2015朝阳区中考数学二模
2015年北京市朝阳区初三毕业考数学试题及答案
北京市朝阳区2015年初中毕业考试数学试卷 2015.4一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.请用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.2的绝对值是A .2B .-2C .21 D .21- 2.数据显示,2014年末北京市常住人口为2151.6万人,将2151.6用科学记数法表示为A .0.21516×103B .0.21516×104C .2.1516×103D .2.1516×104 3. 函数3-=x y 中,自变量x 的取值范围是A .3≠xB .x ≥3C .x >3D .x >-34. 如图,在△ABC 中,∠C=90°,直线l 与AC 、BC 分别相交于点D 、E ,则∠1+∠2的度数为A .45°B .60°C .90°D .120°5. 小翔同学在参加校运动会前进行了刻苦训练,如果对他10次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道他这10次成绩的A .众数B .中位数C .平均数D .方差6. 图中几何体的主视图是7.从单词mathematics (数学)所包含的字母中,随机选取一个字母,则这个字母是“m ”的概率是A . 51B .101C .112D . 111 8.如图,AB 是⊙O 的切线,切点为A ,OB 交⊙O 于点C ,点D若∠B =40°,则∠D 等于A .50°B .40°C .25°D .20°9.将抛物线y =(x+1)2+2向右平移2个单位后所得到的抛物线为A .2)1-(2+=x yB .2)3(2++=x yC .4)1(2++=x yD .4)1-(2+=x y 10.若关于x 的一元二次方程mx 2+ (2m -1)x +m = 0有两个不相等的实数根,则m 的取值 范围是B AA .m >-41B .m >-41且m ≠0 C .m <41 D .m <41且m ≠0第Ⅱ卷 (共70分)二、填空题 (共6道小题,每小题3分,共18分)11. 计算:23a a ⋅= .12.分解因式:x 2-25 = .13. 若反比例函数的图象经过点(2,6),则该反比例函数的表达式为 .14. 如图,利用标杆BE 测量建筑物的高度,如果标杆BE 高1.2m ,测得AB =1.4m ,BC =12.6m ,则楼高CD = m .15.对于实数a 、b ,定义运算“☆”:a ☆b =22()()a ab a b b ab a b ⎧+≥⎨+⎩<,例如4☆2,因为4>2,所以 4☆2=2442⨯+=24.若点A (1,m ),B (2,n )都在一次函数12+=x y 的图象上, 则m ☆n= 16.如图,将半径为6的圆形纸片,按下列顺序折叠,若和都经过圆心O ,则图中 阴影部分的面积是 (结果保留π).三、解答题(共10道小题,17-24题每小题5分,25-26题每小题6分,共52 分)17.(本小题5分)计算:011()4sin602-+︒. 18.(本小题5分)已知:如图,AB =DC ,∠ABC =∠DCB .求证:∠A =∠D .19.(本小题5分)解不等式5x -1≤5+3x ,并把它的解集在下面的数轴上表示出来.20.(本小题5分)先化简,再求值:2113()369x x x x -÷+++,其中4x =-. 21.(本小题5分)某校社团为了解本校学生在各项体育运动中对足球的喜欢程度,该社团随机调查了部分学生并将相关数据绘制成如下的两幅不完整的统计图.对足球喜欢程度的条形统计图 对足球喜欢程度的扇形统计图请你根据以上统计图提供的信息,回答下列问题:(1)本次随机调查了多少名学生?(2)补全图中的条形统计图.(3)若该校共有400名学生,请你估计该校有多少名学生“非常喜欢”足球.22. (本小题5分)如图,在平面直角坐标系xOy 中,正方形OABC 的顶点A 、C 分别在x 轴、y 轴上,OA =3.(1)求直线OB 的表达式;(2)若直线y=x+b 与该正方形有两个公共点,请直接写出....b 的取值范围.23.列方程或方程组解应用题(本小题5分)在学校组织的参观花卉基地的社会实践活动中,小何同学了解到该基地中甲、乙 两家种植户种植玫瑰花、薰衣草的种植面积与卖这两种花总收入的情况(见下表):(说明:甲、乙种植的同种花卉每亩卖花的平均收入相等)试求玫瑰花、薰衣草每亩卖花的平均收入各是多少?24.(本小题5分)如图,在矩形ABCD 中,点E 、F 分别在边AB 、CD 上,AE =CF .(1)求证:DE =BF ;(2)若AD=4,AB=8,AE=3,求证:四边形BEDF 是菱形.25.(本小题6分)如图,以△ABC 的一边AB 为直径的⊙O 经过BC 边的中点D ,过点D 作DE ⊥AC 于点E .(1)求证:DE 是⊙O 的切线;(2)若AE =3DE ,求tan B 的值.26. (本小题6分)抛物线32--=mx x y 与x 轴的两个交点分别为A (-1,0)、B ,与y 轴的交点为C .(1)求抛物线的顶点D 的坐标;(2)求证:△BCD 是直角三角形;(3)在该抛物线上是否存在点P ,使得△ABP 的面积是△BCD 的面积的103倍,若存在,直接写出....P 点坐标;若不存在,请说明理由. 草稿纸。
2015年北京中考数学二模各区29题汇总(含答案)
2015北京中考数学二模各区29题(含答案)昌平29. 在平面直角坐标系xOy 中,给出如下定义:形如()()2y a x m a x m =-+-与()()2y a x m a x m =---的两个二次函数的图象叫做“兄弟抛物线”. (1)试写出一对兄弟抛物线的解析式 与 ; (2)判断二次函数2y x x =-与232y x x =-+的图象是否为兄弟抛物线,如果是,求出a 与m 的值,如果不是,请说明理由;(3)若一对兄弟抛物线各自与x 轴的两个交点和其顶点构成直角三角形,其中一个抛物线的对称轴为直线2x =且开口向上,请直接写出这对兄弟抛物线的解析式.备用图朝阳29.如图,顶点为A (-4,4)的二次函数图象经过原点(0,0),点P 在该图象上,OP 交其对称轴l 于点M ,点M 、N 关于点A 对称,连接PN ,ON .(1)求该二次函数的表达式;(2)若点P 的坐标是(-6,3),求△OPN 的面积; (3)当点P 在对称轴l 左侧的二次函数图象上运动时,请解答下面问题:① 求证:∠PNM =∠ONM ;② 若△OPN 为直角三角形,请直接写出所有符合 条件的点P 的坐标.丰台29.对某一个函数给出如下定义:如果存在实数M ,对于任意的函数值y ,都满足y M ≤,那么称这个函数是有上界函数,在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,图中的函数是有上界函数,其上确界是2. (1)分别判断函数1y x=-(0x <)和23y x =-(2x <) 是不是有上界函数?如果是有上界函数,求其上确界; (2)如果函数2y x =-+ (,a x b b a ≤≤>)的上确界是b ,且这个函数的最小值不超过21a +,求a 的取值范围;(3)如果函数222y x ax =-+(15x ≤≤)是以3为上确界的 有上界函数,求实数a 的值.怀柔29. 阅读理解:学习了三角形全等的判定方法:“SAS ”,“ASA ”,“AAS ”,“SSS ”和直角三角形全等的判定方法“HL ”后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”即“SSA ”的情形进行研究.我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠A =∠D . 初步探究:如图1,已知AC=DF, ∠A =∠D ,过C 作CH ⊥射线AM 于点H ,对△ABC 的CB 边进行分类,可分为“CB<CH ,CB=CH ,CH<CB<CA ,”三种情况进行探究.深入探究: 第一种情况,当BC<CH 时,不能构成△ABC 和△DEF .第二种情况,(1)如图2,当BC=CH 时,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠A =∠D ,根据 ,可以知道Rt △ABC ≌Rt △DEF .HNANA第三种情况,(2)当CH<BC<CA 时,△ABC 和△DEF 不一定全等.请你用尺规在图1的两个图形中分别补全△ABC 和△DEF,使△DEF 和△ABC 不全等(表明字母,不写作法,保留作图痕迹).(3)从上述三种情况发现,只有当BC=CH 时,才一定能使△ABC ≌△DEF . 除了上述三种情况外,BC 边还可以满足什么条件,也一定能使△ABC ≌△DEF ?写出结论,并利用备用图证明.石景山29.对于平面直角坐标系xOy 中的点(),P m n ,定义一种变换:作点(),P m n 关于y 轴对称的点'P ,再将'P 向左平移()0k k >个单位得到点'k P ,'k P 叫做对点(),P m n 的k 阶“ℜ”变换.(1)求()3,2P 的3阶“ℜ”变换后3'P 的坐标;(2)若直线33y x =-与x 轴,y 轴分别交于,A B 两点,点A 的2阶“ℜ”变换后得到点C ,求过,,A B C 三点的抛物线M 的解析式; (3)在(2)的条件下,抛物线M 的对称轴与x 轴交于D ,若在抛物线M 对称轴上存在一点E ,使得以,,E D B 为顶点的三角形是等腰三角形,求点E 的坐标.房山29.如图1,若抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上(点A 与点B 不重合),我们把这样的两抛物线L 1、L 2互称为“友好”抛物线. (1)一条抛物线的“友好”抛物线有_______条.A . 1 B. 2 C. 3 D. 无数 (2)如图2,已知抛物线L 3:2284y x x =-+与y 轴交于点C ,点C 关于该抛物线对称轴的对称点为D ,请求出以点D 为顶点的L 3的“友好”抛物线L 4的表达式;(3)若抛物线21()y a x m n =-+的“友好”抛物线的解析式为22()y a x h k =-+,请直接写出1a 与2a 的关系式为 .ANH图2图1平谷29.定义:如图1,平面上两条直线AB 、CD 相交于点O ,对于平面内任意一点M ,点M 到直线AB 、CD 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”.根据上述定义,“距离坐标”为(0,0)点有1个,即点O . (1)“距离坐标”为(1,0)点有 个;(2)如图2,若点M 在过点O 且与直线CD 垂直的直线l 上时,点M 的“距离坐标”为(p ,q ),且∠BOD =120°.请画出图形,并直接写出p ,q 的关系式; (3)如图3,点M 的“距离坐标”为(1,且∠AOB =30°,求OM 的长.顺义29.如图,在平面直角坐标系xOy 中,抛物线223y x bx c =-++与x 轴交于A ,B 两点,其中B (6,0),与y 轴交于点C (0,8),点P 是x 轴上方的抛物线上一动点(不与点C 重合). (1)求抛物线的表达式;(2)过点P 作PD ⊥x 轴于点D ,交直线BC 于点E ,点E 关于直线PC 的对称点为'E ,若点'E 落在y 轴上(不与点C 重合),请判断以P ,C ,E ,'E 为顶点的四边形的形状, 并说明理由; (3)在(2)的条件下直接写出点P 的坐标.图1O D C B A 图2 图3备用图西城29.对于平面直角坐标系xOy 中的点P 和图形G ,给出如下定义:在图形G 上若存在两点M ,N ,使△PMN 为正三角形,则称图形G 为点P 的τ型线,点P 为图形G 的τ型点, △PMN 为图形G 关于点P 的τ型三角形.(1)如图1,已知点(0,A ,(3,0)B ,以原点O 为圆心的⊙O 半径为1.在A ,B两点中,⊙O 的τ型点是____,画出并回答⊙O 关于该τ型点的τ型三角形;(画 出一个即可)(2)如图2,已知点(0,2)E ,点(,0)F m (其中m >0).若线段EF 为原点O 的τ型线,且线段EF 关于原点O 的τ,求m 的值; (3)若(0,2)H -是抛物线2y x n =+的τ型点,直接写出n 的取值范围.东城29.定义:如果一条直线能够将一个封闭图形的周长和面积平分,那么就把这条直线称作这个封闭图形的等分线。
吉林省长市朝阳区九年级数学下学期学业考试第二次模拟
吉林省长春市朝阳区2015届九年级数学下学期学业考试第二次模拟试题模拟试题(二)·数学参考答案 阅卷说明:1.评卷采分最小单位为1分,每步标出的是累计分.2.考生若用本“参考答案”以外的解(证)法,可参照本“参考答案”的相应步骤给分. 一、选择题(每小题3分,共24分)1.A 2.B 3.B 4.C 5.D 6.B 7.D 8.C 二、填空题(每小题3分,共18分)9.52a 10.5x = 11.2k > 12.7 13.23π 14.2- 三、解答题(本大题10小题,共78分) 15.解:原式21(1)(1)(1)(1)a a a a a a -=-+-+- (2分)2(1)(1)(1)a a a a --=+-11a =-. (4分) 当3a =-时,原式11314==---. (6分)16.解:如图.(4分)∴P (摸出的两张牌的牌面数字之和是4)3193==. (6分) 评分说明:画树状图不写出结果不扣分.17.解:设购买甲种花卉x盆,乙种花卉y 盆. (1分)由题意,得300,24308400.x y x y +=⎧⎨+=⎩(4分)解得100,200.x y =⎧⎨=⎩ (6分)答:购买甲种花卉100盆,乙种花卉200盆. 18.证明:如图,∵BE CD P ,CE AB P ,∴四边形BDCE 是平行四边形. (2分) ∵90ACB ∠=︒,CD 是AB 边上的中线, ∴CD BD =.(3分) ∴平行四边形BDCE 是菱形. (7分) 19.解:(1)30 0.05 如图. (3分)(2)4.6 4.9x ≤<. (5分)(3)该校七年级学生中视力在4.9以上的学生的人数约有:80035%280⨯=(人) (7分) 20.解:如图,由题意,得9m EF BC ==,17,45.AEF BEF ︒∠=∠=︒ (2分)(第20题)2 3 1 2 3 3 1 2 1 3 12 第一组 第二组 结果 234 3 45 4 56 或 (第19题) (第18题) ED CBARt tan 45BFBEF EF ︒=在△中,, ∴9m BF EF ==. (4分)Rt tan17AFAEF EF︒=在△中,, ∴90.31 2.79m AF =⨯=. (6分) ∴11.7911.8m AB AF BF =+=≈. (7分) 答:旗杆AB 的高度约为11.8m . 评分说明:(1)计算过程和结果中写成“=”或“≈”均不扣分. (2)计算过程加单位不扣分,计算结果不带单位不扣分. (3)不答不扣分. 21.解:(1)20202447.530L a =+÷⨯-⨯=; (2分) (2)设y 关于x 的函数解析式为y kx b =+.由题意,得220,630.k b k b +=⎧⎨+=⎩(4分)解得5,215.k b ⎧=⎪⎨⎪=⎩ (5分)当26x ≤≤时,y 与x 的函数关系式是5152y x =+. (6分) (3)如图. (8分)评分说明:第(3)问所画图象与x 轴交点不标数字8扣1分,画的不准确不给分.22.探究:如图①,过点P 作,PE OA PF OB ⊥⊥,垂足为,E F .则90PEM PFN ∠=∠=︒. (1分) ∵OP 平分AOB ∠,∴PE PF =. (2分)∵90MPN ∠=︒,90AOB ∠=︒,∴90EPF ∠=︒,(3分) ∴90,90EPM MPF FPN MPF ∠+∠=︒∠+∠=︒,∴EPM FPN ∠=∠, (4分) ∴PEM ∆≌PFN ∆, (5分) ∴PM PN =. (6分)应用:5 (9分) 解答如下:如图②,过点P 作,PG AB ⊥,垂足点G .∵,PE AC PF BC ⊥⊥,且,BAC ABC ∠∠的外角平分线交于点P , ∴,PE PG PF PG ==,∵PG PG =,∴Rt PEA ∆≌Rt PGA ∆,Rt PGB ∆≌Rt PFB ∆, ∴,AE AG BF BG ==,∵90ACB ∠=︒,且3,4BC AC ==, ∴5AB ==,∴5AE BF +=. 23.解:(1)1m -- (1分)FE A MO PN B (图①)(图②)G B CF PE A(2)抛物线21y x mx m =---的对称轴是2mx =. (2分) 12mAE =+. ∵点E 是OA 中点,∴12m AE =+=12.∴1m =-. (3分) ∴抛物线对应的函数关系式为2y x x =+. (4分) (3)①当0m >时,如图①,∵抛物线21y x mx m =---的对称轴是2m x =, ∴CD m =,12mAE =+. ∵四边形ACDE 是平行四边形,∴12mm =+. (5分) ∴2m =②当20m -<<时,如图②,CD m =-,12mAE =+. ∵四边形ADCE 是平行四边形,∴12mm -=+. (7分)∴23m =- (8分)(4)0m = (10分)解题过程如下:①当1m >-时,如图③,12ACE S AE OC ∆=g 1(1)(1)22mm =++2131442m m =-+.∴213114422m m ++=. 解得120,3m m ==-(不合题意,舍去). ∴0m =.②当21m -<<-时,如图④,12ACE S AE OC ∆=g 1(1)(1)22mm =+-- 2131442m m =---.∴213114422m m ---=.即2340m m ++=.2491670b ac -=-=-<.∴此方程没有实数根.(图①) (图②)(图③)综上所述,当0m =时,ACE ∆的面积为12. 24.解:(1)如图①,∵PQ AC P ,∴BPQ ∆∽BAC ∆. (1分)∴PQ BP AC BA =.∴65PQ t=.∴65PQ t =.(2分) (2)∵在菱形ABCD 中,∴AC BD ⊥.∴4BO ==.①如图②,当05t <≤时, (3分) ∵cos cos APN ABO ∠=∠,∴45PN BO PA AB ==. ∴2t =. (4分) ②如图③,当510t <≤时, (5分)6(10)5PQ t =-.∵cos cos APN ADO ∠=∠,∴45PN DO PA AD ==. ∴8t =. (6分)(3)①如图④,当02t <≤时,222636()525S PQ t t ===. (8分) ②如图⑤,当25t <<时,设,PN QM 与AC 分别交于点,G H .则4(5)5PG t =-.∴2642424(5)55255S PQ PG t t t t ==-=-+g g . (10分)(4)2047t <<或5067t <<. (12分) 如图⑥、⑦.评分说明:第(2)、(3)问的取值范围带不带等号均不扣分;第(4)问有1到3处错误扣1分.OA BC D P QM N(图①)(图②) (图③) AB CD P Q M NOAB C D P Q M N O (图④) (图⑤)O AB CDP QMNH G A BC DP QMNO(图⑥) (图⑦) A B C D PQ M N O AB CD P Q M N O。
2015朝阳中考二模
2015北京朝阳初三二模单项选择1.I have a sister. _____ name is Lucy.A.HerB.HisC.ItsD.Your2.My bike was broken on the way, _____ I was late for school.A.butB.forC.orD.so3.I think Lesson Five is _____ of the three lessons.A.difficultB.more difficultC.most difficultD.the most difficult4.I knew _____ about the car accident I because I was in the library at that time.A.somethingB.anythingC.nothingD.everything5.--_____did you pay for the CD?--Only 10 dollars.A.How manyB.How muchC.How longD.How often6.I often _____ my grandparents at weekends.A.visitB.visitedC.will visitD.have visited7.Mary_____ her homework when her mother got home yesterday.A.doesB.didC.is doingD.was doing8.–What an old college!--Yes, it _____ 100 years ago.A.builtB.buildsC.was builtD.is built9.–What did the teacher say to you just now?--She asked _____.A.where did I learn JapaneseB.where I learned JapaneseC.where do I learn JapaneseD.where I learn Japanese完形填空10.Finally I got my driving license(驾照) last summer. Mom decided to go with me to take my first trip around an empty parking lot. I knew my mother was an excellent 1 . she had driven over 20 years without getting one ticket. However, I found that she was not the best teacher for me. It wasn’t that she shouted, or told me that I was doing poorly. Her “helpful instructions ” 2 managed to make me more nervous.Since I could no longer practice with her, the job was 3 in the hands of my father. The idea of learning from Dad was not so 4 . I loved him dearly, but I just did not see Dad as someone I could be comfortable learning from. He almost never talked. We shared a typical father-daughter relationship. He’d ask how school was, and I’d say it was fine. Unluckily, that was the most of our 5 . Spendingseveral hours alone with someone who might as well have been a stranger reallyfrightened me.As we got into the car that first time, I was not surprised at what happened. Dadand I drove around, saying almost nothing, except for a few instructions on how toturn. As my lessons went on, however, things began to 6 . dad would turn theradio 7 so I could fully enjoy his favorite music. Then he actuallybegan 8 . I was soon hearing about past failed dates, “basic body” gym class,and other stories from his past, including some of his first meeting with Mom.I thought why Dad was telling me so much in the car. In all the years that Ihad 9 why my father never spoke that much, I had never stopped to consider thatit was because I had never stopped to listen. Homework, friends, and even TV had allcalled my away from him, and I never thought my 10 father had anything tosay.Since I began driving with him, my driving skill has greatly increased. Moreimportant is that I got to know my father more and more. Just living wit h him wasn’tenough--- it took driving with him for me to get to know someone who was amystery(神秘).1. A. doctorB. workerC. writerD. driver2. A. everB. onlyC. stillD. yet3. A. droppedB. returnedC. placedD. started4. A. excitingB. surprisingC. movingD. hurting5. A. instructionsB. conversationsC. introductionsD. competitions6. A. workB. appearC. changeD. continue7. A. overB. upC. offD. down8. A. talkingB. singingC. listeningD. thinking9. A. foundB. expectedC. wonderedD. understood10. A. understoodB. proudC. honestD. quiet阅读理解11.ABike Rentals(租赁)Zoo StationWe are directly at the Zoo train station, facing the parking area. You’Places 口) opposite the Zoo entrance. AlexanderplatzWe’re right under the TV tower. If you’re facing the entrance of the TOpen Hours 9:30—18:00Rental Prices 1/2 Day$7 One Day$12 2nd Day$10Please call 650 – 968 – 3575 for bike rentals.