基础物理学下册 答案

合集下载

大学基础物理学课后习题答案_含思考题(1)

大学基础物理学课后习题答案_含思考题(1)

大学基础物理课后答案主编:习岗高等教育出版社第一章 思考题:<1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。

对上液面应用拉普拉斯公式,得 A A R p p γ20=- 对下液面使用拉普拉斯公式,得 BB 02R p p γ=- 又因为 gh p p ρ+=A B 将三式联立求解可得 ⎪⎪⎭⎫ ⎝⎛-=B A 112R R g h ργ<1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。

在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。

相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。

<1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。

伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。

如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。

<1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。

斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。

练习题:<1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。

在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。

练习题1-6用图d h d F由图可知 osin60d sin d d hh m ==θ 水坝侧面的面积元d S 为 d d d sin 60hS l m l °== 该面积元上所受的水压力为 0d d d [(5)]sin 60hF p S p ρg h l°==+-水坝所受的总压力为 ()[]N)(103.760sin d 5d 855o0⨯=-+==⎰⎰h l h g p F F ρ(注:若以水坝的上顶点作为高度起点亦可,则新定义的高度5h h ¢=-,高度微元取法不变,即d d h h ¢=,将h ¢与d h ¢带入水坝压力积分公式,同样可解出水坝所受压力大小。

新编物理基础学(上下册)课后习题详细答案 王少杰 顾社主编

新编物理基础学(上下册)课后习题详细答案 王少杰 顾社主编
质量重的人与滑轮的距离:
。此题得证。
2-10.分析:受力分析,由牛顿定律列方程。
解:物体的运动如图2—10(a),
以m1为研究对象,如图(b),有:
以m2为研究对象,如图(c),有:
又有:
则:
2—11.分析:(1)小物体此时受到两个力作用:重力、垂直漏斗壁的支承力,合力为向心力;(2)小物体此时受到三个力的作用:重力、垂直漏斗壁的支承力和壁所施的摩擦力。当支承力在竖直方向分量大于重力,小球有沿壁向上的运动趋势,则摩擦力沿壁向下;当重力大于支承力的竖直方向分量,小球有沿壁向下的运动趋势,则摩擦力沿壁向上。这三个力相互平衡时,小物体与漏斗相对静止。
解:设底板、人的质量分别为M,m,
以向上为正方向,如图2-4(a)、(b),
分别以底板、人为研究对象,
则有:
F为人对底板的压力, 为底板对人的弹力。
F=
又:

由牛顿第三定律,人对绳的拉力与 是一对
作用力与反作用力,即大小相等,均为245(N)。
2-5.分析:加斜向下方向的力,受力分析,合力为零。
解:如图2—5,建坐标系,以沿斜面向上为正方向。在 与 所在的平面上做力 ,且
分析:要求 可通过积分变量替换 ,积分即可求得。
证:
,
1-3.一质点在xOy平面内运动,运动函数为 。(1)求质点的轨道方程并画出轨道曲线;(2)求 时质点的位置、速度和加速度。
分析:将运动方程x和y的两个分量式消去参数t,便可得到质点的轨道方程。写出质点的运动学方程 表达式。对运动学方程求一阶导、二阶导得 和 ,把时间代入可得某时刻质点的位置、速度、加速度。
解:取向上为正,如图2-2,分别以M1、M2和m为研究对象,
Байду номын сангаас有:

基础物理学答案

基础物理学答案

第三篇 波动和波动光学第九章 振动和波动基础 思考题9-1 符合什么规律的运动是简谐振动、简谐振动的特征量由什么决定?答:某一物理量在某一量值值附近随时间作周期性往复变化的运动是简谐运动, 或者是描述系统的物理量ψ遵从微分方程ψωψ222-=dtd , 则该系统的运动就是简谐运动. 其特征量为振幅(由初始状态决定),频率(由做简谐振动系统的物理性质决定),初相位(由振动的初始状态决定).9-2 说明下列运动是不是谐振动: (1)完全弹性球在硬地面上的跳动; (2)活塞的往复运动;(3)如本问题图所示,一小球沿半径很大的光滑凹球面滚动(设小球所经过的弧线很短);(4)竖直悬挂的弹簧上挂一重物,把重物从静止位置拉下一段距离(在弹性限度内),然后放手任其运动;(5)一质点做匀速圆周运动,它在直径上的投影点的运动。

(6)小磁针在地磁的南北方向附近摆动。

答:简谐振动的运动学特征是:振动物体的位移(角位移)随时间按余弦或正弦函数规律变化;动力学特征是:振动物体所受的合力(合力矩)与物体偏离平衡位置的位移(角位移)成正比而反向。

从能量角度看,物体在系统势能最小值附近小范围的运动是简谐振动。

所以: (1)不是简谐运动,小球始终受重力,不满足上述线性回复力特征。

(2)不是简谐振动。

活塞所受的力与位移成非线性关系,不满足上述动力学特征。

(3)是简谐振动。

小球只有在“小幅度”摆动时才满足上述特征。

(4)是简谐振动。

(5)是简谐振动。

因为投影点的方程符合物体的位移(角位移)随时间按余弦或正弦函数规律变化(6)是简谐振动。

小磁针只有在“小幅度”摆动时才满足上述特征。

9-3 一弹簧振子由最左位置开始摆向右方,在最左端相位是多少?过中点、达右端、再回中点、返回左端等各处的相位是多少?初相位呢?若过中点向左运动的时刻开始计时,再回答以上各问。

答:在最左端相位是π思考题 9-2 图9-4 同一弹簧振子,当它在光滑水平面上做一维谐振动和它在竖直悬挂情况下做谐振动,振动频率是否相同?如果它放在光滑斜面上,它是否还做谐振动,振动频率是否改变?如果把它拿到月球上,由频率有什么变化?9-5 做谐振动的弹簧振子,当其(1)通过平衡位置时;(2)达到最大位移时;速度、加速度、动能、弹性势能中,哪几个达到最大值,哪几个为零?答: (1)当弹簧振子通过平衡位置时, 速度和动能达到最大, 加速度和弹性势能为零. (2) 达到最大位移时, 加速度和弹性势能最大, 速度和动能达到最大.9-6 受迫振动的频率与强迫力的频率相同,相位是否相同?从相位看,共振应发生在何值?9-7 什么是波动?振动和波动有什么区别和联系?波动曲线与振动曲线有什么不同? 答:波动是振动状态的传播过程, 波动的产生要有激发波动的振动系统, 既波源, 振动是原因, 波动是结果. 波传播过程中各点的振动频率都应与波源频率相同. 振动具有一定的能量, 波动过程伴随能量的传播. 波动曲线是一个点自波源由近及远传播, 振动曲线是表示一个点在最大位移处与平衡位置处的振动. 波动曲线的横轴为波传播的位移, 振动曲线横轴为振动的时间.9-8 试判断下面几种说法,哪些是正确的,哪些是错误的? (1)机械振动一定能产生机械波;(2)质点振动的速度和波的传播速度是相等的; (3)质点振动的周期和波的周期数值是相等的; (4)波动方程式中的坐标原点是选取在波源位置上。

