LINGO WINDOWS命令
LINGO教程
LINGO 是用来求解线性和非线性优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。
§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。
设从第i 个产地(A i )运往第j 个销地(B j )的单位运价为cost (i,j );从第i 个产地(A i )运往第j 个销地(B j )的运送量为valume (i ,j );i=1,...,6;j=1, (8)第j 个销地(B j )的销量为demand (j ); 第i 个产地(A i )的产量为capacity (i );目标函数(object function ) 6811mincos ()()i j t ij volume ij ==∑∑需求约束 61()()i volume ij demand j =<=∑ j=1,…,8产量约束 81()()j volume ij capacity i =<=∑ i=1,…,6(注:14个约束条件,48个变量,采用集合的概念)使用LINGO 软件,编制程序如下:model :!6发点8收点运输问题; sets : !集合定义warehouses/wh1..wh6/: capacity; !capacity 为集合属性 vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;!由两个集合构成新的集合 endsets !集合定义结束!目标函数; min =@sum (links: cost*volume); !或min =@sum (links (i,j ): cost(i)*volume(j));在数组links 上去求和!需求约束; @for (vendors(J): @sum (warehouses(I): volume(I,J))=demand(J));紧约束 !产量约束; @for (warehouses(I): @sum (vendors(J): volume(I,J))<=capacity(I)); !这里是数据;data :capacity=60 55 51 43 41 52;每个数之间用空格分开 demand=; 35 37 22 32 41 32 43 38 cost=; 6 2 6 7 4 2 9 5 4 9 5 3 8 5 8 2 5 2 1 9 7 4 3 3 7 6 7 3 9 2 7 1 2 3 9 5 7 2 6 5 5 5 2 2 8 1 4 3 Enddata !不加分号 end然后点击工具条上的按钮 即可。
LING0软件的使用方法
LINGO应用基础教程§1 LINGO软件的主要特色LINGO8.0 for Windows软件比以前的版本有了很大的改进,功能大大增强,性能更加稳定,解答结果更加可靠。
LINGO软件主要有两大优点:1、除具有LINDO的全部功能外,还可用于求解非线性规划问题,包括非线性整数规划问题。
2、LINGO包含了内置的建模语言,允许以简练、直观的方式描述较大规模的优化问题,模型中所需的数据可以以一定格式保存在独立的文件中。
§2 初识LINGO在Windows操作系统下双击LINGO图标,启动LINGO软件,屏幕上首先显示的就是模型窗口,也就是用于输入优化模型的窗口。
[例1] 作为一个最简单的例子,我们输入:MAX f=2*x+3*Y;s.t. 4*x+3*y<10;3*x+5*y<12;把它存入了一个名为ex_1.lg4的模型文件中(后缀名为lg4)。
然后选择菜单命令“LINGO|Solve”对该模型进行求解。
求解时,LINGO先对模型进行编译,模型编译没有发现语法错误才开始求解,求解结果在报告窗口中显示。
我们还可以把结果报告保存在文件中(后缀名为lgr)。
下面对报告窗口中显示的内容给出相应的解释。
右边的5个框分别给出变量数量(其中包括变量总数、非线性变量数、整数变量数)、约束数量(约束总数、非线性约束个数)、非零系数数量(总数、非线性项的个数)、内存使用量、求解花费的时间。
需要注意的是,凡是可以从一个约束直接解出变量取值时,这个变量就不认为是决策变量而是固定变量,不列入统计中;只含有固定变量的约束也不列入约束统计中。
左边的两个框中内容,左上角是求解器状态框(SolverStatus),含义见表1表1左下角是扩展的求解器状态框(ExtendedSolverStatus),含义见表2。
[例2] 作为一个例子,我们再来解一个二次规划问题:该模型输入模型窗口后的形式如下:xl+x2<100;max=98*xl+277*x2-xl^2-0.3*xl*x2-2*x2^2;x1<=2*x2;@gin (xl); @gin(x2);现在运行菜单命令“LINGO|Solve”,则可以得到解答报告,最优整数解X=(35,65),最大利润=11077.5。
5、Lingo中的Windows命令
§5 LINGO WINDOWS命令5.1 文件菜单(File Menu)1.新建(New)从文件菜单中选用“新建”命令、单击“新建”按钮或直接按F2键可以创建一个新的“Model”窗口。
在这个新的“Model”窗口中能够输入所要求解的模型。
2.打开(Open)从文件菜单中选用“打开”命令、单击“打开”按钮或直接按F3键可以打开一个已经存在的文本文件。
这个文件可能是一个Model文件。
3.保存(Save)从文件菜单中选用“保存”命令、单击“保存”按钮或直接按F4键用来保存当前活动窗口(最前台的窗口)中的模型结果、命令序列等保存为文件。
4.另存为...(Save As...)从文件菜单中选用“另存为...”命令或按F5键可以将当前活动窗口中的内容保存为文本文件,其文件名为你在“另存为...”对话框中输入的文件名。
利用这种方法你可以将任何窗口的内容如模型、求解结果或命令保存为文件。
5.关闭(Close)在文件菜单中选用“关闭”(Close)命令或按F6键将关闭当前活动窗口。
如果这个窗口是新建窗口或已经改变了当前文件的内容,LINGO系统将会提示是否想要保存改变后的内容。
6.打印(Print)在文件菜单中选用“打印” (Print)命令、单击“打印”按钮或直接按F7键可以将当前活动窗口中的内容发送到打印机。
7.打印设置(Print Setup...)在文件菜单中选用“打印设置...”命令或直接按F8键可以将文件输出到指定的打印机。
8.打印预览(Print Preview)在文件菜单中选用“打印预览...”命令或直接按Shift+F8键可以进行打印预览。
9.输出到日志文件(Log Output...)从文件菜单中选用“Log Output...”命令或按F9键打开一个对话框,用于生成一个日志文件,它存储接下来在“命令窗口”中输入的所有命令。
10.提交LINGO命令脚本文件(Take Commands...)从文件菜单中选用“Take Commands...”命令或直接按F11键就可以将LINGO命令脚本(command script)文件提交给系统进程来运行。
第三章 LINGO软件使用入门及命令集
第三章 LINGO软件使用入门LINGO是美国LINDO系统公司开发的一套专门用于求解最优化问题的软件.它为求解最优化问题提供了一个平台,主要用于求解线性规划、非线性规划、整数规划、二次规划、线性及非线性方程组等问题.它是最优化问题的一种建模语言,包含有许多常用的函数供使用者编写程序时调用,并提供了与其他数据文件的接口,易于方便地输入,求解和分析大规模最优化问题,且执行速度快.由于它的功能较强,所以在教学、科研、工业、商业、服务等许多领域得到了广泛的应用.§3.1 LINGO操作界面简介在Windows操作系统下启动LINGO软件,屏幕上首先显示如图1.1所示的窗口.图1.1图1.1中最外层的窗口是LINGO软件的主窗口(LINGO软件的用户界面),所有其他窗口都在这个窗口之内.主窗口有:标题栏、菜单栏、工具栏和状态栏.目前,状态栏最左边显示的是“Ready”,表示准备就绪,右下角显示的是当前时间,时间前面是当前光标的位置“Ln 1,Col 1”(即1行1列).将来用户可以用选项命令(LINGO|Options|Interface菜单命令)决定是否需要显示工具栏和状态栏.LINGO有5个主菜单:●File(文件)●Edit(编辑)●LINGO(LINGO系统)●Windows(窗口)●Help(帮助)这些菜单的用法与Windows下其他应用程序的标准用法类似,下面只对主菜单中LINGO系统的主要命令进行简要介绍.LINGO系统(LINGO)的主菜单●LINGO|Solve(Ctrl-S)LINGO|Solve(Ctrl-S)(求解)命令对当前模型进行编译并求解.如果当前模型输入有错误,编译时将报告错误.求解时会显示一个求解器运行状态窗口.●LINGO|Solution(Ctrl-O)LINGO|Solution(Ctrl-O)(解答)命令显示当前解.●LINGO|Range(Ctrl-R)LINGO|Range(Ctrl-R)(灵敏度分析)命令显示当前解的灵敏度分析结果.(你必须在此之前求解过当前模型)●LINGO|Options(Ctrl-I)LINGO|Options(Ctrl-I)(选项)命令将打开一个含有7个选项卡的对话框窗口,你可以通过它修改LINGO系统的各种控制参数和选项.修改完以后,你如果单击“应用”按钮,则新的设置马上生效;如果单击“OK”按钮,则新的设置马上生效,并且同时关闭该窗口;如果单击“Save”按钮,则将当前设置变为默认设置,下次启动LINGO时这些设置仍然有效;如果单击“Default”按钮,则恢复LINGO系统定义的原始默认设置;如果单击“Cancel”按钮将废弃本次操作,退出对话框;单击“Help”按钮将显示本对话框的帮助信息.●LINGO|Generate和LINGO|PictureLINGO|Generate和LINGO|Picture命令都是在模型窗口下才能使用,他们的功能是按照LINGO模型的完整形式分别以代数表达式形式和矩阵图形形式显示目标函数和约束.