(1)Where is Alexnderrplatz?A.Near the Zoo entrance.B.Under the TV tower.C.In the parking area.D.At the train station.(2)When can we rent a bike?A.At 6:30B.At 8:00C.At 14:00D.At 21:00(3)How much is it if you keep the bike for one day?A.$7B.$10$12D.$2212.BPlaying video games has become a real job now. Players can get a lot of money. They complete, watched by thousands of fans in arenas(竞技场),with millions more following online.40 years ago the first known competition (playing Spacewar at the US’s Standford University) offered a magazine at first prize. In 2014 the world championship(冠军赛) for Dota 2 had the prize ofalmost 1millionand10,000fanswatchedlivesasChineseteamwonthefirstprize. Last yearalsosawthefirste−sportsarenasopenintheUSanda15,000−seatere−sportsstadiu m(体育场)inChina,thee−TVsportsreportbysportsnetworkESPNandthe450, 000 worth e-sports scholarship(奖学金) offered by Chicago’s Robert Morris University.If you’re over 30, you probably don’t, directly, unless you happen to be a fanatical(狂热的)player of the most popular e-sports games. But your children or grandchildren do. They know the players by their gaming handles (用户名) and hope to follow their heroes into a gaming world.(1)What has playing video games become now?A.A jobB.A sportC.A hobbyD.A competition(2)When did the Chinese team win the first prize?A.40 years agoB.30 years agoC.In 2014In 2015(3)What did Chicago’s Robert Morris University offer?A.The first e-sports arenas.B.An e-sports stadium.C.The e-TV reportD.An e-sports scholarship.(4)Who likes e-sports best, according to the passage?A.Newly-born babiesB.Young childrenC.Middle-aged peopleD.Old people13.CThe most interesting thing to see in Malaysia is the ever-increasing number of festivals held around the country. Make up of traditional cultural celebrations, religious(宗教) holidays and modern sporting or cultural events, Malaysia’s festivals mean there’s alw ays a part to be found.More traditional events, such as World Kite Festival, the Magic of the Night and the Lantern Festival – to name just a few --- all appear in many calendars around the nation. Traditional religious celebrations, such as Chinese New Year and Christmas, are also popular in Malaysia and are celebrated across different cultures and backgrounds.The greatest event of the year’s calendar for any food lover will be the Malaysia Gourmet Festival, held through chosen hotels in the capital city of Kuala Lumpur.One of the most popular of these new addition is the Malaysia Year End Sale, which runs from November through to early January. All around the nation there’re cheaper sales.When it comes to the celebrations, Malaysians are some of the most generous(慷慨的) people in the world. During many of the year’s important events, Malaysians will open their homes to friends, families and strangers (including tourists) in a tradition known as “Rumah Terbuka”or “Open House”. Atte nding an Open House is a great opportunity to join the Malaysian, make friends and enjoy delicious local food. The government or local groups will also sometimes offer an Open House in a larger place, such as a big hall. Everyone is welcome to take part in such events, which have helped create a positive air.2015 has been decided to be the Year of Festivals in Malaysia --- so there’s never been a better time to visit Malaysia than now. Just turn the page to see some of the important events taking place over the next 12 months. And for more information on traveling to Malaysia, please visit www. Tourism. Gov. my.(1)What kind of festival is World Kite Festival in Malaysia?A.A traditional eventB.A religious holidayC.A sporting eventD.A cultural celebration(2)Which of the following is the greatest event for food lovers?A.The Lantern FestivalB.The Malaysia Year End SaleC.The Magic of the NightD.The Malaysia Gourmet Festival(3)The underlined part “Ope n House” in the passage means “_____”A.leaving one’s room door openB.keeping a shop open day and nightC.letting visitors stay at one’s homeD.offering visitors free hotel rooms(4)What is the writer’s purpose in the passage?A.To encourage us to visit Malaysia.B.To report some interesting festival.C.To share his own experience.D.To introduce a foreign country.14.DWhen you first step out into that big world, it can be a little worrying, but as time goes by and you get into the new environment, you very quickly begin to love it because every traveler learns certain lessons, lessons about themselves, about travel, and about the world in general.You might have thought you’d have trouble with the language or that you’re terrible with directions, or that you’re shy around new people, or that you can’t deal with some problems, but once you throw yourself to the deep end and have to survive(生存) on your own in the world, you’ll come to know you’re far better at these things than you ever realize.Every time I go camping or stay in a poor hotel or even eat street food, the feeling is the same one that first day: sick. I can’t get clean. There are people making noise in my room. This food is going to make me ill. But after about three days of anything --- any level of discomfort --- you just get used to it. And then it becomes fun.Couldn’t find an ywhere to have breakfast this morning? No worries. Stayed up all night drinking and now you have to catch a bus? It’ll all be fine. See the above –it’ll take about three days to get used to it.What you may have one thought was very unpleasant --- showering in a dirty bathroom, drying yourself with a dirty hotel towel, wearing the same T-shirt four days, never washing your socks – becomes routine (惯例) once you’ve been traveling for a couple of months. Keep clean? It’s a first –world problem.First-time travelers are usually worried about safety, but after a while you realize that the world isn’t out to get you, and if you just take a few easy precautions (警觉), the probability is high that you’ll never get stolen while you travel. Although you st ill might, so don’t carry anything you can’t bear to lose.The first price is never the right price. This holds true for anywhere that the priceisn’t stamped onto the thing or clearly shown in some way. While arguing about the price doesn’t come naturally to some. It’s something you have to get used to if you don’t want to ripped off over and over again.Things go wrong when you travel ---lots of things. The train is late, the money exchange place is closed, the hotel has lost your booking, and you can feel a pain in your stomach that means last night’s street food was a bad choice. But you have to be able to deal with these problems when you travel, or you’ll quickly go silly.(1)What makes travelers love their travel, according to the passage?A.Time’s going byB.Lessons they’ve learntC.The exercise they takeD.The new environment(2)The second paragraph mainly tells us that _____.A.traveling abroad causes a lot of problemsB.one must be brave to travel in the worldC.we’re better than we realize when travelingD.nothing can stop us from going abroad(3)Which of the following is true, according to the passage?A.We can get used to a different life style in a short time.B.It’s important to keep clean all the time when traveling.C.First-time travelers are usually safe all over the world.D.it’s not necessary to buy things during our travel abroad.From the last paragraph, we can infer that______.A.we can only depend on luck when travelingB.traveling is rather hard work than happy timeC.traveling service is not good all over the worldD.we must be ready to face problems when traveling五选五15.Mike and John are good friends. Both of them like traveling very much.One day, when they were traveling through a desert, they quarreled (吵架) with each other. Mike was very angry and hit John in the face. John was hurt, 1 , he wrote in the sand, “Today my best friend hit me in the face.”Then they went on walking and found an oasis (绿洲). It was veryhot, 2 . john was not good at swimming and he start drowning(溺水) after a few minutes. 3 . when John got up, he wrote on a stone, “Today my friend save my life.”Mike felt a little surprised and asked, “Why, after I hurt you, you wrote some words in the sand, and now you wrote on a stone?” John smiled and said, “When a friend hurts us, we should write it down in the sand.. 4 . However, when something great happens, we should write it in the stone of our memory and remember it forever.” 5 . He learned what true friendship was. Let’s learn to write in the sand and on the stone.A.Mike was very movedB.But without anything to sayC.So they wanted to have a swimD.And the wind can blow it away easilyE.Mike swam to him quickly and saved him任务型阅读Bashert is a gentle, golden dog. In her mind, tere is no human problem so big she can’t lick (舔) better. When her owner is sad, she licks him to make him happy. When her owner feels upset, she licks him again to encourage him.“When I go to camp, I miss Bashert a lot, ” Bashert’s owner Aaron Richards, a 14-year-old boy in the US, told the New York Times.Animals like Bashert play an important part in people’s lives. Whether it is a dog, a cat or a goldfish, people always enjoy their companionship(陪伴). But do you know that people also love animals for other reason?When staying with animals, people can relax. Compared to the human world, the animals world seems to be simpler. People don’t need to worry about being judged by words or behaviors. For children, they can forget grades and class performance. What they feel is warmth and acceptance without any conditions.Animals, especially pets, also teach people to learn responsibility. Besides feeding and cleaning them, you also need to care for them. When they are sick, take them to an animal hospital. When are feel lonely, just play with them for a while. When they get old, you should spend time with them and let them know that you will always love them. Such a caring heart also tells you to treat people in a nice way. Then, you will find yourself a much beloved person.(1)What does Bashert do when her owner is sad?(2)How old is Bashert’s owner?(3)Do animals play an important part in people’s lives?(4)What are the other reasons that people love animals?(5)What is the passage mainly about?书面表达17.假如你叫李华,最的和英国朋友Jim 通过邮件谈论校园安全,他想了解你的看法。