基础物理学课程试题及答案详解

基础物理学课程试题及答案详解

一 选择题(每题3分,共30分)1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值(A) m kT π8=x v . (B) mkT π831=x v . (C) mkT π38=x v . (D) =x v 0 . [ ] 2.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 /V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10. (B) 1 / 2.(C) 5 / 6. (D) 5 / 3.3.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7%. (B) 50%.(C) 25%. (D) 0. [ ]4.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ 不同.(B) n 不同,(E K /V )不同,ρ 相同.(C) n 相同,(E K /V )相同,ρ 不同.(D) n 相同,(E K /V )相同,ρ 相同. [ ]5.玻尔兹曼分布律表明:在某一温度的平衡态,(1) 分布在某一区间(坐标区间和速度区间)的分子数,与该区间粒子的能量成正比.(2) 在同样大小的各区间(坐标区间和速度区间)中,能量较大的分子数较少;能量较小的分子数较多.(3) 在大小相等的各区间(坐标区间和速度区间)中比较,分子总是处于低能态的概率大些.(4) 分布在某一坐标区间内、具有各种速度的分子总数只与坐标区间的间隔成正比,与粒子能量无关.以上四种说法中,(A) 只有(1)、(2)是正确的.(B) 只有(2)、(3)是正确的.(C) 只有(1)、(2)、(3)是正确的.(D) 全部是正确的. [ ]6.已知一定量的某种理想气体,在温度为T 1与T 2时的分子最概然速率分别为v p 1和v p 2,分子速率分布函数的最大值分别为f (v p 1)和f (v p 2).若T 1>T 2,则(A) v p 1 > v p 2, f (v p 1)> f (v p 2).(B) v p 1 > v p 2, f (v p 1)< f (v p 2).(C) v p 1 < v p 2, f (v p 1)> f (v p 2).(D) v p 1 < v p 2, f (v p 1)< f (v p 2). [ ]7.若f (v )为气体分子速率分布函数,N 为分子总数,m 为分子质量,则⎰21d )(212v v v v v Nf m 的物理意义是 (A) 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之差.(B) 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之和.(C) 速率处在速率间隔1v ~2v 之内的分子的平均平动动能.(D) 速率处在速率间隔1v ~2v 之内的分子平动动能之和. [ ]8.在一个体积不变的容器中,储有一定量的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为:(A) v =40v ,Z =40Z ,λ=40λ.(B) v =20v ,Z =20Z ,λ=0λ.(C) v =20v ,Z =20Z ,λ=40λ.(D) v =40v ,Z =20Z ,λ=0λ. [ ]9. 如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A→B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A) 是A →B.(B)是A →C.(C)是A →D.(D)既是A →B 也是A →C , 两过程吸热一样多。

基础物理学答案

基础物理学答案

基础物理学答案第六章稳恒磁场思考题6-1 为什么不能把磁场作用于运动电荷的力的方向定义为磁感强度的方向答对于给定的电流分布来说它所激发的磁场分布是一定的场中任一点的B有确定的方向和确定的大小与该点有无运动电荷通过无关。

而运动电荷在给定的磁场中某点P 所受的磁力F无论就大小或方向而言都与运动电荷有关。

当电荷以速度v沿不同方向通过P点时v的大小一般不等方向一般说也要改变。

可见如果用v的方向来定义B的方向则B的方向不确定所以我们不能把作用于运动电荷的磁力方向定义为磁感应强度B的方向。

6-2 从毕奥萨伐尔定律能导出无限长直电流的磁场公式aIB2。

当考察点无限接近导线0a时则B这是没有物理意义的如何解释答毕奥萨伐尔定律是关于部分电流电流元产生部分电场dB的公式在考察点无限接近导线0a时电流元的假设不再成立了所以也不能应用由毕奥萨伐尔定律推导得到的无限长直电流的磁场公式aIB2。

6-3 试比较点电荷的电场强度公式与毕奥萨伐尔定律的类似与差别。

根据这两个公式加上场叠加原理就能解决任意的静电场和磁场的空间分布。

从这里你能否体会到物理学中解决某些问题的基本思想与方法答库仑场强公式0204dqrdEr毕奥一萨伐定律0024IdlrdBr 类似之处1都是元场源产生场的公式。

一个是电荷元或点电荷的场强公式一个是电流元的磁感应强度的公式。

2dE和dB大小都是与场源到场点的距离平方成反比。

3都是计算E和B的基本公式与场强叠加原理联合使用原则上可以求解任意分布的电荷的静电场与任意形状的稳恒电流的磁场。

不同之处1库仑场强公式是直接从实验总结出来的。

毕奥一萨伐尔定律是从概括闭合电流磁场的实验数据间接得到的。

2电荷元的电场强度dE的方向与r方向一致或相反而电流元的磁感应强度dB的方向既不是Idl方向也不是r的方向而是垂直于dl与r组成的平面由右手螺旋法则确定。

3dE的大小与场源电荷的电量dq成正比而dB的大小不仅与Idl的大小成正比而且与Idl的方向以它和r的夹角表示有关。

物理基础训练(8年级下)答案

物理基础训练(8年级下)答案

物理(8年级下)答案第六章 电压 电阻一. 电压1.伏特;伏;V ;kV 、mV 、μV2.家庭用电,220V ;一节干电池,1.5V3.并;大于4.L 1;1.1V5.F ;E (或D );D (或E );C (或B )6.D7.B8.C9.测量L 1的电压,电路如图1 10.A 金属棒为负极,B 金属棒为正极 11.电路图和实物图如图2 ⑴量程选择偏大 ⑵正负接线柱接反 12.略二.探究串、并联电路电压的规律1.1.5;1500;220;0.22;1000000 2.相同点:电流都是“+”进“-”出,使用前都要调零,且被测值不能超出仪表的最大测量值。

不同点:电路符号不同,与被测电路连接方式不同,电流表不能直接接电源,电压表可以直接接电源。

3.C 4.D 5.甲图中测量L 1的电压,乙图中测量L 的电压,电路图如图3、 图4所示 6.⑴电流表和电源;⑵灯泡两端电 压(或电源电压);电流表无示数;⑶灯泡两端电压和流过灯泡的电流 7.D 8.(1)可能与金属片之间的距离有关,取一西红柿,控制铜片与锌片插入深度,改变金属片之间的距离,电池、太阳能电池、原子电池共4种;⑵锂电池,较小的体积自重下,能放出较大的电能三、电阻1.硬币、铅笔芯、小刀片、铁丝;2.电流;阻碍;欧姆;欧;Ω;k Ω;M Ω3.0.008;4.把5Ω的导体接入电路时,灯光较亮;电阻越小对电流的阻碍作用越小 5.D 6.C7.A 8.C 9.⑴D ;⑵温度越低,电流越小,使用寿命越长 10.⑴a ,c ;⑵导体长度;在其他条件相同的情况下,长度越长,电阻越大;⑶影响蒸发的因素;伽利略对摆动的研究;⑷①用酒精灯给灯丝加热,观察电流表示数的变化。

②见图5 11.(1)螺旋状,增大导体的长度(2)“瓦”数大的灯丝较粗。

四、变阻器1.长度;变阻器 2.最大电阻为20Ω; 允许通过的最大电流为1A3.一些金属和合金,当温度低于某一温度时,电阻变为零的现象;远距离输电、超大型 电磁铁、磁悬浮列车 4.D 5.D 6.B7.B 8.⑴最大 ⑵见图6、图7 ⑶逐渐减小滑动变阻器的阻值本章检测题1.D 2.A 3.A 4.C 5.B 6.C 7.B 8.B 9.C 10.D 11.形成电流;电源 12.并;“+” 13.滑动变阻器;改变电路中导体长度来改变电路中的电阻大小。