●LINGO|Debug(Ctrl+D)LINGO|Debug(Ctrl+D)命令分析线性规划无解或无界的原因,建议如何修改●LINGO|Model Statistics(Ctrl+E)LINGO|Model Statistics(Ctrl+E)命令显示当前模型的统计信息.●LINGO|Look(Ctrl+L)LINGO|Look(Ctrl+L)命令显示当前模型的文本形式,显示时对所有行按顺序编号.图1.2给出了工具栏的简要功能说明.图1.2当前光标所在的窗口(窗口标题栏上标有“LINGO Model-LINGO1”),就是模型窗口(model windows),也就是用于输入LINGO优化模型(即LINGO程序)的窗口.§3.2 LINGO模型的基本特征LINGO模型(程序)从LINGO模型窗口输入,它以语句“MODEL:”开始,以语句“END”结束.它是由一系列语句组成,每个语句都是以分号“;”结束,语句是组成LINGO模型的基本单位.每行可以写多个语句,为了保持模型的可读性,最好一行只写一个语句,并且按照语句之间的嵌套关系对语句安排适当的缩进,增强层次感.以感叹号“!”开始的语句是注释语句(注释语句也需要以分号“;”结束).LINGO模型(程序)一般由5个部分(或称5段)组成:(1)集合段(SETS):这部分要以“SETS:”开始,以“ENDSETS”结束,作用在于定义必要的集合变量(SET)及其元素(member,含义类似于数组的下标)和属性(attribute,含义类似于数组).格式有基本集和派生集两种.基本集:Setname(集合变量名)[/member_list(元素列表)/][:attribute_list(属性列表)];元素列表可以全部一一列出,也可以用格式“/元素1..元素N/”列出,例如SETS:STUDENTS/1,2,3,4,5/:NAME,AGE;ENDSETSSETS:STUDENTS/1..5/:NAME,AGE;ENDSETS派生集:Setname(parent_set_list(源集列表))[/member_list/][:attribute_list];例如SETS:PRODUCT/A B/;MACHINE/M N/;WEEK/1..2/;ALLOWED( PRODUCT,MACHINE,WEEK);ENDSETS列表可以用逗号“,”分开,也可以用空格分开.(2)数据段(DATA):这部分要以“DATA:”开始,以“ENDDATA”结束,作用在于对集合的属性(数组)输入必要的常数数据.格式为:attribute_list(属性列表)=value_list(常数列表);例如SETS:SET1 /A, B, C/: X, Y;ENDSETSDATA:X = 1 2 3;Y = 4 5 6;ENDDATA(3)初始化段(INIT):这部分要以“INIT:”开始,以“ENDINIT”结束,作用在于对集合的属性(数组)给出初值.格式为:attribute_list(属性列表)=value_list(常数列表);与数据段的用法类似.(4)计算段(CALC):这部分要以“CALC:”开始,以“ENDCALC”结束,作用在于对一些原始数据进行计算处理.因为在实际问题中,输入的数据往往是原始数据,不一定能在模型中直接使用,可以在这个段对这些原始数据进行一定的“预处理”,得到模型中真正需要的数据.在计算段中语句是顺序执行的.(5)目标与约束段:这部分没有段的开始和结束标记,作用在于给定目标函数与约束条件.可见除这一段外,其他4个段都有明确的段标记.这一段是模型的主要部分,其他段是为这一段服务的.其他四段可以没有,这一段必须要有.否则不称其为模型.这一段一般要用到LINGO的运算符和各种函数.§3.3 LINGO的运算符和函数LINGO包含有大量的运算符和函数,供程序(建立优化模型)调用,其功能很强.充分利用这些函数,对解决问题将是非常方便的.下面给出部分函数及简要功能介绍,全部函数及详细功能说明可进一步参考LINGO的使用手册.一、运算符及其优先级LINGO的运算符有三类:算数运算符、逻辑运算符和关系运算符.1.算术运算符:LINGO中的算术运算符有以下5种:+(加法),-(减法或负号),*(乘法),/(除法),∧(求幂).算术运算是数与数之间的运算,运算结果仍是数.2.逻辑运算符:LINGO中的逻辑运算符有以下9种,可以分成两类:(1)#AND#(与),#OR#(或),#NOT#(非):这三个运算是逻辑值之间的运算,也就是它们操作的对象本身必须已经是逻辑值或逻辑表达式,计算结果也是逻辑值.(2)#EQ#(等于),#NE#(不等于),#GT#(大于),#GE#(大于等于),#LT#(小于),#LE#(小于等于):这6个操作实际上是“数与数之间”的比较,也就是它们操作的对象本身必须是两个数,而逻辑表达式计算的结果是逻辑值.3.关系运算符:LINGO中的关系运算符有以下3种:<(即<=,小于等于),=(等于),>(即>=,大于等于)这三个运算符虽然也是“数与数之间”的比较,但在LINGO中只用来表示优化模型的约束条件,所以不是真正意义上的运算.这些运算符的优先级如表3.1所示(同一优先级按左到右的顺序执行;如果有括号“()”,则括号内的表达式优先进行计算)表3.1二、基本的数学函数在LINGO中写程序时可以调用大量的内部函数,这些函数以“@”符号打头(类似调用命令).LINGO中数学函数的用法与其它语言中的数学函数的用法类似,主要有以下函数:@ABS(X):绝对值函数,返回X的绝对值.@COS(X):余弦函数,返回X的余弦值(X的单位是弧度).@EXP(X):指数函数,返回e x的值.@FLOOR(X):取整函数,返回X的整数部分(向最靠近0的方向取整).@LGM(X):返回X的伽马(Gamma)函数的自然对数值.@LOG(X):自然对数函数,返回X的自然对数值.@MOD(X,Y):模函数,返回X对Y取模的结果.@POW(X,Y):指数函数,返回X Y的值.@SIGN(X):符号函数,返回X的符号值(X<0时返回-1,X>=0返回1).@SIN(X):正弦函数,返回X的正弦值.@SMAX(list):最大值函数,返回列表(list)中的最大值.@SMIN(list):最小值函数,返回列表(list)中的最小值.@SQR(X):平方函数,返回X的平方值.@SQRT(X):平方根函数,返回X的正的平方根的值.@TAN(X):正切函数,返回X的正切值.三、集合循环函数集合循环函数是指对集合上的元素(下标)进行循环操作的函数,主要有@FOR,@MAX,@MIN,@SUM,@PROD五种,其用法如下:@function(setname[(set_index_list)[|conditional_qualifier]]:expression_list);其中:Function是集合函数名;Setname是集合名;set_index_list是集合索引列表(不需要使用索引时可以省略);|conditional_qualifier是用逻辑表达式给出的过滤条件(无条件时可以省略);:expression_list是一个表达式(对@FOR函数,可以是一组表达式).下面简要介绍其作用.@FOR(setname[(set_index_list)[|cond_qualifier]]:exp_list):对集合setname中的每个元素独立地生成由exp_list描述的表达式(通常是优化问题的约束).@MAX(setname[(set_index_list)[|cond_qualifier]]:exp):返回集合setname上的表达式exp的最大值.@MIN(setname[(set_index_list)[|cond_qualifier]]:exp):返回集合setname上的表达式exp的最小值.@SUM(setname[(set_index_list)[|cond_qualifier]]:exp):返回集合setname上的表达式exp的和.@PROD(setname[(set_index_list)[|cond_qualifier]]:exp):返回集合setname上的表达式exp的积.四、集合操作函数集合操作函数是指对集合进行操作的函数,主要有@INDEX,@IN,@WRAP,@SIZE四种,下面简要介绍其作用.@INDEX([set_name,]primitive_set_element):返回元素primitive_set_element在集合set_name中的索引值(即按定义集合时元素出现顺序的位置编号).如果省略集合名set_name,LINGO按程序定义的集合顺序找到第一个含有元素primitive_set_element的集合,并返回索引值.如果在所有集合中均没有找到该元素,会给出出错信息.@IN(set_name,primitive_index_1[,primitive_index_2 ...]):判断一个集合中是否含有索引值.集合set_name 中包含由索引primitive_index_1[,primitive_index_2...]所表示的对应元素,则返回1(逻辑值“真”),否则返回0(逻辑值“假”).@WRAP(INDEX,LIMIT):返回J=INDEX-K*LIMIT,其中J 位于区间[1,LIMIT],K 为整数.当INDEX 位于区间[1,LIMIT]内时直接返回INDEX .相当于数学上用INDEX 对LIMIT 取模函数的值+1,即@WRAP(INDEX,LIMIT)=@MOD(INDEX,LIMIT)+1.此函数对LIMIT <1无定义.可以想到,此函数的目得之一是防止集合的索引值越界.@SIZE(set_name):返回集合set_name 的模,即元素的个数.五、变量定界函数变量定界函数是对变量的取值范围加以限制的函数.主要有@BIN, @BND, @FREE, @GIN 四种,下面简要介绍其作用.@BIN(variable):限制变量variable 为0或1. @BND(lower_bound, variable, upper_bound):限制lower_bound <=variable <=upper_bound@FREE(variable):取消对变量variable 的符号限制(即可取负数、0或正数). @GIN(variable):限制变量variable 为整数.六、财务会计函数财务会计函数是用于计算净现值的函数.