2015北京各区中考数学二模26、27、28题汇编(带答案)
(用含 x 的式子表示) ,
【问题解决】
2015 北京模拟 2 / 18
已知,如图 2,点 M、N、P 为圆 O 上的三点,且∠P=β,tanβ = 1 ,求 sin2β 的值. 2
y
C B
2α
M
β
P
A
D
D
O
α
A
N
O
B
O C
x
图1
图2
26. 如图,在平面直角坐标系 xOy 中,矩形 ABCD 各边都平行于坐标轴,且 A(-2,2) ,C(3,-2) .对矩形 ABCD 及其内部的点进行如下操作: 把每个点的横坐标乘以 a, 纵坐标乘以 b, 将得到的点再向右平移 k (k 0) 个单位,得到矩形 A ' B ' C ' D ' 及其内部的点( A ' B ' C ' D ' 分别与 ABCD 对应) .E(2,1)经过上述操作后的对应 点记为 E ' . (1)若 a=2,b=-3,k=2,则点 D 的坐标为 ,点 D ' 的坐标为 ; (2)若 A ' (1,4) , C ' (6,-4) ,求点 E ' 的坐标. 26.阅读下面的材料: 小明遇到一个问题:如图 1,在□ABCD 中,点 E 是边 BC 的中点,点 F 是线段 AE 上一点,BF 的延长线交射线 CD 于点 G. 如果 AF 3 ,求 CD 的值. CG EF 他的做法是:过点 E 作 EH∥AB 交 BG 于点 H,那么可以得到△BAF∽△HEF. 请回答: (1)AB 和 EH 之间的数量关系是 ,CG 和 EH 之间的数量关系是 , CD 的值为 .
5 4 3 2 1 –5 –4 –3 –2 –1 o –1 –2 –3 –4 –5 1 2 3 4 5
2015年吉林省长春市朝阳区中考数学二模试卷及参考答案
2015年吉林省长春市朝阳区中考数学二模试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)﹣11的倒数是()A.﹣B.﹣1 C.D.112.(3分)今年“五•一”期间,长影世纪城接待游客约为21300人次,数据21300用更科学记数法表示是()A.21.3×103B.2.13×104C.2.13×105D.0.213×1053.(3分)下列图形是正方体展开图的是()A.B.C.D.4.(3分)如图,不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A.B.C.D.5.(3分)将一块含60°角的直角三角板和直尺如图放置,使三角板的直角顶点落在直尺的一边上,若∠1=40°,则∠2的度数是()A.90°B.80°C.75°D.70°6.(3分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C 和点D、E、F.若AB=4.5,BC=3,EF=2,则DE的长度是()A.B.3 C.5 D.7.(3分)如图,OA,OB是⊙O的半径,且OA⊥OB,AO的延长线与弦BC交于点D,连结AC.若∠B=25°,则∠A的度数是()A.65°B.45°C.25°D.20°8.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(5,0),对称轴为直线x=2,则下列结论中正确的是()A.当x>2时,y随x增大而减小B.4a=bC.图象过点(﹣1,0)D.9a+3b+c>0二、填空题(共6小题,每小题3分,满分18分)9.(3分)计算:(2a)3•a2=.10.(3分)分式方程的解是.11.(3分)若一次函数y=(k﹣2)x+1(k是常数)中y随x的增大而增大,则k的取值范围是.12.(3分)如图,在△ABC中,AB=8,BC=6,AC=5,点D在AC上,连结BD,将△ABC沿BD翻折后,若点C恰好落在AB边上的点E处,则△ADE的周长为.13.(3分)如图,△ABC是等边三角形,点O在边AC上(不与A,C重合),以点O为圆心,以OC为半径的圆分别与AC、BC相交于点D、E,若OC=1,则的长是(结果保留π).14.(3分)如图,矩形ABCD的顶点A在x轴负半轴上,点B在x轴正半轴,点C在反比例函数y=第一象限的图象上,点D在反比例函数y=的图象上,CD 交y轴于点E.若DE:CE=1:2,则k的值是.三、解答题(共10小题,满分78分)15.(6分)先化简,再求值:,其中a=﹣3.16.(6分)从一副扑克牌中取出的两组牌如图所示,第一组牌是红桃1,2,3,第二组牌是方块1,2,3.将它们分别重新洗匀后,背面朝上放置,再从每组牌中各随机抽取1张.用画树状图(或列表)求抽出的两张牌的牌面数字之和是4的概率.17.(6分)春季来临,为了美化校园,某校计划购买甲、乙两种花卉共300盆.甲种花卉每盆24元,乙种花卉每盆30元.若购买这两种花卉共用去8400元,求甲、乙两种花卉各购买多少盆.18.(7分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.19.(7分)某校对新入学的七年级部分学生进行了一次视力抽样调查,根据调查的结果,绘制了不完整的频数分布表和频数分布直方图.请根据图表统计信息,解答下列问题:(1)在频数分布表中,a的值是,b的值是;并将频数分布直方图补充完整;(2)这些学生视力的中位数落在频数分布表中的哪个范围内;(3)若该校七年级共有800名学生,估计该校七年级学生中视力在4.9以上(包括4.9)的学生有多少名?七年级部分学生视力的频数分布表20.(7分)如图,在某次数学活动课中,小明为了测量校园内旗杆AB的高度,站在教学楼CD上的E处测得旗杆底端B的仰角∠BEF的度数为45°,测得旗杆顶端A的仰角∠AEF的度数为17°,旗杆底部B处与教学楼底部C处的水平距离BC 为9m,求旗杆的高度(结果精确到0.1m).【参考数据:sin17°=0.29,cos17°=0.96,tan17°=0.31】21.(8分)一个容器中有一个进水管和两个出水管,从某一时刻开始2min内只进水不出水,在随后的4min内开启了一个出水管,既进水又出水,每个出水管每分钟出水7.5L,每分钟的进水量和出水量保持不变,容器内的水量y(L)与时间x(min)之间的函数关系如图所示.(1)求a的值;(2)当2≤x≤6时,求y关于x的函数关系式;(3)若在6min之后,两个出水管均开启,进水管关闭,请在图中补全函数图象.22.(9分)探究:如图①,∠AOB=90°,点P是∠AOB的平分线上一点,以点P 为顶点作∠MPN=90°,分别交OA,OB于点M,N.求证:PM=PN.应用:如图②,在Rt△ABC中,∠ACB=90°,∠BAC,∠ABC的外角平分线交于点P,过点P分别作PE⊥AC,PF⊥BC,分别交CA,CB的延长线于点E,F.若BC=3,AC=4,则AE+BF的长度是.23.(10分)如图,抛物线y=x2﹣mx+n经过点A(﹣1,0),与x轴的另一个交点是B(B在A的右侧),与y轴交于点C,抛物线的对称轴EF交x轴于点E,点C关于EF的对称点是点D.(1)n=(用含m的代数式表示).(2)当点E是OA中点时,求该抛物线对应的函数关系式.(3)当以点A,C,D,E为顶点的四边形是平行四边形时,求m的值.(4)连结AC、CE,当△ACE的面积是时,直接写出m的值.24.(12分)如图,在菱形ABCD中,AB=5cm,AC=6cm,对角线AC、BD相交于点O.动点P从点B出发,沿折线BA﹣AD以1cm/s的速度向终点D运动,过点P作PQ∥AC交折线BC﹣CD于点Q,以PQ为边作正方形PQMN,且MN与AC 始终在PQ的同侧.设正方形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s).(1)求点P在AB边上时PQ的长度(用含t的代数式表示).(2)当点N落在AC上时,求t的值.(3)当点P在AB边上时,求S与t之间的函数关系式.(4)当正方形PQMN与菱形ABCD重叠部分图形是六边形时,直接写出t的取值范围.2015年吉林省长春市朝阳区中考数学二模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)﹣11的倒数是()A.﹣B.﹣1 C.D.11【分析】根据倒数的定义,即可解答.【解答】解:﹣11的倒数是﹣,故选:A.2.(3分)今年“五•一”期间,长影世纪城接待游客约为21300人次,数据21300用更科学记数法表示是()A.21.3×103B.2.13×104C.2.13×105D.0.213×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将21300用科学记数法表示为:2.13×104.故选:B.3.(3分)下列图形是正方体展开图的是()A.B.C.D.【分析】正方体的展开图有11种情况:1﹣4﹣1型共6种,1﹣3﹣2型共3种,2﹣2﹣2型一种,3﹣3型一种,由此判定找出答案即可.【解答】解:A、有田字格,不是正方体展开图,故选项错误;B、1﹣4﹣1型,是正方体展开图,故选项正确;C、不是正方体展开图,故选项错误;D、有田字格,不是正方体展开图,故选项错误.故选:B.4.(3分)如图,不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A.B.C.D.【分析】先分别解两个不等式得到x≤3和x<﹣1,然后利用数轴分别表示出x ≤3和x<﹣1,于是可得到正确的选项.【解答】解:解不等式x﹣1≤2得x≤3,解不等式3+x<2得x<﹣1,所以不等式组的两个不等式的解集在同一个数轴上表示为:.故选:C.5.(3分)将一块含60°角的直角三角板和直尺如图放置,使三角板的直角顶点落在直尺的一边上,若∠1=40°,则∠2的度数是()A.90°B.80°C.75°D.70°【分析】根据平行线的性质得到∠3=∠1=40°,然后根据三角形的外角的性质即可得到结论.【解答】解:∵AB∥CD,∴∠3=∠1=40°,∴∠2=40°+30°=70°,故选:D.6.(3分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C 和点D、E、F.若AB=4.5,BC=3,EF=2,则DE的长度是()A.B.3 C.5 D.【分析】根据平行线分线段成比例得到比例式,代入数据即可得到结论.【解答】解:∵AD∥BE∥CF,∴,即:,∴DE=3,故选:B.7.(3分)如图,OA,OB是⊙O的半径,且OA⊥OB,AO的延长线与弦BC交于点D,连结AC.若∠B=25°,则∠A的度数是()A.65°B.45°C.25°D.20°【分析】由OA⊥OB,利用圆周角定理,可求得∠C的度数,由三角形外角的性质,可求得∠ADB的度数,继而求得∠A的度数.【解答】解:∵OA⊥OB,∴∠AOB=90°,∴∠C=∠AOB=45°,∠ADB=∠AOB﹣∠B=90°﹣25°=65°,∴∠A=∠ADB﹣∠C=20°.故选:D.8.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(5,0),对称轴为直线x=2,则下列结论中正确的是()A.当x>2时,y随x增大而减小B.4a=bC.图象过点(﹣1,0)D.9a+3b+c>0【分析】根据二次函数的性质对A进行判断;根据抛物线的对称轴方程可对B 进行判断;根据抛物线与x轴的交点问题和抛物线的对称性可判断抛物线与x轴的另一个交点坐标为(﹣1,0),则可对C进行判断;利用x=3所对应的函数值为负数可对D进行判断.【解答】解:A、抛物线的对称轴为直线x=2,则x>2时,y随x增大而增大,所以A选项错误;B、抛物线的对称轴为直线x=﹣=2,则b=﹣4a,所以B选项错误;C、抛物线与x轴的一个交点坐标为(5,0),而对称轴为直线x=2,则抛物线与x轴的另一个交点坐标为(﹣1,0),所以C选项正确;D、当x=3时,y<0,即9a+3b+c<0,所以D选项错误.故选:C.二、填空题(共6小题,每小题3分,满分18分)9.(3分)计算:(2a)3•a2=8a5.【分析】首先利用积的乘方运算化简,再利用同底数幂的乘法计算得出即可.【解答】解:(2a)3•a2=8a3×a2=8a5.故答案为:8a5.10.(3分)分式方程的解是x=5.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣2=3,解得:x=5,经检验x=5是分式方程的解.故答案为:x=511.(3分)若一次函数y=(k﹣2)x+1(k是常数)中y随x的增大而增大,则k的取值范围是k>2.【分析】根据一次函数的增减性可求得k的取值范围.【解答】解:∵一次函数y=(k﹣2)x+1(k是常数)中y随x的增大而增大,∴k﹣2>0,解得k>2,故答案为:k>2.12.(3分)如图,在△ABC中,AB=8,BC=6,AC=5,点D在AC上,连结BD,将△ABC沿BD翻折后,若点C恰好落在AB边上的点E处,则△ADE的周长为7.【分析】由翻折的性质可知:DC=DE,BC=EB,于是可得到AD+DE=5,AE=2,故此可求得△ADE的周长为7.【解答】解:∵由翻折的性质可知:DC=DE,BC=EB=6.∴AD+DE=AD+DC=AC=5,AE=AB﹣BE=AB﹣CB=8﹣6=2.∴△ADE的周长=5+2=7.故答案为:7.13.(3分)如图,△ABC是等边三角形,点O在边AC上(不与A,C重合),以点O为圆心,以OC为半径的圆分别与AC、BC相交于点D、E,若OC=1,则的长是(结果保留π).【分析】连结OE,先根据等边三角形的性质得出∠C=60°,再利用圆周角定理求出∠DOE=2∠C=120°,然后根据弧长公式解答即可.【解答】解:如图,连结OE.∵△ABC是等边三角形,∴∠C=60°,∴∠DOE=2∠C=120°,∵OC=1,∴的长是=.故答案为.14.(3分)如图,矩形ABCD的顶点A在x轴负半轴上,点B在x轴正半轴,点C在反比例函数y=第一象限的图象上,点D在反比例函数y=的图象上,CD 交y轴于点E.若DE:CE=1:2,则k的值是﹣2.【分析】设DE=a,则CE=2a,再由点C在反比例函数y=第一象限的图象上可得出2ay=4,故可得出ay的值,进而可得出结论.【解答】解:∵DE:CE=1:2,∴设DE=a,则CE=2a.∵点C在反比例函数y=第一象限的图象上,∴2ay=4,∴ay=2.∵点D在反比例函数y=的图象上,∴﹣ay=k,∴k=﹣2.故答案为:﹣2.三、解答题(共10小题,满分78分)15.(6分)先化简,再求值:,其中a=﹣3.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=﹣==,当a=﹣3时,原式==﹣.16.(6分)从一副扑克牌中取出的两组牌如图所示,第一组牌是红桃1,2,3,第二组牌是方块1,2,3.将它们分别重新洗匀后,背面朝上放置,再从每组牌中各随机抽取1张.用画树状图(或列表)求抽出的两张牌的牌面数字之和是4的概率.【分析】先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:列表如下:可得所有的结果有9种,两张牌的牌面数字之和是4的有3种,故P(摸出的两张牌的牌面数字之和是4)==.17.(6分)春季来临,为了美化校园,某校计划购买甲、乙两种花卉共300盆.甲种花卉每盆24元,乙种花卉每盆30元.若购买这两种花卉共用去8400元,求甲、乙两种花卉各购买多少盆.【分析】根据计划购买甲、乙两种花卉共300盆,以及购买这两种花卉共用去8400元,进而得出等式求出即可.【解答】解:设购买甲种花卉x盆,乙种花卉y盆.由题意,得,解得:,答:购买甲种花卉100盆,乙种花卉200盆.18.(7分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【分析】根据平行四边形的判定得出四边形是平行四边形,根据直角三角形上的中线得出CD=BD,根据菱形的判定得出即可.【解答】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形.∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.19.(7分)某校对新入学的七年级部分学生进行了一次视力抽样调查,根据调查的结果,绘制了不完整的频数分布表和频数分布直方图.请根据图表统计信息,解答下列问题:(1)在频数分布表中,a的值是30,b的值是0.05;并将频数分布直方图补充完整;(2)这些学生视力的中位数落在频数分布表中的哪个范围内;(3)若该校七年级共有800名学生,估计该校七年级学生中视力在4.9以上(包括4.9)的学生有多少名?七年级部分学生视力的频数分布表【分析】(1)由频数(率)分布表,根据频率之和为1求出b的值,进而求出总人数,得出a的值即可;(2)根据总人数,找出最中间的两个所在的区间,即为学生视力的中位数落在频数的范围;(3)找出学生中视力在4.9以上(包括4.9)的学生占的百分比,乘以800即可得到结果.【解答】解:(1)根据题意得:b=1﹣(0.1+0.2+0.35+0.3)=0.05;总人数为5÷0.05=100(人),则a=100﹣(10+20+35+5)=30;(2)100人数中最中间的两个为50,51,所在区间为4.6≤x<4.9,则这些学生视力的中位数落在频数分布表中的4.6≤x<4.9范围内;(3)根据题意得:800×=280(名),则该校七年级学生中视力在4.9以上(包括4.9)的学生有280名.故答案为:(1)30;0.0520.(7分)如图,在某次数学活动课中,小明为了测量校园内旗杆AB的高度,站在教学楼CD上的E处测得旗杆底端B的仰角∠BEF的度数为45°,测得旗杆顶端A的仰角∠AEF的度数为17°,旗杆底部B处与教学楼底部C处的水平距离BC 为9m,求旗杆的高度(结果精确到0.1m).【参考数据:sin17°=0.29,cos17°=0.96,tan17°=0.31】【分析】先根据锐角三角函数的定义求出BF及AF的长,再由AB=AF+BF即可得出结论.【解答】解:如图,由题意得EF=BC=9m,∠AEF=17°,∠BEF=45°,在Rt△BEF中,∵tan∠BEF=tan45°=,∴BF=EF=9m.在Rt△AEF中,∵tan17°=,∴AF=9×0.31=2.79m.∴AB=AF+BF=11.79≈11.8m.答:旗杆AB的高度约为11.8m.21.(8分)一个容器中有一个进水管和两个出水管,从某一时刻开始2min内只进水不出水,在随后的4min内开启了一个出水管,既进水又出水,每个出水管每分钟出水7.5L,每分钟的进水量和出水量保持不变,容器内的水量y(L)与时间x(min)之间的函数关系如图所示.(1)求a的值;(2)当2≤x≤6时,求y关于x的函数关系式;(3)若在6min之后,两个出水管均开启,进水管关闭,请在图中补全函数图象.【分析】(1)每分钟的进水量根据前2分钟的图象求出,根据后4分钟的水量变化即可求得a的值.(2)用待定系数法求对应的函数关系式;(3)根据每个出水管每分钟出水量,即可求得排完容器的水所有的时间,根据时间补全函数图象即可.【解答】解:(1)根据图象,每分钟进水20÷2=10L,在随后的4min内容器内的水量y=4(10﹣7.5)=10(L),∴a=20+10=30;(2)设y=kx+b.∵图象过(2,20)、(6,30),∴,解得:,∴y=x+15 (2≤x≤6);(3)∵30÷(2×7.5)=2;∴补全函数图象如图所示:22.(9分)探究:如图①,∠AOB=90°,点P是∠AOB的平分线上一点,以点P 为顶点作∠MPN=90°,分别交OA,OB于点M,N.求证:PM=PN.应用:如图②,在Rt△ABC中,∠ACB=90°,∠BAC,∠ABC的外角平分线交于点P,过点P分别作PE⊥AC,PF⊥BC,分别交CA,CB的延长线于点E,F.若BC=3,AC=4,则AE+BF的长度是5.【分析】探究:过P作PE⊥OA,PF⊥OB,由OC为∠AOB的平分线,利用角平分线定理得到PE=PF,利用同角的余角相等得到一对角相等,利用ASA得到△PME 与△PNF全等,利用全等三角形的对应边相等即可得证;应用:如图②,过点P作PG⊥AB,垂足点G.证明Rt△PEA≌Rt△PEA,Rt△PGB≌Rt△PFB,所以AE=AG,BF=BG,求出AB==5,所以AE+BF=5.【解答】解:探究:如图①,过P作PE⊥OA于E,PF⊥OB于F,∵OC是∠AOB的平分线,∴PE=PF,∠PEM=∠PFN=90°,∵∠MPE+∠MPF=90°,∠NPF+∠MPF=90°,∴∠MPE=∠NPF,在△PME和△PNF中,,∴△PME≌△PNF(ASA),∴PM=PN.应用:如图②,过点P作PG⊥AB,垂足点G.∵PE⊥AC,PF⊥BC,且∠BAC,∠ABC的外角平分线交于点P,∴PE=PG,PF=PG,∵PG=PG,在Rt△PEA和Rt△PEA中,∴Rt△PEA≌Rt△PEA,在Rt△PGB和Rt△PFB中,∴Rt△PGB≌Rt△PFB,∴AE=AG,BF=BG,∵∠ACB=90°,且BC=3,AC=4,∴AB==5,∴AE+BF=5.故答案为:5.23.(10分)如图,抛物线y=x2﹣mx+n经过点A(﹣1,0),与x轴的另一个交点是B(B在A的右侧),与y轴交于点C,抛物线的对称轴EF交x轴于点E,点C关于EF的对称点是点D.(1)n=﹣m﹣1(用含m的代数式表示).(2)当点E是OA中点时,求该抛物线对应的函数关系式.(3)当以点A,C,D,E为顶点的四边形是平行四边形时,求m的值.(4)连结AC、CE,当△ACE的面积是时,直接写出m的值.【分析】(1)把点A(﹣1,0)代入抛物线y=x2﹣mx+n,即可用含m的代数式表示n;(2)根据抛物线对称轴公式可得抛物线的对称轴是x=,再根据中点坐标公式可得gym的方程,解方程即可求得m的值,从而得到该抛物线对应的函数关系式;(3)分两种情况:①当m>0时,②当﹣2<m<0时,根据平行四边形的性质可求m的值;(4)分两种情况:①当m>﹣1时,②当﹣2<m<﹣1时,根据三角形面积公式可求m的值.【解答】解:(1)∵抛物线y=x2﹣mx+n经过点A(﹣1,0),∴1+m+n=0,∴n=﹣m﹣1;(2)抛物线y=x2﹣mx﹣m﹣1的对称轴是x=.AE=+1.∵点E是OA中点,∴AE=+1=.∴m=﹣1.∴抛物线对应的函数关系式为y=x2+x.(3)①当m>0时,如图①,∵抛物线y=x2﹣mx﹣m﹣1的对称轴是x=,∴CD=m,AE=+1.∵四边形ACDE是平行四边形,∴m=+1,∴m=2;②当﹣2<m<0时,如图②,CD=﹣m,AE=+1.∵四边形ADCE是平行四边形,∴﹣m=+1.∴m=﹣;(4)m=0.解题过程如下:①当m>﹣1时,如图③,S△ACE=AE•OC=(+1)(m+1)=m2+m+.∴m2+m+=,解得m1=0,m2=﹣3(不合题意,舍去).∴m=0.②当﹣2<m<﹣1时,如图④,S△ACE=AE•OC=(+1)(﹣m﹣1)=﹣m2﹣m﹣.∴﹣m2﹣m﹣=,即m2+3m+4=0,△=b2﹣4ac=9﹣16=﹣7<0,∴此方程没有实数根.综上所述,当m=0时,△ACE的面积是.故答案为:﹣m﹣1.24.(12分)如图,在菱形ABCD中,AB=5cm,AC=6cm,对角线AC、BD相交于点O.动点P从点B出发,沿折线BA﹣AD以1cm/s的速度向终点D运动,过点P作PQ∥AC交折线BC﹣CD于点Q,以PQ为边作正方形PQMN,且MN与AC 始终在PQ的同侧.设正方形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s).(1)求点P在AB边上时PQ的长度(用含t的代数式表示).(2)当点N落在AC上时,求t的值.(3)当点P在AB边上时,求S与t之间的函数关系式.(4)当正方形PQMN与菱形ABCD重叠部分图形是六边形时,直接写出t的取值范围.【分析】(1)根据△BPQ∽△BAC,对应边成比例得出=,即=,即可求得PQ=t.(2)根据勾股定理求得OB,然后分两种情况分别讨论即可求得;(3)分两种情况,根据图形求得即可;(4)分别求得当P、Q、M、N四点都在菱形四条边上时和MN经过D点和B点时的t的值,即可求得正方形PQMN与菱形ABCD重叠部分图形是六边形时t的取值范围.【解答】解:(1)如图①,∵PQ∥AC,∴△BPQ∽△BAC.∴=.即=.∴PQ=t.(2)∵四边形ABCD是菱形,∴AC⊥BD.∴BO==4.①如图②,当0<t≤5时,∵cos∠APN=cos∠ABO,∴==,即=,∴t=2.②如图③,当5<t≤10时,PQ=(10﹣t).∵cos∠APN=cos∠ADO,∴==,即=∴t=8.(3)①如图①,当0<t≤2时,S=PQ2=(t)2=t2.②如图④,当2<t<5时,设PN、QM与AC分别交于点G、H.则PG=(5﹣t).∴S=PQ•PG=t•(5﹣t)=﹣t2+t.(4)如图⑤,当P、Q、M、N四点都在菱形四条边上时,则=,即=,∴t=,如图⑥,当MN经过D点时,则(8﹣t)2+(t)2=t2,∴t=4;∴当正方形PQMN与菱形ABCD重叠部分图形是六边形时,<t<4或6<t<.赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DFE-a1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.A变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。
2014-2015学年北京市朝阳区2015年初三数学一模试题(附答案)