基础物理学下册答案

基础物理学下册答案

基础物理学下册答案1、下列说法正确的是()*A.一定质量的理想气体,放热的同时外界对其做功,其内能可能减少(正确答案)B.单晶体有固定的熔点,多晶体和非晶体没有固定的熔点C.热量能够自发地从高温物体传递到低温物体,但不能自发地从低温物体传递到高温物体(正确答案)D.当分子间的距离增大时,分子之间的引力和斥力均同时减小,而分子势能一定增大2、3.空间站以恒定的速率绕地球转动:因为空间站速度大小不变,所以加速度为零.[判断题] *对错(正确答案)3、导体中的自由电子做定向移动时,它的周围就产生磁场[判断题] *对(正确答案)错答案解析:自由电子做定向移动时产生电流,电流周围存在磁场4、磁场中某一点的磁场方向是由放在这一点的小磁针的N极决定的[判断题] *对错(正确答案)答案解析:磁场方向用小磁针来判断5、3.物体在一条直线上运动时,路程和位移的大小相等,且位移是矢量,路程是标量.[判断题] *对错(正确答案)6、57.彩色电视机荧光屏上呈现各种颜色,都是由三种基本色光混合组成的,这三种基本色光是()[单选题] *A.红、橙、绿B.红、绿、蓝(正确答案)C.蓝、靛、紫D.红、黄、蓝7、水平桌面上的文具盒在水平方向的拉力作用下,沿拉力的方向移动一段距离,则下列判断正确的是()[单选题]A.文具盒所受拉力做了功(正确答案)B.文具盒所受支持力做了功C.文具盒所受重力做了功D.没有力对文具盒做功8、21.关于声现象,下列说法正确的是()[单选题] *A.人听到声音是否响亮只跟发声体发声时的振幅有关B.人们可以用声学仪器接收到超声波判断地震的方位和强度C.倒车雷达是利用回声定位探测车后的障碍物(正确答案)D.用大小不同的力敲击同一音叉是为了探究音调与频率的关系9、在足球比赛中,下列说法正确的是()[单选题]A.飞行过程中,足球不受力的作用B.头顶足球时头会感到疼,说明力的作用是相互的(正确答案)C.下落过程中,足球的惯性变大D.足球在地面上越滚越慢,说明物体的运动需要力来维持10、63.下列说法中正确的是()[单选题] *A.空气中细小的灰尘就是分子B.弹簧能够被压缩,说明分子间有间隙C.由于分子非常小,人们无法直接用肉眼进行观察(正确答案)D.把一块铜锉成极细的铜屑就是铜分子11、夏天从冰箱里取出的可乐瓶上有小液滴,是可乐瓶周围的空气液化形成的[判断题]*对错(正确答案)答案解析:是周围的水蒸气液化形成的12、24.运用你学过的物理知识进行“特殊测量”,下面的几种方法中()①用天平、水测出墨水瓶的容积;②用天平、刻度尺测出一卷细铜丝的长度;③用量筒、水测出小钢珠的质;④用量筒测出20g酒精. [单选题] *A.只有①③正确B.只有②④正确C.只有①②③正确D.①②③④都正确(正确答案)13、估测在实际生活中的应用十分广泛,下列所估测的数据中最接近实际的是()[单选题] A.健康的成年人脉搏跳动一次的时间约为10sB.一般教室的高度约为6mC.我国10元纸币的票面长度约为14cm(正确答案)D.去年北京夏天的最高气温为26℃14、4.骑着自行车前行时前轮和后轮所受摩擦力的方向相同.[判断题] *对错(正确答案)15、49.小苗夜间路过一盏路灯时,在路灯光的照射下,她在地面上影子的长度变化情况是()[单选题] *A.先变长,后变短B.先变短,后变长(正确答案)C.逐渐变短D.逐渐变长16、1.与头发摩擦过的塑料尺能吸引碎纸屑。

基础物理学第七章(电磁感应)课后习题答案

基础物理学第七章(电磁感应)课后习题答案

第七章电磁感应变化电磁场思考题7-1感应电动势与感应电流哪一个更能反映电磁感应现象的本质?答:感应电动势。

7-2 直流电流表中线圈的框架是闭合的铝框架,为什么?灵敏电流计的线圈处于永磁体的磁场中,通入电流线圈就发生偏转。

切断电流后线圈在回复原来位置前总要来回摆动好多次。

这时如果用导线把线圈的两个接头短路,则摆动会马上停止。

这是什么缘故?答:用导线把线圈的两个接头短路,线圈中产生感应电流,因此线圈在磁场中受到一力偶矩的作用,阻碍线圈运动,使线圈很快停下来。

7-3让一块磁铁在一根很长的铅直铜管内落下,若不计空气阻力,试描述磁铁的运动情况,并说明理由。

答:当磁铁在金属管中时,金属管内感应感生电流,由楞次定律可知,感生电流的方向,总是使它所激发的磁场去阻止引起感应电流的原磁通量的变化,即:阻碍磁铁相对金属管的运动。

磁铁在金属管内除重力外,受到向上的磁力,向下的加速度减小,速度增大,相应磁力增大。

当磁力等于重力时,磁铁作匀速向下运动,达到动态平衡。

7-4用金属丝绕制的标准电阻是无自感的,怎样绕制才能达到自感系数为零的目的?答:如果回路周围不存在铁磁质,自感L的数值将与电流无关,仅由回路的几何性质、匝数以及周围磁介质的磁导率所决定。

把一条金属丝接成双线绕制,就能得到自感系数为零的线圈。

做纯电阻用的电阻器都是这样绕制的。

7-5 举例说明磁能是贮藏在磁场中的。

7-6如果电路中通有强电流,当你突然拉开闸刀断电时,就会有火花跳过闸刀。

试解释这一现象。

答:当突然拉开通有强电流电路中的刀闸而断电时,电路中电流迅速减小,电流的变化率很大,因而在电路中会产生很大的自感电动势。

此电动势可以把刀闸两端间的空气击穿,因而在刀闸处会有大的火花跳过。

7-7 变化的电场所产生的磁场,是否一定随时间而变化?变化的磁场所产生的电场,是否也一定随时间而变化?7-8 试比较传导电流与位移电流。

答:位移电流具有磁效应-与传导电流相同。

两者不同之处:产生机理不同,传导电流是电荷定向运动形成的,位移电流是变化的电场产生的;存在条件不同,传导电流需要导体,位移电流不需要导体,可以存在于真空中、导体中、介质中;位移电流没有热效应,传导电流产生焦耳热。

基础物理学下册【韩可芳】第10章习题答案

基础物理学下册【韩可芳】第10章习题答案

第十章第十章第十章第十章 波动光学波动光学波动光学波动光学思考题思考题思考题思考题10-1 普通光源中原子发光有何特征?答答答:答:::因为普通光源是大量不同原子在不同时刻发的光,是自然光,因此不满足干涉条件,所以一 般普通光源观察不到干涉现象。

10-2 如何用实验检验一束光是线偏振光、部分偏振光还是自然光?答答答:答:::拿一块偏振片迎着这束光,转动偏振片,观察透射光。

(1)视场中光强有变化且有消光现象 的为线偏振光;(2)光强有变化但无消光现象的为部分偏振光;(3)光强无变化的为自然光。

10-3 自然光可以用两个独立的、相互垂直的、振幅相等的光振动表示。

那么线偏振光是否也可以用两个相互垂直的光振动表示?如果可以,则这两个相互垂直的光振动之间关系如 何?10-4 如何用实验测定不透明媒质的折射率?答答答:答:::光线入射到不透明的媒介上,改变入射角i ,并同时用偏振片测定反射光线的偏振化程度。

当反射光线为完全偏振光时,此时入射角i0 即为布儒斯特角,满足tan 可求得不透明介质的折射率n 。

10-5 如图(a)所示,一束自然光入射在方解石晶体的表面上,入射光线与光轴成一定角度;问将有几条光线从方解石透射 出来?如果把方解石切割成等厚的A 、B 两块,并平行地移 开很短一段距离,如图(b)所示,此时光线通过这两块方解石后有多少条光线射出来?如果把B 块沿沿沿沿光线转过一个角度, 此时将有几条光线从B 块射出来?为什么?i 0n ,测得 i0 即考思考思考思考题题题题10-5图图图图10-6 从普通光源获得两束相干光的一般方法是什么?在光的干涉中决定相遇点产生明纹或暗纹的因素是什么?答答答:答:::分波阵面法和分振幅法。

波源的相位差和波源到相遇点的光程差决定相遇点产生明纹或暗纹。

10-7 如图所示,设光线a 、b 从周相相同的A 、B 点传至P 点,试讨论:(1)在图中的三种情况下,光线a 、b 在相遇处P 是 否存在光程差?为什么?(2)若a 、b 为相干光,那么在相遇处的干涉情况怎 样?考题思考题思考题思考题 10-7 图图图图10-8 在杨氏双缝实验中,当作如下调节时,屏幕上的干涉条纹将如何变化?(要说明理由)(1)使两缝之间的距离逐渐减小;(2)保持双缝的间距不变,使双缝与屏幕的距离逐渐减小;(3)如图所示,把双缝中的一条狭缝遮住,并在两缝的垂直平分线上放置一块平面反射镜。

