递减D.当0ab >时,()f x 有两个极值点【答案】BD【解析】【分析】利用一次函数、三次函数的性质结合分类讨论思想可判定A ,利用函数的奇偶性判定B ,利用导数研究函数的单调性结合特殊值法排除C ,利用极值点的定义可判定D.【详解】对于A :当,a b 至少一个不为0,则()f x 为三次或者一次函数,值域均为;当,a b 均为0时,值域为{}2,错误;对于B :函数()()32g x f x ax bx =-=-满足()()3g x ax bx g x -=-+=-,可知()g x 为奇函数,其图象关于()0,0中心对称,所以()f x 的图象为()g x 的图象向上移动两个单位后得到的,即关于0,2中心对称,正确;对于C :()23f x ax b '=-,当30b a ->时,取1,1a b =-=-,当33,33x ⎛⎫∈- ⎪ ⎪⎝⎭时,()()2310,f x x f x =-+>'在区间33,33⎛⎫- ⎪ ⎪⎝⎭上单调递增,错误;对于D :()23f x ax b '=-,当0ab >时,()230f x ax b '=-=有两个不相等的实数根,所以函数()f x 有两个极值点,正确.故选:BD.11.我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是()A.函数()sin 1f x x =+是圆22:(1)1O x y +-=的一个太极函数B.对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C.对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D.若函数()()3f x kx kx k =-∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈-【答案】AD【解析】【分析】根据题意,对于A ,D 利用新定义逐个判断函数是否满足新定义即可,对于B ,C 举反例说明.【详解】对于A ,圆22:(1)1O x y +-=,圆心为0,1,()sin 1f x x =+的图象也过0,1,且0,1是其对称中心,所以()sin 1f x x =+的图象能将圆一分为二,所以A 正确;对于B,C ,根据题意圆22:1O x y +=,如图()331,332313,03231332331,332x x x f x x x x ⎧--<-⎪⎪+-≤≤=⎨⎪+<≤⎪->⎩,与圆交于点()1,0-,1,0,且在x 轴上方三角形面积与x 轴下方个三角形面积之和相等,()f x 为圆O 的太极函数,且()f x 是偶函数,所以B ,C 错误;对于D ,因为()()()()()33()f x k x k x kx kx f x k -=---=--=-∈R ,所以()f x 为奇函数,由()30f x kx kx =-=,得0x =或1x =±,所以()f x 的图象与圆22:1O x y +=的交点为()()1,0,1,0-,且过圆心()0,0,由3221y kx kx x y ⎧=-⎨+=⎩,得()2624222110k x k x k x -++-=,令2t x =,则()232222110k t k t kt -++-=,即()()222110t k t k t --+=,得1t =或22210k t k t -+=,当1t =时,1x =±,当22210k t k t -+=时,若0k =,则方程无解,合题意;若0k ≠,则()4222Δ44k k k k=-=-,若Δ0<,即204k <<时,方程无解,合题意;所以()2,2k ∈-时,两曲线共有两个交点,函数能将圆一分为二,如图,若Δ0=,即2k =±时,函数与圆有4个交点,将圆分成四部分,若Δ0>,即24k >时,函数与圆有6个交点,且均不能把圆一分为二,如图,所以()2,2k ∈-,所以D 正确.故选:AD.【点睛】关键点点睛:本题解题的关键是理解新定义,即如果一个函数过圆心,并且函数图象关于圆心中心对称,且函数将圆分成2部分,不能超过2部分必然合题.如果函数不是中心对称图形,则考虑与圆有2个交点,交点连起来过圆心,再考虑如何让面积相等.三、填空题:本题共3小题,每小题5分,共15分.12.曲线2ln y x x =-在点()1,2处的切线与抛物线22y ax ax =-+相切,则a =__________.【答案】1【解析】【分析】求出曲线2ln y x x =-在点()1,2处的切线方程,由该切线与抛物线22y ax ax =-+相切,联立消元,得到一元二次方程,其Δ0=,即可求得a .【详解】由2ln y x x =-,则12y x'=-,则11x y ='=,曲线2ln y x x =-在点()1,2处的切线方程为21y x -=-,即1y x =+,当0a ≠时,则212y x y ax ax =+⎧⎨=-+⎩,得()2110ax a x -++=,由2Δ(1)40a a =+-=,得1a =.故答案为:1.13.已知椭圆G22+22=1>>0的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c,则椭圆C 的离心率为______.【答案】23【解析】【分析】由内切圆半径的计算公式,利用等面积法表示焦点三角形12PF F 的面积,得到,a c 方程,即可得到离心率e 的方程,计算得到结果.【详解】由题意,可知1PF 为椭圆通径的一半,故21b PF a =,12PF F 的面积为21122b cc PF a⋅⋅=,又由于12PF F 的内切圆的半径为3c,则12PF F 的面积也可表示为()12223c a c +⋅,所以()111222223c c PF a c ⋅⋅=+⋅,即()212223b c ca c a =+⋅,整理得:22230a ac c --=,两边同除以2a ,得2320e e +-=,所以23e =或1-,又椭圆的离心率()0,1e ∈,所以椭圆C 的离心率为23.故答案为:23.14.设函数()()44xf x ax x x =+>-,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________.【答案】58##0.625【解析】【分析】根据题意,利用基本不等式,求得2min ()1)f x =+,转化为21)b +>恒成立,结合a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,得到基本事件总数有24个,再利用列举法,求得()f x b >成立的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】因为0,4a x >>,可得40x ->,则()()441441444x f x ax ax a x a x x x =+=++=-+++---2411)a ≥++=,当且仅当4x =时,等号成立,故2min ()1)f x =+,由不等式()f x b >恒成立转化为21)b >恒成立,因为a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则构成(),a b 的所有基本事件总数有24个,又由()221)1)912,16==+,()221)1319,201)25+=+=,设事件A =“不等式()f x b >恒成立”,则事件A 包含事件:()()1,4,1,8,()()()2,4,2,8,2,12,()()()()3,4,3,8,3,12,3,16,()()()()()()4,4,4,8,4,12,4,16,4,20,4,25共15个,因此不等式()f x b >恒成立的概率为155248=.故答案为:58.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC 的面积为334,且2AD DC = ,求BD 的最小值.【答案】(1)π3B =(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由.112333BD BC CA BA BC =+=+,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V 的面积为33π,43B =,所以133sin 24ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当6,2a c ==时取等号,所以BD .16.已知双曲线E 的焦点在x 轴上,离心率为233,点(在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直的直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.【答案】(1)2213x y -=(2)6【解析】【分析】(1)由222c a b =+和3e =,及点(在双曲线E 上,求出22,a b ,即可求出E 的方程;(2)设直线()()121:2,:2l y k x l y x k =-=--,其中0k ≠,根据题中条件确定2133k <<,再将1l 的方程与2213x y -=联立,利用根与系数的关系,用k 表示AC ,BD 的长,再利用12ABCDS AC BD =,即可求出四边形ABCD 面积的最小值.【小问1详解】因为222c a b =+,又由题意得22243c e a ==,则有223a b =,又点(在双曲线E 上,故229213-=b b,解得221,3b a ==,故E 的方程为2213xy -=.【小问2详解】根据题意,直线12,l l 的斜率都存在且不为0,设直线()()121:2,:2l y k x l y x k=-=--,其中0k ≠,因为12,l l 均与E 的右支有两个交点,所以313,33k k >->,所以2133k <<,将1l 的方程与2213x y -=联立,可得()222213121230k x k x k -+--=.设()()1122,,,A x y C x y ,则2212122212123,1313k k x x x x k k---+==--,所以()222121212114AC k x k x x x x =+-=++-)22222222222311212323114113133113k k k kkk k k k k +⎛⎫---+=+-⨯+ ⎪----⎝⎭,同理)22313k BD k +=-,所以))()()()2222222223131111622313313ABCD kkk S AC BD k kkk+++==⋅⋅=⋅----.令21t k =+,所以241,,43k t t ⎛⎫=-∈⎪⎝⎭,则2222166661616316161131612ABCDt S t t t t t =⋅=⋅=≥-+-⎛⎫-+---+ ⎪⎝⎭,当112t =,即1k =±时,等号成立.故四边形ABCD 面积的最小值为6.17.如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==,2,P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C 的夹角的余弦值为53333?若存在,求出点P ;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,点P 为11A B 中点【解析】【分析】(1)延长三条侧棱交于一点O ,由勾股定理证明OA OB ⊥,OA OC ⊥,根据线面垂直的判定定理得证;(2)建立空间直角坐标系,求出平面111A B C 和平面APC 的法向量,利用向量夹角公式求解.【小问1详解】延长三条侧棱交于一点O ,如图所示,由于11124,2AB A B BB ===22OB OA ==所以22216OA OB AB +==,所以OA OB ⊥,同理OA OC ⊥.又OB OC O = ,,OB OC ⊂平面OBC ,所以OA ⊥平面OBC ,即1AA ⊥平面11BCC B .【小问2详解】由(1)知,,OA OB OA OC OB OC ⊥⊥⊥,如图建立空间直角坐标系,则(()0,0,,0,A C,()()111,,0,A B C ,所以((1110,0,,0,,AA AC A B ==-=,()110,B C =.设)111,0,A P A B λλ===,则1AP AA =+)[]1,0,,0,1A P λ=∈,设平面111A B C 和平面APC 的法向量分别为(),,,m x y z n ==(),,r s t ,所以)01000r t λ⎧=+=⎪⎨+==⎪⎪⎩⎩,取()()1,1,1,1,,m n λλλ==+,则cos ,33m n m n m n ⋅===.整理得212870λλ+-=,即()()21670λλ-+=,所以12λ=或76λ=-(舍),故存在点P (点P 为11A B 中点时),满足题意.18.若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3nn n a n b ⎛⎫=-= ⎪⎝⎭,(i )判断数列{}{},n n a b 是否具有性质P ,并说明理由;(ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由;(2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .【答案】(1)(i )数列{}n a 不具有性质P ,数列{}n b 具有性质P ,理由见解析;(ii )数列{}n S 具有性质P ,理由见解析(2)证明见解析【解析】【分析】(1)判断数列是否满足条件①②,可得(i )的结果;利用错位相减法求数列{}n n a b 的前n 项和,再判断是否满足条件①②.(2)先求数列{}n c 的通项公式,再判断是否满足条件①②.【小问1详解】(i )因为21n a n =-单调递增,但无上限,即不存在M ,使得n a M <恒成立,所以数列不具有性质P .因为113nn b ⎛⎫=< ⎪⎝⎭,又数列为单调递减数列,所以数列具有性质P .(ii )数列{}n S 具有性质P .2112113333n n n S -=⋅+⋅++ ,23111121133333n n n S +-=⋅+⋅++ ,两式作差得23121111211222333333n n n n S +-=⋅+⋅+⋅++⋅- ,即1121121212223313333313n n n n n n S ++⎛⎫- ⎪-+⎝⎭=-+-=--,所以111,3n n n S +=-<∴数列{}n S 满足条件①.(){}11210,,3nn n n n n a b n S S S +⎛⎫=->∴<∴ ⎪⎝⎭为单调递增数列,满足条件②.