主要有@FPA, @FPL 两种,下面简要介绍其作用. @FPA(I,N):返回若干时段单位等额回收净现值.其中单位时段利率为I,时段N 个,即∑=+=Nn nI N I FPA 1)1(1),(@@FPL(I,N):返回一个时段单位回收净现值.其中单位时段利率为I,时段N ,即NI N I FPL )1(1),(@+=七、概率中的相关函数概率中的相关函数是涉及到概率论和随机过程中的一些函数.主要有以下函数: @PSN(X):返回标准正态分布的分布函数在X 点的取值.@PSL(X):标准正态的线性损失函数,即返回MAX(0,Z-X)的期望值,其中Z 为均值为A的Poisson随机变量.@PPS(A,X):返回均值为A的Poisson分布的分布函数在X点的取值.@PPL(A,X):Poisson分布的线性损失函数,即返回MAX(0,Z-X)的期望值,其中Z为标准正态随机变量.@PBN(P,N,X):返回参数为(N,P)的二项分布的分布函数在X点的取值.@PHG(POP,G,N,X):返回总共有POP个球,其中G个是白球,随机地从中取出N个球,白球不超过X的概率.@PFD(N,D,X):返回自由度为N和D的F分布的分布函数在X点的取值.@PCX(N,X):返回自由度为N的2分布的分布函数在X点的取值.@PTD(N,X):返回自由度为N的t分布的分布函数在X点的取值.@PEB(A,X):返回当到达负荷(强度)为A,服务系统有X个服务器且允许无穷排队时的Erlang繁忙概率.@PEL(A,X):返回当到达负荷(强度)为A,服务系统有X个服务器且不允许排队时的Erlang繁忙概率.@PFS(A,X,C):返回当负荷上限为A,顾客数为C,并行服务器数量为X时,有限源的Poisson服务系统得等待顾客数的期望值.@QRAND(SEED):返回0与1之间的多个拟均匀随机数,其中SEED为种子,默认时取当前计算机时间为种子.该函数只能用在数据段(DATA-ENDDATA).@RAND(SEED):返回0与1之间的一个伪均匀随机数,其中SEED为种子.八、文件输入输出函数文件输入输出函数是指通过文件输入数据和输出结果的函数.主要有以下函数:@FILE('filename'):这个函数提供LINGO与文本文件的接口,用于引用其它ASCII码或文本文件中的数据,其中filename为存放数据的文件名(包括路径,没有指定路径时表示当前目录),该文件中记录之间必须用符号“~”分开.主要用在集合段和数据段,通过文本文件输入数据.@TEXT(['filename']):用于数据段中将解答结果送到文本文件filename中.@ODBC(['data_source'[,'table_name'[,'col_1'[, 'col_2'...]]]]):这个函数提供LINGO与ODBC(open data base connection,开放式数据库连接)的接口,用于集合段和数据段中引用其它数据库数据或将解答结果送到数据库中.其中data_source是数据库名,table_name是数据表名,col_i是数据列名(数据域名).@OLE('spreadsheet_file'[,range_name_list]):这个函数提供LINGO与OLE(object linking and embedding,对象链接与嵌入)的借口,用于集合段、数据段和初始段中输入和输出数据库.其中spreadsheet_file是文件名,range_name_list是文件中包含数据的单元范围.@POINTER(N):在Windows 下使用LINGO 的动态链接库(dynamic link library ,DLL ),直接从共享的内存中传送数据.§3.4 LINGO 软件求解案例一、生产管理问题1.问题实例某厂有5种设备A 1,A 2,…,A 5,用来加工7种零部件B 1,B 2,…,B 7,每种设备的数量、每种零部件的单位成本及所需各设备的加工工时(以小时计)见表1表1在其后的半年中,工厂有设备检修计划(停工检修时间一个月)见表2 表2工厂在半年中有订单(必须按时交货)见表3 表3 每种零部件库存最多可到100件,现每种零部件有库存80件,库存费用每件每月为0.5元,,要求到六月底每种零部件有存货50件,每种零部件生产至少50件.工厂每周工作5天,每天2班,每班8小时.试回答如下问题:(1) 工厂如何安排各月份各种零部件的加工数量? (2) 单位成本有10%的变化,对计划有什么影响? (3) 设备各增加1台对计划有什么的影响. 2.模型建立设: ij a 为第j 种零部件在第i 种设备上的单位加工工时)7,,2,1,5,,2,1( ==j i ;ik b 为第i 种设备在第k 月的数量)6,,2,1,5,,2,1( ==k i ; kj d 为第k 月第j 种零部件的顶单数量)7,,2,1,6,,2,1( ==j k ; j c 为第j 种零部件的单位收益)7,,2,1( =j ;kj x 为第k 月第j 种零部件的生产数量)7,,2,1,6,,2,1( ==j k ; kj s 为第k 月末第j 种零部件的库存数量)7,,2,1,6,,2,1( ==j k ; 800=j s 为初始库存)7,,2,1( =j假设每月以20天计,有以下模型:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==≥≥==≥=≤====-+===≤+-=====∑∑∑∑∑)(7,,2,1,6,,2,1,0,07,,2,1,6,,2,1,50)(7,,2,1,100)(7,,2,1,50)(7,,2,1,6,,2,1,)(6,,2,1,5,,2,13205.0min6(617161617171非负约束生产要求个月末的库存第种零部件的库存月第第种设备的有效工时月第第费用目标))(,库存约束 j k s x j k x j s j s j k d x s s k i b x a sx ckj kj kj kjjkj kj j k kj ik j kj ij k k j kjj kj jj k i k3.模型求解利用LINGO 软件计算,输入model: sets:cp/1..7/:c; yf/1..6/:; sb/1..5/:;sl1(yf,cp):x,d,s; sl2(sb,cp):a;sl3(sb,yf):b; endsets data:a=0.5 0.7 0.0 0.0 0.3 0.2 0.5 0.1 0.2 0.0 0.3 0.0 0.6 0.0 0.2 0.0 0.8 0.0 0.0 0.0 0.6 0.05 0.03 0 0.07 0.1 0 0.08 0 0 0.01 0 0.05 0 0.05; b=3 4 4 4 3 4 2 2 1 1 1 2 3 1 3 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1;d=250 500 150 150 400 100 100 300 250 100 0 200 150 100 150 300 0 0 250 200 100 100 150 200 250 100 0 100 0 100 250 100 500 150 0 250 250 100 300 550 250 100; c=100 60 80 40 110 90 30; enddatamin=@sum(sl1(k,j):c(j)*x(k,j)+0.5*s(k,j));@for(yf(k):@for(sb(i):@sum(cp(j):a(i,j)*x(k,j))<=320*b(i,k))); @for(yf(k)|k#gt#1:@for(cp(j):s(k,j)=s(k-1,j)+x(k,j)-d(k,j))); @for(cp(j):s(1,j)=80+x(1,j)-d(1,j)); @for(cp(j):s(6,j)=50);@for(sl1(k,j):s(k,j)<=100); @for(sl1(k,j):x(k,j)>=50); end(1)计算结果有:目标函数:590580 z(2)目标的灵敏度分析:Objective Coefficient Ranges(目标系数的灵敏度分析)Current Allowable Allowable Variable Coefficient Increase Decrease 变量目前系数允许增加范围允许减少范围X( 1, 1) 100.0000 INFINITY 0.5000000 X( 1, 2) 60.00000 INFINITY 0.5000000X( 1, 3) 80.00000 INFINITY 0.5000000X( 1, 4) 40.00000 INFINITY 1.500000X( 1, 5) 110.0000 INFINITY 0.5000000X( 1, 6) 90.00000 INFINITY 0.5000000X( 1, 7) 30.00000 INFINITY 0.5000000X( 2, 1) 100.0000 0.5000000 0.5000000X( 2, 2) 60.00000 0.5000000 0.5000000X( 2, 3) 80.00000 0.5000000 1.000000X( 2, 4) 40.00000 INFINITY 1.000000X( 2, 5) 110.0000 0.5000000 0.5000000X( 2, 6) 90.00000 0.5000000 0.5000000X( 2, 7) 30.00000 0.5000000 0.5000000X( 3, 1) 100.0000 0.5000000 0.5000000X( 3, 2) 60.00000 0.5000000 0.5000000X( 3, 3) 80.00000 INFINITY 0.5000000X( 3, 4) 40.00000 INFINITY 0.5000000X( 3, 5) 110.0000 0.5000000 0.5000000X( 3, 6) 90.00000 0.5000000 1.000000X( 3, 7) 30.00000 0.5000000 0.5000000X( 4, 1) 100.0000 0.5000000 1.000000X( 4, 2) 60.00000 