大学基础物理学答案(习岗)第10章

大学基础物理学答案(习岗)第10章

129第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。

· 在任何温度下都能全部吸收照射到其表面上的各种波长的光(电磁波),的物体称为绝对黑体,简称黑体。

· 单位时间内从物体单位表面积发出的、波长在λ附近单位波长间隔内电磁波的能量称单色辐射本领(又称单色辐出度),用)(T M λ表示· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率称为辐射出射度,用则M 表示,M 与)(T M λ的关系为0()d M M T λλ∞=⎰2. 维恩位移定律在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm , T 和λm 满足如下关系:λm T b =其中,b 是维恩常量。

该式称维恩位移定律。

3. 斯忒藩—玻尔兹曼定律· 黑体的辐射出射度M 与温度T 的关系为4T M σ=其中,σ为斯忒藩—玻尔兹曼常量。

该结果称斯忒藩—玻尔兹曼定律。

· 对于一般的物体4T M εσ=ε称发射率。

4. 黑体辐射· 能量子假说:黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,满足条件E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。

这种能量分立的概念被称为能量量子化,130每一份最小的能量E hv =称为一个能量子。

· 普朗克黑体辐射公式(简称普朗克公式)为112)(/52-=kT hc e hc T M λλλπ其中,h 是普朗克常量。

由普朗克公式可以很好地解释黑体辐射现象。

· 光子假说:光是以光速运动的粒子流,这些粒子称为光量子,简称光子。

一个光子具有的能量为νh E =动量为 λh p =5. 粒子的波动性· 实物粒子也具有波粒二象性,它的能量E 、动量p 与和它相联系的波的频率ν、波长λ满足关系2E mc h ν==λh p m u ==这两个公式称为德布罗意公式或德布罗意假设。

大学基础物理学第2版习题答案

大学基础物理学第2版习题答案

大学基础物理学第2版习题答案大学物理课后习题答案
2
3 用十年光阴交换半生痴狂ゆ
4
5 用十年光阴交换半生痴狂ゆ
6
7 用十年光阴交换半生痴狂ゆ
8
9 用十年光阴交换半生痴狂ゆ
10
11 用十年光阴交换半生痴狂ゆ
12
13 用十年光阴交换半生痴狂ゆ
14
15 用十年光阴交换半生痴狂ゆ
16
17 用十年光阴交换半生痴狂ゆ
18
19 用十年光阴交换半生痴狂ゆ
20
21 用十年光阴交换半生痴狂ゆ
22
23 用十年光阴 交换半生痴狂 ゆ
24
25 用十年光阴交换半生痴狂ゆ
26
27 用十年光阴交换半生痴狂ゆ
28
29 用十年光阴交换半生痴狂ゆ
30
31 用十年光阴交换半生痴狂ゆ
32
33 用十年光阴交换半生痴狂ゆ
34
35 用十年光阴交换半生痴狂ゆ
36
37 用十年光阴交换半生痴狂ゆ
38
39 用十年光阴交换半生痴狂ゆ
40
41 用十年光阴交换半生痴狂ゆ
42
43 用十年光阴交换半生痴狂ゆ
44
45 用十年光阴交换半生痴狂ゆ
46
47 用十年光阴交换半生痴狂ゆ
48
49 用十年光阴交换半生痴狂ゆ
50
51 用十年光阴交换半生痴狂ゆ
52
53 用十年光阴交换半生痴狂ゆ
54
55 用十年光阴交换半生痴狂ゆ
56。

新编基础物理学下册习题解答和分析

新编基础物理学下册习题解答和分析

《新编基础物理学》下册习题解答和分析第九章习题解答9-1 两个小球都带正电,总共带有电荷55.010C -⨯,如果当两小球相距时,任一球受另一球的斥力为.试求总电荷在两球上是如何分配的?分析:运用库仑定律求解。

解:如图所示,设两小球分别带电q 1,q 2则有 q 1+q 2=×10-5C ①由题意,由库仑定律得:912122091014π4q q q q F r ε⨯⨯⨯=== ②由①②联立得:5152 1.210C3.810Cq q --⎧=⨯⎪⎨=⨯⎪⎩ 9-2 两根×10-2m 长的丝线由一点挂下,每根丝线的下端都系着一个质量为×10-3kg 的小球.当这两个小球都带有等量的正电荷时,每根丝线都平衡在与沿垂线成60°角的位置上。

求每一个小球的电量。

分析:对小球进行受力分析,运用库仑定律及小球平衡时所受力的相互关系求解。

解:设两小球带电q 1=q 2=q ,小球受力如图所示220cos304πq F T Rε==︒ ①sin30mg T =︒②题9-1解图联立①②得:2o 024tan30mg R qπε= ③其中223sin 606103310(m)2r l --=︒=⨯⨯=⨯ 2R r =代入③式,即: q =×10-7C9-3 电场中某一点的场强定义为0F E q =,若该点没有试验电荷,那么该点是否存在场强?为什么?答:若该点没有试验电荷,该点的场强不变.因为场强是描述电场性质的物理量,仅与场源电荷的分布及空间位置有关,与试验电荷无关,从库仑定律知道,试验电荷q 0所受力F与q 0成正比,故0F E q =是与q 0无关的。

9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷91 1.810C q -=⨯,B 点上有一点电荷92 4.810C q -=-⨯,已知BC =,AC =,求C 点电场强度E的大小和方向(cos37°≈, sin37°≈.分析:运用点电荷场强公式及场强叠加原理求解。

基础物理学(下)答案(梁绍荣、管靖)主编

基础物理学(下)答案(梁绍荣、管靖)主编

§17 真空中的静电场 P27
17-1. 三个相同的点电荷放置在等边三角形的顶点上. (1) 在此三角形的心应放 置怎样的电荷, 才能使作用在每一点电荷上的合力为零 ? (2) 这样的平衡是否 是稳定平衡? inthe centre O, 放置电量q. 有FO Fi 0
x : Fi cos30 Fi cos30 0
稳定性细节参考课程讨论区的贴子: “17-1题目的概念: 平衡状态及其稳定性”
§17 真空中的静电场 P27 17-2. 一个很小的带电油滴在均匀电场中, 电场力与重力平衡. 若 油滴半径1.64E-4cm, 密度0.851g.cm-3; E=1.92E5V.m-1.
重力与电场力平衡 mg : Eq m 0.85110 3(kg/cm )*
物理常数. 普朗克常量 h=6.626×10-34 Js,ћ= h/2π, 里德伯常量 R=1.097×10-7 m-1, 真空中光速c=3×108 m/s, 真空介电常数ε0 =8.85×10-12 F/m, 真空磁导率 μ0 =4π×10-7 H/m, 电子质量 me =9.11×10-31 kg, 电子电量 e =1.6 ×10-19 C, 质子质量 mp = 1.67×10-27 kg.

0
60 , (2)电荷位于顶点相交于此顶点的三个面 量皆为 若以此顶点为共同顶点 造对称的八个立方体 构 形成的一个边长a的立方体则其所有面构成 2 , 闭合曲面,且因对称性各面通量相 且都等于 等 三 所求的小立方体的其余 面恰好是单面面积的 /4, 面 , 根据电荷对大立方体单 的对称性分析 q 240
C q0 a
y
y: Fi (2Fi sin30) 0; 中心放任意电荷都可以 . 顶点A:FA Fi FBA FCA FOA x :FAB FAB cos60 FO cos30 0 y:FAB sin60 FO sin30 0 3 q q 3 1 q q0 b 0 2 (q0 2 a 2 a 2 a ( ) 3

大学物理下册习题答案张三慧

大学物理下册习题答案张三慧

大学物理下册习题答案张三慧【篇一:《大学基础物理学》张三慧(第二版)清华大学出版社课后答案】/p> 12345【篇二:张三慧版大学物理期末选择题】2、一花样滑冰者,开始自转时,其动能为e0?j0?02。

然后她将手臂收回,转动惯量减少至原来的,此时她的角速度变为?,动能变为e。

则有关系为a.??3?0,e?e0;b.???031312,e?3e0;c.??30,e?e0;d.??3?0,e?3e0。

3、对于质点组,内力可以改变的物理量是a.总动量; b.总角动量;c.总动能;d.总质量4、如图,一定量的理想气体,由平衡态a变到平衡态b,且它们的压强相等,即pa?pb。