北京市朝阳区九年级综合练习(一)数学试卷 2015.5学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界 平均水平,至少需要8 000 000 000 000美元基建投资.将8 000 000 000 000用科学记数法表示应为A .0.8×1013B .8×1012C .8×1013D .80×10112. 如图,下列关于数m 、n 的说法正确的是A .m >nB .m =nC .m >-nD .m =-n3.如图,直线a ,b 被直线c 所截,a ∥b ,∠2=∠3,若∠1=80°,则∠4等于 A .20° B .40° C .60° D .80°4.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 7 5.下列图形中,既是中心对称图形又是轴对称图形的是A B C D6.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是 A .平均数 B .中位数 C .众数 D .方差7为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为 A.16 B. 51C. 310D. 12 8. 若正方形的周长为40,则其对角线长为A .100B .C .D .10 9.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 在一条直线上,且直线PS 与河 垂直,在过点S 且与PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60 m , ST =120 m ,QR =80 m ,则河的宽度PQ 为A .40 mB .60 mC .120 mD .180 m10.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发 3秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的 时间t (秒)之间的关系如图所示,则下列结论正确的是 A. 乙的速度是4米/秒B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米C. 甲从起点到终点共用时83秒D. 乙到达终点时,甲、乙两人相距68米二、填空题(本题共18分,每小题3分) 11.若分式21x 有意义,则x 的取值范围是 .12.分解因式:2236+3m mn n -= .13.如图,⊙O 的直径CD 垂直于弦AB ,∠AOC =40°,则∠CDB 的度数为 .14.请写出一个图象从左向右上升且经过点(-1,2)的函数,所写的函数表达式是 .15.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是 (填“一类、二类、三类”中的一个).16.一组按规律排列的式子:a 2,25a -,310a ,417a-,526a ,…,其中第7个式子是 ,第n 个式子是 (用含的n 式子表示,n 为正整数).三、解答题(本题共30分,每小题5分)17.已知:如图,E 是BC 上一点,AB =EC ,AB ∥CD , BC =CD .求证:AC =ED .18.计算:1012sin 45(2015)3-⎛⎫+--︒+- ⎪⎝⎭π.19.解不等式组:⎪⎩⎪⎨⎧>+->.31222x x x x ,20.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.21.已知关于x 的一元二次方程2630x x k -++=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为大于3的整数,且该方程的根都是整数,求k 的值.22.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁 于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18 分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?四、解答题(本题共20分,每小题5分)23. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D作DE ∥AC 且DE=12AC ,连接 CE 、OE ,连接AE 交OD 于点F .(1)求证:OE =CD ;(2)若菱形ABCD 的边长为2,∠ABC=60°,求AE 的长.24.为防治大气污染,依据北京市压减燃煤相关工作方案,2014年全市燃煤数量比2012年压减450万吨,到2015年、2017年要比2012年分别压减燃煤800万吨、1300万吨.以下是根据相关数据绘制的统计图的一部分:(1)据报道,2012年全市燃煤由四部分组成,其中电厂用煤920万吨,则2012年全市燃煤数量为 万吨;(2)请根据以上信息补全2012-2017年全市燃煤数量的折线统计图,并标明相应数据; (3)某地区积极倡导“清洁空气,绿色出行”,大力提升自行车出行比例,小颖收集了该地区近几年公共自行车的有关信息(如下表),发现利用公共自行车出行人数与 公共自行车投放数量之间近似成正比例关系.2012-2015年公共自行车投放数量与利用公共自行车出行人数统计表年份 公共自行车投放数量(万辆) 利用公共自行车出行人数(万人) 2012 1.4 约9.9 2013 2.5 约17.6 2014 4 约27.6 2015 5 约根据小颖的发现,请估计,该地区2015年利用公共自行车出行人数(直接写出结果, 精确到0.1)25.如图,△ABC 内接于⊙O ,AB 为直径,点D 在⊙O 上,过点D 作⊙O切线与AC 的延长线交于点E ,ED ∥BC ,连接AD 交BC 于点F . (1)求证:∠BAD =∠DAE ;(2)若AB =6,AD =5,求DF 的长.26.阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°, BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和 计算能够使问题得到解决(如图2).请回答:APPD的值为 .参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求APPD的值; (2)若CD=2,则BP = .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1 的一个交点记为A ,与M 2的一个交点记为B ,点A 的 横坐标是-3. (1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF . ①当点C 的横坐标为2时,直线n x y +=恰好经过 正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围(直接写出结果).28.在△ABC 中,∠C =90°,AC =BC ,点D 在射线BC 上(不与点B 、C 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE . (1)如图1,点D 在BC 边上.①依题意补全图1;②作DF ⊥BC 交AB 于点F ,若AC =8,DF =3,求BE 的长;(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB 、BD 、BE 之间的数量关系(直接写出结论).图1图2图329.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”. (1)若P (1,2),Q (4,2) .①在点A (1,0),B (25,4),C (0,3)中,PQ 的“等高点”是 ; ②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值.(2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图1 图2北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考 2015.5一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 2≠x12. 2)(3n m -13. 20°14. 3+=x y (答案不惟一)15. 二类16. 750a,nn a n 1)1-(21+⋅+(第一个空1分,第二个空2分)三、解答题(本题共30分,每小题5分) 17. 证明:∵AB ∥CD ,∴∠B=∠DCE . …………………………………………………………………1分 在△ABC 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠=分分3-----------------------------------------------2-----------------------------------------------CD BC DCEB EC AB ∴△ABC ≌△ECD . ……………………………………………………………4分 ∴AC =ED . ……………………………………………………………………5分18. 解:原式 =122232+⨯--………………………………………………………4分 =2-.…………………………………………………………………………5分19. ⎪⎩⎪⎨⎧>+->.31222x x x x ,解:解不等式①,得2->x . ………………………………………………………………2分解不等式②,得x <1. ………………………………………………………………4分 ∴不等式组的解集是x <-2<1. …………………………………………………5分20. 解:)2)(2()3()1(2-++---x x x x x=4312222-++-+-x x x x x …………………………………………………3分 =32-+x x . ……………………………………………………………………4分 ∵052=-+x x , ∴52=+x x .∴原式=5-3=2. ……………………………………………………………………5分 21. 解:(1))3(4)6(2+--=∆k ………………………………………………………1分① ②12436--=k 244+-=k∵原方程有两个不相等的实数根, ∴0244>+-k .解得 6<k . ………………………………………………………………2分(2)∵6<k 且k 为大于3的整数,∴=k 4或5. ………………………………………………………………………3分 ① 当=k 4时,方程0762=+-x x 的根不是整数.∴=k 4不符合题意. ………………………………………………………… 4分 ② 当=k 5时,方程0862=+-x x 根为21=x ,42=x 均为整数. ∴=k 5符合题意. ……………………………………………………………5分 综上所述,k 的值是5.22. 解:设京张高铁最慢列车的速度是x 千米/时. …………………………………………1分由题意,得60182029174-174=x x . ……………………………………………2分 解得 180=x . ……………………………………………3分 经检验,180=x 是原方程的解,且符合题意. ………………………………4分答:京张高铁最慢列车的速度是180千米/时. ……………………………………5分四、解答题(本题共20分,每小题5分) 23. (1)证明:在菱形ABCD 中,OC=12AC . ∴DE=OC . ∵DE ∥AC ,∴四边形OCED 是平行四边形.…………………………………………1分 ∵AC ⊥BD ,∴平行四边形OCED 是矩形. …………………………………………2分 ∴OE =CD .…………………………………………………………………3分(2)在菱形ABCD 中,∠ABC=60°,∴AC=AB=2. ∴在矩形OCED 中,CE =………………4分 在Rt △ACE 中,.………………………………………………………5分24.(1)2300. ………………1分 (2)如图. …………… 3分(3)35.0±0.5. ……………5分25.解:(1)连接OD,∵ED为⊙O的切线,∴OD⊥ED.……………………………………………………………………………1分∵AB为⊙O的直径,∴∠ACB=90°. ……………………………………………………………… 2分∵BC∥ED,∴∠ACB=∠E=∠EDO.∴AE∥OD.∴∠DAE=∠ADO.∵OA=OD,∴∠BAD=∠ADO.∴∠BAD=∠DAE. ………………………………3分(2)连接BD,∴∠ADB=90°.∵AB=6,AD=5,∴BD=……………………………………………………………4分∵∠BAD=∠DAE=∠CBD ,∴tan∠CBD = tan∠BAD.在Rt△BDF中,∴DF=BD·tan∠CBD =115. ……………………………………………………………5分26. 解:PDAP 的值为23 . …………………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2,∴BC =2k .∴DB =DC +BC =3k .∵E 是AC 中点,∴AE =CE .∵AF ∥DB ,∴∠F =∠1.又∵∠2=∠3,∴△AEF ≌△CEB . ……………………………………………………………3分∴AF =BC =2k .∵AF ∥DB ,∴△AFP ∽△DBP . ∴DB AF PDAP =. ∴32=PD AP . …………………………………………………………………4分 (2) 6. ……………………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. 解:(1)∵ 点A 在直线x y =,且点A 的横坐标是-3,∴ A (-3,-3) . ………………………………………………………………1分把A (-3,-3)代入x ax y 42+=,解得a =1. … …………………………………………………………………2分∴M 1 : x x y 42+=,顶点为(-2,-4) .∴M 2的顶点为(1,-1) .∴M2的表达式为x x y 2-2=. …………3分(2)①由题意,C (2,2),∴F (4,2) . ………………………………4分∵直线n x y +=经过点F ,∴2=4+n .解得n =-2. ………………………5分② n >3,n <-6. …………… …7分28.解:(1)①补全图形,如图1所示. ………………………1分②由题意可知AD =DE ,∠ADE =90°.∵DF ⊥BC ,∴∠FDB =90°.∴∠ADF =∠EDB . ……………………………………2分∵∠C =90°,AC =BC ,∴∠ABC =∠DFB =90°.∴DB =DF .∴△ADF ≌△EDB . ……………………………………3分∴AF =EB .在△ABC 和△DFB 中,∵AC =8,DF =3,∴AC=,DF=. ………………………………………………………………4分AF =AB -BF=即BE= …………………………………………………………………………5分(2BD =BE +AB. ……………………………………………………………………7分29. 解:(1)A 、B ……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长. ………………………3分∵P (1,2),∴ P ′ (1,-2).设直线P ′Q 的表达式为b kx y +=,根据题意,有 ⎩⎨⎧=+-=+242b k b k ,解得⎪⎩⎪⎨⎧-==31034b k . 图1∴直线P ′Q 的表达式为31034-=x y . ……………4分 当0=y 时,解得25=x . 即25=t . ………………………………………………………………………5分 根据题意,可知PP ′=4,P Q =3, P Q ⊥PP ′, ∴5''22=+=PQ PP Q P . ∴“等高距离”最小值为5. …………………………………………………6分(3)Q (554,552)或Q (554-,552). ………………………………8分。
2015北京中考数学二模试题28题汇编及答案
2015北京中考数学二模试题28题汇编及答案28.如图1,在△ABC中,AB=AC,∠ABC =α,D是BC边上一点,以AD为边作△ADE,使AE=AD,DAE∠+BAC∠=180°.(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.图1 图2 图328.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH 的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.28. 如图1,在ABC Rt △中,90ACB ∠=︒,E 是边AC 上任意一点(点E 与点A ,C 不重合),以CE 为一直角边作ECD Rt △,90ECD ∠=︒,连接BE ,AD . (1) 若CA CB =,CE CD =,①猜想线段BE ,AD 之间的数量关系及所在直线的位置关系,直接写出结论; ②现将图1中的ECD Rt △绕着点C 顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(2) 若8CA =,6CB =,3CE =,4CD =,ECD Rt △绕着点C 顺时针旋转锐角α,如图3,连接BD ,AE ,计算22BD AE +的值.28. 已知△ABC 是锐角三角形,BA =BC ,点E 为AC 边的中点,点D 为AB 边上一点,且∠ABC =∠AED =α.(1)如图1,当α=40°时,∠ADE = °;(2) 如图2,取BC 边的中点F ,联结FD ,将∠AED 绕点E 顺时针旋转适当的角度β(β<α),得到∠MEN ,EM 与BA 的延长线交于点M , EN 与FD 的延长线交于点N . ①依题意补全图形;②猜想线段EM 与EN 之间的数量关系,并证明你的结论.图3EAC图1 图228.如图1,点O 为正方形ABCD 的中心.(1)将线段OE 绕点O 逆时针方向旋转︒90,点E 的对应点为点F ,连结EF ,AE ,BF ,请依题意补全图1;(2)根据图1中补全的图形,猜想并证明AE 与BF 的关系;(3)如图2,点G 是OA 中点,△EGF 是等腰直角三角形,H 是EF 的中点,︒=∠90EGF,AB =2=GE ,△EGF 绕G 点逆时针方向旋转α角度,请直接写出旋转过程中BH 的最大值.ECCBH EFGODA图1图228.数学活动课上,老师提出这样一个问题:如果AB=BC,∠ABC=60°,∠APC=30°,连接PB,那么P A、PB、PC之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:小蕾:我将图形进行了特殊化,让点P在BA延长线上(如图1),得到了一个猜想: P A2+PC2=PB2 .小东:我假设点P在∠ABC的内部,根据题目条件,这个图形具有“共端点等线段特点,可以利用旋转解决问题,旋转△P AB后得到△P′CB ,并且可推出△PBP′ ,△PCP′分别是等边三角形、直角三角形,就能得到猜想和证明方法.这时老师对同学们说,请大家完成以下问题:(1)如图2,点P在∠ABC的内部,①P A=4,PC=PB= .②用等式表示P A、PB、PC之间的数量关系,并证明.(2)对于点P的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.图1 图228.如图,△ABC中,∠BAC=90°,AB=AC,边BA绕点B顺时针旋转α角得到线段BP,连结PA,PC,过点P作PD⊥AC于点D.(1)如图1,若α=60°,求∠DPC的度数;(2)如图2,若α=30°,直接写出∠DPC的度数;(3)如图3,若α=150°,依题意补全图,并求∠DPC的度数.EF OA BCD28.在△ABC 中,AB =BC=2,∠ABC =90°,BD 为斜边AC 上的中线,将△ABD 绕点D 顺时针旋转α(0°<α<180°)得到△EFD ,其中点A 的对应点为点E ,点B 的对应点为点F . BE 与FC 相交于点H .(1)如图1,直接写出BE 与FC 的数量关系:____________; (2)如图2,M 、N 分别为EF 、BC 的中点.求证:MN = 22FC ;(3)连接BF ,CE ,如图3,直接写出在此旋转过程中,线段BF 、CE 与AC 之间的数量关系: .28.如图,在平行四边形ABCD 中,AB =5,BC =12,对角线交于点O ,∠BAD 的平分线交BC 于E 、交BD 于F ,分别过顶点B 、D 作AE 的垂线,垂足为G 、H ,连接OG 、OH . (1)补全图形; (2)求证:OG =OH ;(3)若OG ⊥OH ,直接写出∠OAF 的正切值.图3CDD图2图1ABPCBCPA图2图1图328.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD 是“等对角四边形”,∠A ≠∠C ,∠A =70°,∠B =80°.则∠C = 度,∠D = 度. (2)在探究“等对角四边形”性质时:小红画了一个“等对角四边形ABCD ”(如图2),其中∠ABC =∠ADC ,AB =AD ,此时她发现CB =CD 成立.请你证明此结论;(3)已知:在“等对角四边形ABCD ”中,∠DAB =60°,∠ABC =90°,AB =5,AD =4.求对角线AC 的长.28.如图1,在△ABC 中,CA =CB ,∠ACB =90°,D 是△ABC 内部一点,∠ADC =135°,将线段CD 绕点C 逆时针旋转90°得到线段CE ,连接DE . (1)① 依题意补全图形;② 请判断∠ADC 和∠CDE 之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE ,过点C 作CM ⊥DE ,请判断线段CM ,AE 和BE 之间的数量关系,并说明理由.(3)如图2,在正方形ABCD 中,AB =2,如果PD =1,∠BPD =90°,请直接写出点A到BP 的距离.图1 图2DAB CPDC AB图1图228.如图①,∠MON =60°,点A ,B 为射线OM ,ON 上的动点(点A ,B 不与点O 重合),且AB =34,在∠MON 的内部、△AOB 的外部有一点P ,且AP =BP ,∠APB =120°. (1)求AP的长;(2)求证:点P 在∠MON 的平分线上;(3)如图②,点C ,D ,E ,F 分别是四边形AOBP 的边AO ,OB ,BP ,P A 的中点,连接CD ,DE ,EF ,FC ,OP .当A B ⊥OP 时,请直接..写出四边形CDEF 周长的值.图① 图②OO答案28.(本小题满分7分) (1)∠ADE=90α︒-.…………………………………………………………… ……………………….…1分(2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥EF .∴EDC ABC α∠=∠=. …………………………….……2分 由(1)知,∠ADE =90α︒-,∴90ADC ADE EDC ∠=∠+∠=︒. …………………...……3分 ∴AD ⊥BC . ∵AB =AC , ∴BD =CD .……………………………………………………………………………………..……………4分 ②证明:∵AB =AC ,∠ABC =, ∴C B α∠=∠=.∵四边形ABFE 是平行四边形,∴AE ∥BF , AE =BF . ∴EAC C α∠=∠=.……………………………………………………………………………………………5分由(1)知,2DAE α∠=, ∴DAC α∠=.…………………………………………………………………………………………………6分 ∴DAC C ∠=∠.α∴AD =CD . ∵AD =AE =BF , ∴BF =CD . ∴BD =CF .………………………………………………………………………………………………………7分28.解:(1)CH=AB . ………………………………… 1分 (2)结论成立.………………………………… 2分 证明:如图11,连接BE . 在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°. ∵ DE=DF , ∴ AF=CE .在△ABF 和△CBE 中,,,,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBE .∴ ∠1=∠2.……………………………………………………………………3分 ∵ EH ⊥BF ,∠BCE =90°,∴ H ,C 两点都在以BE 为直径的圆上. ∴ ∠3=∠2. ∴ ∠3=∠1.∵ ∠3+∠4=90°,∠1+∠HBC =90°, ∴ ∠4=∠HBC .∴ CH=CB .………………………………………………………………… 5分 ∴ CH=AB .………………………………………………………………… 6分 (3)3.………………………………………………………………………7分28.(1)①解: BE AD =,BE AD ⊥;……2分 ②BE AD =,BE AD ⊥仍然成立;证明:设BE 与AC 的交点为点F ,BE 与AD 的交点为点G ,如图1. ∵90ACB ECD ∠=∠=︒, ∴ACD BCE ∠=∠. 在ACD △和BCE △中,,,,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴ACD BCE △≌△.∴AD BE =,CAD CBE ∠=∠.