0.5000000 0.5000000X( 4, 3) 80.00000 0.5000000 0.5000000X( 4, 4) 40.00000 0.5000000 0.5000000X( 4, 5) 110.0000 0.5000000 0.5000000X( 4, 6) 90.00000 INFINITY 0.5000000X( 4, 7) 30.00000 0.5000000 1.000000X( 5, 1) 100.0000 INFINITY 0.5000000X( 5, 2) 60.00000 0.5000000 0.5000000X( 5, 3) 80.00000 0.5000000 0.5000000X( 5, 4) 40.00000 0.5000000 0.5000000X( 5, 5) 110.0000 0.5000000 0.5000000X( 5, 6) 90.00000 0.5000000 0.5000000X( 5, 7) 30.00000 INFINITY 0.5000000X( 6, 1) 100.0000 0.5000000 INFINITYX( 6, 2) 60.00000 0.5000000 INFINITYX( 6, 3) 80.00000 0.5000000 INFINITYX( 6, 4) 40.00000 0.5000000 INFINITYX( 6, 5) 110.0000 0.5000000 INFINITYX( 6, 6) 90.00000 0.5000000 INFINITYX( 6, 7) 30.00000 0.5000000 INFINITY 其中INFINITY是无穷.从以上灵敏度分析可见,提高10%,有超出允许范围的,所以对计划有影响.(3)约束条件的灵敏度分析:Righthand Side Ranges(右边常数项的灵敏度分析)Row Current Allowable AllowableRHS Increase Decrease行目前常数项允许增加范围允许减少范围2 960.0000 INFINITY 450.00003 640.0000 INFINITY 488.00004 960.0000 INFINITY 840.00005 320.0000 INFINITY 258.00006 320.0000 INFINITY 300.80007 1280.000 INFINITY 836.00008 640.0000 INFINITY 473.00009 320.0000 INFINITY 138.000010 320.0000 INFINITY 268.400011 320.0000 INFINITY 305.500012 1280.000 INFINITY 830.000013 320.0000 INFINITY 110.000014 960.0000 INFINITY 830.000015 320.0000 INFINITY 267.000016 320.0000 INFINITY 302.000017 1280.000 INFINITY 1035.00018 320.0000 INFINITY 205.000019 960.0000 INFINITY 760.000020 320.0000 INFINITY 282.000021 320.0000 INFINITY 308.500022 960.0000 INFINITY 670.000023 640.0000 INFINITY 525.000024 960.0000 INFINITY 720.000025 320.0000 INFINITY 253.500026 320.0000 INFINITY 290.000027 1280.000 INFINITY 655.000028 640.0000 INFINITY 270.000029 640.0000 INFINITY 410.000030 320.0000 INFINITY 206.000031 320.0000 INFINITY 283.5000 从以上灵敏度分析可见,提高1台,没有超出允许范围的,所以对计划没有影响.也可以将数据与模型分离,先准备数据文件exam01.ldt:!单耗;0.5 0.7 0.0 0.0 0.3 0.2 0.50.1 0.2 0.0 0.3 0.0 0.6 0.00.2 0.0 0.8 0.0 0.0 0.0 0.60.05 0.03 0 0.07 0.1 0 0.080 0 0.01 0 0.05 0 0.05~!设备数量;3 4 4 4 3 42 2 1 1 1 23 1 3 3 3 21 1 1 1 1 11 1 1 1 1 1~!需求;250 500 150 150 400 100 100300 250 100 0 200 150 100150 300 0 0 250 200 100100 150 200 250 100 0 1000 100 250 100 500 150 0250 250 100 300 550 250 100~!单位成本;100 60 80 40 110 90 30~再写程序如下:model:sets:cp/1..7/:c;yf/1..6/:;sb/1..5/:;sl1(yf,cp):x,d,s;sl2(sb,cp):a;sl3(sb,yf):b;endsetsdata:a=@file('exam01.ldt');b=@file('exam01.ldt');d=@file('exam01.ldt');c=@file('exam01.ldt');enddatamin=@sum(sl1(k,j):c(j)*x(k,j)+0.5*s(k,j));@for(yf(k):@for(sb(i):@sum(cp(j):a(i,j)*x(k,j))<=320*b(i,k)));@for (yf(k)|k#gt#1:@for (cp(j):s(k,j)=s(k-1,j)+x(k,j)-d(k,j))); @for (cp(j):s(1,j)=80+x(1,j)-d(1,j)); @for (cp(j):s(6,j)=50);@for (sl1(k,j):s(k,j)<=100); @for (sl1(k,j):x(k,j)>=50); end二、下料问题1.问题实例有某种材料一根长19米.现需用其切割4米长毛坯50根、5米长毛坯10根、6米长毛坯20根、8米长毛坯15根.如何切割使其用料最省?要求切割模式不能超过3种. 2.模型建立设:4,3,2,1=i 分别表示4米长,5米长,6米长,8米长的毛坯;i a 为第i 种毛坯的长度)4,3,2,1(=i ; i b 为第i 种毛坯的需要量)4,3,2,1(=i ;j x 为第j 种切割模式所用的材料数量)3,2,1(=j ;ij r 为第j 种切割模式切割第i 种毛坯的数量)3,2,1,4,3,2,1(==j i .一种合理的切割模式应满足:其余料长度不应该大于或等于需要切割毛坯的最小长度.于是有模型如下⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥≥=≥=≤=≥=∑∑∑∑====3,2,1,4,3,2,1,0,0(3,2,1,16(3,2,1,19(4,3,2,1,(min 41413131j i r x j r a j r a i b x r xz ij ji ij i i ij i i j j ij j j且整数合理的下料模式所下毛坯的总长所下毛坯的需要量用料目标))))3.模型求解为了便于运算,我们先来缩小可行域.由于3种切割模式的排列顺序是无关紧要的,所以不妨增加以下约束:321x x x ≥≥又注意到用料的总量有明显的上界和下界.首先,无论如何,用料总量不可能少于2619158206105504=⎥⎥⎤⎢⎢⎡⨯+⨯+⨯+⨯其次,考虑一种特殊的下料计划:模式1:切割成4根4米钢管,需13根;模式2:切割成1根5米和2根6米钢管,需10根;模式3:切割成2根8米钢管,需8根.这样需要13+10+8=31于是可得到解的一个上界.所以又可增加约束:3126321≤++≤x x x利用LINGO 软件计算,输入 model: sets:needs/1..4/:a,b; cuts/1..3/:x;patterns(needs,cuts):r; endsets data: a=4 5 6 8; b=50 10 20 15; enddatamin=@sum(cuts(j):x(j));!用料目标;@for(needs(i):@sum(cuts(j):x(j)*r(i,j))>b(i));!需要量要求; @for(cuts(j):@sum(needs(i):a(i)*r(i,j))<19);!材料总长; @for(cuts(j):@sum(needs(i):a(i)*r(i,j))>16);!合理模式; @sum(cuts(j):x(j))>26;!用料下限; @sum(cuts(j):x(j))<31;!用料上限;@for(cuts(j)|j#lt#@size(cuts):x(j)>x(j+1));!人为约束; @for(cuts(j):@gin(x(j)));!整数约束;@for(patterns(i,j):@gin(r(i,j)));!整数约束; end经过LINGO 求解,得到输出如下:Objective value: 28.00000 Variable Value Reduced Cost X( 1 ) 10.00000 0.000000X( 2 ) 10.00000 2.000000X( 3 ) 8.000000 1.000000R( 1, 1) 3.000000 0.000000R( 1, 2) 2.000000 0.000000R( 1, 3) 0.000000 0.000000R( 2, 1) 0.000000 0.000000R( 2, 2) 1.000000 0.000000R( 2, 3) 0.000000 0.000000R( 3, 1) 1.000000 0.000000R( 3, 2) 1.000000 0.000000R( 3, 3) 0.000000 0.000000R( 4, 1) 0.000000 0.000000R( 4, 2) 0.000000 0.000000R( 4, 3) 2.000000 0.000000即按照模式1、2、3分别切割10、10、8根材料,使用材料总根数为28根.