在状态a和状态b之间,气体无论经过的是什么过程,气体必然a.对外做正功;b.内能增加;c.从外界吸热;d.向外界放热。

opa??bv5、半径为r的半球面放在均匀磁场中,通过半球面的磁通量为a.2?r2b;b.?r2b;c.2?r2bcos?;d.?r2bcos?。

6、极板间为真空的平行板电容器充电后与电源开,若将板间距离拉开一些,则不正确的是a、电容器两板间的电势差增大;b、电容器电容减小断c.电容器中电场能量增加; d.电容器两板间电场强度增大。

?7、一运动质点在某瞬时位矢为r(x,y),其速度大小为??22drdrdr?dy??dx?a.; b.; c.; d.?????dtdtdt?dt??dt?8、有两瓶不同的气体,一瓶是氦,一瓶是氢,它们的压强相同,温度相同,但体积不同,下列结论正确的是a.分子平均平动动能不相同;b.单位体积气体质量相同;c.单位体积气体的内能相同;d.单位体积的分子数相同。

9、一卡诺致冷机,从低温热源吸热6?104j,向高温热源散热7?104j,则致冷系数和所消耗的外功为161c.,1.5?105j;d.6,1?104j。

6a.,1?104j;b.6,1.5?105j;10、有两条长直导线各载有5a的电流,分别沿x,y轴正向流动。

大学基础物理学课后答案 --

大学基础物理学课后答案 --

第一章 思考题:<1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。

对上液面应用拉普拉斯公式,得 A A R p p γ20=- 对下液面使用拉普拉斯公式,得 BB 02R p p γ=- 又因为 gh p p ρ+=A B将三式联立求解可得 ⎪⎪⎭⎫ ⎝⎛-=B A 112R R g h ργ<1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。

在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。

相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。

<1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。

伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。

如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。

<1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。

斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。

练习题:<1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。

在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。

练习题1-6用图d h d F由图可知 osin60d sin d d hh m ==θ 水坝侧面的面积元d S 为 d d d sin 60hS l m l该面积元上所受的水压力为 0d d d [(5)]sin 60hFp Sp ρg h l水坝所受的总压力为 ()[]N)(103.760sin d 5d 855o0⨯=-+==⎰⎰h l h g p F F ρ(注:若以水坝的上顶点作为高度起点亦可,则新定义的高度5h h ,高度微元取法不变,即d d h h ,将h 与d h 带入水坝压力积分公式,同样可解出水坝所受压力大小。

大学物理基础教程全一册答案

大学物理基础教程全一册答案

大学物理基础教程全一册答案1. 光的干涉和衍射不仅说明了光具有波动性,还说明了光是横波。

[单选题] *对错(正确答案)2. 拍摄玻璃橱窗内的物品时,往往在镜头前加一个偏振片以增加透射光的强度。

[单选题] *对错(正确答案)3. 爱因斯坦提出的光子说否定了光的波动说。

[单选题] *对错(正确答案)4. 太阳辐射的能量主要来自太阳内部的裂变反应。

[单选题] *对错(正确答案)5. 全息照片往往用激光来拍摄,主要是利用了激光的相干性。

[单选题] *对(正确答案)错6. 卢瑟福的α粒子散射实验可以估测原子核的大小。

[单选题] *对(正确答案)错7. 紫光光子的能量比红光光子的能量大。

[单选题] *对(正确答案)错8. 对于氢原子,量子数越大,其电势能也越大。

[单选题] *对(正确答案)错9. 雨后天空出现的彩虹是光的衍射现象。

[单选题] *对错(正确答案)10. 光的偏振现象说明光是横波。

[单选题] *对(正确答案)错11. 爱因斯坦提出光是一种电磁波。

[单选题] *对错(正确答案)12. 麦克斯韦提出光子说,成功地解释了光电效应。

[单选题] *对错(正确答案)13. 不同色光在真空中的速度相同但在同一介质中速度不同。

[单选题] *对(正确答案)错14. 当原子处于不同的能级时,电子在各处出现的概率是不一样的。

[单选题] *对(正确答案)错15. 同一种放射性元素处于单质状态或化合物状态,其半衰期相同 [单选题] *对(正确答案)错16. 原子核衰变可同时放出α、β、「射线,它们都是电磁波。