……3分∵BFC AFG ∠=∠,90BFC CBE ∠+∠=︒, ∴90AFG CAD ∠+∠=︒. ∴90AGF ∠=︒. ∴BE AD ⊥.……4分(2)证明:设BE 与AC 的交点为点F ,BE 的延长线与AD 的交点为点G ,如图2. ∵90ACB ECD ∠=∠=︒, ∴ACD BCE ∠=∠.∵8CA =,6CB =,3CE =,4CD =,∴43CA CD CB CE ==. ∴ACD BCE △∽△.……5分∴CAD CBE ∠=∠.∵BFC AFG ∠=∠,90BFC CBE ∠+∠=︒,∴90AFG CAD ∠+∠=︒. ∴90AGF ∠=︒. ∴BG AD ⊥.……6分 ∴90AGE BGD ∠=∠=︒.∴222AE AG EG =+,222BD BG DG =+. ∴222222BD AE AG EG BG DG +=+++. ∵222AG BG AB +=,222EG DG ED +=,∴22222222125BD AE AB ED CA CB CD CE +=+=+++=.……7分28. 解:(1)°70ADE ∠=;…….1分(2)①见右图;…….2分②EM EN =.…….3分 证明:∵ABC AED α∠=∠=,BAC BAC ∠=∠. ∴°902EDA ACB α∠=∠=-.∵BA BC =, ∴ACB BAC ∠=∠,即EDA BAC ∠=∠. ∴EA ED = . …….4分 ∵E 是AC 中点,∴EA EC =. ∴EA EC ED ==. ∴点,,A D C 在以AC 为直径的圆上.∴°90ADC ∠=.. …….5分 而°°°°180180(90)9022EAM EAD αα∠=-∠=--=+.∵点F 是BC 中点,∴FD FB =.∴FDB ABC α∠=∠=. ∴°°909022EDN EDA ADN EDA FDB ααα∠=∠+∠=∠+∠=-+=+.∴EAM EDN ∠=∠.…….6分 ∵ ∠AED 绕点E 顺时针旋转适当的角度,得到∠MEN , ∴ ∠AED=∠MEN ,∴∠AED - ∠AEN=∠MEN -∠AEN ,即 ∠MEA=∠NED . ∴ ΔEAM ≌ΔEPN . ∴ EM=EN .…….7分28.解:(1)正确画出图形;………………1分(2)延长EA 交OF 于点H ,交BF 于点G …2分 ∵O 为正方形ABCD 的中心, ∴OB OA =,∠AOB =90……3分∵OE 绕点O 逆时针旋转90角得到OF ∴OF OE =∴∠AOB =∠EOF =90∴∠EOA =∠FOB ……4分 在△EOA 和△FOB 中,OF OE =,OB OA =,∠EOA =∠FOB ,∴△EOA ≌△FOB ∴BF AE =.……5分 ∴∠OEA =∠OFB ∵∠OEA +∠OHA ∴∠OFB +∠FHG =90 ∴AE ⊥BF ……6分(3)BH 的最大值为25+……8分28. (1)①72;……………………………………………………………………………1分②222PB PC PA =+. …………………………………………………………2分证明:作∠PBP ′=∠ABC =60°,且使BP ′=BP ,连接P ′C 、P ′P . ……………3分∴∠1=∠2. ∵AB =CB ,∴△ABP ≌△CBP ′. …………………………4分 ∴PA =P ′C ,∠A =∠BCP ′. 在四边形ABCP 中,∵∠ABC =60°,∠APC =30°, ∴∠A +∠BCP =270°.∴∠BCP ′+∠BCP =270°.∴∠PCP ′=360°-(∠BCP ′+∠BCP )=90°. ……………………………………5分 ∵△PBP ′是等边三角形. ∴PP ′=PB .在Rt △PCP ′中,222''P P PC C P =+.……………………………………………6分 ∴222PB PC PA =+.(2)点P 在其他位置时,不是始终具有②中猜想的结论,举例: 如图,当点P 在CB 的延长线上时,结论为222PC PB PA =+.(说明:答案不惟一)……………………………………………………………………………………………7分28.解:(1)∵边BA 绕点B 顺时针旋转α角得到线段BP , ∴BA = BP ,∵α=60°,∴△ABP 是等边三角形,..................................1分 ∴∠BAP =60º,AP = AC , 又∵∠BAC =90°,∴∠PAC =30º,∠ACP =75º,∵PD⊥AC于点D,∴∠DPC=15º.....................................................................2分(2)结论:∠DPC=75º...................................................3分(3)画图.............................................................................4分过点A作AE⊥BP于E.∴∠AEB=90º,∵∠ABP=150°,∴∠1=30º,∠BAE=60º,又∵BA= BP,∴∠2=∠3=15º,∴∠PAE=75º,∵∠BAC=90°,∴∠4=75º,∴∠PAE=∠4,∵PD⊥AC于点D,∴∠AEP=∠ADP =90º,∴△APE≌△APD,..............................................................5分∴AE= AD,在Rt△ABE中,∠1=30º,∴12AE AB=,又∵AB=AC,∴1122AE AD AB AC ===,∴AD=CD,又∵∠ADP=∠CDP=90º,∴△ADP≌△CDP,.............................................................6分∴∠DCP=∠4=75º,∴∠DPC=15º........................................................................7分4123EDBAC PEBC P321EAPC BD28.(1)=BE CF . ………………………………………………………………2分 (2)证明:如图2,∵AB =BC ,∠ABC =90°,BD 为斜边中线 ∴BD =AD =CD =12AC ,BD ⊥AC∵ △EFD 是由△ABD 旋转得到的,∴DE =DF =DB =DC ,∠EDF =∠ADB =∠BDC =90° ∴∠EDF +∠BDF =∠BDC +∠BDF ,即∠BDE =∠FDC ∴△BDE ≌△FDC ∴BE =FC 且∠1=∠2 又∵∴ ,即…………………………………………3分 连接BF ,取BF 中点G ,连接MG 、NG . ∵M 为EF 中点,G 为BF 中点,N 为BC 中点 ∴MG ∥BE ,MG =12BE ;NG ∥FC ,NG =12FC 又∵EB =FC ,BE ⊥FC ∴MG =NG ,∠MGN =90° ∴△MGN 为等腰直角三角形∴MN =22FC …………………………………………………………………5分 (3) ……………………………………………………………7分28.解:(1)………………………………∠3=∠4FHE FDE ︒==90∠∠BE CF ⊥222BF CE AC +=B图2………… 1分 (2)证明:如图,延长AE 、DC 交于点P .∵ 四边形ABCD 是平行四边形, ∴ AD //BC ,AB //CD . ∴∠DAE =∠AEB,∠BAE =∠DPA . ……………………………………… 2分∵ AE 平分∠ BAD , ∴ ∠ DAE =∠ BAE ,∴ ∠ BAE =∠ AEB ,∠ DAE =∠ DPA . ∴BA =BE,DA =DP , ……………………………………………………… 3分又 ∵ BG ⊥ AE ,DH ⊥ AE , ∴G为AE中点,H为AP中点. …………………………………………… 4分又 ∵O 为AC 中点,AD =BC , ∴ ()()111222OG CE BC BE AD AB ==-=-, ()()111222OH CP DP CD AD AB ==-=- . …………………………… 5分∴OG =OH . ………………………………………………………………… 6分 (3)717. ……………………………………………………………………………… 7分28.解:(1)∠D =80°, (1)B∠C =130°; (2)(2)①如图2,连接BD , ∵AB =AD ,∴∠ABD =∠ADB .………………………………………………3 ∵∠ABC =∠ADC ,∴∠ABC ﹣∠ABD =∠ADC ﹣∠ADB . ∴∠CBD =∠CDB .∴CB =CD .………………………………………………………4 (3)(Ⅰ)如图,当∠ADC =∠ABC =90°时,延长AD ,BC 相交于点E , ∵∠ABC =90°,∠DAB =60°,AB =5, ∴AE =10.∴DE =AE ﹣AD =10﹣4═6.……………………………………5 ∵∠EDC =90°,∠E =30°,∴CD∴AC=2 (6)(Ⅱ)如图,当∠BCD =∠DAB =60°时,过点D 作DM ⊥AB 于点M ,DN ⊥BC 于点N , ∵DM ⊥AB ,∠DAB =60°,AD =4, ∴AM =2,DM=2∴BM =AB ﹣AM =5﹣2=3.………………………………………7 ∵四边形BNDM 是矩形, ∴DN =BM =3,BN =DM∵∠BCD =60°, ∴CN∴BC =CN +BN∴AC=2……………………………………………………8 即AC28.(本小题满分7分)解:(1)① 依题意补全图形(如图);…………………………………………1分 ② ∠ADC +∠CDE =180°.……………………………………………2分 (2)线段CM ,AE 和BE 之间的数量关系是AE =BE +2CM ,理由如下: ∵ 线段CD 绕点C 逆时针旋转90°得到线段CE , ∴ CD =CE ,∠DCE =90°. ∴ ∠CDE =∠CED =45°.又∵ ∠ADC =135°, ∴ ∠ADC +∠CDE =180°,∴ A 、D 、E 三点在同一条直线上.∴ AE =AD +DE . …………………………………………………………3分 又∵ ∠ACB =90°,AAMDABCE∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE.∴AD=BE.………………………………………………………………4分∵CD=CE,∠DCE=90°,CM⊥DE.∴DE=2CM.…………………………………………………………5分∴AE=BE+2CM.……………………………………………………6分(3)点A到BP的距离为.…………………………………………7分。
2015北京各区中考数学二模25题全面总结及答案
2015北京各区中考数学25题汇编及答案25.如图,Rt △ABC 中,∠A =90°,以AB 为直径的⊙O 交BC 于点D ,点E 在⊙O 上, CE =CA , AB ,CE 的延长线交于点F . (1) 求证:CE 与⊙O 相切;(2) 若⊙O 的半径为3,EF =4,求BD 的长.25.如图1,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,点F 在线段ED 上.连接AF 并延长交 ⊙O 于点G ,在CD 的延长线上取一点P ,使PF=PG .(1)依题意补全图形,判断PG 与⊙O 的位置关系,并证明你的结论;(2)如图2,当E 为半径OA 的中点,DG ∥AB,且OA PG 的长.25.如图,已知AB 是⊙O 的直径,C 是⊙O 上一点,∠BAC 的平分线交⊙O 于 点D ,交⊙O 的切线BE 于点E ,过点D 作DF ⊥AC ,交AC 的延长线于点F . (1)求证:DF 是⊙O 的切线;F(2)若DF =3,DE =2.①求值;②求FAB ∠的度数.25.如图,点A B C D E 、、、、在⊙O 上,AB CB ⊥于点B ,tan 3D =,2BC=,H为CE 延长线上一点,且AH =CH =(1)求证:AH 是⊙O 的切线;(2)若点D 是弧CE 的中点,且AD 交CE 于点F ,求EF 的长.25.如图,⊙O 是△ABC 的外接圆,AB= AC ,BD 是⊙O的直径,P A ∥BC ,与DB 的延长线交于点P ,连接AD . (1)求证:P A 是⊙O 的切线;(2)若BC =4 ,求AD 的长.25.如图,△ABC 中,AB =AC ,点D 为BC 上一点,且AD =DC ,过A ,B ,D 三点作⊙O ,AE是⊙O 的直径,连结DE . (1)求证:AC 是⊙O 的切线;BEADCC(2)若4sin 5C =,AC =6,求⊙O 的直径.25.如图,AB 是⊙O 的直径.半径OD 垂直弦AC 于点E .F 是BA 延长线上一点,CDB BFD ∠=∠.(1)判断DF 与⊙O 的位置关系,并证明; (2)若AB =10,AC =8,求DF 的长.25.如图,AB 是⊙O 的直径,以AB 为边作△ABC ,使得AC = AB ,BC 交⊙O 于点D ,联结OD ,过点D 作⊙O 的切线,交AB 延长线于点E ,交AC 于点F .25.如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,AE 为⊙O 的切线,过点B 作BD ⊥AE 于D .(1)求证:∠DBA =∠ABC ;(2)如果BD =1,tan ∠BAD =12,求⊙O 的半径.25.如图,AB 是⊙O 的直径,点C 是⊙O 上一点, AD ⊥ DC 于D , 且AC 平分∠DAB ,延长DC 交AB 的延长线于点P ,弦CE 平分∠ACB ,交AB 于点F ,连接BE . (1)求证:PD 是⊙O 的切线; (2)若tan ABC =43∠,BE =PC 的长.25.如图,△ABC 内接于⊙O ,OC ⊥AB 于点E ,点D 在OC 的延长线上,且∠B =∠D =30°.(1)求证:AD 是⊙O 的切线;(2)若AB =求⊙O 的半径.25.如图,已知,⊙O 为△ABC 的外接圆,BC 为直径,点E 在AB 边上,过点E 作EF ⊥BC ,延长FE 交⊙O 的切线AG 于点G . (1)求证:GA =GE .PE(2)若AC =6,AB =8,BE =3,求线段OE 的长.答案25.(本小题满分5分) 证明:连接OE ,OC .在△OEC 与△OAC 中, ,,,OE OA OC OC CE CA =⎧⎪=⎨⎪=⎩F∴△OEC ≌△OAC . (1)分∴∠OEC =∠OAC .∵∠OAC =90°,∴∠OEC =90°. ∴OE ⊥CF 于E . ∴CF与⊙O相切.………………………………………………………………………………...2分(2)解:连接AD .∵∠OEC =90°, ∴∠OEF =90°. ∵⊙O 的半径为3, ∴OE =OA=3.在Rt △OEF 中,∠OEF =90°,OE = 3,EF = 4,∴5OF ,………………………………………………………………………3分3tan 4OE F EF ==. 在Rt △F AC 中,∠F AC =90°,8AF AO OF =+=, ∴tan 6AC AF F =⋅=.…………………………………………………………………………4分∵AB 为直径,∴AB =6=AC ,∠ADB =90°. ∴BD =2BC. 在Rt △ABC 中,∠BAC =90°,∴BC =F∴BD=.…………………………………………………………………………………….5分25. 解:(1)补全图形如图5所示. ………………………………………………………… 1分 答:PG 与⊙O 相切. 证明:如图6,连接OG .∵ PF =PG , ∴ ∠1=∠2.又∵OG =OA , ∴ ∠3=∠A .∵ CD ⊥AB 于点E , ∴ ∠A +∠AFE =90°. 又∵∠2 =∠AFE ,∴ ∠3+∠1=90°. ……………………… 2分 即 OG ⊥PG . ∵ OG 为⊙O 的半径,∴ PG 与⊙O 相切. …………………… 3分(2)解:如图7,连接CG . ∵ CD ⊥AB 于点E ,∴ ∠OEC =90°. ∵ DG ∥AB ,∴∠GDC =∠OEC =90°. ∵∠GDC 是⊙O 的圆周角, ∴ CG 为⊙O 的直径. ∵ E 为半径OA 的中点, ∴ 22OA OCOE ==. ∴ ∠OCE =30°即∠GCP =30°.又∵∠CGP =90°,2CG OA ==A∴tan 4PG CG GCP =⋅∠==. …………………………… 5分25. (1)连结OD , ∵AD 平分∠BAC ∴∠DAF =∠DAO ∵OA =OD ∴∠OAD =∠ODA ∴∠ DAF =∠ODA ∴AF ∥OD .┉┉1分 ∵DF ⊥AC ∴OD ⊥DF ∴DF 是⊙O 的切线┉┉2分 (2)①连接BD ∵直径AB , ∴∠ADB =90° ∵圆O 与BE 相切 ∴∠ABE =90°∵∠DAB +∠DBA =∠DBA +∠DBE =90° ∴∠DAB =∠DBE ∴∠DBE =∠F AD ∵∠BDE=∠AFD =90° ∴△BDE ∽△AFD ∴32==DF DE AD BE ┉┉3分 ②连接OC ,交AD 于G 由①,设BE =2x ,则AD =3x ∵△BDE ∽△ABE ∴BE DE AE BE =∴xx x 22232=+∵AB BC ⊥于点B∴AC 是⊙O 的直径…………………………………1分 ∵D ACB ∠=∠,∴tan tan 3D ACB =∠= 在Rt ABC ∆中,2BC =,∴36AB BC == 由勾股定理AC =在CAH ∆中,由勾股定理逆定理:22250AC AH CH +==∴90CAH ∠=°即CA AH ⊥∴AH 是⊙O 的切线…………………………………2分 (2)解:∵点D 是弧CE 的中点∴EAD DAC ∠=∠…………………………………3分 ∵AC 是⊙O 的直径 ∴AE CH ⊥∴90H EAH H HCA ∠+∠=∠+∠=° ∴EAH HCA ∠=∠∴EAD EAH DAC HCA ∠+∠=∠+∠ 即AFH HAF ∠=∠∴HF HA =∵CA AH ⊥AE CH ⊥∴2AH EH CH =⨯可得EH = ∴EF =5分25.(1)证明:连接OA 交BC 于点E ,由AB =AC 可得OA ⊥BC .………………………1分C B∵PA ∥BC , ∴∠PAO =∠BEO =90°. ∵OA 为⊙O 的半径,∴PA 为⊙O 的切线. …………………………… 2分 (2)解:根据(1)可得CE =21BC=2. Rt △ACE 中,122=-=CE AC AE . ………………………………3分∴tan C =21=CE AE . ∵BD 是直径,∴∠BAD =90°.…………………………………………………………4分 又∵∠D =∠C , ∴AD =52tan =DAB.………………………………………………………5分25. (1)证明:∵AB =AC ,AD =DC ,∴∠1=∠C =∠B ,..................................................1分 又∵∠E =∠B ,∴∠1=∠E , ∵AE 是⊙O 的直径,∴∠ADE =90°, ∴∠E +∠EAD =90°, ∴∠1+∠EAD =90°,∴AC 是⊙O 的切线............................................2分 (2)解:过点D 作DF ⊥AC 于点F , ∵DA =DC ,AC =6, ∴CF =12AC =3,..................................... ............3分 ∵4sin 5E =,∴4sin 5C =, ∴在Rt △DFC 中,DF =4,DC =5, ∴AD =5,∵∠ADE =∠DFC =90°,∠E =∠C ,∴△ADE ∽△DFC ,.............................................4分C∴AD DFAE DC =, ∴545AE =, ∴AE =254,∴⊙O 的直径为254.....................5分25.解:(1)DF 与⊙O 相切. ∵CAB CDB ∠=∠, 又∵CDB BFD ∠=∠,∴BFD CAB ∠=∠. ∴AC ∥DF . ………………………………… 2分∵半径OD 垂直于弦AC 于点E ,∴DF OD ⊥. ∴DF 与⊙O 相切. ………………………………… 3分 (2)∵半径OD 垂直于弦AC 于点E ,AC =8,∴482121=⨯==AC AE . ∵AB 是⊙O 的直径, ∴5102121=⨯===AB OD OA . 在AEORt ∆中,3452222=-=-=AE OA OE . ……………………………………… 4分∵AC ∥DF , ∴OAE ∆∽OFD ∆. ∴DF AEOD OE = . ∴DF453=. ∴321DF CEB A O320=DF . ………………………………………………… 5分25.(1)证明:联结AD .∵AB 是⊙O 的直径,∴∠ADB =90°,AD ⊥BC .∵AC = AB ,∴12∠=∠.…….1分 ∵OA OD =,∴13∠=∠. ∴23∠=∠,∴OD ∥AC .…….2分(2)∵AC = AB =10,∴B C ∠=∠.∴cos C=cos 5ABC ∠=. 在Rt △ABD 中,∠ADB =90°,cos 5BD ABC AB ∠==, ∴BDCD = BD….3分∵EF 为⊙O 的切线,∴OD ⊥EF ,由∵OD ∥AC ,∴∠DFC =90°. …….4分 在Rt △CDF 中,cos C=5CF CD =,∴CF =2.∴AF =8. ∵OD ∥AC ,∴ODE ∆∽AFE ∆.∴OE OD AE AF =.∴OB BE ODAB BE AF+=+. ∵152OB OA OD AB ====,∴103BE =.…….5分 25.(本小题满分5分)(1)证明:连接OA .(如图)∵ AE 为⊙O 的切线,BD ⊥AE , ∴ ∠DAO =∠EDB =90°. ∴ DB ∥AO .∴ ∠DBA =∠BAO . …………1分 又 ∵OA =OB , ∴ ∠ABC =∠BAO .∴ ∠D B A =∠A B C . ………………………………………………2分(2)在Rt △ADB 中,∠ADB =90°,C∵ BD =1,tan ∠BAD =12, ∴ AD =2,……………………………………………………………………3分由勾股定理得AB .∴ cos ∠DBA 又∵ BC 为⊙O 的直径, ∴ ∠BAC =90°. 又∵∠DBA =∠ABC .∴ cos ∠ABC = cos ∠DBA∴ 5.cos ABBC ABC===∠…………………………………………4分 ∴ ⊙O 的半径为5.2…………………………………………………………5分25.解:(1)∵ OC =OA∴ ∠CAO =∠OCA ∵ AC 平分∠DAB ∴ ∠DAC =∠CAO , ∴ ∠ACO =∠DAC . ∴ OC ∥AD .…………………………………………………………………….1分 ∵ AD ⊥PD , ∴OC ⊥PD . ∴ PD 是⊙O 的切线……………………………………………………………...2分(2)连接AE .∵CE 平分∠ACB ,∴AE BE =,∴AE BE == ∵AB 为⊙O 的直径, ∴∠AEB =90°.在Rt △ABE 中,14AB =………………………………………3分 ∵ ∠P AC =∠PCB ,∠P =∠P , ∴ △P AC ∽△PCB , ∴ PC AC PB BC =.…………………………………………………………………..4分 又∵4tan 3ABC =∠,∴43AC PCBC PB==, 设PC =4k ,PB =3k ,则在Rt △POC 中,PO =3k +7,OC =7,∵ PC 2+OC 2=OP 2, ∴()()2224737k k +=+, ∴ 126,0k k ==(舍去).∴ PC =4k =4×6=24. …………………………………………………………..5分25证明:(1)连接OA .∵∠B =∠D =30°,∴∠AOC =2∠B =60°,……………………….(1分) ∴∠OAD =180°-∠AOD -∠D =90°,…………….(2分) 即OA ⊥AD ,∴AD 是⊙O 的切线.……………….(3分)(2)∵OA =OC ,∠AOC =60°,∴△ACO 是等边三角形, ∵CO ⊥AB ∴ ……………………….(4分)在Rt △ABC 中∴⊙O 的半径为6.……………………………….(5分)1122AE AB ==⨯=sin sin60AEACE AC∠==︒6AC ===。
2015北京初三数学二模试题及答案WORD
中考统一练习㈡数 学 2015.5考生须知1.本试卷共6页,共五道大题,25个小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考试编号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.考试结束,请将本试卷和答题卡一并交回。