综上,数列{}n S 具有性质P .【小问2详解】因为*0,1,,,X n n =∈N ,若X 为奇数的概率为,n c X 为偶数的概率为n d ,()1[1]nn n c d p p +==-+001112220C (1)C (1)C (1)C (1)n n n n nn n n n p p p p p p p p --=-+-+-++- ①()001112220[1]C ()(1)C ()(1)C ()(1)C ()(1)n n n n n n n n n n p p p p p p p p p p ----=--+--+--++-- ②,2n c -=①②,即1(12)2nn p c --=.所以当102p <<时,0121p <-<,故n c 随着n 的增大而增大,且12n c <.故数列{}n c 具有性质P .19.已知函数()24e 2x f x x x-=-,()2233g x x ax a a =-+--(a ∈R 且2a <).(1)令()()()(),x f x g x h x ϕ=-是()x ϕ的导函数,判断()h x 的单调性;(2)若()()f x g x ≥对任意的()1,x ∈+∞恒成立,求a 的取值范围.【答案】(1)ℎ在(),0∞-和0,+∞上单调递增;(2)(],1-∞.【解析】【分析】(1)需要二次求导,利用导函数的符号分析函数的单调性.(2)法一先利用()()22f g ≥这一特殊情况,探索a 的取值范围,再证明对()1,x ∈+∞时,()()f x g x ≥恒成立;法二利用导数工具求出函数()x ϕ的最小值()0x ϕ,同法一求证(]0,1a ∈时()00x ϕ≥,接着求证()1,2a ∈时()20ϕ<不符合题意即可得解.【小问1详解】()()()2224e 233x x f x g x x x ax a a xϕ-=-=-+-++,定义域为{}0xx ≠∣,所以()()()224e 1223x x h x x x a xϕ--==-+-',所以()()2234e 2220x x x h x x --+=+>'.所以()h x 在(),0-∞和()0,∞+上单调递增.【小问2详解】法一:由题知()()22f g ≥即()()()2232120a a a a ϕ=-+=--≥,即1a ≤或2a ≥,所以1a ≤.下证当1a ≤时,()()f x g x ≥对任意的()1,x ∈+∞恒成立.令()()24e x F x f x x x x -=+=-,则()()()()()222234e 224e 11,0x x x x x F x t x t x x x---+-'=-==>',所以()()224e 11x x F x x --=-'在()1,+∞单调递增,又()20F '=,所以当()1,2x ∈时,()()0,F x F x '<单调递减,当()2,x ∈+∞时,()()0,F F x x '>递单调增,所以()()20F x F ≥=,故()f x x ≥-,要证()()f x g x ≥,只需证()x g x -≥,即证()223130x a x a a -+++≥,令()()22313G x x a x a a =-+++,则()()()222Δ(31)43561151a a a a a a a =+-+=-+=--,若115a ≤≤,则0∆≤,所以()()223130G x x a x a a =-+++≥.若15a <,则对称轴31425a x +=<,所以()G x 在()1,+∞递增,故()()210G x G a >=≥,综上所述,a 的取值范围为(],1-∞.法二:由题知2224e 233x x x ax a a x--≥-+--对任意的()1,x ∈+∞恒成立,即()2224e 2330x x x x ax a a xϕ-=-+-++≥对任意的()1,x ∈+∞恒成立.由(1)知()()224e 1223x x x x a x ϕ--=-+-'在()1,+∞递增,又()13a ϕ'=-.①若0a ≤,则()()()10,x x ϕϕϕ'>≥'在()1,+∞递增,所以()()24110e x a ϕϕ>=-+>,符合;②若0a >,则()130a ϕ=-<',又()112224e 14e (1)(1)(1)a a a a a a a a a ϕ--⎡⎤+=-=-+⎣⎦++',令()124e(1)a m a a -=-+,则()()()14e 21a m a a h a -=-+=',则()14e 2a h a -'=-为单调递增函数,令()0h a '=得1ln2a =-,当()0,1ln2a ∈-时()()0,h a m a ''<单调递减,当()1ln2,a ∞∈-+时()()0,h a m a ''>单调递增,又()()10,00m m ='<',所以当()0,1a ∈时,()()0,m a m a '<单调递减,当()1,a ∈+∞时,()()0,m a m a '>单调递增,所以()()10m a m ≥=,则()12214e (1)0(1)a a a a a ϕ-⎡⎤+'=-+≥⎣⎦+,所以(]01,1x a ∃∈+,使得()00x ϕ'=,即()0200204e 12230x x x a x ---+-=,且当()01,x x ∈时,()()0,x x ϕϕ'<单调递减,当()0,x x ∈+∞时,()()0,x x ϕϕ'>单调递增,所以()()0222min 000004e 233x x x x x ax a a x ϕϕ-==-+-++.若(]0,1a ∈,同法一可证()0222000004e 2330x x x x ax a a x ϕ-=-+-++≥,符合题意.若()1,2a ∈,因为()()()2232120a a a a ϕ=-+=--<,所以不符合题意.综上所述,a 的取值范围为(],1-∞.【点睛】方法点睛:导数问题经常会遇到恒成立的问题.常见的解决思路有:(1)根据参变分离,转化为不含参数的函数最值问题.(2)若()0f x >恒成立,就可以讨论参数不同取值下的函数的单调性和极值与最值,最终转化为()min 0f x >;若()0f x <⇔()max 0f x <.(3)若()()f x g x ≥恒成立,可转化为()()min max f x g x ≥(需在同一处取得最值).。
天津市南开中学2023-2024学年高三上学期第二次月考数学试卷
答案第31 页,共22 页
【详解】设{an
-
n}
的公比为
q
,则
q
=
a2 a1
-2 -1
=
11- 2 4 -1
=
3
,
所以 an - n = (a1 -1) × qn-1 = (4 -1) ×3n-1 = 3n ,则 an = n + 3n ,
所以 a4 = 4 + 34 = 85 ,
所以落在区间[4,85] 内的偶数共有 41 个,故t (a4 ) = 41 .
11.在
æ çè
3x2
-
2 x
ö5 ÷ø
的展开式中,
x
的系数是
.
三、双空题
12.已知直线 l : y = kx - 2(k > 0) 与圆 x2 + y2 = 1 相切,且被圆 x2 + ( y + a)2 = 4(a > 0) 截
得的弦长为 2 3 ,则 k = ; a = .
四、填空题
13.锐角a
(2)求数列{anbn} 的前 n 项和 Sn ;
å (3)若数列{dn} 满足 d1 = 1 , dn + dn+1 = bn ,记Tn =
n
dk
m .是否存在整数 ,使得对
b k =1 2k
任意的 n Î N * 都有1 £
mTn
-
dn b2n
<
m 2 成立?若存在,求出
的值;若不存在,说明理由.
故选:C. 9.B
【分析】根据三角函数的变换规则求出 g ( x) 的解析式,再根据正弦函数的性质判断
A、C、D,利用诱导公式判断 B.
高三数学第一学期第二次月考卷
高三数学第一学期第二次月考卷一、选择题(每题5分,共30分)1. 已知集合A={x|2<x<3},B={x|x²3x+2=0},则A∩B=()A. {1, 2}B. {2}C. {1}D. ∅2. 下列函数中,既是奇函数又是减函数的是()A. y=x²B. y=x³C. y=2xD. y=1/x3. 设函数f(x)=|x1|,则f(x)在区间(0,+∞)上的最小值为()A. 0B. 1C. 1D. 无最小值4. 已知等差数列{an}的前三项分别为1,3,5,则数列的公差为()A. 1B. 2C. 3D. 45. 若向量a=(2,1),b=(1,2),则向量a与向量b的夹角为()A. 30°B. 45°C. 60°D. 90°6. 在三角形ABC中,若a=3,b=4,cosA=3/5,则三角形ABC的面积为()A. 2√2B. 4√2C. 6√2D. 8√2二、填空题(每题5分,共20分)7. 已知函数f(x)=2x²4x+3,则f(x)的单调递增区间为______。
8. 若等比数列{an}的首项为2,公比为1,则数列的前5项和为______。
9. 在平面直角坐标系中,点A(1,2)关于原点的对称点坐标为______。
10. 设直线l的方程为3x4y+6=0,则直线l与y轴的交点坐标为______。
三、解答题(共50分)11. (10分)已知函数f(x)=x²+2ax+a²1(a为常数),求函数f(x)的单调区间。
12. (15分)在三角形ABC中,已知a=5,b=8,cosB=3/5,求三角形ABC的面积。
13. (15分)已知数列{an}的通项公式为an=n²n+1,求证数列{an}是单调递增数列。
14. (10分)在平面直角坐标系中,已知点A(2,3),点B在直线y=2x+1上,求点A到直线y=2x+1的距离。
2024届黑龙江省鸡西市高三数学试题2月月考试题
2024届黑龙江省鸡西市高三数学试题2月月考试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知甲盒子中有m 个红球,n 个蓝球,乙盒子中有1m -个红球,+1n 个蓝球(3,3)m n ≥≥,同时从甲乙两个盒子中取出(1,2)i i =个球进行交换,(a )交换后,从甲盒子中取1个球是红球的概率记为(1,2)i p i =.(b )交换后,乙盒子中含有红球的个数记为(1,2)i i ξ=.则( )A .1212,()()p p E E ξξ><B .1212,()()p p E E ξξC .1212,()()p p E E ξξ>>D .1212,()()p pE E ξξ<<2.设()f x =()00O ,,()01A ,,()()n A n f n ,,*n N ∈,设n n AOA θ∠=对一切*n N ∈都有不等式22223122222sin sin sin sin 123n nθθθθ+++⋅⋅⋅⋅⋅⋅+ 222t t <--成立,则正整数t 的最小值为( ) A .3B .4C .5D .63.在ABC ∆中,“sin sin A B >”是“tan tan A B >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.设复数z 满足(1)21z i i ⋅+=+(i 为虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限5.已知函数()sin(2)f x x ϕ=+,其中(0,)2πϕ∈,若,()6x R f x f π⎛⎫∀∈≤ ⎪⎝⎭恒成立,则函数()f x 的单调递增区间为( ) A .,()36k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦B .2,()33k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦C .2,()33k k k z ππππ⎡⎤++∈⎢⎥⎣⎦D .2,()3k k k Z πππ⎡⎤+⎢⎥⎣∈⎦6.设f (x )是定义在R 上的偶函数,且在(0,+∞)单调递减,则( )A .0.30.43(log 0.3)(2)(2)f f f -->>B .0.40.33(log 0.3)(2)(2)f f f -->>C .0.30.43(2)(2)(log 0.3)f f f -->> D .0.40.33(2)(2)(log 0.3)f f f -->>7.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离8.运行如图程序,则输出的S 的值为( )A .0B .1C .2018D .20179.已知定义在R 上的奇函数()f x 满足()()11f x f x +=-,且当[]0,1x ∈时,()2xf x m =-,则()2019f =( ) A .1B .-1C .2D .-210.已知斜率为2的直线l 过抛物线C :22(0)y px p =>的焦点F ,且与抛物线交于A ,B 两点,若线段AB 的中点M 的纵坐标为1,则p =( ) A .1B 2C .2D .411.某市政府决定派遣8名干部(5男3女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少3人,且女干部不能单独成组,则不同的派遣方案共有( )种 A .240B .320C .180D .12012.若直线2y kx =-与曲线13ln y x =+相切,则k =( )A .3B .13C .2D .12二、填空题:本题共4小题,每小题5分,共20分。
河南省周口市沈丘县长安高级中学2022-2023学年高三上学期第二次月考理科数学试题
B. a∈[ 3 ,1) 4
C. a∈(0, 1 ] 3
D. a∈[ 3 ,2) 4
8.
函数 y
3x 3x
cos
x
在区间
π 2
,
π 2
的图象大致为()
1
A.
B.
C.
D.
9. 已知函数 f (x) sin 2x 3 cos 2x 的图象向左平移 个单位长度后,得到函数 g(x) 的图象,且 g(x) 的
三、解答题:共 70 分,解答必须写出必要的文字说明、证明过程或者演算步骤.
17.
已知幂函数 f x m2 m 1xm1 2在0,
上为增函数.
(1)求实数 m 的值;
(2)求函数 g x f 2x 3 4x 5 的值域.
18. 已知在锐角△ABC 中,角 A,B,C 所对
边分别为
a,b,c,且
A. 2, 4
B. 0, 2, 4
2 f x x2 x 3 ,则 f 1 ()
C. 1,3,5
D. 0, 2, 4,6
A. 6
B. 5
C. 3
D. 2
3. 设命题甲:“ x2 3x 0 ”,命题乙:“ x 1 3 ”,那么命题甲是命题乙的()
A. 充分非必要条件 C. 充要条件
B. 必要非充分条件 D. 既不充分也不必要条件
为 22. 已知函数 f x 2x2ex , gx ax2alnxaR.