[单选题] *对错(正确答案)17. 治疗脑肿瘤的“「刀”是利用了r射线电离本领大的特性。

[单选题] *对错(正确答案)18. β射线的电子是原子核外电子释放出来而形成的。

[单选题] *对错(正确答案)19. 玻尔理论是依据α粒子散射实验分析得出的。

[单选题] *对错(正确答案)20. 氢原子核外电子从小半径轨道跃迁到大半径轨道时,电子的动能减小,电势能增大,总能量增大。

大学基础物理学(第四版)课后题答案

大学基础物理学(第四版)课后题答案

面向21世纪课程教材学习辅导书普通高等教育“十一五”国家级规划教材配套参考书大学基础物理学第四版习题解答陈建军主编后德家王贤锋副主编高等教育出版社内容简介本书是与“面向21世纪课程教材”和“普通高等教育‘十一五’国家级规划教材”《大学基础物理学》(第四版)配套的学习辅导书.全书的内容按照主教材的章节顺序编排,习题解答过程规范、详细.本书可为学生学习课程内容,复习和巩固知识以指导与帮助.本书适合于选用“面向21世纪课程教材”和“普通高等教育‘十一五’国家级规划教材”《大学基础物理学》(第四版)的学校选作教学辅导书,也可供其他大学物理学习者使用.前言 (1)第1章流体力学 (1)第2章气体动理论 (7)第3章热力学基础 (12)第4章静电场恒定电场 (20)第5章恒定磁场 (28)第6章交变电磁场 (36)第7章光的波动性 (41)第8章光的量子性 (46)第9章量子力学初步 (49)第10章光谱分析原理及应用 (51)第11章放射性核物理及其应用 (52)测试练习(一) (55)测试练习(一)参考答案 (59)测试练习(二) (62)测试练习(二)参考答案 (65)《大学基础物理学》(第四版)是专为高等农林院校农、林类专业编写的大学物理课程教学的教材,本书是与之配套的教学参考书.大学物理课程学习中,做习题是一个不可缺的教学环节,不仅可以检查学生对课程知识点掌握的程度,还能巩固所学的知识,而且有利于提高分析问题和解决问题的能力.为了帮助学生掌握正确的解题方法,我们修订了《大学基础物理学》(第三版)《习题解答》教学参考书.全书的内容按照主教材的章编排,习题解答规范,过程详细.本书将给农林院校农、林类专业学生学习大学物理课程以极大的帮助.本书第一章(流体力学)、第二章(气体动理论)、第三章(热力学基础)、第八章(光的量子性)、第九章(量子力学初步)由华中农业大学陈建军修订;第四章(静电场恒定电场)、第五章(恒定磁场)、第六章(交变电磁场)由华中农业大学王贤锋修订;第七章(光的波动性)、第十章(光谱分析原理及应用)、第十一章(放射性核物理及其应用)由华中农业大学后德家修订.华中农业大学谭佐军、卢军、魏薇、程其娈、张纾、邓海游参与题目审核工作,刘玉红参与公式编辑工作,陈建军负责全书统稿和定稿.华中农业大学罗贤清和丁孺牛细致审阅了本习题解答,并提出了许多建设性的意见,在此表示衷心的感谢.同时编者也对参加第一版、第二版和第三版编写工作的同志表示诚挚的谢意.感谢教育部大学物理课程教学指导委员会农林水工作委员会、全国高等农林水院校物理教学委员会对本次修订工作的指导.由于编者水平有限,书中难免有错误和疏漏之处,我们衷心期待得到广大读者、同行专家的批评、指正,感谢对编者的关爱和帮助.编者2017年6月于狮子山南湖畔第1章流体力学1.1从水龙头缓缓流出的水流,下落时逐渐变细,为什么?答:从水龙头缓缓流出的水流,下落时由于重力做功,水流的速度越来越大.根据连续性原理Sv =常量,可知水流的速度越大,其横截面积就越小,所以从水龙头缓缓流出的水流,下落时逐渐变细.22121122121v v ρρgh ρp p -++=Pa1062Pa 52100121108910010510012110515233235⨯=⨯⨯⨯-⨯⨯⨯+⨯⨯⨯+⨯=........1.4如习题1.4图所示,一水管向水井中放水的流量为141094--⋅⨯=s m .3Q ,井底有一截面积为2cm .50=S 的小孔,当井中水面不再升高时,井中水深多高?习题1.4图解:本题是关于伯努利方程的应用.设机翼上面的气流速率为v 2,机翼下面的气流速率为v 1,由于飞机机翼比较薄,所以可近似取h 1=h 2,机翼压强差为p 1–p 2=1000Pa.根据伯努利方程有2222112121v v ρp ρp +=+机翼上面的气流速率为11221212s m 107s m 10029110002)(2--⋅=⋅+⨯=+-=.v v ρp p 1.6水从管1流入,通过支管2和3流入管4,管4的出口与大气相通,整个管道系统在同一水平面内.已知各管的横截面积分别是S 1=15cm 2,S 2=S 3=5cm 2,S 4=10cm 2,管1中的体积流量Q 1=600cm 3·s -1.求(1)各管中的流速;(2)各管中的压强与大气压强之差.Pa 0Pa =⨯-⨯⨯⨯=-=-=--42232224420210)6060(100.121)(21v v ρp p p p 同理,Pa 0=-03p p .1.7将一半径为1.0mm 的钢球,轻轻放入装有甘油的缸中,当钢球的加速度是其自由落体加速度一半时,其速度是多少?钢球的最大速度是多少?钢球的密度为8.5×103kg·m -3,甘油的密度为1.32×103kg·m -3,甘油的粘度为0.83Pa·s.解:本题是关于斯托克斯定律的应用.钢球在甘油中下落,所受重力为g ρr mg 钢球3π34=,所受甘油的浮力为g ρr F 甘油浮3π34=,根据斯托克斯定律所受黏性阻力为v r ηF f 甘油π6=.根据牛顿第二定律F =ma ,钢球的加速度是其自由落体加速度的一半时,有mg ―F f ―F 浮=ma =mg /2,即解:本题是关于斯托克斯定律及雷诺数的应用.对下落雨滴进行受力分析,雨滴所受重力为ρg r mg 3π34=,所受空气的浮力为g ρr F 空气浮3π34=,根据斯托克斯定律,所受黏性阻力为v r ηF π6=f .当雨滴受到的空气黏性阻力加上空气对雨滴的浮力等于其受到的重力,雨滴将匀速下落,此时速度为终极速度,于是有ρg r g ρr r 33π34π34π6=+空气v η雨滴的终极速度为23223352m m kg sPa s m )10600()2911001(10818992)(92⨯⋅⨯⋅⋅⨯⨯⨯-⨯⨯⨯⨯==----.....-空气空气r ρρg ηv 11s m 1034--⋅⨯=.根据泊肃叶定律lηR p p Q V 8)π(421-=,得大动脉内单位长度上的压强差Pa 10092ms m m s Pa )10521(1431050110048π844134363421⨯=⋅⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯===∆----.....-R lQ ηp p p V 根据圆管中实际流体的流速随半径的分布规律公式)(42221r R ηlp p --=v ,得轴心处(即r =0)血液流动速度为122334221s 04m 2m ms Pa Pa )10251(0110044100924---⋅=⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯=-=.....R ηl p p v第2章气体动理论2.1气体的平衡态有何特征?与力学中所指的平衡有什么不同?答:所谓平衡态是指系统与外界没有能量交换,内部也没有化学变化等形式的能量转化,系统的宏观性质不随时间变化.当气体处于平衡时,其状态的宏观参量值不随时间变化,即气体内部各部分具有相同的压强、密度和温度.热力学系统的平衡态与力学中所指的平衡是两个不同的概念.力学中的平衡平动动能也相等.(2)平均动能包括分子的平均平动动能、平均转动动能和平均振动动能,与每个分子的自由度数有关,为T k iB 2.