第一种切割模式下1根材料切割3根4米的和1根6米的;第二种切割模式下1根材料切割2根4米的、1根5米的和1根6米的;第三种切割模式下1根材料切割2根8米的.三、投资组合问题1.问题实例有三种股票A,B,C,其前12年的价值每年的增长情况如表所示表中还给出了相应年份的500种股票的价格指数的增长情况.假设目前你有一笔资金准备投资这三种股票,并期望年收益率达到15%,那么你应如何投资? 2.模型建立设:3,2,1=i 分别表示表示A,B,C 三种股票;i R 为第i 种股票的价值)3,2,1(=i ;ij R 为第i 种股票第j 年的价值)12,,2,1,3,2,1( ==j i ; M 为指数;j M 为第j 年的指数)12,,2,1( =j ;i x 为投资第i 种股票比例)3,2,1(=i .股票指数反映的是股票市场的大势信息,对每只股票的涨跌是有影响的.假设每只股票的收益与股票指数成线性关系.即i i i i e M b a R ++=或12,,2,1,3,2,1, ==++=j i e Mb a R ij jij ij ij其中ij ij b a ,是待定系数,ij e 是一个随机误差,其均值为0)(=ij e E ,方差为)(2ij ij e D s =,此外假设随机误差ij e 与其他股票和股票指数都是独立的,所以0)()(==j ij kj ij M e E e e E .先根据所给数据回归计算ij ij b a ,,即使误差的平方和最小:3,2,1,||min12121212=-+=∑∑==i R Mb aej ij jij ijj ij可用Matlab 软件做该回归计算,也可用LINGO 软件分别来做每只股票的回归计算,输入 model: sets:year/1..12/:M,R,a,b,e; endsets data:R=1.300 1.103 1.216 0.954 0.929 1.056 1.038 1.089 1.090 1.083 1.035 1.176;M=1.258997 1.197526 1.364361 0.919287 1.057080 1.055012 1.187925 1.317130 1.240164 1.183675 0.990108 1.526236; enddatacalc:mean0=@sum(year(j):M(j))/@size(year);s20=@sum(year(j):@sqr(M(j)-mean0))/(@size(year)-1); s0=@sqrt(s20); endcalc min=s2;s2=@sum(year(j):@sqr(e(j)))/(@size(year)-2); s=@sqrt(s2);@for(year(j):e(j)=R(j)-a-b*M(j)); @for(year(j):@free(e(j))); @free(a);@free(b);End对上面的程序,注意以下几点: (1)只给了一种股票的价值R ;(2)在CALC 段直接计算了M 的均值mean0和方差s20以及标准差s0(为了使这个估计是无偏估计,分母是11而不是12);(3)程序中用到平方函数@sqr 和平方根函数@sqrt ;(4)除了计算回归系数外,同时估计了回归误差s2和标准差s ,为了使这个估计是无偏估计,分母是10而不是11和12,这是因为此时已经假设保持误差的均值为0,所以自由度又少了一个;(5)@free(a),@free(b),@free(e)三个语句不能少,因为它们不一定是非负的; 运行这个LINGO 模型,结果为:Objective value: 0.5748320E-02Variable Value Reduced Cost MEAN0 1.191458 0.000000 S20 0.2873661E-01 0.000000 S0 0.1695188 0.000000 S2 0.5748320E-02 0.000000 S 0.7581767E-01 0.000000 A 0.5639761 0.000000 B 0.4407264 0.000000也就是说:M 的均值191458.10=m ,方差02873661.020=s ,标准差1695188.00=s ,对股票A ,回归系数5639761.01=a ,4407264.01=b ,误差的方差005748320.021=s ,误差的标准差07581767.01=s .同理,可以得到:对股票B ,回归系数239802.1,2635059.022=-=b a ,误差的方差01564263.022=s ,误差的标准差1250705.02=s .对股票C ,回归系数523798.1,5809590.033=-=b a ,误差的方差03025165.023=s ,误差的标准差1739300.03=s .于是,年投资收益为∑∑==++==3131)(i i i i ii i ie M b a xR xR收益的期望为∑∑==+=++=31031)()(i i i ii i i i im b a xe M b a E xER收益的方差为∑∑==+=++=3122202312])[()(i i i iii i i i is x s bx e M b a D xDR 进一步,令∑=iibx y ,则模型应该为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥+==+=∑∑∑∑====015.1)(1 ..)(min 31031313122202ii i i i i ii ii i i i x m b a x x b x y t s s x s y z 3.模型求解利用LINGO 软件计算,输入 model: sets:stocks/1..3/:u,b,s2,x; endsets data:mean0=1.191458;s20=0.02873661;s2=0.005748320,0.01564263,0.03025165; u=0.5639761,-0.2635059,-0.5809590; b=0.4407264,1.239802,1.523798; enddatamin=s20*@sqr(y)+@sum(stocks(i):s2(i)*@sqr(x(i))); @sum(stocks(i):b(i)*x(i))=y; @sum(stocks(i):x(i))=1;@sum(stocks(i):(u(i)+b(i)*mean0)*x(i))>1.15; end运算这个LINGO 模型,输出结果如下Objective value: 0.2465621E-01 Y 0.8453449 0.000000 X( 1) 0.5266052 0.000000 X( 2) 0.3806461 0.000000 X( 3) 0.9274874E-01 0.000000根据运算结果可知:A 大约占初始时刻总资产的53%,B 占38%,C 占9%.四、最小费用最大流问题1.问题实例需要将某地s 的天然气通过管道输送到另一地t ,中间有4个中转站4321,,,v v v v .由于输气管道的长短粗细不一或地质等原因,使得每条管道上的运输量及费用不同.下图给出了这两地与中转站的连接以及管道的容量、费用:图中括号里第一个数字是管道容量,第二个数字是管道单位运费.考虑s 地到t 地如何输送天然气,使得费用最小流量最大. 2.模型建立设:V 为网络顶点集,A 为网络的弧集;ij f 为弧),(j i 上的流量;ij b 为弧),(j i 上的单位运费; ij c 为弧),(j i 上的容量;)(f v 为发点处的净流量.根据最大流的定义,我们有模型如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧∈≤≤⎪⎩⎪⎨⎧≠=-==-∑∑∑∈∈∈∈∈A j i c f t s i ti f v s i f v f f t s f v t s f bij ij A i j V j ji A j i V j ij Aj i ijij),(,0, 0 )( ),(..)(max ..min),(),(),( 3.模型求解先考虑最大流模型,LINGO 软件输入如下 model: sets:nodes/s,1,2,3,4,t/;arcs(nodes,nodes)/s,1 s,2 1,2 1,3 2,4 3,2 3,t 4,3 4,t/:c,f; endsets data:c=8 7 5 9 9 2 5 6 10; enddata max=flow;@for(nodes(i)|i#ne#1 #and# i#ne#@size(nodes):@sum(arcs(i,j):f(i,j))-@sum(arcs(j,i):f(j,i))=0);@sum(arcs(i,j)|i#eq#1:f(i,j))=flow; @for(arcs(i,j):@bnd(0,f(i,j),c(i,j))); end计算结果如下:Objective value: 14.00000Variable Value Reduced Cost FLOW 14.00000 0.000000F( S, 1) 7.000000 0.000000F( S, 2) 7.000000 0.000000F( 1, 3) 5.000000 0.000000F( 2, 4) 9.000000 -1.000000F( 3, 2) 0.000000 0.000000F( 3, T) 5.000000 -1.000000F( 4, 3) 0.000000 1.000000F( 4, T) 9.000000 0.000000 其次考虑最小费用最大流模型,LINGO软件输入如下model:sets:nodes/s,1,2,3,4,t/;arcs(nodes,nodes)/s,1 s,2 1,2 1,3 2,4 3,2 3,t 4,3 4,t/:b,c,f;endsetsdata:b=2 8 5 2 3 1 6 4 7;c=8 7 5 9 9 2 5 6 10;flow=14;enddatamin=@sum(arcs(i,j):b(i,j)*f(i,j));@for(nodes(i)|i#ne#1 #and# i#ne#@size(nodes):@sum(arcs(i,j):f(i,j))-@sum(arcs(j,i):f(j,i))=0);@sum(arcs(i,j)|i#eq#1:f(i,j))=flow;@for(arcs(i,j):@bnd(0,f(i,j),c(i,j)));end计算结果如下:Objective value: 205.0000Variable Value Reduced CostF( S, 1) 8.000000 -1.000000F( S, 2) 6.000000 0.000000F( 1, 2) 1.000000 0.000000F( 1, 3) 7.000000 0.000000F( 2, 4) 9.000000 0.000000F( 3, 2) 2.000000 -3.000000F( 3, T) 5.000000 -8.000000F( 4, 3) 0.000000 11.00000附录 LINGO出错信息在LINGO程序求解时,系统首先会对程序进行编译.