(1)求函数 f x 的单调区间和极值;
(2)若函数 h x f x g x 有 2 个零点,求实数 a 的取值范围.
4
tan C
a2
ab b2
c2
.
(1)求角 C 大小;
南开大学附中高三数学上学期第二次月考试题含解析
A。 (0,2)B. (0,2]C. (2,+∞)D. [2,+∞)
【答案】A
【解析】
【分析】
根据题意, 是函数 的一个零点,故问题转化为当 时, 与 图象必有一个交点,再根据导数研究 性质,数形结合求解即可得答案。
【详解】解:根据题意,函数 恰有两个零点
三、解答题
16. 已知函数
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向左平移 个单位,得到函数g(x)的图象,求函数g(x)在区间 上的最大值和最小值.
【答案】(1) (2)
【解析】
【分析】
(1)利用倍角公式及诱导公式化简,然后由周期公式求周期;
(2)由三角函数的图象平移得到函数 的解析式,结合 的范围求得函数 在区间 上的最大值和最小值.
【解析】
【分析】
(1)根据已知条件,由正弦定理角化边,得到三边的关系,进而利用余弦定理求解;
(2)由正弦定理求得 ,并根据边的大小关系判定 为锐角,然后利用倍角公式和两角和的正弦公式计算.
【详解】解:(1)∵ ,
由正弦定理得, .
化简得, .
由余弦定理得, 。
又 ,
∴ .Байду номын сангаас
(2)由(1)知, ,
又 , ,
【点睛】本题考查由图象求解析式及函数值,考查学生识图、计算等能力,是一道中档题.
13。 已知a>0,b>0且a+b=1,则 的最小值是___________。
【答案】9
【解析】
【分析】
先利用平方差公式和 得出 ,再去括号、通分得出 ,根据 和基本不等式可求出 的最大值,即 的最小值.
天津市耀华中学2023-2024学年高三上学期第二次月考数学试题
x2 a2
y2 b2
1a
b 0 ,其离心率 e
1 2
,F1 、F2 在 x 轴上), △PF1F2 周长为 6.过椭圆右焦点 F2 的直线 l
与椭圆交于 A、B 两点. (1)求椭圆的标准方程;
(2)求 AB 的范围. (3)O 为坐标原点, OAB 面积为 12 5 ,求直线 l 的方程.
则 sin
a,
b
(
)
试卷第 1页,共 4页
A. 2 2 3
B.
1 3
C. 15 4
D. 1 4
7.若三棱锥 P ABC 中,已知 PA 底面 ABC ,BAC 120 , PA AB AC 2 ,若
该三棱雉的顶点都在同一个球面上,则该球的表面积为( )
A.10 3π
B.18π
C. 20π
(3)在(2)的条件下,证明:
x1
x2
2 a 1
.
试卷第 4页,共 4页
C. f x ex ex cos πx 2
D. f x ex ex sin πx 2
5.已知等比数列an 的前 3 项和为168, a2 a5 42 ,则 a4 ( )
A.14
B.12
C.6
D.3
6.已知平面向量
a
,b
满足
a
3
2
,
b
1,并且当
4 时,
a
b
取得最小值,
D. 9 3π
8.设函数
f (x) sin(x ) 0,| |
π 2
,
f
5 12
π
0,f
2 3
π
1,且 f (x) 在
π 3
2021-2022年高三上学期第二次月考数学(理)试题含答案
2021-2022年高三上学期第二次月考数学(理)试题含答案一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0}, 则A∩()=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}2.下列函数在其定义域内既是奇函数又是增函数的是( ) (A)y=tanx (B)y=3x (C)y= (D)y=lg|x|3.下列四种说法中,错误的个数是( ) ①A={0,1}的子集有3个;②“若am 2<bm 2,则a<b ”的逆命题为真;③“命题p ∨q 为真”是“命题p ∧q 为真”的必要不充分条件;④命题“∀x ∈R,均有x 2-3x-2≥0”的否定是:“∃x 0∈R,使得x 02-3x 0-2≤0”. (A)0 (B)1 (C)2 (D)3 4.已知函数则f(f())的值是( ) (A)9(B)(C)-9(D)-5.若a=log 20.9,则( )(A)a<b<c (B)a<c<b (C)c<a<b(D)b<c<a6.若函数y=-x 2+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是( )()()()()53A B C D 4664ππππ7.已知命题p:函数f(x)=2ax 2-x-1(a ≠0)在(0,1)内恰有一个零点;命题q:函数y=x 2-a 在(0,+∞)上是减函数.若p 且﹁q 为真命题,则实数a 的取值范围是 ( ) (A)a>1(B)a ≤2 (C)1<a ≤2(D)a ≤1或a>28.函数f(x)=的大致图象为( )9.设函数f (x )=x 2+xsinx ,对任意x 1,x 2∈(﹣π,π), 若f (x 1)>f (x 2),则下列式子成立的是( ) A .x 1>x 2B .C .x 1>|x 2|D .|x 1|<|x 2|10函数y=f(x)(x ∈R)满足f(x+1)=-f(x),且x ∈[-1,1]时f(x)=1-x 2,函数()lg x,x 0,g x 1,x 0,x>⎧⎪=⎨-<⎪⎩则函数h(x)=f(x)-g(x)在区间[-5,4]内的零点的个数为( ) (A)7(B)8(C)9(D)10二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知集合M={y|y=x 2﹣1,x ∈R},,则M∩N=_____ 12.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是 [﹣1,0],则a+b= .13.已知p:≤x ≤1,q:(x-a)(x-a-1)>0,若p 是﹁q 的充分不必要条件,则实数a 的取值范围是 .14.若f (x )=是R 上的单调函数,则实数a 的取值范围为 . 15.若方程有正数解,则实数的取值范围是_______三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)已知p :∀x ∈R ,2x >m (x 2+1),q :∃x 0∈R , x+2x 0﹣m ﹣1=0,且p ∧q 为真,求实数m 的取值范围.17、(12分)已知函数.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明f(x)在(0,1)内单调递减.18.(12分)已知函数f(x)=x3﹣ax2﹣3x(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;(2)若x=﹣是f(x)的极值点,求f(x)在[1,4]上的最大值.19.(12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).20. (13分)已知函数f(x)满足()()()x 121f x f 1e f 0x x .2-='-+(1)求f(x)的解析式及单调区间.(2)若f(x)≥x 2+ax+b,求(a+1)b 的最大值.21、 (14分)已知函数21()(21)2ln ()2f x ax a x x a R =-++∈.(Ⅰ)若曲线y=f (x )在x=1和x=3处的切线互相平行,求a 的值; (Ⅱ)求f (x )的单调区间;(Ⅲ)设g (x )=x 2﹣2x ,若对任意x 1∈(0,2],均存在x 2∈(0,2],使得 f (x 1)<g (x 2),求a 的取值范围.高三数学第一次检测题答案解析1. C .2.C.3.D.4.B.5.B.6.D.7.C 8、D.9.【解析】∵f (﹣x )=(﹣x )2﹣xsin (﹣x )=x 2+xsinx=f (x ),∴函数f (x )=x 2+xsinx 为偶函数,又f′(x )=2x+sinx+xcosx ,∴当x >0时,f′(x )>0,∴f (x )=xsinx 在[0,π]上单调递增,∴f (﹣x )=f (|x|);∵f (x 1)>f (x 2),∴结合偶函数的性质得f (|x 1|)>f (|x 2|),∴|x 1|>|x 2|,∴x 12>x 22.故选B .10.选A.由f(x+1)=-f(x),可得f(x+2)=-f(x+1)=f(x),所以函数f(x)的周期为2,求h(x)=f(x)-g(x)的零点,即求f(x)=g(x)在区间[-5,4]的解的个数.画出函数f(x)与g(x)的图象,如图,由图可知两图象在[-5,4]之间有7个交点,所以所求函数有7个零点,选A.11、解:∵集合M={y|y=x2﹣1,x∈R}={y|y≥﹣1},={x|﹣},∴M∩N=.故答案为:.12、解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:13.q:x>a+1或x<a,从而﹁q:a≤x≤a+1.由于p是﹁q的充分不必要条件,故a111a2≥⎧⎪⎨≤⎪⎩+,,即0≤a≤.答案:[0,]14、解:∵f(x)=是R上的单调函数,∴,解得:a≥,故实数a的取值范围为[,+∞),故答案为:[,+∞)15.16、解:不等式2x>m(x2+1),等价为mx2﹣2x+m<0,若m=0,则﹣2x<0,即x>0,不满足条件.若m≠0,要使不等式恒成立,则,即,解得m<﹣1.即p:m<﹣1.———————————————————————4分若∃x0∈R,x+2x﹣m﹣1=0,则△=4+4(m+1)≥0,解得m≥﹣2,即q:m≥﹣2.———————————————————————8分若p∧q为真,则p与q同时为真,则,即﹣2≤m<﹣1————12分17、解:(1)⇔﹣1<x<0或0<x<1,故f(x)的定义域为(﹣1,0)∪(0,1);————————————4分(2)∵,∴f(x)是奇函数;————————————————————————————6分(3)设0<x1<x2<1,则∵0<x1<x2<1,∴x2﹣x1>0,x1x2>0,(1﹣x1)(1+x2)=1﹣x1x2+(x2﹣x1)>1﹣x1x2﹣(x2﹣x1)=(1+x1)(1﹣x2)>0∴,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2)∴f(x)在(0,1)内递减——————————————————12分另解:∴当x∈(0,1)时,f′(x)<0故f(x)在(0,1)内是减函数.—————————————————12分18、解:(1)求导函数,可得f′(x)=3x2﹣2ax﹣3,∵f(x)在区间[1,+∞)上是增函数,∴f′(x)≥0在区间[1,+∞)上恒成立∴3x2﹣2ax﹣3≥0在区间[1,+∞)上恒成立∴且f′(1)=﹣2a≥0∴a≤0———4分(2)∵x=﹣是f(x)的极值点,∴∴∴a=4——6分∴f(x)=x3﹣4x2﹣3x,f′(x)=3x2﹣8x﹣3,∴x1=﹣,x2=3令f′(x)>0,1<x<4,可得3<x<4;令f′(x)<0,1<x<4,可得1<x<3;∴x=3时,函数取得最小值﹣18∵f(1)=﹣6,f(4)=﹣12∴f(x)在[1,4]上的最大值为﹣6.————————————————12分19、解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v (x)=ax+b再由已知得,解得故函数v(x)的表达式为.——————4分(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.—————————————————————————10分答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.——————————————————————————12分20.(1)∵f(x)=f′(1)e x-1-f(0)x+x2,∴f′(x)=f′(1)e x-1-f(0)+x,令x=1得:f(0)=1,∴f(x)=f′(1)e x-1-x+x2,∴f(0)=f′(1)e-1=1,∴f′(1)=e得:f(x)=e x-x+x2.—————————4分设g(x)=f′(x)=e x-1+x,g′(x)=e x+1>0,∴y=g(x)在R上单调递增.令f′(x)>0=f′(0),得x>0,令f′(x)<0=f′(0)得x<0,∴f(x)的解析式为f(x)=e x-x+x2且单调递增区间为(0,+∞),单调递减区间为(-∞,0).————————————-4分(2)由f(x)≥x2+ax+b得e x-(a+1)x-b≥0,令h(x)=e x-(a+1)x-b,则h′(x)=e x-(a+1).①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增.x→-∞时,h(x)→-∞与h(x)≥0矛盾.——————————6分②当a+1>0时,由h′(x)>0得x>ln(a+1),由h′(x)<0得x<ln(a+1)=(a+1)-(a+1)ln(a+1)-b≥0.