氢气和氦气分子结构不同,则自由度数i 不相同,所以它们的平均动能不相等.(3)根据RT i M m 2,虽然温度T 和物质的量Mm相同,但氢和氦两种气体分子自由度i 不同,所以它们的内能不相等.2.4温度为27℃时,计算1mol 氮气的平均动能,平均转动动能和内能.解:本题是关于理想气体的能量均分定理及内能的应用.氮气分子是双原子分子,自由度为5,根据能量均分定理,其平均动能为23-120B 551.3810300J K K 1.0351022J--==⨯⨯⨯⨯⋅⨯=⨯w k T2.6将kg 10×83的氧气从10℃加热到20℃,求氧气的内能增加多少?解:本题是关于理想气体内能公式的应用.氧气分子是双原子分子,自由度为5,氧气的摩尔质量M =32×10-3kg·mol-1,根据理想气体内能公式RT iM m 2,可知氧气增加的内能[]J52mol kg K K mol J kg )10273()20273(31.8251032108211133=⋅⋅⋅⋅⨯⨯+-+⨯⨯⨯⨯⨯=∆=-----T R i m E M 2.7储有氮气的容器以速度-1200m sυ=⋅运动,假若该容器突然停止,气体的全部机械平动动能转化为气体的内能,这时气体的温度将会升高多少?(设氮气可看做理想气体.)解:设容器内氮气总质量为m ,则全部机械平动动能为0p (4)⎰∞2d )(υυf υ表示气体分子速率平方的平均值;(5)υυnf d )(表示单位体积内,分子速率在v ~v +d v 区间的分子数.2.9求在温度为27℃时氧气分子的平均速率、方均根速率以及最概然速率.解:本题是关于理想气体分子平均速率、方均根速率和最概然速率公式的应用.氧气的摩尔质量M =32×10-3kg·mol -1,温度T =(273+27)K=300K,可求得121113O s m 1044molkg KK mol J 10323.14300318882-----⋅⨯=⋅⨯⋅⋅⨯⨯⨯⨯⨯==6..M πRTv 121113O O 2s m 10834mol kg K K mol J 10323003183322-----⋅⨯=⋅⨯⋅⋅⨯⨯⨯⨯==..M RT v(1)按题给条件,速率分布函数是分段的.在F v v <<0速率区间,速率分布函数f (v )与v 2成正比;当F v v >时,速率分布函数f (v )为零.于是可画出速率分布函数曲线,如解题2.11图所示.(2)由归一化条件1=⎰∞d )(v v f ,有解题2.11图1===⎰⎰∞3F 0203d d )(Fv v v v v v A A f 得3F3v =A (3)根据最概然速率的定义,由图知,F p v v =.根据平均速率的定义式⎰∞=0d )(v v v v f ,得电子平均速率F F 033F 02075043d 3d A d )(FF v v v v v v v v v v v v v v .=====⎰⎰⎰∞f 根据方均速率的定义式⎰∞=022d )(v v v v f ,得电子速率平方平均值2F 043F 02202253d 3d A d )(FF v v v v v v v v v v v v v ====⎰⎰⎰∞f 所以,电子方均根速率为F F 27750515v v v .==第3章热力学基础3.1系统的温度升高是否一定要吸热?系统与外界不作任何热交换,而系统的温度发生变化,这种过程可能吗?答:系统的温度要升高不一定要吸热,外界对系统做功也可以使系统的温度升高;系统与外界不作任何热交换,而使系统的温度发生变化,这种过程是可能的,可以通过外界对系统做功或系统对外界做功来实现系统温度的变化.3.2(1)0.50kg 的水在大气压下用电热器加热,使水的温度自20℃缓慢的加热到30℃,试计算此水的内能的变化(水的比热容为3-1-14.1810J kg K⨯⋅⋅.)(2)一保温瓶里装有0.50kg、20℃的水,用力摇荡此瓶,使水的温度升高到30℃,初态及终态的压强均为大气压,试求水内能的变化及水所做的功.解:(1)在此过程中,等压地对水所加的热量为= t =0.5×4.18×10 ×10J =t.0 ×104J由于水的体积变化很小,故准静态过程的功A=0,依热力学第一定律有内能的变化= =t.0 ×104J (2)此过程不是准静态过程.但其始末状态与(1)相同,故内能变化与(1)相同,即= =t.0 ×104J由于系统被保温瓶所隔着,故无热量的传递,所以Q =0依 = + ,得水所做的功为=− =−t.0 ×104J3.3系统由习题 3.3图中的a 态沿abc 到达c 态时,吸收了400J 的热量,同时对外作150J 的功.(1)如果将沿adc 进行,则系统做功40J,问这时系统吸收了多少热量?(2)当系统由c 态沿着ca 返回a 态时,如果外界对系统做功80J,这时系统是吸热还是放热?热量传递时多少?习题 3.3图解:本题是关于热力学第一定律在准静态过程中的应用.根据热力学第一定律Q=△E+A,得a、b状态内能的变化△Eab =Eb-Ea=Qac b-Aac b=400J-150J=250J(1)对于adb过程,a、b状态相同,内能变化相同,根据热力学第一定律Q=△E+A,得此过程交换的热量为Qad b =△Eab+Aad b=250J+40J=290J(2)对于ba过程,由b→a,内能变化为负,即△Eba =Ea-Eb=150J-400J=-250J根据热力学第一定律Q=△E+A,得此过程交换的热量为Qba =△Eba+Aba=-250J-80J=-330J式中负号表示放热.3.41mol的氦气,在1atm、20℃时、体积为V.令使其经过一下两种过程达到同一状态;(1)先保持体积不变,加热,使其温度升高到80℃,然后令其做等温膨胀,体积变为原来的2倍.(2)先使其等温膨胀至原来体积的2倍,然后保持体积不变,加热到80℃.试分别计算上述两种过程中气体吸收的热量,气体对外所做的功和气体内能的增量.解:本题是关于热力学第一定律在准静态过程中的应用.依据题意,作出p-V图,如解题3.4图所示.图3.4abcd 四个状态(p ,V ,T ):a(1,V 0,T 1)b(p b ,V 0,T 2)c(p c ,2V 0,T 2)d(p d ,2V 0,T 1)T 1=293K,T 2=353K(1)先作等体升温(ab 过程),再作等温膨胀(bc 过程).①等体过程,氧气从热源吸取热量全部转化为系统内能的增加,做功为零,即121233d ()22T ab ab Tm m Q E R T R T T =∆==-⎰M M =1×t×8. 1× 5 −t ×mol ×J ∙mol −1∙K −1×K =香4香. J A ab =0②等温膨胀,氧气从热源吸取热量全部转化为对外做功,而内能不变,即11d d ln cbcc bc bc bbV A p V V ====⎰⎰V V V m mQ RT RT M M V =1×8. 1× 5 ×lnt ×mol ×J ∙mol −1∙K −1×K =t.0 ×10 J△E bc =0abc 过程吸取的热量为Q ab c =Q ab +Q bc =747.9J +2.03×103J =2.78×103Jabc 过程做的功为A ab c =A bc = 2.03×103Jabc 过程内能改变为△E ab c =△E ab =香4香. J(2)a →d 等温膨胀过程,氧气从热源吸取热量全部转化为对外做功,而内能不变,即22d d ln dadd ad ad aaV A p V V ====⎰⎰V V V m mQ RT RT M M V =1×8. 1×t ×lnt ×mol ×J ∙mol −1∙K −1×K =1. ×10 J△E dc =0习题 3.5图解:根据方程()00V V e p p -=,有9ln ln000c +=+=V p p V V c。