系统在编译或执行其他命令时,会因程序中的错误或运行错误,弹出一个出错报告窗口,显示其错误代码,并简要指出错误的原因.这些错误报告信息能够提示用户发现程序中的错误,以便能尽快修改.下面我们给出出错信息的一个简要说明,仅供参考.LINGO错误编号及原因对照表习题1.用LINGO 软件求解线性规划问题并作灵敏度分析(1) ⎪⎩⎪⎨⎧≥≤++≤++-++-=0,,9010412203..1355max 321221321321x x x x x x x x x t s x x x(2)⎪⎩⎪⎨⎧≥≤≤+--≤+---+-=0,,,1035.0125.009825.0..65.02075.0max 3213432143214321x x x x x x x x x x x x t s x x x x z2.用LINGO 软件求解0-1规划问题⎪⎪⎩⎪⎪⎨⎧=≥+-+≥+++-≥+++-+++=10,,,11424204..4352min 43214321432143214321或x x x x x x x x x x x x x x x x t s x x x x 3.用LINGO 软件求解整数规划问题⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≤≤≤≤=+=-+=-+=-++++++=且整数0,,,,,,20,45,40,3025352515..2.02.02.05.54.51.50.5min 3214321432134323212113214321y y y x x x x x x x x y x y y x y y x y x t s y y y x x x x4.用LINGO 软件求解非线性规划问题⎪⎪⎩⎪⎪⎨⎧=≤≤--=+-+=++-+-+-+-+-=5,4,3,2,1,55222223..)()()()()1(min 4232332215544433322211i x x x x x x x t s x x x x x x x x x z i5.用LINGO 软件求解⎪⎩⎪⎨⎧-∈≤+++≤-≤+≤-+=}1,1{,,,2311..21max 432143214321TTx x x x x x x x x x x x t s z Qxx x c其中T )2,4,8,6(-=c ,Q 是三对角线矩阵,主对角线上元素全为-1,两条次对角线上元素全为2.。
Lingo使用方法
LINGO早期版本对LINDO的兼容问题
优化建模
从LINDO模型到LINGO模型的实质性转化工作主要在 于以下几个方面(这也是LINGO模型的最基本特征): •将目标函数的表示方式从“MAX”变成了“MAX=”; •“ST”(SubjectTo)在LINGO模型中不需要,被删除; •在系数与变量之间增加运算符“*”(即乘号不能省略); •每行(目标、约束和说明语句)后面增加一个分号“;”; •约束的名字被放到 “[ ]”中,不放在右半括号“)”前; •LINGO中模型以“MODEL:”开始,以“END” 结束。 对简单的模型,这两个语句也可以省略。
优化建模
一个简单的LINGO程序
例 直接用LINGO来解如下二次规划问题:
Max 98x1 + 277x2 − x12 − 0.3x1x2 − 2x22 (1)
s.t. x1 + x2 ≤ 100
(2)
x1 ≤ 2x2
(3)
x1, x2 ≥ 0 为整数
(4)
输入窗口如下:
程序语句输入的备注:
优化建模
优化建模
优化建模与LINDO/LINGO软件
第 3 章 LINGO软件的基本使用方法
[原书相关信息] 谢金星, 薛毅编著, 清华大学出版社, 2005年7月第1版.
/~jxie/lindo
优化建模
LINGO软件的主要特色
两种命令模式 Windows模式: 通过下拉式菜单命令驱动LINGO运 行(多数菜单命令有快捷键,常用的菜单命令有快捷 按钮),图形界面,使用方便; (这里主要介绍这种模式)
Generator Memory Used (K) (内存使 用量)
• Elapsed Runtime (hh:mm:ss) (求解花费的时间)
LINGO软件的基本使用方法
模(即编程)语言,系统推荐的是采用LINGO。安装后
可通过“LINGO|Options|File Format”命令修改缺省
的建模(即编程)语言。
第一次运行时提示输入授权密码,如图:
LINGO软件的主要特色
两种命令模式 Windows模式: 通过下拉式菜单命令驱动LINGO运
行(多数菜单命令有快捷键,常用的菜单命令有快捷
输出结果备注: LINGO是将它作为PINLP(纯整数非线性规划)来求解, 因此找到的是局部最优解。
通过菜单 “WINDOW| Status Window”看到状态窗 口,可看到最佳目标值 “Best Obj”与问题的上界 “Obj Bound”已经是一样的, 当前解的最大利润与这两个 值非常接近,是计算误差引 起的。如果采用全局最优求 解程序(后面介绍),可以验 证它就是全局最优解。
1 2 3 4
输入窗口如下:
程序语句输入的备注:
•LINGO总是根据“MAX=”或“MIN=”寻找目标函数, 而除注释语句和TITLE语句外的其他语句都是约束条 件,因此语句的顺序并不重要 。 •限定变量取整数值的语句为“@GIN(X1)”和 “@GIN(X2)”,不可以写成“@GIN(2)”,否则 LINGO将把这个模型看成没有整数变量。
按钮),图形界面,使用方便;
(这里主要介绍这种模式)
命令行 模式:仅在命令窗口(Command Window)下操 作,通过输入行命令驱动LINGO运行 。
LINGO的文件类型 •.LG4:LINGO格式的模型文件,保存了模型窗口中所 能够看到的所有文本和其他对象及其格式信息;
•.LNG:文本格式的模型文件,不保存模型中的格式信 息(如字体、颜色、嵌入对象等); •.LDT:LINGO数据文件;
LINGO软件的基本使用方法
• 当前光标 的位置 • 模型窗口(Model Window),用于输入 LINGO优化模型(即 LINGO程序)。
8
• 状态行(最左边显 示“Ready”,表 示 “准备就绪”)
• 当前时间
LINGO 教 程
LINGO的文件类型 •.LG4:LINGO格式的模型文件,保存了模型窗口中所 能够看到的所有文本和其他对象及其格式信息;
LINGO 教 程
问题的模型(可以看出是LP模型 ) 目标函数是所有费用的和 约束条件主要有两个: 1)能力限制: RP( I ) 40, I 1,2,3,4 2)产品数量的平衡方程:
INV ( I ) INV ( I 1) RP( I ) OP( I ) DEM ( I ), I 1,2,3,4
•LINGO中模型以“MODEL:”开始,以“END” 结
18
束。对简单的模型,这两个语句也可以省略。
LINGO 教 程
一个简单的LINGO程序
例 直接用LINGO来解如下二次规划问题:
2 Max 98x1 277x2 x12 0.3x1 x2 2 x2 s.t. x1 x2 100 x1 2 x2 x1 , x2 0 为整数
•LINGO中函数一律需要以“@”开头,其中整型变量 函数(@BIN、@GIN)和上下界限定函数(@FREE、 @SUB、@SLB)与LINDO中的命令类似。而且0/1变 量函数是@BIN函数。
LINGO教程数据输入输出
10
Lingo程序exam0402.LG4 :
MODEL: SETS: MYSET / @FILE(myfile.ldt) / : @FILE(myfile.ldt); ENDSETS MIN = @SUM( MYSET( I):
• LINGO系统与EXCEL文件传递数据旳函数旳一般使用方法是
经过@OLE函数。 • 调用格式:
电子表格文件名
数据旳单元 范围
@OLE(spreadsheet_file [, range_name_list]) • 输入数据 :“属性(或变量)=@OLE(...)” • 输出数据 :“@OLE(...)=属性(或变量)”
LLIINNGGOO 教 程
LINGO软件与外部文件旳接口
1
LLIINNGGOO 教 程
经过文件输入输出数据
• 经过文件输入输出数据能够将LINGO程序和程 序处理旳数据分离开来。
• “程序和数据旳分离”是构造化程序设计、面 对对象编程旳基本要求。
• 实际问题一般需要处理大规模旳实际数据,而 这些数据一般都是在其他应用系统中生成旳, 或者已经存储在其他应用系统中旳某个文件或 数据库中。
LLIINNGGOO 教 程
LINGO与数据库互换数据
• 不同旳数据库有不同旳数据库管理系统(DBMS: DataBase Management System)
• WINDOWS环境下能够用ODBC(Open DataBase Connectivity)进行连接
• LINGO中能够使用函数@ODBC,格式为 :
数据单元定义措施:选择EXCEL旳菜单命令“插入|名称|定义” ,才谈出对话框中输入单元名称
LINGO使用教程(一)
LINGO使⽤教程(⼀)LINGO是⽤来求解线性和⾮线性优化问题的简易⼯具。