———8分得当x=ln(a+1)时,h(x)min(a+1)b≤(a+1)2-(a+1)2ln(a+1) (a+1>0).令F(x)=x2-x2ln x(x>0),则F′(x)=x(1-2ln x),——————10分由F′(x)>0得0<x<,由F′(x)<0得x>,当x=时,F(x)=,∴当a=-1,b=时,(a+1)b的最大值为.—————————max—————————————13分21、解:(Ⅰ)∵函数,∴(x>0).∵曲线y=f(x)在x=1和x=3处的切线互相平行,∴f'(1)=f'(3),即,解得.————————————4分(Ⅱ)(x>0).①当a≤0时,x>0,ax﹣1<0,在区间(0,2)上,f'(x)>0;在区间(2,+∞)上f'(x)<0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).②当时,,在区间(0,2)和上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是(0,2)和,单调递减区间是③当时,,故f(x)的单调递增区间是(0,+∞).④当时,,在区间和(2,+∞)上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是和(2,+∞),单调递减区间是.————————————8分(Ⅲ)由已知,在(0,2]上有f(x)max <g(x)max.由已知,g(x)max=0,由(Ⅱ)可知,①当时,f(x)在(0,2]上单调递增,故f(x)max=f(2)=2a﹣2(2a+1)+2ln2=﹣2a﹣2+2ln2,所以,﹣2a﹣2+2ln2<0,解得a>ln2﹣1,故.——————————————————12分②当时,f(x)在上单调递增,在上单调递减,故.由可知,2lna>﹣2,﹣2lna<2,所以,﹣2﹣2lna<0,f(x)max<0,综上所述,a>ln2﹣1.————————————————14分21072 5250 剐31873 7C81 粁31426 7AC2 竂z33043 8113 脓e35722 8B8A 變 39463 9A27 騧K34467 86A3 蚣38124 94EC 铬=40272 9D50 鵐。
湖南省百所重点高中2024学年高三3月线上第二次月考数学试题试卷
湖南省百所重点高中2024学年高三3月线上第二次月考数学试题试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在三棱锥P ABC -中,AB BP ⊥,AC PC ⊥,AB AC ⊥,PB PC ==,点P 到底面ABC 的距离为2,则三棱锥P ABC -外接球的表面积为( ) A .3πB.2C .12πD .24π2.已知定点1(4,0)F -,2(4,0)F ,N 是圆22:4O x y +=上的任意一点,点1F 关于点N 的对称点为M ,线段1F M 的垂直平分线与直线2F M 相交于点P ,则点P 的轨迹是( ) A .椭圆B .双曲线C .抛物线D .圆3.若不等式22ln x x x ax -+对[1,)x ∈+∞恒成立,则实数a 的取值范围是( ) A .(,0)-∞B .(,1]-∞C .(0,)+∞D .[1,)+∞4.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥5.若()()()32z i a i a R =-+∈为纯虚数,则z =( ) A .163i B .6i C .203i D .206.已知x ,y 满足不等式00224x y x y t x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数z =9x +6y 最大值的变化范围[20,22],则t 的取值范围( )A .[2,4]B .[4,6]C .[5,8]D .[6,7]7.点,,A B C 是单位圆O 上不同的三点,线段OC 与线段AB 交于圆内一点M ,若,(0,0),2OC mOA nOB m n m n =+>>+=,则AOB ∠的最小值为( )A .6π B .3π C .2π D .23π 8.已知实数x 、y 满足不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则3z x y =-+的最大值为( )A .3B .2C .32-D .2-9.已知集合{}3|20,|0x P x x Q x x -⎧⎫=-≤=≤⎨⎬⎩⎭,则()R P Q 为( ) A .[0,2)B .(2,3]C .[2,3]D .(0,2]10.已知31(2)(1)mx x--的展开式中的常数项为8,则实数m =( )A .2B .-2C .-3D .311.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)12.已知奇函数()f x 是R 上的减函数,若,m n 满足不等式组()(2)0(1)0()0f m f n f m n f m +-≥⎧⎪--≥⎨⎪≤⎩,则2m n -的最小值为( )A .-4B .-2C .0D .4二、填空题:本题共4小题,每小题5分,共20分。
海南省文昌中学2024-2025学年高三上学期第二次月考数学试题
海南省文昌中学2024-2025学年高三上学期第二次月考数学试题一、单选题1.已知集合{23}M xx =-<<∣,{}2540N x x x =-+>∣,则M N ⋃=( ) A .(2,1)-- B .(2,4)-C .(,1)(4,)-∞+∞UD .(,3)(4,)-∞⋃+∞2.若复数z 满足(13i)3i z -=-(i 为虚数单位),则z 的模z =( )A .35B .1CD .53.“2π3α=”是“1cos 2α=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知函数()()()1,0ln e 2,0f x x f x x x ⎧->⎪=⎨-++≤⎪⎩,则()2024f 的值为( )A .1-B .0C .1D .25.已知0.43a =,0.5log 4b =,πcos 18c ⎛⎫=- ⎪⎝⎭,则( )A .c b a >>B .b a c >>C .c a b >>D .a c b >>6.已知函数()()21,0lg ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若函数()()g x f x b =-有三个不同的零点,则实数b 的取值范围为( ) A .(0,1]B . 0,1C .(0,)+∞D .(1,)+∞7.若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=( )A B C D 8.挂钟的时针和分针从凌晨0时起到下午14点所在的14小时内,分针与时针会重合( )次(注意:0时开始的那次重合不计算在内)A .11B .12C .13D .14二、多选题9.已知正数x ,y 满足2x y +=,则下列选项正确的是( ) A .11x y+的最小值是4B .xy 的最大值是1C .22x y +的最小值是1D .(1)x y +的最大值是9410.已知函数()sin()f x A x ωϕ=+(0A >,0ω>,π||2ϕ<)的部分图象如图所示,则下列说法正确的是( )A .1ω=B .函数()f x 的图象关于直线5π12x =-对称 C .函数()f x 图象向右平移π3个单位后得到函数5π()2cos 26g x x ⎛⎫=- ⎪⎝⎭的图像D .函数()f x 在区间115π,π1212⎛⎫-- ⎪⎝⎭上是减函数11.对于已知函数32()3f x x x ax b =-++,下列论述正确的有( )A .若9a =-,则函数()y f x =的单调递减区间为(1,3)-B .若函数()y f x =在区间(0,)+∞上是增函数,则4a ≥C .当3a =,0b =时,函数()f x 图像的对称轴为2x =D .当0a =,2b =时,函数()f x 图像的对称中心为(1,0)三、填空题12.函数()f x 是定义在R 上的奇函数,当0x >时,2()log f x x =,则(4)f -=.13.如图是某个函数()y f x =的图象在[0,2]x ∈的一段图像.写出函数()y f x =在[0,2]x ∈时满足图象的一个解析式()f x =(写出一个即可).14.设()cos sin x x f ααα=-(其中N x +∈,α为任意角),则求下列: (1)当4x =时,且π0,3α⎡⎤∈⎢⎥⎣⎦时,()f α的取值范围为;(2)当8x =时,且π0,3α⎡⎤∈⎢⎥⎣⎦时,()f α的取值范围为.四、解答题15.某公园为了提升公园形象,提高游客旅游的体验感,他们更新了部分设施,调整了部分旅游线路.为了解游客对新措施是否满意,随机抽取了100名游客进行调查,男游客与女游客的人数之比为2:3,其中男游客有35名满意,女游客有15名不满意.(1)完成22⨯列联表,依据表中数据,以及小概率值0.05α=的独立性检验,能否认为游客对公园新措施满意与否与性别有关?(2)从被调查的游客中按男、女分层抽样抽取5名游客.再随机从这5名游客中抽取3名游客征求他们对公园进一步提高服务质量的建议,其中抽取男游客的人数为X .求出X 的分布列及数学期望.参考公式:22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.参考数据:16.已知函数()2()cos cos sin f x x x x x =+-.(1)求函数()f x 的最小正周期和单调递增区间; (2)若把()y f x =的图像先向右平移π6个单位,再向上平移1个单位,得到()y g x =的图像,则当[0,2π]x ∈时,求使得()2gx =时所有x 的取值.17.在锐角ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2(cos cos)cos ca Bb A C+=. (1)求角C ;(2)若c =ABABC V 的面积S .18.已知双曲线222:1(0)x C y a a-=>的焦距为1A ,2A ,过点(4,0)T 的直线l 与双曲线C 的右支交于M ,N 两点.(1)求双曲线的方程; (2)若直线MN MN ; (3)记直线1A M ,2A N 的斜率分别为1k ,2k ,证明:12k k 是定值. 19.已知函数()ln (2)f x x mx b b =+->, (1)若1m =-,3b =时,求()f x 的极值; (2)若2m =时,①证明:()f x 有唯一零点a ,且(1,)a b ∈;②若我们任取1(1,)x a ∈开始,实施如下步骤:在()()11,x f x 处作曲线()f x 的切线,交x 轴于点()2,0x ;在()()22,x f x 处作曲线()f x 的切线,交x 轴于点()3,0x ;…….在()(),n n x f x 处作曲线()f x 的切线,交x 轴于点()1,0n x +;可以得到一个数列{}n x ,它的各项都是()f x 不同程度的零点近似值.设()1n n x g x +=,求()n g x 的解析式(用n x 表示1n x +);并证明:当1(1,)x a ∈,总有1n n x x a +<<.。
2022-2023学年云南省曲靖市第一中学高三上学期第二次月考数学试卷带讲解
小问2详解】
因为 由余弦定理,得 ,
即 ,解得 ,而 ,
所以 的面积 .
18. 年 月 日,我国开始施行《个人所得税专项附加扣除操作办法》,附加扣除的专项包括子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人.某单位有老年员工 人,中年员工 人,青年员工 人,现采用分层抽样的方法,从该单位员工中抽取 人,调查享受个人所得税专项附加扣除的情况,并按照员工类别进行各专项人数汇总,数据统计如表:
B选项:利用基本不等式和对数运算求最值即可;
C选项:根据 得到 ,再结合 得 ,然后根据余弦值求角即可;D选项:根据线性运算得到 ,再结合中位线的性质得到 ,最后根据面积公式求面积比即可.
【详解】A选项:当 , 时, ,所以 ,故A错;
B选项:因为 , ,所以 ,当且仅当 时,等号成立,又 ,所以 ,故B正确;
故选:ABD
【点睛】抽象函数对称性与周期性的判断如下:
若 ,则函数 关于 对称;
若 ,则函数 关于 中心对称;
若 ,则 是 的一个周期.
三、填空题
13.已知点 为角 的终边上一点,则 的值为___________.
【答案】
【解析】
【分析】利用诱导公式化简 ,然后利用终边上点的坐标求三角函数值即可.
【详解】 .
(Ⅱ) 的可取值为 、 、 ,
, , .
所以 的分布列为:
数学期望 .
【点睛】本题考查利用分层抽样求抽取的人数,同时也考查了超几何分布列以及随机变量数学期望的计算,考查计算能力,属于中等题.
19.已知函数
(1)求函数 的单调区间;
(2)若函数 的图像在点 处的切线斜率为 ,设 ,若函数 在区间 内单调递增,求实数 的取值范围.