一、选择题(共8道小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.21-的倒数是( ). A .2 B .2- C .21D . 21-2.根据中国汽车工业协会的统计,2011年上半年的中国汽车销量约为932.5万辆,同比增速3.35%.将932.5万辆用科学记数法表示为( )辆A .93.25×105B .0.9325×107C .9.325×106D .9.325×1023.若一个正多边形的每个内角都为135°,则这个正多边形的边数是( ). A .9 B .8 C .7 D .6 4.下列运算正确的是( ).A .22a a a =⋅B .22=÷a aC . 22423a a a +=D . ()33a a -=-5.如图所示,直线a ∥b ,直线c 与直线a ,b 分别相交于点A 、点B ,AM ⊥b ,垂足为点M ,若∠1=58°,则∠2的度数是( ).A .22B .30C .32D .426.某校抽取九年级的8名男生进行了1次体能测试,其成绩分别为90,75,90,85, 75,85,95,75,(单位:分)这次测试成绩的众数和中位数分别是 ( ).A .85,75B .75,85C .75,80D .75,757.已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积等于( ).A .15πB .14π C.13π D .12π8.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( ) .A B C D 二、填空题(共4道小题,每小题4分,共16分)第5题图2a bcMB A 19.在函数3+=x y 中,自变量x 的取值范围是 .10.若()022=++-a b a ,则=+b a .11.把代数式142-+m m 化为()b a m ++2的形式,其中a 、b 为常数,则a +b = . 12.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探索可得,第20个点的坐标是__________;第90个点的坐标为____________.三、解答题(共6道小题,每小题5分,共30分) 13.()33602120---+︒-πcos解:14.解方程:2132+=+-a a a解:15. 已知4+=y x ,求代数式2524222-+-y xy x 的值.解:16.如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F .求证:BE =CF . 证明:17.如图,某场馆门前台阶的总高度CB 为0.9m ,为了方便残疾人行走,该场馆决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角A ∠为8°,请计算从斜坡起点A 到台阶最高点D 的距离(即斜坡AD 的长).(结果精确到0.1m ,参考数据:sin 8°≈0.14,cos 8°≈0.99,tan 8°≈0.14)C ABD解:18.如图,平面直角坐标系中,直线AB 与x 轴交于点A (2,0),与y 轴交于点B ,点D 在直线AB 上.⑴求直线AB 的解析式;⑵将直线AB 绕点A 逆时针旋转30°,求旋转后的直线解析式.解:⑴⑵四、解答题(共4道小题,每小题均5分,共20分)19.如图1,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. ⑴求证:四边形ABCD 是菱形;⑵如图2,若2AED EAD ∠=∠,AC =6.求DE 的长.OBEACD OB EACD图1 图2 证明:⑴ ⑵ 20. 如图,⊙O 中有直径AB 、EF 和弦BC ,且BC 和EF 交于点D ,点D 是弦BC 的中点,CD =4,DF =8.⑴求⊙O 的半径及线段AD 的长; ⑵求sin ∠DAO 的值. 解:⑴ ⑵21.图①、图②反映是某综合商场今年1-4月份的商品销售额统计情况.观察图①和图②,解答下面问题:y x31D B O A FED BOA C⑴来自商场财务部的报告表明,商场1-4月份的销售总额一共是280万元,请你根据这一信息补全图①;⑵商场服装部4月份的销售额是多少万元;⑶小华观察图②后认为,4月份服装部的销售额比3月份减少了.你同意他的看法吗?为什么? 解:⑴ ⑵ ⑶22.⑴阅读下面材料并完成问题:已知:直线AD 与△ABC 的边BC 交于点D ,①如图1,当BD =DC 时,则S △ABD ________S △ADC .(填“=”或“<”或“>”)DBCADBCABCAD图1 图2 图3②如图2,当BD =21DC 时,则=∆ABD S ADC S ∆ . ③如图3,若AD ∥BC ,则有ABC S ∆ DBC S ∆ .(填“=”或“<”或“>”)⑵请你根据上述材料提供的信息,解决下列问题:过四边形ABCD 的一个顶点画一条直线,把四边形ABCD 的面积分成1︰2的两部分.(保留画图痕迹)BCAD五、解答题(共3道小题,23题7分,24题8分,25题7分,共22分)23.已知:关于x 的方程mx 2-3(m -1)x +2m -3=0.⑴当m 取何整数值时,关于x 的方程mx 2-3(m -1)x +2m -3=0的根都是整数; ⑵若抛物线32)1(32-+--=m x m mx y 向左平移一个单位后,过反比例函数)0(≠=k xky 上的一点(-1,3),①求抛物线32)1(32-+--=m x m mx y 的解析式; ②利用函数图象求不等式0>-kx x k 的解集.解:⑴⑵①② 24.探究问题:已知AD 、BE 分别为△ABC 的边BC 、AC 上的中线,且AD 、BE 交于点O .⑴△ABC 为等边三角形,如图1,则AO ︰OD = ;⑵当小明做完⑴问后继续探究发现,若△ABC 为一般三角形(如图2),⑴中的结论仍成立,请你给予证明.⑶运用上述探究的结果,解决下列问题:如图3,在△ABC 中,点E 是边AC 的中点,AD 平分∠BAC , AD ⊥BE 于点F ,若AD =BE =4. 求:△ABC 的周长.ODE ABCOE DBCA1 2 3 4 4 3 2 1xy O -1 -2 -3 -4 -4 -3-2-1D CF B EA图1 图2 图3解:⑴⑵⑶25.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(可用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.解:⑴⑵⑶参考答案一、选择题1 2 3 4 5 6 7 8 B C B D C B DB二、填空题9、x ≥-3 10、-4 11、-3 12、(6,4);(13,1) 三、解答题(共6道小题,每小题5分,共30分) 13.解:原式=3121232-+⨯----------------------------------------4分 =3---------------------------------------5分14.解:()()()()32322-=+-++a a a a a ---------------------------------------1分a a a a a364222-=--++ ---------------------------------------2分 24=a ---------------------------------------3分 21=a ---------------------------------------4分是原方程的根经检验:21=a∴是原方程的根21=a ---------------------------5分15.44=-∴+=y x y x 解:---------------------------------------1分原式=2524222-+-y xy x ---------------------------------------2分()2522--=y x ---------------------------------------4分7254242=-⨯==-时,原式当y x ---------------------------------------5分 16.证明: AD 是中线∴BD=CD ---------------------------------------1分 分别过点B 、C 作AD 及其延长线的垂线BE 、CFCFD E ∠=∠∴---------------------------------------2分中和在CFD BED ∆∆ ⎪⎩⎪⎨⎧∠=∠=∠=∠CDF BDE CDBD CFD E ()AAS CFD BED ∆≅∆∴-------------------------------4分 CF BE =∴---------------------------------------5分17.解:E AB DE D 于点作过⊥---------------------------------------1分 ,于B AB CB ⊥ DC ∥AB∴.90==CB DE ---------------------------------------2分A DE AD AED Rt sin =∆ 中,在---------------------------------------4分∴m AD 4.614.09.0≈= EC AD B∴从斜坡起点A 到台阶最高点D 的距离约为6.4m 。
北京市朝阳区2015年初三二模数学试题答案
北京市朝阳区九年级综合练习(二)数学试卷答案及评分参考 2015.6一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 312. )2)(2(3y x y x -+13. 214. π415. 答案不惟一,例如D C ∠=∠ 16. 8或10(写出一个正确结果给1分)三、解答题(本题共30分,每小题5分) 17. 证明:∵BE ⊥CE ,AD ⊥CE ,∴∠BEC=∠CDA =90°. ………………………1分 ∴∠EBC +∠ECB =90°.又∵∠DCA +∠ECB =90°,∴∠EBC=∠DCA . ………………………………2分 又∵BC=AC ,……………………………………3分∴△BEC ≌△CDA . ………………………………………………………………4分 ∴BE =CD . ………………………………………………………………………5分18. 解:原式 =1218324-⨯-+. ………………………………………………………4分 =132-. ……………………………………………………………………5分19. 解:2443-≥-x x .……………………………………………………………………1分4243+-≥-x x .……………………………………………………………………2分2≥-x . …………………………………………………………………………3分解得2-≤x . ………………………………………………………………………4分 …………………………5分20. 解:)1(4)2()2(2-+-+-a a b b a=4424422-+-++-a ab b a a . ……………………………………………3分 =ab b a 222-+=2)(b a -.……………………………………………………………………………4分 ∵2=-b a ,∴原式=2)2(2=. ………………………………………………………………5分21. 解:(1)把A (-3,1)代入,有31-=m, 解得3-=m .∴反比例函数的表达式为xy 3-=. ……………………………………1分 当1=x 时,313-=-=y . ∴B (1,-3). …………………………………………………………2分 把A (-3,1),B (1,-3)代入b kx y +=,有⎩⎨⎧+=-+-=b k bk 331, 解得⎩⎨⎧-=-=21b k .∴一次函数的表达式为2--=x y . ……………………………………3分 (2)(4,0)或(-2,0). ……………………………………………………5分22. 解:设小白家这两年用水的年平均下降率为x . …………………………………………1分由题意,得1264000)1(%3630002=-⋅x . ………………………………………2分 解得 8.11=x ,2.02=x . ……………………………………………3分 ∵8.1=x 不符合题意,舍去. ………………………………………………4分 ∴%.20=x答:小白家这两年用水的年平均下降率为%.20 ………………………………5分四、解答题(本题共20分,每小题5分) 23.(1)证明:∵EF ∥AB ,BE ∥AF ,∴四边形ABEF 是平行四边形.∵∠ABF=∠FBC +∠FCB ,∠AFB=∠FBC +∠FCB ,∴∠ABF=∠AFB . …………………………………………………………………1分 ∴AB =AF .∴□ABEF 是菱形. ………………………………………………………………2分 (2)解:作DH ⊥AC 于点H ,∵21sin =∠CBE , ∴︒=∠30CBE . ∵BE ∥AC , ∴CBE ∠=∠1. ∵AD ∥BC , ∴12∠=∠.∴︒=∠=∠302CBE .Rt △ADH 中,342cos =∠⋅=AD AH .………………………………………………3分 42sin =∠⋅=AD DH .∵四边形ABEF 是菱形, ∴CD= AB=BE=5, Rt △CDH 中,322=-=DH CD CH . ………………………………………………4分∴334+=+=CH AH AC .…………………………………………5分24.(1)18,50%. …………………………………………………………………………2分 (2)…………………………………………4分(3)120. ………………………………………………………………………………5分25.(1)证明:连接OA 交BC 于点E ,由AB =AC 可得OA ⊥BC .………………………1分 ∵P A ∥BC ,∴∠P AO =∠BEO =90°. ∵OA 为⊙O 的半径,∴P A 为⊙O 的切线. …………………………… 2分 (2)解:根据(1)可得CE =21BC=2. Rt △ACE 中,122=-=CE AC AE . ………………………………3分∴tan C =21=CE AE . ∵BD 是直径,∴∠BAD =90°.…………………………………………………………4分 又∵∠D =∠C , ∴AD =52tan =DAB.………………………………………………………5分26. 解:(1)32m ;……………………………………………………………………………1分(2)由题意可知∠AEO =90°.∵ AO = m ,∠AOB =30°,∴AE =12m .∴S △ABD =m AE BD 2321=⋅. 同理,CF =1(4)2m -.∴S △BCD =m CF BD 23621-=⋅.…………………………………………………2分 ∴S 四边形ABCD = S △ABD +S △BCD 6=.…………………………………………………3分解决问题:αsin 21⋅ab .………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (1)证明:22(1)20(0)ax a x a a --+-=>是关于x 的一元二次方程,2[2(1)]4(2)a a a ∴∆=---- ·············································································· 1分 =4. 即0∆>.∴方程有两个不相等的实数根. ······································································· 2分 (2) 解:由求根公式,得2(1)22a x a-±=. ∴1x =或21x a=-. ·························································································· 3分 0a >,1x >2x ,11x ∴=,221x a=-. ························································································· 4分 211y ax x a ∴=+=-.即1(0)y a a =->为所求.………………………………………………………5分(3)0<a ≤23.…………………………………………………………………………7分28. (1)①72;……………………………………………………………………………1分②222PB PC PA =+. …………………………………………………………2分 证明:作∠PBP ′=∠ABC =60°,且使BP ′=BP ,连接P ′C 、P ′P . ……………3分∴∠1=∠2. ∵AB =CB ,∴△ABP ≌△CBP′. …………………………4分 ∴P A =P ′C ,∠A =∠BCP ′. 在四边形ABCP 中,∵∠ABC =60°,∠APC =30°, ∴∠A +∠BCP =270°.∴∠BCP ′+∠BCP =270°.∴∠PCP ′=360°-(∠BCP ′+∠BCP )=90°. ……………………………………5分 ∵△PBP ′是等边三角形. ∴PP ′=PB .在Rt △PCP ′中,222''P P PC C P =+.……………………………………………6分 ∴222PB PC PA =+.(2)点P 在其他位置时,不是始终具有②中猜想的结论,举例: 如图,当点P 在CB 的延长线上时,结论为222PC PB PA =+. (说明:答案不惟一)……………………………………………………………………………………………7分29.(1)解:设二次函数的表达式为4)4(2++=x a y , 把点(0,0)代入表达式,解得41-=a . ………………………………………1分 ∴二次函数的表达式为4)4(412++-=x y , 即x x y 2412--=. ……………………………………………………………2分 (2)解:设直线OP 为y kx =,将P (-6,3)代入y kx =,解得12k =-,∴12y x =-. 当4-=x 时,2=y .∴M (-4,2). ……………………………………………………………………3分 ∵点M 、N 关于点A 对称, ∴N (-4,6). ∴MN =4.∴12=+=∆∆∆PMN O MN PO N S S S . ……………………………………………………4分 (3)①证明:设点P 的坐标为)241,(2t t t --, 其中4-<t ,设直线OP 为x k y '=, 将P )241,(2t t t --代入x k y '=,解得'=k ∴x t y 48+-=. 当4-=x 时,8+=t y . ∴M (-4,8+t ).∴AN =AM =)8(4+-t =4--t .设对称轴l 交x 轴于点B ,作PC ⊥l 于点C ,则B (-4,0),C )241,4(2t t ---. ∴OB =4,NB =)4(4--+t =t -,PC =-NC =)241(2t t t ----=t t +241.则44412tt tt PC NC -=--+=,44t t OBNB -=-=. ∴OBNBPC NC =. 又∵∠NCP =∠NBO =90°, ∴△NCP ∽△NBO .∴∠PNM =∠ONM . …………………………………………………………………6分 ② (4,244---). ………………………………………………………………8分其他正确解法,请参考标准给分.。
2015北京各区中考数学二模27题汇编及答案
2015北京各区中考数学二模27题汇编及答案27.在平面直角坐标系xOy 中,抛物线224y mx m m x -++=与y 轴交于点A (0,3),与x 轴交于点B ,C (点B 在点C 左侧).(1)求该抛物线的表达式及点B ,C 的坐标;(2)抛物线的对称轴与x 轴交于点D ,若直线y kx b =+经过点D 和点 E (1,2)--,求直线DE 的表达式;(3)在(2)的条件下,已知点P (t ,0),过点P 作垂直于x 轴的直线交抛物线于点M ,交直线DE 于点N ,若点M 和点N 中至少有一个点在x 轴下方,直接写出t 的取值范围.27已知一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,二次函数2224y x ax =-+(其中a >2).(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a 的代数式表示); (2)利用函数图象解决下列问题: ①若25=a ,求当10y >且2y ≤0时,自变量x 的取值范围; ②如果满足10y >且2y ≤0时的自变量x 的取值范围内恰有一个整数,直接写出a的取值范围.()27.在平面直角坐标系中,抛物线2+3y ax bx =+()0≠a 与x 轴交于点A (-3,0)、B (1,0)两点, D 是抛物线顶点,E 是对称轴与x 轴的交点.(1)求抛物线的解析式;(2)若点F 和点D 关于x 轴对称, 点P 是x 轴上的一个动点,过点P 作PQ ∥OF 交抛物线于点Q ,是否存在以点O ,F ,P ,Q 为顶点的平行四边形?若存在,求出点P 坐标;若不存在,请说明理由.27.在平面直角坐标系xOy 中,抛物线21y ax bx =++经过(13)A ,,(21)B ,两点.(1)求抛物线及直线AB 的解析式;(2)点C 在抛物线上,且点C 的横坐标为3.将抛物线在 点A ,C 之间的部分(包含点A ,C )记为图象G ,如 果图象G 沿y 轴向上平移()个单位后与直线 AB 只有一个公共点,求的取值范围.t 0t >t27.已知关于x 的方程()231220mx m x m --+-=.(1)求证:无论m 取任何实数时,方程恒有实数根;(2)若关于x 的二次函数()23122y mx m x m =--+-的图象经过坐标原点,得到抛物线1C .将抛物线1C 向下平移后经过点()0,2A -进而得到新的抛物线2C ,直线l 经过点A 和点()2,0B ,求直线l 和抛物线2C 的解析式;(3)在直线l 下方的抛物线2C 上有一点C ,求点C 到直线l 的距离的最大值.27. 已知:关于x 的一元二次方程22(1)20(0)ax a x a a --+-=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中1x >2x ).若y 是关于a 的函数,且21y ax x =+,求这个函数的表达式;(3)在(2)的条件下,结合函数的图象回答:若使231y a ≤-+,则自变量a 的取值范围为 .27.已知抛物线2y ax bx c =++经过原点O 及点A (-4,0)和点B (-6,3). (1)求抛物线的解析式以及顶点坐标;(2)如图1,将直线2y x =沿y 轴向下平移后与(1)中所求抛物线只有一个交点C ,平移后的直线与y 轴交于点D ,求直线CD 的解析式;(3)如图2,将(1)中所求抛物线向上平移4个单位得到新抛物线,请直接写出新抛物线上到直线CD 距离最短的点的坐标及该最短距离.27.已知关于x 的方程()2230x m x m +-+-=.(1)求证:方程()2230x m x m +-+-=总有两个实数根; (2)求证:抛物线()223y x m x m =+-+-总过x 轴上的一个定点;(3)在平面直角坐标系xOy 中,若(2)中的“定点”记作A抛物线()223y x m x m =+-+-与x 轴的另一个交点为B 与y 轴交于点C ,且△OBC 的面积小于或等于8,求m 的 取值范围.图2xyO27.在平面直角坐标系xOy 中,抛物线214y x bx c =-++经过点A (4,0)和B (0,2).(1)求该抛物线的表达式;(2)在(1)的条件下,如果该抛物线的顶点为C ,点B 关于抛物线对称轴对称的点为D ,求直线 CD 的表达式;(3)在(2)的条件下,记该抛物线在点A ,B 之间的部分(含点A ,B )为图象G ,如果图象G 向上平移m (m >0)个单位后与直线CD 只有一个公共点,请结合函数的图象,直接写出m 的取值范围.27.已知关于x 的一元二次方程()23130kx k x +++= (k ≠0).(1)求证:无论k 取何值,方程总有两个实数根;(2)点()()120,0A x B x ,、在抛物线()2313y kx k x =+++上,其中12x x <0<,且12x x 、和k 均为整数,求A ,B 两点的坐标及k 的值;(3) 设(2)中所求抛物线与y 轴交于点C ,问该抛物线上是否存在点E ,使得ABEABCS S=,若存在,求出E 点坐标,若不存在,说明理由.yx11O27.如图,在平面直角坐标系中,点A(5,0),B(3,2),点C在线段OA上,BC=BA,点Q 是线段BC上一个动点,点P的坐标是(0,3),直线PQ的解析式为y=kx+b(k≠0),且与x轴交于点D.(1)求点C的坐标及b的值;(2)求k的取值范围;(3)当k为取值范围内的最大整数时,过点B作BE∥x﹣5ax(a≠0)的顶点在四边形ABED的内部,求a27.已知关于x的方程mx2-(3m-1)x+2m-2=0(1)求证:无论m取任何实数时,方程恒有实数根.(2)若关于x的二次函数y= mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求二次函数的表达式.答案27. (本小题满分7分)解:(1)∵抛物线224y mx m m x -++=与y 轴交于点A (0,3),∴43m +=. ∴1m =-. ∴抛物线的表达式为232y x x=-++.…………………………………………………………………1分 ∵抛物线232y x x =-++与x 轴交于点B ,C , ∴令0y =,即 2320x x +-=+. 