LINGO内置了⼀种建⽴最优化模型的语⾔,可以简便地表达⼤规模问题,利⽤LINGO ⾼效的求解器可快速求解并分析结果。
1.LINGO快速⼊门当你在windows下开始运⾏LINGO系统时,会得到类似下⾯的⼀个窗⼝:外层是主框架窗⼝,包含了所有菜单命令和⼯具条,其它所有的窗⼝将被包含在主窗⼝之下。
在主窗⼝内的标题为LINGO Model – LINGO1的窗⼝是LINGO的默认模型窗⼝,建⽴的模型都都要在该窗⼝内编码实现。
下⾯举两个例⼦。
例1.1 如何在LINGO中求解如下的LP问题:在模型窗⼝中输⼊如下代码:min=2*x1+3*x2;x1+x2>=350;x1>=100;2*x1+x2<=600;然后点击⼯具条上的按钮即可。
例1.2 使⽤LINGO软件计算6个发点8个收点的最⼩费⽤运输问题。
产销单位运价如下表。
使⽤LINGO软件,编制程序如下:model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!⽬标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这⾥是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击⼯具条上的按钮即可。
LINGO的命令行命令
以下将按类型列出在LINGO命令行窗口中使用的命令,每条命令后都附有简要的描述说明。
在平台中,从的窗口菜单中选用“Command Window”命令或直接按Ctrl+1可以打开LINGO的命令行窗口,便可以在命令提示符“:”后输入以下命令。
如果需要以下命令的详细描述说明,可以查阅LINGO的帮助。
1.LINGO信息Cat 显示所有命令类型Com 按类型显示所用LINGO命令Help 显示所需命令的简要帮助信息Mem 显示内存变量的信息2.输入(Input)model 以命令行方式输入一个模型take 执行一个文件的命令正本或从磁盘中读取某个模型文件3.显示(Display)look 显示当前模型的内容genl 产生LINGO兼容的模型gen 生成并显示整个模型hide 为模型设置密码保护pause 暂停屏幕输出直至再次使用此命令4.文件输出(File Ouput)div 将模型结果输出到文件svrt 将模型结果输出到屏幕save 将当前模型保存到文件smps 将当前模型保存为MPS文件5.求解模型(Solution)go 求解当前模型solu 显示当前模型的求解结果6.编辑模型(Problem Editing)del 从当前模型中删除指定的某一行或某两行之间(包括这两行)的所有行ext 在当前模型中添加几行alt 用新字符串替换掉某一行中、或某两行之间的所有行中的旧字符串7.退出系统(Quit)quit 退出LINGO系统8.系统参数(System Parameters)page 以“行”为单位设置每页长度ter 以简略方式输出结果ver 以详细方式输出结果wid 以“字符”为单位设置显示和输出宽度set 重新设置默认参数freeze 保存当前参数设置,以备下一次重新启动LINGO系统时还是这样的设置time 显示本次系统的运行时间这里详细说明SET指令。
凡是用户能够控制的LINGO系统参数,SET命令都能够对它进行设置。
LINGO用法
LINGO 操作入门LINGO 是用来求解线性和非线性优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。
当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。
>=和<=可写成>和<一个表达式可写成多行,如 min=2*x1 +3*x2;LINGO WINDOWS 命令文件菜单(File Menu ) 1. 新建(New )从文件菜单中选用“新建”命令、单击“新建”按钮或直接按F2键可以创建一个新的“Model”窗口。
在这个新的“Model”窗口中能够输入所要求解的模型。
2. 打开(Open )从文件菜单中选用“打开”命令、单击“打开”按钮或直接按F3键可以打开一个已经存在的文本文件。
这个文件可能是一个Model 文件。
3. 保存(Save)从文件菜单中选用“保存”命令、单击“保存”按钮或直接按F4键用来保存当前活动窗口(最前台的窗口)中的模型结果、命令序列等保存为文件。
4. 另存为...(Save As ...) 从文件菜单中选用“另存为...”命令或按F5键可以将当前活动窗口中的内容保存为文本文件,其文件名为你在“另存为...”对话框中输入的文件名。
LINGO软件的基本使用方法
LINGO软件的求解过程
1. 确定常数
2. 识别类型
LINGO预处理程序
LP QP NLP IP 全局优化(选) 分枝定界管理程序
ILP
线性优化求解程序 1. 单纯形算法 2. 内点算法(选)
IQP
INLP
非线性优化求解程序 1、顺序线性规划法(SLP) 2、广义既约梯度法(GRG) (选) 3、多点搜索(Multistart) (选)
INV ( I ) INV ( I 1) RP( I ) OP( I ) DEM ( I ), I 1,2,3,4
INV (0) 10
MIN
I 1, 2,3, 4
{400RP(I ) 450OP(I ) 20INV (I )}
加上变量的非负约束
注:LINDO中没有数组,只能对每个季度分别定义变量, 如正常产量就要有RP1,RP2,RP3,RP4 4个变量等。 写起来就比较麻烦,尤其是更多(如1000个季度)的时候。 记四个季度组成的集合QUARTERS={1,2,3,4}, 它们就是上面数组的下标集合,而数组DEM,RP,OP, INV 对集合QUARTERS中的每个元素1,2,3,4分别对应于 一个值。LINGO正是充分利用了这种数组及其下标的关 系,引入了“集合”及其“属性”的概念,把 QUARTERS={1,2,3,4}称为集合,把DEM,RP,OP, INV称为该集合的属性(即定义在该集合上的属性)。
LINGO中定义集合及其属性
LP模型在LINGO中的一个典型输入方式
以“MODEL:”开 始
集合定义部分从 (“SETS:”到 “ENDSETS” ): 定义集合及其属性 给出优化目标 和约束 数据输入部分从 (“DATA:”到 “ENDDATA” )
LINGO使用指南
LINGO 使用指南LINGO 是用来求解线性和非线性优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。
§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min=2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。
例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如下表。
使用model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。
lingo中文手册
§1 LINGO 快速入门LINGO 是用来求解线性和非线性优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。
当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。
例1.2使用LINGO软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如下表。
model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。
lingo打印数据结果
lingo打印数据结果
通过文件输入输出数据可以将LINGO程序和程序处理的数据分离开来。
一方面,“程序和数据的分离”是结构化程序设计、面向对象编程的基本要求。
另一方面,实际问题通常需要处理大规模的实际数据,而这些数据通常都是在其它应用系统中生成的,或者已经存放在其它应用系统中的某个文件或数据库中。
1.通过WINDOWS剪贴板传递数据
(1)粘贴命令(Edit Paste)
(2)特殊粘贴命令(Edit Paste Special)
2.通过文本文件传递数据
(1)通过文本文件输入数据@FILE(filename)
(2)通过文本文件输出数据@TEXT(['filename'])
3.通过电子表格文件传递数据
(1)在LINGO中使用电子表格文件的数据
(2)将LINGO模型嵌入、链接到电子表格文件中。
LINGO教程
LINGO 是用来求解线性和非线性优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。
§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。
例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。
LINGO教程
LINGO 是用来求解线性和非线性优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。
§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。
例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。
lingo教程word版
LINGO是用来求解线性和非线性优化问题的简易工具。
LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。
§1 LINGO快速入门当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1如何在LINGO中求解如下的LP问题:在模型窗口中输入如下代码:min=2*x1+3*x2;x1+x2>=350;x1>=100;2*x1+x2<=600;然后点击工具条上的按钮即可。