高三数学上学期第二次月考试卷 理(含解析)-人教版高三全册数学试题
2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>04.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣26.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.278.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.49.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.2011.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=__________.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是__________.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=__________.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}【考点】Venn图表达集合的关系及运算.【专题】应用题;集合思想;定义法;集合.【分析】由图知,阴影部分表示的集合中的元素是在集合N中的元素但不在集合M中的元素组成的,即N∩C U M.【解答】解:由韦恩图知阴影部分表示的集合为N∩(C U M)M={x|y=ln(x2﹣2x) }∴x2﹣2x>0,解得x<0,或x>2,∴M={x|x<0,或x>2},∴C U M={x|0≤x≤2}=[0,2],N={y|y=}={y|y≥1}=[1,+∞),∴N∩(C U M)=[1,2],故选:C【点评】本小题主要考查Venn图表达集合的关系及运算、二次不等式的解法等基础知识,属于基础题2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣【考点】分段函数的应用;函数的零点.【专题】函数的性质及应用.【分析】由f(a)=﹣3,结合指数和对数的运算性质,求得a=7,再由分段函数求得f(6﹣a)的值.【解答】解:函数f(x)=且f(a)=﹣3,若a≤1,则2a﹣1﹣2=﹣3,即有2a﹣1=﹣1<0,方程无解;若a>1,则﹣log2(a+1)=﹣3,解得a=7,则f(6﹣a)=f(﹣1)=2﹣1﹣1﹣2=﹣.故选:A.【点评】本题考查分段函数的运用:求函数值,主要考查指数和对数的运算性质,属于中档题.3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0【考点】命题的真假判断与应用.【专题】计算题;规律型;简易逻辑.【分析】利用命题的否定判断A的正误;四种命题的逆否关系判断B的正误;充要条件判断C 的正误;命题的真假判断D的正误;【解答】解:对于A,命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠x0,不满足命题的否定形式,所以不正确;对于B,命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5,不满足否命题的形式,所以不正确;对于C,若ω=1是函数f(x)=cosx在区间[0,π]上单调递减的,而函数f(x)=cosωx在区间[0,π]上单调递减的,ω≤1,所以ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件,正确.对于D,命题:∃x0∈R,x02+a<0为假命题,则命题:a≥0,∀x∈R,x2+a≥0是真命题;所以,命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0,不正确;故选:C.【点评】本题考查命题的真假的判断与应用,基本知识的考查.4.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.【考点】由三视图求面积、体积.【专题】图表型.【分析】先由三视图还原成原来的几何体,再根据三视图中的长度关系,找到几何体中的长度关系,进而可以求几何体的体积.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是组合体的体积,一般组合体的体积要分部分来求.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣2【考点】椭圆的简单性质.【专题】计算题.【分析】通过题意可推断出当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.进而可根据椭圆的方程求得焦点的坐标和P的坐标,进而求得和,则•的值可求得.【解答】解:根据题意可知当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.这时,F1(﹣,0),F2(,0),P(0,1),∴=(﹣,﹣1),=(,﹣1),∴•=﹣2.故选D【点评】本题主要考查了椭圆的简单性质.考查了学生数形结合的思想和分析问题的能力.6.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】分别讨论a,b,c的取值X围,即可比较大小.【解答】解:1<log37<2,b=21.1>2,c=0.83.1<1,则c<a<b,故选:B.【点评】本题主要考查函数值的大小比较,根据指数和对数的性质即可得到结论.7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.27【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的R,P,Q的值,当Q=0时,满足条件Q=0,退出循环,输出P的值为3.【解答】解:模拟执行程序,可得P=153,Q=63不满足条件Q=0,R=27,P=63,Q=27不满足条件Q=0,R=9,P=27,Q=9不满足条件Q=0,R=0,P=9,Q=0满足条件Q=0,退出循环,输出P的值为9.故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的R,P,Q的值是解题的关键,属于基本知识的考查.8.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.4【考点】三角函数的化简求值.【专题】计算题;转化思想;转化法;三角函数的求值.【分析】先根据对数的运算性质求出tanθ,再化简代值计算即可.【解答】解:点(16,tanθ)在函数y=log2x的图象上,∴tanθ=log216=4,∴====,故选:B.【点评】本题考查了二倍角公式,函数值的求法,以及对数的运算性质,属于基础题.9.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零【考点】函数的零点与方程根的关系.【专题】函数的性质及应用.【分析】由函数的性质可知,f(x)=()x﹣log3x在(0,+∞)上是减函数,且可得f(x0)=0,由0<x0<x1,可得f(x1)<f(x0)=0,即可判断【解答】解:∵实数x0是方程f(x)=0的解,∴f(x0)=0.∵函数y()x,y=log3x在(0,+∞)上分别具有单调递减、单调递增,∴函数f(x)在(0,+∞)上是减函数.又∵0<x0<x1,∴f(x1)<f(x0)=0.∴f(x1)的值恒为负.故选A.【点评】本题主要考查了函数的单调性的简单应用,解题的关键是准确判断函数f(x)的单调性并能灵活应用.10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.20【考点】数列的求和.【专题】等差数列与等比数列.【分析】首先根据题中的已知条件已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,进一步求出数列的通项公式,然后根据通项公式求出各项的值,最后确定结果.【解答】解:已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2则:∴a n=3n﹣5a2+a4+a5+a9=40故选:B【点评】本题考查的知识点:根据点的斜率求出数列的通项公式,由通项公式求数列的项.11.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.【考点】对数的运算性质;函数的图象与图象变化.【分析】根据函数y=e|lnx|﹣|x﹣1|知必过点(1,1),再对函数进行求导观察其导数的符号进而知原函数的单调性,得到答案.【解答】解:由y=e|lnx|﹣|x﹣1|可知:函数过点(1,1),当0<x<1时,y=e﹣lnx﹣1+x=+x﹣1,y′=﹣+1<0.∴y=e﹣lnx﹣1+x为减函数;若当x>1时,y=e lnx﹣x+1=1,故选D.【点评】本题主要考查函数的求导与函数单调性的关系.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)【考点】函数奇偶性的性质.【专题】转化思想;数学模型法;函数的性质及应用;导数的综合应用.【分析】f(x)是定义在R上的奇函数,可得:f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),可得:xf′(x)+2f(x)>0,由g(x)=x2f(x),可得g′(x)>0.可得函数g(x)在(0,+∞)上单调递增.即可得出.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),∴xf′(x)+2f(x)>0,∵g(x)=x2f(x),∴g′(x)=2xf(x)+x2f′(x)>0.∴函数g(x)在(0,+∞)上单调递增.又g(0)=0,g(﹣x)=x2f(﹣x)=﹣g(x),∴函数g(x)是R上的奇函数,∴g(x)是R上的增函数.由不等式g(x)<g(1﹣3x),∴x<1﹣3x,解得.∴不等式g(x)<g(1﹣3x)的解集为:.故选:B.【点评】本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=.【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据对数和幂的运算性质计算即可.【解答】解:()+lg+lg70+=+lg()+1﹣lg3=+lg+1=+1+1=,故答案为:.【点评】本题考查了对数和幂的运算性质,关键是掌握性质,属于基础题.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是﹣8.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】将z=x﹣3y变形为,此式可看作是斜率为,纵截距为的一系列平行直线,当最大时,z最小.作出原不等式组表示的平面区域,让直线向此平面区域平移,可探求纵截距的最大值.【解答】解:由z=x﹣3y,得,此式可看作是斜率为,纵截距为的直线,当最大时,z最小.画出直线y=x,x+2y=2,x=﹣2,从而可标出不等式组表示的平面区域,如右图所示.由图知,当动直线经过点P时,z最小,此时由,得P(﹣2,2),从而z min=﹣2﹣3×2=﹣8,即z=x﹣3y的最小值是﹣8.故答案为:﹣8.【点评】本题考查了线性规划的应用,为高考常考的题型,求解此类问题的一般步骤是:(1)作出已知不等式组表示的平面区域;(2)运用化归思想及数形结合思想,将目标函数的最值问题转化为平面中几何量的最值问题处理.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=﹣8.【考点】奇偶性与单调性的综合;函数的周期性.【专题】数形结合.【分析】由条件“f(x﹣4)=﹣f(x)”得f(x+8)=f(x),说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【解答】解:此函数是周期函数,又是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×(﹣6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=﹣8.故答案为﹣8.【点评】数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是①②④.【考点】命题的真假判断与应用;奇偶性与单调性的综合.【专题】函数思想;定义法;函数的性质及应用.【分析】是结合复合函数单调性的关系进行判断.②根据基本由函数奇偶性的定义判断函数为偶函数判断;③利用对勾函数的单调性判断;④由对勾函数的最值及函数奇偶性的性质进行判断即可.【解答】解:①函数f(x)=lg,(x∈R且x≠0).∵=2,∴f(x)=lg≥2,即f(x)的最小值是lg2,故①正确,②∵f(﹣x)==f(x),∴函数f(x)为偶函数,图象关于y轴对称,故②正确;③当x>0时,t(x)=,在(0,1)上单调递减,在(1,+∞)上得到递增,∴f(x)=lg在(0,1)上单调递减,在(1,+∞)上得到递增,故③错误;④∵函数f(x)是偶函数,由③知f(x)在(0,1)上单调递减,在(1,+∞)上得到递增,∴在(﹣1,0)上单调递增,在(﹣∞,﹣1)上得到递减,故④正确,故答案为:①②④【点评】本题考查了命题的真假判断与应用,考查了函数奇偶性的性质,考查了复合函数的单调性,是中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.【考点】必要条件;绝对值不等式的解法.【专题】规律型.【分析】先求出命题p,q的等价条件,利用¬p是¬q的必要不充分条件转化为q是p的必要不充分条件,建立条件关系即可求出m的取值X围.【解答】解:由||=,得|x﹣4|≤6,即﹣6≤x﹣4≤6,∴﹣2≤x≤10,即p:﹣2≤x≤10,由x2+2x+1﹣m2≤0得[x+(1﹣m)][x+(1+m)]≤0,即1﹣m≤x≤1+m,(m>0),∴q:1﹣m≤x≤1+m,(m>0),∵¬p是¬q的必要不充分条件,∴q是p的必要不充分条件.即,且等号不能同时取,∴,解得m≥9.