解得 11x =-,23x =. 又∵点B 在点C 左侧, ∴点B的坐标为(1,0)-,点C 的坐标为(3,0).…………………………………………………...……3分(2)∵2223(1)4y x x x +=---++=,∴抛物线的对称轴为直线1x =. ∵抛物线的对称轴与x 轴交于点D , ∴点D的坐标为(.…………………………………………………………………………...………4分 ∵直线y kx b =+经过点D (1,0)和点E (1,2)--,∴0,2.k b k b +=⎧⎨-+=-⎩解得1,1.k b =⎧⎨=-⎩∴直线DE的表达式为1y x =-. ………………………………………………………………………5分(3)1t <或3t > ……………………………………………………………………………………………7分27.解:(1)∵ 一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,∴ 20,4 1.k b k b +=⎧⎨+=⎩解得1,21.k b ⎧=⎪⎨⎪=-⎩ ……………………………………………………………… 1分∴ 1211-=x y . ………………………………………………………… 2分 ∵ 22224)(42a a x ax x y -+-=+-=,∴ 二次函数图象的顶点坐标为2(,4)a a -.………………………………… 3分(2)①当25=a 时,4522+-=x x y . ………………………………… 4分如图10,因为10y >且2y ≤0,由图象得2<x ≤4. ………………………… 6分②136≤a <52.……………………………7分27.解:(1)据题意得9-3b+3=01,a+b+3=0. 2.a ab =-⎧⎧⎨⎨=-⎩⎩,解得 ∴解析式为y = -x 2 -2x +3 ……3分 (2)当12bx a=-=-时,y =4 ∴顶点D (-1,4)∴F (-1,-4)… 4分 若以点O 、F 、P 、Q 为顶点的平行四边形存在,则点Q (x ,y )满足4y EF == ①当y = - 4时,-x 2-2x +3= -4解得,1x =-±∴12(14),(14)Q Q ----+-∴12(P P -……6分 ②当y = 4时,-x 2-2x +3= 4 解得,x = - 1 ∴Q 3(-1,4) ∴P 3(-2,0)……7分综上所述,符合条件的点有三个即:123((2,0)P P P --27 . 解:(1)∵抛物线21y ax bx =++过(13)A ,,(21)B ,两点.∴134211a b a b ++=⎧⎨++=⎩ .…….1分解得,24a b =-⎧⎨=⎩ .∴抛物线的表达式是224+1y x x =-+.…….2分 设直线AB 的表达式是y mx n =+ ,∴321m n m n +=⎧⎨+=⎩ ,解得,25m n =-⎧⎨=⎩ .…….3分∴直线AB 的表达式是25y x =-+.…….4分 (2)∵点C 在抛物线上,且点C 的横坐标为3.∴C (3,-5).…….5分点C 平移后的对应点为点'(3,5)C t -代入直线表达式25y x =-+,解得4t =.…….6分结合图象可知,符合题意的t 的取值范围是04t <≤. …….7分27.解:(1)当0m =时,2x =当0m ≠时,()()231422m m m ∆=---2296188m m m m =-+-+()22211m m m =++=+∵()210m +≥,∴0∆≥综上所述:无论m 取任何实数时,方程恒有实数根;………………………3分 (2)∵二次函数2(31)22y mx m x m =--+-∴220m -=∴1m =………………………4分抛物线1C 的解析式为:22y x x =- 抛物线2C 的解析式为:222y x x =-- 设直线l 所在函数解析式为:y kx b =+将A 和点()2,0B 代入y kx b =+∴直线l 所在函数解析式为:2y x =-………5分(3)据题意:过点C 作CE x ⊥轴交AB 于E ,可证45DEC OAB ∠=∠=︒ ,则2CD =设()2,22C t t t --,(),2E t t -,()03t <<∴E C EC y y =-23t t =-+23924t ⎛⎫=--+ ⎪⎝⎭………………………6分∵3032⎛⎫<< ⎪⎝⎭∴当32t =时,max 94EC = ∵CD 随EC 增大而增大,∴max CD =.………………………7分27. (1)证明:22(1)20(0)ax a x a a --+-=>是关于x 的一元二次方程,2[2(1)]4(2)a a a ∴∆=---- ·················································································· 1分 =4. 即0∆>.∴方程有两个不相等的实数根. ·········································································· 2分 (2) 解:由求根公式,得2(1)22a x a-±=.∴1x =或21x a=-. ······························································································ 3分 0a >,1x >2x ,11x ∴=,221x a=-. ····························································································· 4分 211y ax x a ∴=+=-.即1(0)y a a =->为所求.………………………………………………………5分(3)0<a ≤23.…………………………………………………………………………7分27.解:(1)∵ 抛物线经过()0,0,()4,0- ,()6,3-三点, ∴01640,366 3.c a b a b =⎧⎪-=⎨⎪-=⎩…………………………………………………………………… 1分 解得1410a b c ⎧=⎪⎪=⎨⎪=⎪⎩,,. ………………………………………………………………………… 2分 ∴ 抛物线的解析式为214y x x =+.∵()()22211144421444y x x x x x =+=++-=+-∴抛物线的顶点坐标为()2,1-- …………………………………………………… 3分(2)设直线CD 的解析式为2y x m =+,根据题意,得2124x x x m+=+, …………………………………………………… 4分 化简整理,得2440x x m --=, 由16160m ∆=+=,解得1m =-, ………………………………………………… 5分∴直线CD 的解析式为21y x =- .(3)点的坐标为()2,7, …………………………………………………………… 6分最短距离为. ……………………………………………………………… 7分 27. 解:(1)24b ac -=()()2243m m ---........................................................1分 =244412m m m -+-+ =2816m m -+ =()24m - ∵()240m -≥,∴方程()2230x m x m +-+-=总有两个实数根...............................................2分(2)()21,224m m x -±-==()242m m -±-................................................3分∴11x =-,23x m =-+,∴抛物线()223y x m x m =+-+-总过x 轴上的一个定点(-1,0).................4分 (3)∵抛物线()223y x m x m =+-+-与x 轴的另一个交点为B ,与y 轴交于点C , ∴B (3-m ,0),C (0, m -3),...................................................................................5分 ∴△OBC 为等腰直角三角形, ∵△OBC 的面积小于或等于8, ∴OB ,OC 小于或等于4,∴3-m ≤4或m -3 ≤4, .......................................................................................6分 ∴m ≥-1或m ≤7.∴-1≤m ≤7且3m ≠.............................................................................................7分 27.(本小题满分7分)解:(1)∵ 抛物线214y x bx c =-++经过点A (4,0)和B (0,2).∴ 21440,42.b c c ⎧-⨯++=⎪⎨⎪=⎩………………………………………………1分解得 1,22.b c ⎧=⎪⎨⎪=⎩ ∴ 此抛物线的表达式为211242y x x =-++.………………………2分 (2)∵()221119214244y x x x =-++=--+, ∴ C (1,94).…………………………………………………………3分 ∵ 该抛物线的对称轴为直线x =1,B (0,2),∴ D (2,2).……………………………………………………………4分 设直线CD 的表达式为y =kx +b .由题意得 9,42 2.k b k b ⎧+=⎪⎨⎪+=⎩解得 1,45.2k b ⎧=-⎪⎪⎨⎪=⎪⎩∴ 直线CD 的表达式为1542y x =-+.………………………………5分 (3)0.5<m ≤1.5.……………………………………………………………7分27. (1)∵()()222Δ=3112961310k k k k k +-=-+=-≥∴方程总有两个实数根.……………………………………………………2分 (2)由求根公式得:()()31312k kx k-+?=∴3x =-或1x k=- ∵12x x 、和k 均为整数∴=1k ± 又∵120x x <<∴1k =-…………………………………………………………………………3分 ∴A (-3,0), B (1,0) ……………………………………………………4分 (3)()()()2,3131,,--+---…………………………………………7分27.解:(1)直线y=kx+b (k ≠0)经过P (0,3),∴b =3. (1)过点B 作BF ⊥AC 于F , ∵A (5,0),B (3,2),BC =BA , ∴点F 的坐标是(3,0). ∴点C 的坐标是(1,0).…………………………………(2)当直线PC 经过点C 时,k =﹣3. 当直线PC 经过点B 时,k =13-.………………………∴133k -≤≤-……………………………………………(3)133k -≤≤-且k 为最大整数,∴k =﹣1.则直线PQ 的解析式为y=﹣x+3.∵抛物线y=ax 2﹣5ax (a≠0)的顶点坐标是52524a ⎛⎫-⎪⎝⎭,,对称轴为52x =.解方程组352y x x =-+⎧⎪⎨=⎪⎩,得5212x y ⎧=⎪⎪⎨⎪=⎪⎩ 即直线PQ 与对称轴为52x =的交点坐标为5122⎛⎫⎪⎝⎭,,…………………………………………6 ∴125224a <-<. 解得822525a -<<-. (7)27.解:(1)△=9m 2-6m +1-8m 2+8m =m 2+2m +1,=(m +1)2;∴△=(m +1)2≥0,………………………………………….(1分) ∴无论m 取任何实数时,方程恒有实数根;(2)设x 1,x 2为抛物线y =mx 2-(3m -1)x +2m -2与x 轴交点的横坐标. 令y =0,则mx 2-(3m -1)x +2m -2=0由求根公式得,x 1=2,, …………………………….(2分)∴抛物线y =mx 2-(3m -1)x +2m -2不论m 为任何不为0的实数时恒过定点(2,0).∴x 2=0或x 2=4,∴m =1或 ) 当m =1时,y =x 2-2x ,,∴抛物线解析式为y =x 2-2x当 时,382312-+-=x x y答:抛物线解析式为y =x 2-2x ;或 382312-+-=x x y ……….(3分)。
2015年中考数学二模试题附答案
2015年中考数学二模试题(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列运算中,正确的是 ……………………………………………………………………( )(A)1293=±3(C)030-=()(D)2139-=2.轨道交通给人们的出行提供了便捷的服务,据悉,上海轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为 ………………………( )(A)52.0610⨯(B)320.610⨯(C)42.0610⨯(D)50.20610⨯3.从下列不等式中选择一个与12x +≥组成不等式组,如果要使该不等式组的解集为1x ≥,那么可以选择的不等式可以是 ………………………………………………………………( ) (A)1x >-(B)2x >(C)1x <-(D)2x <4.已知点11(,)A x y 和点22(,)B x y 是直线23y x =+上的两个点,如果12x x <,那么1y 与2y 的大小关系正确的是 …………………………………………………………………( )(A)12y y >(B)12y y <(C)12y y =(D)无法判断5.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是…………………( )(A) (B) (C) (D) 6.已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是 …………………………………………………………………( ) (A)AC BD =, AB CD ∥, AB CD = (B)AD BC ∥, A C ∠=∠(C)AO BO CO DO ===, AC BD ⊥(D)AO CO =, BO DO =, AB BC =二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.因式分解:34x x -= ▲ . 8.2,那么x = ▲ .9.如果分式242x x -+的值为0,那么x 的值为 ▲ .10.已知关于x 的一元二次方程2610x x m -+-=有两个相等的实数根,那么m 的值为▲ . 11.已知在方程222232x x x x++=+中,如果设22y x x =+,那么原方程可化为关于y 的整式方程是 ▲ .12.布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为 ▲ .13.某学校在开展“节约每一滴水”的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是 ▲ 吨.14.如图,在ABC ∆中,AD 是边BC 上的中线,设向量AB a =,AD b =,如果用向量,a b表示向量BC ,那么BC = ▲ .15.如图,已知ABC ∆和ADE∆均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果9AB =,3BD =,那么CF 的长度为 ▲ .16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =,那么CD = ▲ .17.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将(第14题图)ABCD(第15题图)A BCEFD(第16题图)B[],p q 称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[]4,2-.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[]2,3,将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为 ▲ .18.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 ▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-.20.(本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩21.(本题满分10分,第(1)小题5分、第(2)小题5分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点, AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =. (1)求线段AE 的长;(2)求sin DAE ∠的值.22.(本题满分10分,第(1)小题4分,第(2)小题6分)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为 千米/小时,在甲地游玩的时间为 小时; (2)小明从家出发多少小时的时候被妈妈追上?A C FED(第18题图)(第21题图) CAB E D此时离家多远?23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H . (1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.24.(本题满分12分,每小题各6分) 如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.(第24题图)A BDHG FEC(第23题图)25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点,以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E ,点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CE y =,求y 关于x 的函数关系式,并写出定义域;(2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径;(3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(第25题图)(备用图1)BA CB九年级数学参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分) 1.D ; 2.C ;3.A ; 4.B ; 5.D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.(2)(2)x x x +- 8.1 9.2 10. 10 11. 2320y y -+= 12.2513. 540 14.22b a - 15.216. 17.[]68, 18. 35三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6302x tan =-. 解:原式=21(1)212x x x x x --+-+……………………………………………………2分 122x x x x -=-++ ………………………………………………………2分 12x =+………………………………………………………………2分∵6302x tan =-6223=⨯-=………………………………………2分 ∴原式6=………………………………………………………………2分 20. (本题满分10分) 解方程组:222230x y x xy y -=⎧⎨--=⎩...............(1) (2)解:由(2)可得:(3)()0x y x y -+=∴30x y -=,0x y += ………………………………2分∴原方程组可化为:230x y x y -=⎧⎨-=⎩,2x y x y -=⎧⎨+=⎩ …………………………4分解得原方程组的解为1131x y =⎧⎨=⎩,2211x y =⎧⎨=-⎩ ………………………………4分21.(本题满分10分,第(1)小题5分、第(2)小题5分)(1)解:909oBAC AC ∠==∵, 93cos 5AC C AB BC ===∴ …………………………………………1分 15BC =∴ ………………………………………………………………2分 90oBAC ∠=∵,点E 是BC 的中点 11522AE BC ==∴ ……………………………………………………2分 (2)解:AD BC ⊥∵ 90oADC ADB ∠=∠=∴3cos 95CD CD C AC ===∴ 275CD =∴ …………………………………………………2分∵点E 是BC 的中点,BC=15 ∴CE=152 ∴DE=2110………………………………………1分 ∵90oADB ∠= ∴sin DAE ∠=2127101525DE AE =⨯= ……………………………2分 22. (本题满分10分,第(1)小题4分,第(2)小题6分)(1) 20;0.5 ……………………………………………………………各2分 (2)解:设小明出发x 小时的时候被妈妈追上.420(1)10203()3x x -+=⨯- ……………………………………3分解得:74x =……………………………………………………1分 ∴320(1)102010254x -+=⨯+= ……………………………1分答:当小明出发74小时的时候被妈妈追上,此时他们离家25千米.…1分23.(本题满分12分,每小题各6分)(1)证明:∵点D 、E 分别是BC 、AC 的中点∴DE//AB ,BC=2BD …………………………………………………1分 ∵AF//BC∴四边形ABDF 是平行四边形 ……………………………………………2分 ∵BC=2AB∴AB=BD …………………………………………………………………1分 ∴四边形ABDF 是菱形. …………………………………………………2分(2)证明:∵四边形ABDF 是菱形 ∴AF=DF∵点G 是AF 的中点 ∴FG=12AF ∵点E 是AC 的中点 ∴AE=CE ∵AF//BC ∴1EF AEDE CE== ∴EF=12DF , ∴FG=EF ……………………………………………………………1分 在△AFE 和△DFG 中AF DF F F EF GF =⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DFG (S.A.S )∴∠FAE=∠FDG ………………………………………………………1分 ∵AF//BC ∴∠FA E=∠C∴∠FDG=∠C ………………………………………………………1分 又∵∠EHD=∠DHC (公共角)∴△HED ∽△HDC ……………………………………………………2分 ∴HE HDHD HC= ∴2DH HE HC = ………………………………………………………1分 24.(本题满分12分,每小题各6分)(1)解:∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩……………………………………………………1分解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩………………………………………………2分∴这个抛物线的解析式为:2142y x x =-- ………………………………1分 顶点为9(1,)2- ……………………………………………………………2分(2)如图:取OA 的中点,记为点N ∵OA=OC=4,∠AOC=90° ∴∠ACB=45°∵点N 是OA 的中点 ∴ON=2 又∵OB=2 ∴OB=ON 又∵∠BON=90° ∴∠ONB=45° ∴∠ACB=∠ONB ∵∠OMB+∠OAB=∠ACB ∠NBA+∠OAB=∠ONB∴∠OMB=∠NBA ………………………………………………………………2分 1° 当点M 在点N 的上方时,记为M 1 ∵∠BAN=∠M 1AB ,∠NBA=∠OM 1B , ∴△ABN ∽△AM 1B ∴1AN ABAB AM =又∵AN=2,∴110AM = 又∵A (0,—4)∴1(0,6)M ………………………………………………………………………2分 2° 当点M 在点N 的下方时,记为M 2点M 1与点M 2关于x 轴对称,∴2(0,6)M - ……………………………………2分 综上所述,点M 的坐标为(0,6)或(0,6)-25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) (1)解:过点P 作PH ⊥AD ,垂足为点H∵∠ACB=90°,43tanB = ∴35sinA =∵PA x = ∴35PH x = ∵∠PHA=90° ∴222PH AH PA += ∴45AH x =……………………1分 ∵在⊙P 中,PH ⊥弦AD ∴45DH AH x ==, ∴85AD x = 又∵AC=8 ∴885CD x =- ………………………………………………1分∵∠PHA=∠BCA=90°,∴PH ∥BE ∴PH DHCE CD = ∴3455885x xy x=- ……………………………1分 ∴665y x =- (x 0<<5) (1)(2)∵PA=PD ,PH ⊥AD ∴∠1=∠2 ∵PH ∥BE∴∠1=∠B ,∠2=∠3 ∴PB=PE ∵Q 是BE 的中点∴PQ ⊥BE ………………………………………………………………………1分 ∴43PQ tanB =BQ = ∴35BQ cosB =BP = ∵PA x = ∴10PB x =- ∴365BQ x =-, 485PQ x =- 1°当⊙Q 和⊙P 外切时:PQ=AP+BQ∴438655x x x -=+- …………………………………………………………1分 53x = …………………………………………………………………1分2°当⊙Q 和⊙P 内切时,此时⊙P 的半径大于⊙Q 的半径,则PQ=A P —BQ ∴438(6)55x x x -=-- …………………………………………………………1分 321HQABP CED- 11 - 356x = ……………………………………………………………………1分 ∴当⊙Q 和⊙P 相切时,⊙P 的半径为53或356. (3)当△PMC 是等腰三角形,存在以下几种情况: 1°当MP=MC x =时 ,∵336(6)55QC x x =--= ∴45MQ x = 若M 在线段PQ 上时,PM+MQ=PQ ∴44855x x x +=- 4013x = ……………………………………………………………………1分 若M 在线段PQ 的延长线上时,PM —MQ=PQ ∴44855x x x -=- 8x = …………………………………………………………………………1分 2°当CP=CM 时∵CP=CM ,CQ ⊥PM∴PQ=QM=1122PM x = ∴41852x x -= 8013x = …………………………………………………………………………1分 3°当PM=PC x =时∵AP x = ∴PA=PC 又∵PH ⊥AC ∴AH=CH∵PH ∥BE ∴1AP AH BP CH== ∴110x x =- 5x = …………………………………………………………………………1分 综上所述:当△PMC 是等腰三角形时,AP 的长为4013或8013或5或8.。