例1.2使用LINGO软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LINGO WINDOWS命令5.1 文件菜单(File Menu)1.新建(New)从文件菜单中选用“新建”命令、单击“新建”按钮或直接按F2键可以创建一个新的“Model”窗口。
在这个新的“Model”窗口中能够输入所要求解的模型。
2.打开(Open)从文件菜单中选用“打开”命令、单击“打开”按钮或直接按F3键可以打开一个已经存在的文本文件。
这个文件可能是一个Model文件。
3.保存(Save)从文件菜单中选用“保存”命令、单击“保存”按钮或直接按F4键用来保存当前活动窗口(最前台的窗口)中的模型结果、命令序列等保存为文件。
4.另存为...(Save As...)从文件菜单中选用“另存为...”命令或按F5键可以将当前活动窗口中的内容保存为文本文件,其文件名为你在“另存为...”对话框中输入的文件名。
利用这种方法你可以将任何窗口的内容如模型、求解结果或命令保存为文件。
5.关闭(Close)在文件菜单中选用“关闭”(Close)命令或按F6键将关闭当前活动窗口。
如果这个窗口是新建窗口或已经改变了当前文件的内容,LINGO系统将会提示是否想要保存改变后的内容。
6.打印(Print)在文件菜单中选用“打印”(Print)命令、单击“打印”按钮或直接按F7键可以将当前活动窗口中的内容发送到打印机。
7.打印设置(Print Setup...)在文件菜单中选用“打印设置...”命令或直接按F8键可以将文件输出到指定的打印机。
8.打印预览(Print Preview)在文件菜单中选用“打印预览...”命令或直接按Shift+F8键可以进行打印预览。
9.输出到日志文件(Log Output...)从文件菜单中选用“Log Output...”命令或按F9键打开一个对话框,用于生成一个日志文件,它存储接下来在“命令窗口”中输入的所有命令。
10.提交LINGO命令脚本文件(Take Commands...)从文件菜单中选用“Take Commands...”命令或直接按F11键就可以将LINGO命令脚本(command script)文件提交给系统进程来运行。
11.引入LINGO文件(Import Lingo File...)从文件菜单中选用“Import Lingo File...”命令或直接按F12键可以打开一个LINGO 格式模型的文件,然后LINGO系统会尽可能把模型转化为LINGO语法允许的程序。
12.退出(Exit)从文件菜单中选用“Exit”命令或直接按F10键可以退出LINGO系统。
5.2 编辑菜单(Edit Menu)1.恢复(Undo)从编辑菜单中选用“恢复”(Undo)命令或按Ctrl+Z组合键,将撤销上次操作、恢复至其前的状态。
2.剪切(Cut)从编辑菜单中选用“剪切”(Cut)命令或按Ctrl+X组合键可以将当前选中的内容剪切至剪贴板中。
3.复制(Copy)从编辑菜单中选用“复制”(Copy)命令、单击“复制”按钮或按Ctrl+C组合键可以将当前选中的内容复制到剪贴板中。
4.粘贴(Paste)从编辑菜单中选用“粘贴”(Paste)命令、单击“粘贴”按钮或按Ctrl+V组合键可以将粘贴板中的当前内容复制到当前插入点的位置。
5.粘贴特定..(Paste Special。
)与上面的命令不同,它可以用于剪贴板中的内容不是文本的情形。
6.全选(Select All)从编辑菜单中选用“Select All”命令或按Ctrl+A组合键可选定当前窗口中的所有内容。
7.匹配小括号(Match Parenthesis)从编辑菜单中选用“Match Parenthesis”命令、单击“Match Parenthesis”按钮或按Ctrl+P 组合键可以为当前选中的开括号查找匹配的闭括号。
8.粘贴函数(Paste Function)从编辑菜单中选用“Paste Function”命令可以将LINGO的内部函数粘贴到当前插入点。
5.3 LINGO菜单1.求解模型(Slove)从LINGO菜单中选用“求解”命令、单击“Slove”按钮或按Ctrl+S组合键可以将当前模型送入内存求解。
2.求解结果...(Solution...)从LINGO菜单中选用“Solution...”命令、单击“Solution...”按钮或直接按Ctrl+O 组合键可以打开求解结果的对话框。
这里可以指定查看当前内存中求解结果的那些内容。
3.查看...(Look...)从LINGO菜单中选用“Look...”命令或直接按Ctrl+L组合键可以查看全部的或选中的模型文本内容。
4.灵敏性分析(Range,Ctrl+R)用该命令产生当前模型的灵敏性分析报告:研究当目标函数的费用系数和约束右端项在什么范围(此时假定其它系数不变)时,最优基保持不变。
灵敏性分析是在求解模型时作出的,因此在求解模型时灵敏性分析是激活状态,但是默认是不激活的。
为了激活灵敏性分析,运行LINGO|Options…,选择General Solver Tab,在Dual Computations列表框中,选择Prices and Ranges选项。
灵敏性分析耗费相当多的求解时间,因此当速度很关键时,就没有必要激活它。
下面我们看一个简单的具体例子。
例5.1某家具公司制造书桌、餐桌和椅子,所用的资源有三种:木料、木工和漆工。
生产数据如下表所示:若要求桌子的生产量不超过5件,如何安排三种产品的生产可使利润最大?用DESKS、TABLES和CHAIRS分别表示三种产品的生产量,建立LP模型。
max=60*desks+30*tables+20*chairs;8*desks+6*tables+chairs<=48;4*desks+2*tables+1.5*chairs<=20;2*desks+1.5*tables+.5*chairs<=8;tables<=5;求解这个模型,并激活灵敏性分析。
这时,查看报告窗口(Reports Window),可以看到如下结果。
Global optimal solution found at iteration: 3Objective value: 280.0000Variable Value Reduced CostDESKS 2.000000 0.000000TABLES 0.000000 5.000000CHAIRS 8.000000 0.000000Row Slack or Surplus Dual Price1 280.0000 1.0000002 24.00000 0.0000003 0.000000 10.000004 0.000000 10.000005 5.000000 0.000000“Global optimal solution found at iteration: 3”表示3次迭代后得到全局最优解。
“Objective value:280.0000”表示最优目标值为280。
“Value”给出最优解中各变量的值:造2个书桌(desks), 0个餐桌(tables), 8个椅子(chairs)。
所以desks、chairs是基变量(非0),tables是非基变量(0)。
“Slack or Surplus”给出松驰变量的值:第1行松驰变量=280(模型第一行表示目标函数,所以第二行对应第一个约束)第2行松驰变量=24第3行松驰变量=0第4行松驰变量=0第5行松驰变量=5“Reduced Cost”列出最优单纯形表中判别数所在行的变量的系数,表示当变量有微小变动时, 目标函数的变化率。
其中基变量的reduced cost值应为0,对于非基变量X j, 相应的reduced cost值表示当某个变量X j 增加一个单位时目标函数减少的量( max型问题)。
本例中:变量tables对应的reduced cost值为5,表示当非基变量tables的值从0变为1时(此时假定其他非基变量保持不变,但为了满足约束条件,基变量显然会发生变化),最优的目标函数值= 280 - 5 = 275。
“DUAL PRICE”(对偶价格)表示当对应约束有微小变动时, 目标函数的变化率。
输出结果中对应于每一个约束有一个对偶价格。
若其数值为p,表示对应约束中不等式右端项若增加1 个单位,目标函数将增加p个单位(max型问题)。
显然,如果在最优解处约束正好取等号(也就是“紧约束”,也称为有效约束或起作用约束),对偶价格值才可能不是0。
本例中:第3、4行是紧约束,对应的对偶价格值为10,表示当紧约束3) 4 DESKS + 2 TABLES + 1.5 CHAIRS <= 20变为3) 4 DESKS + 2 TABLES + 1.5 CHAIRS <= 21时,目标函数值= 280 +10 = 290。
对第4行也类似。
对于非紧约束(如本例中第2、5行是非紧约束),DUAL PRICE 的值为0, 表示对应约束中不等式右端项的微小扰动不影响目标函数。
有时, 通过分析DUAL PRICE, 也可对产生不可行问题的原因有所了解。
灵敏度分析的结果是Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseDESKS 60.00000 0.0 0.0TABLES 30.00000 0.0 0.0CHAIRS 20.00000 0.0 0.0Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 48.00000 0.0 0.03 20.00000 0.0 0.04 8.000000 0.0 0.05 5.000000 0.0 0.0目标函数中DESKS变量原来的费用系数为60,允许增加(Allowable Increase)=4、允许减少(Allowable Decrease)=2,说明当它在[60-4,60+20] = [56,80]范围变化时,最优基保持不变。
对TABLES、CHAIRS变量,可以类似解释。
由于此时约束没有变化(只是目标函数中某个费用系数发生变化),所以最优基保持不变的意思也就是最优解不变(当然,由于目标函数中费用系数发生了变化,所以最优值会变化)。
第2行约束中右端项(Right Hand Side,简写为RHS)原来为48,当它在[48-24,48+∞] = [24,∞]范围变化时,最优基保持不变。