【点评】本题主要考查充分条件和必要条件的应用,将¬p是¬q的必要不充分条件转化为q 是p的必要不充分条件是解决本题的关键.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.【考点】函数零点的判定定理;根的存在性及根的个数判断.【专题】计算题;函数的性质及应用;导数的综合应用;不等式的解法及应用.【分析】(1)由基本不等式可得g(x)=x+≥2=2e,从而求m的取值X围;(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,求导F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);从而判断函数的单调性及最值,从而确定m的取值X围.【解答】解:(1)∵g(x)=x+≥2=2e;(当且仅当x=,即x=e时,等号成立)∴若使函数y=g(x)﹣m有零点,则m≥2e;故m的取值X围为[2e,+∞);(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);故当x∈(0,e)时,F′(x)<0,x∈(e,+∞)时,F′(x)>0;故F(x)在(0,e)上是减函数,在(e,+∞)上是增函数,故只需使F(e)<0,即e+e+e2﹣2e2﹣m+1<0;故m>2e﹣e2+1.【点评】本题考查了基本不等式的应用及导数的综合应用,同时考查了函数零点的判断与应用,属于中档题.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.【考点】求对数函数解析式;函数解析式的求解及常用方法;函数最值的应用.【专题】计算题;转化思想.【分析】(1)由已知条件可知函数g(x)的图象上的任意一点P(x,y)关于原点对称的点Q (﹣x,﹣y)在函数f(x)图象上,把Q(﹣x,﹣y)代入f(x),整理可得g(x)(2)由(1)可令h(x)=f(x)+g(x),先判断函数h(x)在[0,1)的单调性,进而求得函数的最小值h(x)min,使得m≤h(x)min【解答】解:(1)设点P(x,y)是g(x)的图象上的任意一点,则Q(﹣x,﹣y)在函数f (x)的图象上,即﹣y=log a(﹣x+1),则∴(2)f(x)+g(x)≥m 即,也就是在[0,1)上恒成立.设,则由函数的单调性易知,h(x)在[0,1)上递增,若使f(x)+g(x)≥m在[0,1)上恒成立,只需h(x)min≥m在[0,1)上成立,即m≤0.m的取值X围是(﹣∞,0]【点评】本题(1)主要考查了函数的中心对称问题:若函数y=f(x)与y=g(x)关于点M (a,b)对称,则y=f(x)上的任意一点(x,y)关于M(a,b)对称的点(2a﹣x,2b﹣y)在函数y=g(x)的图象上.(2)主要考查了函数的恒成立问题,往往转化为求最值问题:m≥h(x)恒成立,则m≥h(x)m≤h(x)恒成立,max则m≤h(x)min20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.【考点】基本不等式在最值问题中的应用.【专题】计算题.【分析】(1)赢利总额y元即x年中的收入50x减去购进机床的成本与这x年中维修、保养的费用,维修、保养的费用历年成等差数增长,,(2)由(1)的结论解出结果进行判断得出何年开始赢利.(3)算出每一种方案的总盈利,比较大小选择方案.【解答】解:(1)y=﹣2x2+40x﹣98,x∈N*.(2)由﹣2x2+40x﹣98>0解得,,且x∈N*,所以x=3,4,,17,故从第三年开始盈利.(3)由,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为﹣2×72+40×7﹣98+30=114(万元).由y=﹣2x2+40x﹣98=﹣2(x﹣10)2+102≤102,所以按第二方案处理总利润为102+12=114(万元).∴由于第一方案使用时间短,则选第一方案较合理.【点评】考查审题及将题中关系转化为数学符号的能力,其中第二问中考查了一元二次不等式的解法,第三问中考查到了基本不等式求最值,本题是一个函数基本不等式相结合的题.属应用题中盈利最大化的问题.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】综合题;导数的综合应用.【分析】(1)求导数,利用导数的正负,即可讨论函数h(x)=的单调性;(2)求出g(x)max=g(2)=1,当x∈[,2]时,f(x)=+xlnx恒成立,等价于a≥x﹣x2lnx 恒成立,然后利用导数求函数u(x)=x﹣x2lnx在区间[,2]上取得最大值,则实数a的取值X围可求.【解答】解:(1)h(x)==+lnx,h′(x)=,①a≤0,h′(x)≥0,函数h(x)在(0,+∞)上单调递增②a>0时,h'(x)>0,则x∈(,+∞),函数h(x)的单调递增区间为(,+∞),h'(x)<0,则x∈(0,),函数h(x)的单调递减区间为(0,),.(2)g(x)=x3﹣x2﹣3,g′(x)=3x(x﹣),x 2g′(x)0 ﹣0 +g(x)﹣递减极小值递增 13由上表可知,g(x)在x=2处取得最大值,即g(x)max=g(2)=1所以当x∈[,2]时,f(x)=+xlnx≥1恒成立,等价于a≥x﹣x 2lnx恒成立,记u(x)=x﹣x2lnx,所以a≥u(x)max,u′(x)=1﹣x﹣2xlnx,可知u′(1)=0,当x∈(,1)时,1﹣x>0,2xlnx<0,则u′(x)>0,∴u(x)在x∈(,2)上单调递增;当x∈(1,2)时,1﹣x<0,2xlnx>0,则u′(x)<0,∴u(x)在(1,2)上单调递减;故当x=1时,函数u(x)在区间[,2],上取得最大值u(1)=1,所以a≥1,故实数a的取值X围是[1,+∞).【点评】本题考查了利用导数研究函数的单调性,考查了导数在最大值、最小值问题中的应用,考查了数学转化思想方法和函数构造法,训练了利用分离变量法求参数的取值X围,属于中档题.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).【考点】参数的意义;简单曲线的极坐标方程.【专题】选作题;转化思想;综合法;坐标系和参数方程.【分析】(1)把参数方程和极坐标方程化为直角坐标方程,联立方程组求出交点的坐标,再把交点的直角坐标化为极坐标;(2)画出图象,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.【解答】解:(1)由(θ为参数),消去参数得:x2+(y﹣2)2=4,即x2+y2﹣4y=0;由ρ=﹣4cosθ,得ρ2=﹣4ρcosθ,即x2+y2=﹣4x.两式作差得:x+y=0,代入C1得交点为(0,0),(﹣2,2).其极坐标为(0,0),(2,);(2)如图,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.此时|AB|=2+4,O到AB的距离为.∴△OAB的面积为S=×(2+4)×=2+2.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程,考查了推理能力与计算能力,属于基础题.23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.【考点】绝对值不等式的解法.【专题】不等式的解法及应用.【分析】(1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)求得f(x)=|2x+2|﹣|x﹣1|=在区间[﹣4,2]内的值域,结合|2x+2|﹣|x﹣1|>a无解,求得a的X围.【解答】解:(1)当a=0时,不等式即|2x+2|﹣|x﹣1|>0,可得①,或②,或③.解①求得 x<﹣3,解②求得﹣<x<1,解③求得x≥1.综上可得,原不等式的解集为{x|x<﹣3,或x>﹣}.(2)当x∈[﹣4,2],f(x)=|2x+2|﹣|x﹣1|=的值域为[﹣2,3],而不等式|2x+2|﹣|x﹣1|>a无解,故有a≤3.【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想;还考查了分段函数的应用,求函数的值域,属于中档题.。
吉林省重点高中2020届高三数学上学期月考试题二理【含答案】
吉林省重点高中2020届高三数学上学期月考试题(二)理考生注意:1.本试卷分选择题和非选择题两部分。
满分100分,考试时间90分钟。
2.答题前,考生务必用直径0.5毫米黑色,墨水签字笔将密封线内项目填写清楚。
3.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色,墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
4.本卷命题范围:集合、常用逻辑用语、函数、导数及其应用(约30%);三角函数、三角恒等变换、解三角形、平面向量(约70%)。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={x∈N|一2<x<6},若A ={2,4},B ={l ,3,4},则()∩B=U A ðA.{1,3} B.{l ,5} C{3,5} D.{1,3,5}2.“”的否定是2(2,),20x x x ∀∈+∞->A. B. 200(,2),20x x x ∃∈-∞-≤2(2,),20x x x ∀∈+∞-≤C. D.200(2,),20x x x ∃∈+∞-≤2(,2),20x x x ∀∈-∞->3.若角α的终边过点P(,cos0),则tan α的值是B. D.4.已知某扇形的面积为2.5cm 2,若该扇形的半径r 、弧长l 满足2r +l =7cm ,则该扇形圆心角大小的弧度数是A. B.5 C. D.或54512455.函数f(x)=x 3-x 2-4x 的一个零点所在区间为A.(-2,0)B.(-l ,0)C.(0,l)D.(1,2)6.如图,若,B 是线段AC 靠近点C 的一个四等分点,则下列等式成,,OA a OB b OC c === 立的是A. B. 2136c b a =-4133c b a =+C. D. 4133c b a =-2136c b a =+7.若cosθ=,且θ为第三象限角,则的值等于45-an 4(t )πθ+A. B. C.-7 D.71717-8.若函数y =sinx 的图象与直线y =-x 一个交点的坐标为(x 0,y 0),则2200(31cos 2x x π-+=+A -1 B.1 C. 1 D.无法确定±9.已知在矩形ABCD 中,AB =4,AD =2,若E ,F 分别为AB ,BC 的中点,则DE DF ⋅ =A.8B.10C.12D.1410.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,,△ABC 的面积等于,23A b π==外接圆的面积为A.16πB.8πC.6πD.4π11.为捍卫国家南海主权,我海军在南海海域进行例行巡逻。
湖南省湘阴县知源高级中学2022-2023学年高三上学期第二次月考数学试题含答案
湘阴县知源高级中学2023届高三第二次月考数学科试卷满分:150分 考试时量:120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x|x >−1},B ={x|x <2},则A ∪(∁R B)= ( )A. {x|x >−1}B. {x|x ≥−1}C. {x|x <−1}D. {x|−1<x ⩽2} 2.对于实数a ,b ,c ,“a >b ”是“ac 2>bc 2”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 3.三个数50.6,0.65,log 0.65的大小顺序是( )A. 0.65<log 0.65<50.6B. 0.65<50.6<log 0.65C. log 0.65<0.65<50.6D. log 0.65<50.6<0.654.若实数x,y 满足:x,y >0,3xy −x −y −1=0,则xy 的最小值为( )A .1B .2C .3D .45.函数f (x )=2xx 2−1的图象大致为( )A. B.C. D.6.设函数f(x)={−x 2+4x −3,x ≤2log 2x,x >2,则满足不等式f (2x −1)<2的解集是( )A .(−∞,32)B .[2,52)C .(32,2]D .(−∞,52)7.当x =1时,函数f(x)=alnx +bx 2+3取得最大值2,则f(3)=( ) A .2ln3+2B .−163C .2ln3−6D .−48.已知函数f (x )={|log 3x |,x >03x,x ≤0,若函数g (x )=[f (x )]2−(m +2)f (x )+2m 恰好有5个不同的零点,则实数m 的取值范围是( ) A .(0,1]B .(0,1)C .[1,+∞)D .(1,+∞)二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列求导错误的是( )A. (e 3x)′=3ex B.(x 22x+1)′=xC. (2sinx −3)′=2cosxD. (xcosx)′=cosx −xsinx10.已知关于x 的不等式ax 2+bx +c >0的解集为(−∞,−2)∪(3,+∞),则( )A. a >0B. 不等式bx +c >0的解集是{x|x <−6}C. a +b +c >0D. 不等式cx 2−bx +a <0的解集为(−∞,−13)∪(12,+∞)11.牛顿曾提出了物体在常温环境下温度变化的冷却模型:若物体初始温度是θ0(单位:oC ),环境温度是θ1(单位:o C ),其中θ0>θ1则经过t 分钟后物体的温度θ将满足θ=f (t )=θ1+(θ0−θ1)⋅e −kt (k ∈R 且k >0).现有一杯80∘C 的热红茶置于20∘C 的房间里,根据这一模型研究红茶冷却情况,下列结论正确的是( )(参考数值ln 2≈0.7) A .若f (3)=50∘C ,则f (6)=35∘C B .若k =110,则红茶下降到50∘C 所需时间大约为7分钟C .若f ′(3)=−5,则其实际意义是在第3分钟附近,红茶温度大约以每分钟5∘C 的速率下降D .红茶温度从80∘C 下降到60∘C 所需的时间比从60∘C 下降到40∘C 所需的时间多12.