基础物理学答案

基础物理学答案

基础物理学答案第六章稳恒磁场思考题6-1 为什么不能把磁场作用于运动电荷的力的方向定义为磁感强度的方向答对于给定的电流分布来说它所激发的磁场分布是一定的场中任一点的B有确定的方向和确定的大小与该点有无运动电荷通过无关。

而运动电荷在给定的磁场中某点P 所受的磁力F无论就大小或方向而言都与运动电荷有关。

当电荷以速度v沿不同方向通过P点时v的大小一般不等方向一般说也要改变。

可见如果用v的方向来定义B的方向则B的方向不确定所以我们不能把作用于运动电荷的磁力方向定义为磁感应强度B的方向。

6-2 从毕奥萨伐尔定律能导出无限长直电流的磁场公式aIB2。

当考察点无限接近导线0a时则B这是没有物理意义的如何解释答毕奥萨伐尔定律是关于部分电流电流元产生部分电场dB的公式在考察点无限接近导线0a时电流元的假设不再成立了所以也不能应用由毕奥萨伐尔定律推导得到的无限长直电流的磁场公式aIB2。

6-3 试比较点电荷的电场强度公式与毕奥萨伐尔定律的类似与差别。

根据这两个公式加上场叠加原理就能解决任意的静电场和磁场的空间分布。

从这里你能否体会到物理学中解决某些问题的基本思想与方法答库仑场强公式0204dqrdEr毕奥一萨伐定律0024IdlrdBr 类似之处1都是元场源产生场的公式。

一个是电荷元或点电荷的场强公式一个是电流元的磁感应强度的公式。

2dE和dB大小都是与场源到场点的距离平方成反比。

3都是计算E和B的基本公式与场强叠加原理联合使用原则上可以求解任意分布的电荷的静电场与任意形状的稳恒电流的磁场。

不同之处1库仑场强公式是直接从实验总结出来的。

毕奥一萨伐尔定律是从概括闭合电流磁场的实验数据间接得到的。

2电荷元的电场强度dE的方向与r方向一致或相反而电流元的磁感应强度dB的方向既不是Idl方向也不是r的方向而是垂直于dl与r组成的平面由右手螺旋法则确定。

3dE的大小与场源电荷的电量dq成正比而dB的大小不仅与Idl的大小成正比而且与Idl的方向以它和r的夹角表示有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图17.1第十七章 真空中的静电场17-1 解: 设等边三角形的边长为a ,则由顶点到中心的距离为.123q q q q ===放在三角形中心的电荷为Q ,Q 与q 反号. Q 受其他三个电荷的合力为零,与Q 的大小无关.一个q 受其他三个电荷的合力大小为21322002cos302424q qQ F F aπεπε-=⨯⨯-⎫⎪⎝⎭)2034q Q a πε=-此合力为零给出Q =∴ 3Q q =17-2 解: 0m +=F g 0q m +=E g343R gmgq E Eρπ==()36548513141641098319210....-⨯⨯⨯⨯⨯=⨯ 1980210C .-=⨯图17.2图17.3图17.45e =17-3 解: 在带电环线上任取一长为d l 的电荷元,其电量d d q l η=.电荷元在O 点的场强为d E ,d E 沿两个轴方向的分量分别为d x E 和d y E .由于电荷分布对于Ox 轴对称,所以全部电荷在O 点的场强沿y 方向的分量之和为零.因而O 点的总场强E 应沿x 轴方向,并且 d x E E =⎰20d sin d d sin 4x l E E R ηθθπε==()d =d l R l R θθ=0sin d d 4x E Rηθθπε=000sin d cos 44E R R ππηθηθθπεπε==-⎰02R ηπε=02Rηπε=E i17-4 解: (1) 选半球球心的坐标原点O d d φ=⋅1E S 1d cos E S ϕ= 21d sin d d S R ϕϕθ= ∴ 21c o s s i n d dER φϕϕϕθ=⎰2220sin2d d 2ER ππϕθϕ=⎰⎰图17.522cos22R E πϕπ=-2R E π=(2) 半球面1S 和任意形状曲面2S 组成闭合曲面.由高斯定理得:12010i'qφφε+==∑内∵ 此时1S 的法向方向与原来相反 ∴211'R E φφπ=-=-∴ 221'R E φφπ=-=17-5 解: (1) 立方体的六个面组成闭合曲面,由高斯定理得 通过闭合曲面的电通量 0qφε=由于正立方体的六个侧面对于其中心对称,所以每个面通过的电通量为 12345606q φφφφφφε======(2) d =d d S φ⋅=⋅E S E n 由于正方体有三个面与E 垂直 ∴1230φφφ===∴ q 所在的三个面的电通量为零以q 为中心,小正方体的边长a 的二倍为边长做一正方体.则通过大正方体的电通量为qε.因为小正方体是大正方体的18,则通过小正方体其它三个面的总电通量为8qε.由于这三个面对电荷所在顶点是对称的,所以通过它们每个面的电通量为0013824q qεε⨯=图17.717-6 解: (1) 设想地球表面为一均匀带电球面,总面积为S .则它所带的总电量为 0d q ES εε=⋅=-⎰E S()212688510200431463710...-=-⨯⨯⨯⨯⨯⨯590210C .=-⨯(2) 从地面1400m 到地面的大气所带总电量为0d d S'Sq'q q 'εε=-=⋅-⋅⎰⎰E S E S 总00E'S'ES εε=-+ 0001.ES'ES εε=-+ ()001E S .S'ε=- 581110C .=⨯()5331881110431463714637103q'.V ...ρ⨯==⨯⨯-⨯ 12211410C m .-=⨯17-7 解: 根据电荷分布对壁的平分面的面对称性,可知电场分布也具有这种对称性.由此可选平分面与壁的平分面重合的立方盒子为高斯面.高斯定理给出 02q E S ε=内当2dD <时 2q DS ρ=内 0D E ρε=当2dD >时 q dS ρ=内 02d E ρε=方向垂直板面 0q > 向外 0q < 向内图17.917-9 解: (1) (a)1r R<时, Ⅰ区1d0⋅=⎰⎰E S2140E rπ⋅=1E=(b)12R r R<<时, Ⅱ区12dQε⋅=⎰⎰E S2124QE rπεε⋅=1224QErπε=1224Qrπε=E r(c)2r R>时Ⅲ区123dQ Qε+⋅=⎰⎰E S21234Q QE rπε+⋅=12324Q QErπε+=12324Q Qrπε+=E r(2) (a)2r R>时Ⅲ区()12332d d4r rQ QU rrπε∞∞+=⋅=⎰⎰E r r12120044rQ Q Q Qr rπεπε∞++=-=图17.10(b) 12R r R << Ⅱ区()22223d d R rR U r ∞=⋅+⋅⎰⎰E r E r221122200d d 44R rR Q Q Q r r rr πεπε∞+=+⎰⎰221120044R rR Q Q Q rrπεπε∞+=--120214Q Q r R πε⎛⎫=+ ⎪⎝⎭(c) 1r R <时, Ⅰ区 ()12121123d d d R R r R R U r ∞=⋅+⋅+⋅⎰⎰⎰E r E r E r2121122200d d 44R R R Q Q Q r r rr πεπε∞+=+⎰⎰2121120044R R R Q Q Q rrπεπε∞+=--1201214Q Q R R πε⎛⎫=+ ⎪⎝⎭17-10 解: (1) 情况(a)可以间接用高斯定理求解,情况(b)不可以.(2) 这是一个非对称分布的电荷,因而不能直接用高斯定理求定解.但半径为R 的球及半径为r 的空腔是球对称的.可以利用这一特点把带电体看成半径为R 的均匀带电ρ+的球体与半径为r 的均匀带电ρ-的球体迭加.相当于在原空腔处补上体电荷密度为ρ+和ρ-的球体.这时空腔内任一点P 的场强12=+E E E其中1E 与2E 分别是带ρ+的大球和带ρ-的小球在P 点的场强. 1E 与2E 都可用高斯定理求得.图17.11()1113ρε==E r OP r()2223'ρε=-=E r O P r()120033ρρεε=-=OO'E r r r 由上述结果可知在空腔内各点场强都相等,方向由O 指向O',这是均匀场.17-11 解: 如图选取高斯面 (1) r R <时210d d r l πρε⋅=⎰⎰E S210d 2d r lE r l πρπε⋅=102r E ρε=102r ρε=r E e r R >时220d d R l πρε⋅=⎰⎰E S220d 2d R lE r l πρπε⋅=2202R E r ρε=2202R rρε=r E e(2) 求电势,选圆锥面为等势面 r R <时 ()2200d d 24RRr rrr U r R r ρρεε=⋅==-⎰⎰E r图17.12图17-13r R >时2200d d ln 22RRr rrR R RU r r rρρεε=⋅==⎰⎰E r17-12 解: (1) 根据场强迭加原理,O 点的场强 012340=+++=E E E E E (2) 根据电势迭加原理, O 点的电势 01234U U U U U =+++ 044qrπε=99244010910510.--⨯⨯⨯⨯=⨯()328810v .=⨯(3) ()000A q U =-()93101028810..-=⨯⨯-⨯628810J .-=-⨯(4) W A ∆=- 628810J .-=⨯17-13 解: (1) 00104q q U R R πε⎛⎫=-= ⎪⎝⎭ 0143D q q U R R πε⎛⎫=-⎪⎝⎭06q Rπε=-()00D A q U U =-006q qRπε=图17-15图18.1(2) 0U ∞=()0D A q U U ∞=-- 006q qRπε=17-14 解:(1)68310100310V U Ed ∆==⨯⨯=⨯ (2)一次释放的能量为8931030910J W q U =∆=⨯⨯=⨯17-15 (1)00d P rU =⋅⎰E r00cos d E r θ=⎰0cos r E r = 0cos E r θ=- 0E z =-(2)将电荷由P 点移至O 点,电场力所做的功为()P O P O A W W q U U =-=- 0co s q E r θ=- 0q E z =- ∴ 0cos P W qE r θ=- 0q E z=- 第十八章 静电场中的导体和电介质18-1 解:(1)B,C 极接地,所以B,C 极为零电势。

即A 极与B 极间的电压AB U 与A 极与C 极间的电压AC U 相等。

设B极的两表面由于静电感应所带面电荷密度分别为B 'σ和B σ。

C 极两表面由于静电感应所带面电荷密度分别为C 'σ和C σ。

由于B,C 极接地。

∴ 0B 'σ=0C 'σ= 如果0B 'σ≠ 0C 'σ≠,则会有电力线从B,C 外表面发出或终止,则0B U U ∞≠=,0C U U ∞≠≠。

∴ 0B 'σ=0C 'σ=。

在导体B 中取一点P ,则由于静电平衡0P =E 。

P E 的场强是由五个无限大带电平面在P 点产生的场强的矢量合。

0000022222C C B B A P ''σσσσσεεεεε=----E k k k k k ∴0B A C σσσ++= ①()()()()000000000000222222222222C B A C B A CB A A B AC A l l l U l d l d l d l U d l σσσεεεσσσεεεσσσεεεσσσεεεI ∏I ∏⎧=--⎪⎪⎪=+-⎪⎪⎨⎪⎡⎤=⋅-=-++⎣⎦⎪⎪---⎪⎡⎤=⋅-=+-⎣⎦⎪⎩E k k k E k k k E k E k ⇒ ()()()B A C B A C l l l d l d l d l σσσσσσ-++=-+--- ②① ②联立,求解得:C A ld σσ=-B A d l dσσ-=-∴ B B A d l d lQ S S Qd d σσ--=⋅=-⋅=- C C A l lQ S S Q d dσσ=⋅=-⋅=-(2)000222C B A σσσεεεI =--E k k k 000222A A A l d ld d σσσεεε-=--+k k k 0222Q l S d ε⎛⎫=-+ ⎪⎝⎭k图18.7()0Q d l Sd ε-=-k()0d d zz Q d l U z SdεI I -=⋅=-⎰⎰E l()0Q d l z Sdε-=000222C B A σσσεεε∏=+-E k k k 000222A A l d ld d σσεεε-=-+-k k k 0Ql sdε=k ()00d d ddzzQl d z QlU z Sd Sdεε∏∏-=⋅==⎰⎰E l18-6 解:204max q E R πε=04max q U E R Rπε==⋅ KV3200mm=⨯600KV = 5610V =⨯18-7 解:(1)① 3C ,4C ,5C 串联3453451111C C C C =++ 3451F C =μ345C 与6C 并联 则345634563F C C C =+=μ② 3456C 与2C ,7C 串联,电容为C'3456271111C'C C C =++1F C'=μC'与8C 并联,电容为C''。

相关文档
最新文档