函数f(x)及其导函数f ′(x)的定义域均为R ,且f(x)是奇函数,设g(x)=f ′(x),ℎ(x)=f(x −4)+x ,则以下结论正确的有( ) A .函数g(x −2)的图象关于直线x =−2对称B .若g(x)的导函数为g ′(x),定义域为R ,则g ′(0)=0C .ℎ(x)的图象关于点(4,4)中心对称D .设{a n }为等差数列,若a 1+a 2+⋯+a 11=44,则ℎ(a 1)+ℎ(a 2)+⋯+ℎ(a 11)=44三、填空题:本题共4小题,每小题5分,共20分.13.若函数f (x )=(2m −1)x m 是幂函数,则实数m =______.14.求值:2log 214−(827)−23+lg 1100+(√2−1)lg 1= .15.已知点P 为曲线y =lnx 上的动点,则P 到直线y =x +4的最小距离为______.16.设定义域为(0,+∞)的单调函数f(x),对任意的x ∈(0,+∞),都有f [f(x)−log 3x ]=4,若x 0是方程f(x)−2f ′(x)=3的一个解,且x 0∈(a,a +1),a ∈N ∗,则实数a =_____.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f(x)=sin (π4+x)sin (π4−x)+√3sin xcos x .(1)求f(π6)的值;(2)在△ABC中,若f(A2)=1,求sin B+sin C的最大值.18.(本小题满分12分)已知在数列{a n}中,a1=3,且a n+a n+1=3n+1.(1)证明:数列{a n3n −34}是等比数列.(2)求{a n}的前n项和S n.19.(本小题满分12分)如图,已知长方形ABCD中,AB=2√2,AD=√2,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM(1)求证:AD⊥BM(2)若点E是线段DB上的一动点,问点E在何位置时,二面角E−AM−D的余弦值为√55.20.(本小题满分12分)某学习小组在暑期社会实践活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以30天计)的日销售价格P(x)(元)与时间x(天)的函数关系近似满足P(x)=1+kx(k为正常数).该商品的日销售量Q(x)(个)与时间x(天)的部分数据如下表所示:x/天10202530Q(x)/个110120125120已知第10天该商品的日销售收入为121元.(1)求k的值;(2)给出以下四种函数模型:①Q(x)=ax+b,①Q(x)=a|x−25|+b,①Q(x)=a⋅b x,①Q(x)=a⋅log b x.请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量Q(x)与时间x的关系,并求出该函数的解析式;(3)求该商品的日销售收入f(x)(1≤x≤30,x∈N+)(元)的最小值.21.(本小题满分12分)已知函数f(x)=log141−axx−1的图象关于原点对称,其中a为常数.(1)求a的值;(2)当x∈(1,+∞)时,f(x)+log14(x−1)<m恒成立,求实数m的取值范围;(3)若关于x的方程f(x)=log14(x+k)在[2,3]上有解,求实数k的取值范围.22.(本小题满分12分)已知函数f(x)=e x−m+ln3x.(1)设x=1是函数f(x)的极值点,求m的值并讨论f(x)的单调性;(2)当m⩽2时,证明:f(x)>ln3.湘阴县知源高级中学2023届高三第二次月考数学科试卷(答案)一、单选题1.【答案】A【详解】已知集合A={x|x>−1},B={x|x<2},则∁R B={x|x≥2},因此A∪(∁R B)= {x|x>−1}.故选A.2.【答案】B【详解】当a>b时,不能推出ac2>bc2,当ac2>bc2,可推出a>b.故“a>b”是“ac2>bc2”的必要不充分条件.故选:B.3.【答案】C【详解】∵50.6>1,1>0.65>0,log0.65<0∴50.6>0.65>log0.65,故选C.4.【答案】A【详解】因为3xy−x−y−1=0,所以3xy−1=x+y,由基本不等式可得3xy−1=x+y≥2√xy,(舍),即xy≥1故3xy−2√xy−1≥0,解得√xy≥1或√xy≤−13当且仅当x=y=1时等号成立,故xy的最小值为1,故选:A.5.【答案】A,定义域为{x|x≠±1},【详解】函数f(x)=2xx2−1由f(−x)=−f(x),故f(x)为奇函数,图象关于原点对称,故排除B,D;当0<x<1时,f(x)<0,排除C.故本题选A.6.【答案】D【详解】函数f(x)的图象如下图所示:由图可知:函数f(x)在R上单调递增,因为f(4)=2,所以f(2x−1)<2等价于f(2x−1)<f(4),故2x−1<4,即x<5,故选:D27.【答案】C【详解】因为f (x )=alnx +bx 2+3,所以f ′(x )=ax +2bx , 又当x =1时,函数f (x )=alnx +bx 2+3取得最大值2,所以f (1)=2,f ′(1)=0,即{b +3=2a +2b =0,解得b =−1,a =2,所以f (x )=2lnx −x 2+3,f ′(x )=2x−2x =2(1−x )(1+x )x ,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,符合题意, 所以f (3)=2ln3−6故选:C . 8.【答案】A【详解】画出函数的大致图象,如下图所示: ∵函数g (x )=[f (x )]2−(m +2)f (x )+2m 恰好有5个不同的零点,∴方程[f (x )]2−(m +2)f (x )+2m =0有5个根,设t =f(x),则方程化为t 2−(m +2)t +2m =0,易知此方程有两个不等的实根t 1,t 2,结合f(x)的图象可知,t 1∈(0,1],t 2∈(1,+∞),令ℎ(t)=t 2−(m +2)t +2m ,则由二次函数的根的分布情况得:{Δ=(m +2)2−8m >0ℎ(0)>0ℎ(1)≤0 ,解得:0<m ≤1.故选:A 二、多选题 9.【答案】AB【详解】(e 3x )′=3e 3x ,故A 错误;(x 22x+1)′=2x (2x+1)−2x 2(2x+1)2≠x ,故B 错误;(2sin x −3)′=2cos x ,故C 正确;(xcos x)′=x′cosx +x (cosx )′=cos x −xsin x ,故D 正确.故答案选:AB .10.【答案】ABD【详解】由题意可知,−2和3是方程ax 2+bx +c =0的两根,且a >0, ∴−2+3=−ba ,(−2)×3=ca ,∴b =−a ,c =−6a ,a >0,即选项A 正确; 不等式bx +c >0等价于a(x +6)<0,∴x <−6,即选项B 正确; ∵不等式ax 2+bx +c >0的解集为(−∞,−2)∪(3,+∞), ∴当x =1时,有a +b +c <0,即选项C 错误;不等式cx 2−bx +a <0等价于a(6x 2−x −1)>0,即a(3x +1)(2x −1)>0, ∴x <−13或x >12,即选项D 正确.故选:ABD . 11.【答案】ABC【详解】由题知θ=f (t )=20+60e −kt ,A :若f (3)=50∘C ,即50=20+60e −3k ,所以e −3k =12,则f (6)=20+60e −6k =20+60(e −3k )2=20+60×(12)2=35∘C ,A 正确;B :若k =110,则20+60⋅e −110t =50,则e −110t =12,两边同时取对数得−110t =ln 12=−ln 2,所以t =10ln 2≈7, 所以红茶下降到50∘C 所需时间大约为7分钟,B 正确;C :f ′(3)表示t =3处的函数值的变化情况,若f ′(3)=−5<0,所以实际意义是在第3分钟附近,红茶温度大约以每分钟5∘C 的速率下降,故C 正确;D :f (t )为指数型函数,如图,可得红茶温度从80∘C 下降到60∘C 所需的时间(t 2−t 1)比从60∘C 下降到40∘C 所需的时间(t 3−t 2)少,故D 错误. 故选:ABC .12.【答案】BCD【详解】由导数的几何意义及f (x )的对称性,f (x )在x 和−x 处的切线也关于原点对称,其斜率总相等,故g (x )=g (−x ),g (x )是偶函数,g (x −2)对称轴为x =2,A 错;由g (x )的对称性,g (x )在x 和−x 处的切线关于纵轴对称,其斜率互为相反数,故g ′(−x )=−g ′(x ),g ′(x )为奇函数,又定义域为R,g ′(0)=0,B 对;ℎ(x )=f (x −4)+(x −4)+4,由f (x )为奇函数知u (x )=f (x )+x 为奇函数,图像关于(0,0)对称,ℎ(x )可以看作由u (x )按向量(4,4)平移而得,故C 对; 由C 选项知,当x 1+x 2=8时,ℎ(x 1)+ℎ(x 2)=8,由等差数列性质a 1+a 11=8,∴ℎ(a 1)+ℎ(a 11)=8,以此类推倒序相加,D 正确. 故选:BCD 三、填空题 13.【答案】1【详解】因为f (x )=(2m −1)x m 是幂函数,所以2m −1=1,解得m =1. 故答案为:1 14.【答案】−3【详解】2log 214−(827)−23+lg 1100+(√2−1)lg1=14−[(23)3]−23−lg100+(√2−1)0=14−94−2+1=−3.故答案为−3.15.【答案】5√22【详解】解:设y =x +m (m ≠4)与y =lnx 相切与点Q (x 0,lnx 0),则 y ′=1x 0,令y ′=1x 0=1,得x 0=1,则切点Q (1,0),代入y =x +m (m ≠4),得m =−1,即直线方程为y =x −1, 所以与直线y =x +4间的距离为d =|4+1|√2=5√22, 即为P 到直线y =x +4的最小距离, 故答案为:5√2216.【答案】2【详解】对任意的x ∈(0,+∞),都有f [f(x)−log 3x ]=4,且f(x)是(0,+∞)上的单调函数,因此f (x )−log 3x 为定值,设t =f (x )−log 3x ,则f (x )=t +log 3x ,显然f (t )=4, 即t +log 3t =4,而函数ℎ(t)=t +log 3t 在(0,+∞)上单调递增,且ℎ(3)=4,于是得t =3, 从而f (x )=log 3x +3,求导得f ′(x )=1xln3,方程f(x)−2f ′(x)=3⇔log 3x −2xln3=0, 依题意,x 0是函数g(x)=log 3x −2xln3的零点,而函数g(x)在(0,+∞)上单调递增, 且g(2)=log 32−1ln3=ln2−1ln3<0,g(3)=1−23ln3>0,即函数g(x)的零点x 0∈(2,3),又x 0∈(a,a +1),a ∈N ∗,所以a =2. 故答案为:2 四、解答题17.【答案】(1)∵f(x)=sin (π 4+x)sin (π 4−x)+√3sin x cos x=sin (π4+x)sin [π2−(π4+x)]+√3sinxcosx =sin (π4+x)cos (π4+x)+√3sinxcosx =12cos2x +√32sin2x =sin (2x +π6),∴f (π6)=sin (2×π6+π6)=1. (2)由f (A2)=sin (A +π6)=1,而0<A <π,可得A +π6=π2,即A =π3, ∴sinB +sinC =sinB +sin (2π3−B)=32sinB +√32cosB =√3sin (B +π6),∵0<B <2π3,∴π6<B +π6<5π6,12<sin (B +π6)≤1,则√32<√3sin (B +π6)≤√3,故当B =π3时,sinB +sinC 取最大值,最大值为√3. 18.【答案】(1)因为a n +a n+1=3n+1,所以a n+13n+1−34a n 3n −34=3n+1−a n 3n+1−34a n 3n −34=14−a n 3n+1a n 3n −34=−13.又a13−34=14,所以{an3n−34}是以a13−34=14为首项,−13为公比的等比数列. (2)由(1)可知a n3n −34=14×(−13)n−1,则a n =3n+14+34×(−1)n−1.S n =14×(32+33+⋯+3n+1)+34×[(−1)0+(−1)1+⋯+(−1)n−1] =14×32−3n+21−3+34×1−(−1)n 1−(−1)=3n+2−6+3×(−1)n+18.19.【答案】(Ⅰ)证明:∵长方形ABCD 中,AB =2√2,AD =√2,M 为DC 的中点,∴AM =BM =2,可得AM 2+BM 2=AB 2, ∴BM ⊥AM .∵平面ADM ⊥平面ABCM ,平面ADM ∩平面ABCM =AM ,BM ⊂平面ABCM , ∴BM ⊥平面ADM ,∵AD ⊂平面ADM ,∴AD ⊥BM.(Ⅱ)建立如图所示的直角坐标系,则A(1,0,0),B(−1,2,0),D(0,0,1),M(−1,0,0) 设DE⃗⃗⃗⃗⃗ =λDB ⃗⃗⃗⃗⃗⃗ ,则平面AMD 的一个法向量n ⃗ =(0,1,0), ME ⃗⃗⃗⃗⃗⃗ =MD ⃗⃗⃗⃗⃗⃗ +λDB ⃗⃗⃗⃗⃗⃗ =(1−λ,2λ,1−λ),AM ⃗⃗⃗⃗⃗⃗ =(−2,0,0), 设平面AME 的一个法向量为m⃗⃗ =(x,y,z),则{m ⃗⃗ ·AM ⃗⃗⃗⃗⃗⃗ =−2x =0m ⃗⃗ ·ME⃗⃗⃗⃗⃗⃗ =(1−λ)x +2λy +(1−λ)z =0, 取y =1,得x =0,z =2λλ−1,则m ⃗⃗ =(0,1,2λλ−1),∵|cos <m →,n →>|=|m⃗⃗⃗ ·n ⃗ ||m⃗⃗⃗ ||n ⃗ |=√55, 解得λ=12,故E 为BD 的中点.20.【答案】(1)由题意得P (10)⋅Q (10)=(1+k10)×110=121,解得k =1.(2)由题表中的数据知,当时间变化时,该商品的日销售量有增有减,并不单调,而①,①,①中的函数为单调函数,故只能选①,即Q (x )=a |x −25|+b . 由题表可得Q (10)=110,Q (20)=120,即{15a +b =110,5a +b =120,解得{a =−1,b =125, 故Q (x )=125−|x −25|(1≤x ≤30,x ∈N +).(3)由(2)知Q (x )=125−|x −25|={100+x,1≤x <25,x ∈N +,150−x,25≤x ≤30,x ∈N +,①f (x )=P (x )⋅Q (x )={x +100x+101,1≤x <25,x ∈N +,150x−x +149,25≤x ≤30,x ∈N +.当1≤x <25时,y =x +100x在区间[1,10)上单调递减,在区间[10,25)上单调递增,①当x =10时,f (x )取得最小值,且f (x )min =121; 当25≤x ≤30时,y =150x−x 是单调递减的,①当x =30时,f (x )取得最小值,且f (x )min =124.综上所述,当x =10时,f (x )取得最小值,且f (x )min =121. 故该商品的日销售收入f (x )的最小值为121元. 21.【答案】(1)解:因为函数f (x )=log 141−ax x−1的图象关于原点对称,所以f (x )+f (−x )=0,即log 141−ax x−1+log 141+ax−x−1=0,所以log 14(1−ax x−1×1+ax −x−1)=0恒成立,所以1−ax x−1×1+ax−x−1=1恒成立,即1−a 2x 2=1−x 2恒成立,即(a 2−1)x 2=0恒成立,所以a 2−1=0,解得a =±1又a =1时,f (x )=log 141−ax x−1无意义,故a =−1.(2)因为x ∈(1,+∞)时,f (x )+log 14(x −1)<m 恒成立, 所以log 141+xx−1+log 14(x −1)<m 恒成立,所以log 14(x +1)<m 在x ∈(1,+∞)上恒成立,因为y =log 14(x +1)是减函数, 所以当x ∈(1,+∞)时,log 14(x +1)∈(−∞,−1),所以m ≥−1, 所以实数m 的取值范围是[−1,+∞).(3)因为f (x )=log 141+x x−1=log 14(1+2x−1)在[2,3]上单调递增,g (x )=log 14(x +k )在[2,3]上单调递减,因为关于x 的方程f (x )=log 14(x +k )在[2,3]上有解, 所以{f (2)≤g (2),f (3)≥g (3), 即{log 143≤log 14(2+k ),log 142≥log 14(3+k ),解得−1≤k ≤1,所以实数k 的取值范围是[−1,1]. 22.【答案】(1)∵f(x)=e x−m +ln 3x ,∴x >0,f ′(x)=e x−m −1x ,∵x =1是函数f(x)的极值点, ∴f ′(1)=e 1−m −1=0,解得m =1,∴f ′(x)=e x−1−1x ,设g (x )=e x−1−1x ,则g ′(x )=e x−1+1x 2>0, ∴x =1是f ′(x)=0的唯一零点,∴当x ∈(0,1)时,f ′(x)<0,函数f(x)单调递减;当x ∈(1,+∞)时,f ′(x)>0,函数f(x)单调递增.(2)当m ⩽2,x ∈(0,+∞)时,e x−m ⩾e x−2, 设φ(x )=e x −x −1,则φ′(x )=e x −1, 所以当x ∈(0,+∞)时φ′(x )>0,φ(x )单调递增, 所以φ(x )=e x −x −1>φ(0)=0,即e x >x +1, ∴e x−m ⩾e x−2>x −1,取函数ℎ(x)=x −1+ln 3x (x >0),则ℎ′(x)=1−1x ,当0<x <1时,ℎ′(x)<0,ℎ(x)单调递减,当x >1时,ℎ′(x)>0,ℎ(x)单调递增, 所以函数ℎ(x)在x =1处取得唯一的极小值,即最小值为ℎ(1)=ln3, ∴f(x)=e x−m +ln 3x ⩾e x−2+ln 3x >x −1+ln 3x ⩾ln3,故f(x)>ln3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉萨中学高三年级(2017届)第二次月考理科数学试卷(满分150分,考试时间120分钟,请将答案填写在答题卡上)一、 选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
1.设全集为R ,函数)(x f的定义域为M ,则RM 为( ).A .(-∞,1)B .(1,+∞)C .(-∞,1]D .[1,+∞) 2.已知半径为2,弧长为83π的扇形的圆心角为α,则sin α等于( ) A..12- D .123.已知函数()log x a f x a x =+(0a >且1a ≠)在[1,2]上的最大值与最小值之和为log 26a +,则a 的值为( ) A .12 B .14C .2D .4 4.下列函数中,既是偶函数,又在(0,∞+)上是单调减函数的是( ) AC.cos y x =5.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 6.设0x 是方程4ln =+x x 的解,则0x 属于区间( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 7.函数)32sin()(π+=x x f 图象的对称轴方程可以为( )A .x =12π B .x =512πC .x =3πD .x =6π8.函数y =x xx xe e e e --+-的图象大致为( )9.若31)θπtan(=-,则cos 2θ=( ) A .45-B .15-C .15D .4510.下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( ) A .y=x B .y=lg x C .y=2xD.y =11.函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的部分图象如图所示,为了得到sin 2y x =的图象,只需将()f x 的图象( )A .向右平移3π个单位 B .向右平移6π个单位 C .向左平移3π个单位 D .向左平移6π个单位12.已知()f x 是定义在R 上的奇函数,(1)f x +是偶函数,当x ∈(2,4)时,()|3|f x x =-,则(1)(2)(3)(4)f f f f +++=( )A .1B .0C .2D .-2 二、填空题:共4小题,每小题5分.13.已知tan tan αβ、是方程2670x x ++=的两根,则tan()αβ+=_______. 14.⎰⎰=--xdx dx x sin 1215.如图所示是()y f x =的导函数的图象,有下列四个命题: ①()f x 在(-3,1)上是增函数;1π②x =-1是()f x 的极小值点;③()f x 在(2,4)上是减函数,在(-1,2)上是增函数; ④x =2是()f x 的极小值点.其中真命题为________(填写所有真命题的序号).16.函数)2cos(62cos )(x x x f -+=π的最大值为___________三、解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分) (Ⅰ)已知54sin =α,),2(ππα∈,135cos -=β,β是第三象限角,求)cos(βα-的值。
(Ⅱ)已知53)30sin(=+︒α,︒<<︒15060α,求αsin 的值。
(提示:︒-+︒=30)30(αα)18.(本小题满分12分)二次函数()f x 满足(1)()2f x f x x +-=,且(0)1f =. (Ⅰ)求()f x 的解析式;(Ⅱ)在区间[1,1]-上,()y f x =图像恒在2y x m =+的图像上方,试确定实数m 的范围.19.(本小题满分12分)在锐角△ABC 中,内角A ,B ,C 的对边分别为c b a ,,,且2sin a B =. (Ⅰ)求角A 的大小;(Ⅱ)若8,4=+=c b a ,求△ABC 的面积.20.(本小题满分12分)已知函数)0(2cos cos sin 2)(>+=ωωωωx x x x f 的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求)(x f 的单调递增区间. (Ⅲ)求函数()f x 在区间[0,]2π上的最大值及最小值.21.(本小题满分12分)设函数()2ln 2x f x k x =-,0k >. (Ⅰ)求()f x 的单调区间和极值;(Ⅱ)证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.22.(本小题满分10分)选修4-1:几何证明选讲如图,AB 切○·O 于点B ,直线AO 交○·O 于,D E 两点,,BC DE ⊥垂足为C .(I )证明:CBD DBA ∠=∠(II )若3,AD DC BC ==·O 的直径.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数).(I )写出曲线C 的参数方程,直线l 的普通方程;(II )过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值24.(本小题满分10分)设函数m x x x f --++=|1||1|)(.(I )当4=m 时,求函数)(x f 的定义域M ; (II )当M C b a R ∈,时,证明:|4|||2ab b a +<+.拉萨中学高三年级(2017届)第二次月考理科数学答案一、选择题 BACAC CADDD BB 二、填空题13、___1_____ 14、__2-4π___ 15、___②③_____ 16、____5____ 三、解答题 17、解:6533-)1312-(54)135-()53-(βsin αsin βcos αcos )β-αcos(∴1312-βos c -1-βs 53-αsin -1-cos α∴β135βcos ],2[∈α ,54αsin 122=×+×=+=======in ,是第三象限角,﹣,ππ)( I ()[]104332154--2353 30α)sin 30cos(-30α)cos 30sin(30-α30sin sin 54-)α30(sin -1-)α30cos(,53)α30sin(1803090,1506022+=××=++=+=∴=+=+∴=+<+<∴<<)()(ααα18.解:(1)设2()f x ax bx c =++,由(0)1f =得1c =,故2()1f x ax bx =++.(1)()2f x f x x +-=,22(1)(1)1(1)2a x b x ax bx x ∴++++-++=.即22ax a b x ++=,所以220a a b =⎧⎨+=⎩,11a b =⎧∴⎨=-⎩,2()1f x x x ∴=-+.(2)由题意得212x x x m -+>+在[1,1]-上恒成立, 即2310x x m -+->在[1,1]-上恒成立.设2()31g x x x m =-+-,其图像的对称轴为直线32x =, 所以()g x 在[1,1]-上递减.故只需(1)0g >,即213110m -⨯+->, 解得1m <-.19、解:(Ⅰ)∵ABC ∆中,b B a 3sin 2=,∴根据正弦定理,得B B A sin 3sin sin 2=∵锐角ABC ∆中,0sin >B , ∴等式两边约去B sin ,得23sin =A∵A 是锐角ABC ∆的内角,∴3π=A(Ⅱ)∵4=a ,3π=A ,∴由余弦定理A bc c b a cos 2222-+=,得3cos21622πbc c b -+=,化简得1622=-+bc c b ,∵8=+c b ,平方得64222=++bc c b ,∴两式相减,得483=bc ,可得16=bc .因此, ABC ∆的面积343sin 1621sin 21=⨯⨯==πA bc S .1∴22)(∴)42sin(22cos 2sin 2cos cos sin 2)()I (.20====+=+=+=w ww T x f wx wx wx wx wx wx x f πππ的最小正周期π解:(II )由(I )知错误!未找到引用源。
.函数错误!未找到引用源。
的单调递增区间为错误!未找到引用源。
(错误!未找到引用源。
).由错误!未找到引用源。
,得错误!未找到引用源。
. 所以错误!未找到引用源。
的单调递增区间为错误!未找到引用源。
(错误!未找到引用源。
).(III )由(I )知错误!未找到引用源。
.1-)(2)(∴]2,1-[∈∴]1,22-[∈)42sin(∴],454[∈42∴],2,0[∈in max ==++m x f x f y x x x ,ππ,πππ 21、解:(Ⅰ)由错误!未找到引用源。
,(错误!未找到引用源。
)得 错误!未找到引用源。
.由错误!未找到引用源。
解得错误!未找到引用源。
.错误!未找到引用源。
与错误!未找到引用源。
在区间错误!未找到引用源。
上的情况如下:所以,错误!未找到引用源。
的单调递减区间是错误!未找到引用源。
,单调递增区间是错误!未找到引用源。
;错误!未找到引用源。
在错误!未找到引用源。
处取得极小值错误!未找到引用源。
.(Ⅱ)由(Ⅰ)知,错误!未找到引用源。
在区间错误!未找到引用源。
上的最小值为错误!未找到引用源。
.因为错误!未找到引用源。
存在零点,所以错误!未找到引用源。
,从而错误!未找到引用源。
. 当错误!未找到引用源。
时,错误!未找到引用源。
在区间错误!未找到引用源。
上单调递减,且错误!未找到引用源。
,所以错误!未找到引用源。
是错误!未找到引用源。
在区间错误!未找到引用源。
上的唯一零点. 当错误!未找到引用源。
时,错误!未找到引用源。
在区间错误!未找到引用源。
上单调递减,且错误!未找到引用源。
,错误!未找到引用源。
,所以错误!未找到引用源。
在区间错误!未找到引用源。
上仅有一个零点.综上可知,若错误!未找到引用源。
存在零点,则错误!未找到引用源。
在区间错误!未找到引用源。
上仅有一个零点..33-6,.34-,233BA ∠CBA,BD 1(2)∠DBA∠CBD ∠CBD,∠,90∠∠,⊥90∠∠∠;∠∠122222,即圆的直径为故,解得,由切割线定理得,,所以所以,所以平分)可知,由(所以得所以又因为是直径,所以因为是切线,则弦切角)因为、(===•==========+=+==AD AE DE AE AE AD AB AD BC AB AC AB CDAD BC CEB CBE CEB DE BC CBE CBD DBE DE DEB DBA AB 2324.。