北京市朝阳区2015届初三一模数学试题及答案
北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考 2015.5一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 2≠x12. 2)(3n m -13. 20°14. 3+=x y (答案不惟一)15. 二类16. 750a ,nn a n 1)1-(21+⋅+(第一个空1分,第二个空2分)三、解答题(本题共30分,每小题5分) 17. 证明:∵AB ∥CD ,∴∠B=∠DCE . …………………………………………………………………1分 在△ABC 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠=分分3-----------------------------------------------2-----------------------------------------------CD BC DCEB EC AB ∴△ABC ≌△ECD . ……………………………………………………………4分 ∴AC =ED . ……………………………………………………………………5分18. 解:原式 =122232+⨯--………………………………………………………4分 =2-.…………………………………………………………………………5分19. ⎪⎩⎪⎨⎧>+->.31222x x x x ,解:解不等式①,得2->x . ………………………………………………………………2分解不等式②,得x <1. ………………………………………………………………4分 ∴不等式组的解集是x <-2<1. …………………………………………………5分20. 解:)2)(2()3()1(2-++---x x x x x=4312222-++-+-x x x x x …………………………………………………3分 =32-+x x . ……………………………………………………………………4分 ∵052=-+x x , ∴52=+x x .∴原式=5-3=2. ……………………………………………………………………5分① ②21. 解:(1))3(4)6(2+--=∆k ………………………………………………………1分12436--=k244+-=k∵原方程有两个不相等的实数根, ∴0244>+-k .解得 6<k . ………………………………………………………………2分(2)∵6<k 且k 为大于3的整数,∴=k 4或5. ………………………………………………………………………3分① 当=k 4时,方程0762=+-x x 的根不是整数.∴=k 4不符合题意. ………………………………………………………… 4分② 当=k 5时,方程0862=+-x x 根为21=x ,42=x 均为整数.∴=k 5符合题意. ……………………………………………………………5分 综上所述,k 的值是5.22. 解:设京张高铁最慢列车的速度是x 千米/时. …………………………………………1分由题意,得60182029174-174=x x . ……………………………………………2分解得 180=x . ……………………………………………3分 经检验,180=x 是原方程的解,且符合题意. ………………………………4分答:京张高铁最慢列车的速度是180千米/时. ……………………………………5分四、解答题(本题共20分,每小题5分) 23. (1)证明:在菱形ABCD 中,OC=12AC . ∴DE=OC . ∵DE ∥AC ,∴四边形OCED 是平行四边形.…………………………………………1分 ∵AC ⊥BD ,∴平行四边形OCED 是矩形. …………………………………………2分 ∴OE =CD .…………………………………………………………………3分(2)在菱形ABCD 中,∠ABC=60°,∴AC=AB=2. ∴在矩形OCED 中,CE ==………………4分 在Rt △ACE 中,………………………………………………………5分24.(1)2300. ………………1分(2)如图. …………… 3分(3)35.0±0.5. ……………5分25.解:(1)连接OD,∵ED为⊙O的切线,∴OD⊥ED.……………………………………………………………………………1分∵AB为⊙O的直径,∴∠ACB=90°. ………………………………………………………………………… 2分∵BC∥ED,∴∠ACB=∠E=∠EDO.∴AE∥OD.∴∠DAE=∠ADO.∵OA=OD,∴∠BAD=∠ADO.∴∠BAD=∠DAE. ………………………………3分(2)连接BD,∴∠ADB=90°.∵AB=6,AD=5,∴BD.……………………………………………………………4分∵∠BAD=∠DAE=∠CBD ,∴tan∠CBD = tan∠BAD=5.在Rt△BDF中,∴DF=BD·tan∠CBD =115. ……………………………………………………………5分26. 解:PD AP 的值为23. …………………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2, ∴BC =2k .∴DB =DC +BC =3k . ∵E 是AC 中点, ∴AE =CE . ∵AF ∥DB , ∴∠F =∠1. 又∵∠2=∠3,∴△AEF ≌△CEB . ……………………………………………………………3分 ∴AF =BC =2k . ∵AF ∥DB , ∴△AFP ∽△DBP . ∴DBAFPD AP =. ∴32=PD AP . …………………………………………………………………4分(2) 6. ……………………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. 解:(1)∵ 点A 在直线x y =,且点A 的横坐标是-3,∴ A (-3,-3) . ………………………………………………………………1分 把A (-3,-3)代入x ax y 42+=,解得a =1. … …………………………………………………………………2分 ∴M 1 : x x y 42+=,顶点为(-2,-4) . ∴M 2的顶点为(1,-1) .∴M2的表达式为x x y 2-2=. …………3分(2)①由题意,C (2,2),∴F (4,2) . ………………………………4分 ∵直线n x y +=经过点F , ∴2=4+n .解得n =-2. ………………………5分② n >3,n <-6. …………… …7分28.解:(1)①补全图形,如图1所示. ………………………1分②由题意可知AD =DE ,∠ADE =90°.∵DF ⊥BC ,∴∠FDB =90°.∴∠ADF =∠EDB . ……………………………………2分∵∠C =90°,AC =BC ,∴∠ABC =∠DFB =90°.∴DB =DF .∴△ADF ≌△EDB . ……………………………………3分∴AF =EB .在△ABC 和△DFB 中,∵AC =8,DF =3,∴AC=,DF=………………………………………………………………4分 AF =AB -BF=即BE=. …………………………………………………………………………5分(2=BE +AB. ……………………………………………………………………7分图129. 解:(1)A 、B ……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长. ………………………3分∵P (1,2),∴ P ′ (1,-2).设直线P ′Q 的表达式为b kx y +=,根据题意,有⎩⎨⎧=+-=+242b k b k ,解得⎪⎩⎪⎨⎧-==31034b k .∴直线P ′Q 的表达式为31034-=x y . ……………4分 当0=y 时,解得25=x . 即25=t . ………………………………………………………………………5分 根据题意,可知PP ′=4,P Q =3, P Q ⊥PP ′, ∴5''22=+=PQ PP Q P . ∴“等高距离”最小值为5. …………………………………………………6分(3)Q (554,552)或Q (554-,552). ………………………………8分。
2015年北京13区中考数学二模分类汇编及答案——选填基础题
(东城)一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.如图,数轴上有A ,B ,C ,D 四个点,其中到原点距离相等的两个点是 A .点B 与点DB .点A 与点CC .点A 与点DD .点B 与点C2.据统计,中国每年浪费的食物总量折合粮食约为50 000 000 吨,将50 000 000用科学记数法表示为 A . 5×107B . 50×106C . 5×106D . 0.5×1083. 下列运算正确的是A .236a a a ⋅=B .336a a a += C .22a a -=- D .326()a a -=4.甲、乙、丙、丁四名运动员参加了射击预选赛,他们射击的平均环数-x 及其方差2s如下表所示.如果选出一个成绩较好且状态稳定的人去参赛,应选运动员A .甲B .乙C .丙D .丁5. 如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是6.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从此布袋里任意摸出1个球,该球是红球的概率为13,则a 等于 A .1B . 2C . 3D . 47. 如图,将△ABC 沿BC 方向向右平移2cm 得到△DEF ,若△ABC 的周长为16cm ,则四边形ABFD 的周长为8.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于2BC 的长为半径作弧,两弧相交于点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠B =25°,则∠ACB 的度数为 A . 90° B . 95°C . 100°D . 105°9.如果三角形的一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是 ,,二、填空题(本题共18分,每小题3分)11x 的取值范围是 .12.如图,AB //CD ,∠D = 27°,∠E =36°.则∠ABE 的度数是 .13.一次函数y kx b =+ 的图象经过第一、二、三象限且经过(0,2)点.任写一个满足上述条件的一次函数的表达式是_________________.14.小刚用一张半径为24cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm ,那么这张扇形纸板的面积是_________________2cm .第12题图 第14题图15. 如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC =8,BD =6,以AB 为直径作一个半圆,则图中阴影部分的面积为 .(西城)一、选择题(本题共30分,每小题3分)1.2015年羊年除夕夜的10点半,在央视春晚送红包的活动中,微信“摇一摇”峰值的摇动次数达到8.1亿次/分钟,送出微信红包120 000 000个.将120 000 000用科学记数法表示应为 A. 90.1210⨯ B. 71.210⨯ C. 81.210⨯ D. 71210⨯ 2.如图,BD ∥AC ,AD 与BC 交于点E ,如果∠BCA =50°,∠D =30°, 那么∠DEC 等于A. 75°B. 80°C. 100°D. 120° 3.64的立方根是A. 8±B. 4±C. 8D. 44.函数y =x 的取值范围是A.2x ≠B. x ≥2C. x >2D. x ≥2- 5.如图,△ABC 中,D ,E 两点分别在AB ,AC 边上,且DE ∥BC , 如果23AD AB =,AC =6,那么AE 的长为A. 3B. 4C. 9D. 126.某居民小区开展节约用电活动,该小区100户家庭4月份的节电情况如下表所示.那么4月份这100户家庭的节电量(单位:千瓦时)的平均数是A. 35B. 26C. 25D. 20 7. 若一个正六边形的半径为2,则它的边心距等于A. 2B. 1C.D.8.如图,△ABC 的边AC 与⊙O 相交于C ,D 两点,且经过圆心O , 边AB 与⊙O 相切,切点为B .如果∠A =34°,那么∠C 等于 A .28° B .33° C .34° D .56°9.如图,将正方形OABC 放在平面直角坐标系xOy 中,O 是原点,若点A 的坐标为,则点C 的坐标为A .B .(-C .(D .(1)-二、填空题(本题共18分,每小题3分)11.若2(2)0m ++= 则m n -= .12.若一个凸n 边形的内角和为1080︒,则边数n = .13.两千多年前,我国的学者墨子和他的学生做了小孔成像的实验.他的做法是,在一间黑暗的屋子里,一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小华在学习了小孔成像的原理后,利用如下装置来验证小孔成像的现象.已知一根点燃的蜡烛距小孔20cm ,光屏在距小孔30cm 处,小华测量了蜡烛的火焰高度为2cm ,则光屏上火焰所成像的高度为______cm .14.请写出一个图象的对称轴是直线1x =,且经过(0,1)点的二次函数的表达式: ______. ny x =(n ≠0)在第15.如图,在平面直角坐标系xOy 中,直线3y x =与双曲线满足3nx x >的x 的取一象限的公共点是(1,)P m .小明说:“从图象上可以看出,值范围是1x >.”你同意他的观点吗?答: .理由是 .(海淀)一、选择题(本题共30分,每小题3分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.中国国家图书馆是亚洲最大的图书馆,截止到今年初馆藏图书达3119万册,其中古籍善本约有2000000册.2000000用科学记数法可以表示为A .70.210⨯ B .6210⨯ C .52010⨯ D .6102⨯ 2.有意义,则x 的取值范围是A .0≤xB .0≥xC .2≤xD .2≥x 3.我国古代把一昼夜划分成十二个时段,每一个时段叫一个时辰,古时与今时的对应关系(部分)如下表所示.天文兴趣小组的小明等4位同学从今夜23:00至明晨7:00将进行接力观测,每人两小时,观测的先后顺序随机抽签A .13 B .4 C .6 D .124.如图,小明将几块六边形纸片分别减掉了一部分(虚线部分),得到了一个新多边形.若新多边形的内角和为540°,则对应的是下列哪个图形A B C D5.如图,根据计算正方形ABCD 的面积,可以说明下列哪个等式成立 A .()2222a b a ab b +=++B.()2222a b a ab b -=-+C.()()22a b a b a b +-=-D.()2a a b a ab -=-6.甲和乙入选学校的定点投篮大赛,他们每天训练后投10个球测试,记录命中的个数,五天后将记录的数据绘制成折线统计图,如右图所示.则下列对甲、乙数据描述正确的是A .甲的方差比乙的方差小B .甲的方差比乙的方差大C .甲的平均数比乙的平均数小D .甲的平均数比乙的平均数大 7.在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下: 对于“想一想”中的问题,下列回答正确的是:A .根据“边边边”可知,△'''C O D ≌△COD ,所以∠'''A OB =∠AOB B .根据“边角边”可知,△'''C OD ≌△COD ,所以∠'''A O B =∠AOB C .根据“角边角”可知,△'''C O D ≌△COD ,所以∠'''A O B =∠AOB D .根据“角角边”可知,△'''C OD ≌△COD ,所以∠'''A O B=∠AOB8.小明家端午节聚会,需要12个粽子.小明发现某商场正好推出粽子“买10赠1”的促销活动,即顾客每买够10个粽子就送1个粽子.已知粽子单价是5元/个,按此促销方法,小明至少应付钱A .45元B .50元C .55元D .60元9.如图,点A ,B 是棱长为1的正方体的两个顶点,将正方体按图中所示展开, 则在展开图中A ,B 两点间的距离为A .2 BC .D 二、填空题(本题共18分,每小题3分)11. 将函数y =x 2 −2x + 3写成()2y a x h k =-+的形式为_______________.12. 点A,B 是一个反比例函数图象上的两个不同点.已知点A (2,5),写出一个满足条件的B 点的坐标是__________. 13. 如图,四边形ABCD 内接于⊙O ,∠BCD=100°,AC 平分∠BAD ,则∠BAC 的度数为_____________.14.如图,在一次测绘活动中,某同学站在点A 观测放置于B ,C 两处的标志物,数据显示点B 在点A 南偏东75°方向20米处,点C 在点A 南偏西15°方向20米处,则点B 与点C 的距离为______________米. 15.如图,在Rt △ABC 中,∠C =90°,∠BAC =30°,BC =1,以B 为圆心,BA 为半径画弧交CB 的延长线与点D ,则AC的长为_______________.(朝阳)一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.某种埃博拉病毒(EBV )长0.000 000 665nm 左右.将0.000 000 665用科学记数法表示 应为A .0. 665×10-6B .6.65×10-7C .6.65×10-8D .0. 665×10-92合并的是ABCD3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是A B C D4.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E , 若23AD DB ,AE =6,则EC 的长为 A . 6 B. 9 C. 15 D. 185.在一个不透明的盒子中装有n 个小球,它们除了颜色不同外,其余都相同,其中有4个 白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中. 大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n 大约是 A . 10 B. 14 C. 16 D. 40 6.某射击教练对甲、乙两个射击选手的5次成绩(单位:环)进行了统计,如下表 所示: 设甲、乙两人射击成绩的平均数分别为x 甲、x 乙,射击成绩的方差分别为2s 甲、2s 乙,则 下列判断中正确的是A .x 甲<x 乙,2s 甲>2s 乙B .x 甲=x 乙,2s 甲<2s 乙C .x 甲=x 乙,22=s s 甲乙D .x 甲=x 乙,2s 甲>2s 乙 7.一个隧道的横截面如图所示,它的形状是以点O 为圆心, 5为半径的圆的一部分,M 是⊙O 中弦CD 的中点,EM 经过圆心O 交⊙O 于点E ,若CD =6,则隧道的高(ME 的 长)为A .4B .6C .8D .9 8.某数学课外活动小组利用一个有进水管与出水管的容器模拟水池蓄水情况:从某时刻开始,5分钟内只进水不出 水,在随后的10分钟内既进水又出水,每分钟的进水量和 出水量是两个常数.容器内的蓄水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则第12分钟容器内的 蓄水量为A. 22B. 25C. 27D. 28 9. 如图,点M 、N 分别在矩形ABCD 边AD 、BC 上,将矩形ABCD 沿MN 翻折后点C 恰好与点A 重合,若 此时BN CN =13,则△AMD′ 的面积与△AMN 的面积的比为 A .1:3 B .1:4 C .1:6 D .1: 9 二、填空题(本题共18分,每小题3分) 11.若分式162+-x x 的值为0,则x 的值为 . 12.分解因式:22312x y - = .13.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为 . 14. 如图,△ABC 中,AB=AC ,AD 是BC 边中线,分别以点A 、C 为圆心,以大于12AC 长为半径画弧,两弧交点分别为点E 、F ,直线EF 与AD 相交于点O ,若OA =2,则△ABC 外接圆的面积为 .(第14题) (第15题)15.如图,点B 在线段AE 上,∠1=∠2,如果添加一个条件,即可得到△ABC ≌△ABD ,那么这个条件可以是(要求:不在图中添加其他辅助线,写出一个条件即可 ).(丰台)一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.13的倒数是 A .3 B .3- C .13 D .13-2.一根头发丝的直径约为0.00 006纳米,用科学记数法表示0.00 006,正确的是 A .6×10-6 B . 6×10-5 C . 6×10-4 D . 0.6×10-43.下面的几何体中,主视图为三角形的是D42≠ B . 2x >C . 2x ≥D . 2x ≤510个粽子,其中5个火腿馅,3个红枣馅,2个豆沙馅(除馅料不同外,其它都相同).煮好后小明随意吃一个,吃到红枣馅粽子的概率是 A .110 B .15 C .310 D . 126. 下面的几何图形中,既是轴对称图形又是中心对称图形的是A B C D7.如图,A ,B 是函数2=y x的图象上关于原点对称的任意两点, BC ∥x 轴, AC ∥y 轴,如果△ABC 的面积记为S ,那么A .4S = B .2S = C .24S << D .4S >8.甲、乙、丙、丁四位同学角逐“汉字听写大赛”的决赛资 格,表中统计了他们五次测试成绩的平均分和方差.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全市“汉字听写大赛”,那么应选 A .甲 B .乙 C .丙 D .丁9.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =AE =1.2米, 那么适合该地下车库的车辆限高标志牌为 (参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)A B C D二、填空题(本题共18分,每小题3分)11.分解因式:34a a -= . 12.如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E , 如果35AD DB =,AE =6,那么EC 的长为 . 13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知AB 的长是_________m .14.将二次函数245y x x =-+化为(y x ==h k + . 15.在四边形A B C D 中如果A B =请你添加一个..条件,使得该四边形是菱形那么这个条件可以是FCBA E 图3 图1 图2菱形扇形平行四边形 等边三角形C 图1(顺义)1.25-的倒数是( )A .52-B .52C .25-D .252.2015年春节,顺义区相关部门做了充分的准备工作,确保了消费品市场货源充足.据统计,春节一周长假期间共实现销售收入约3.284亿元,同比增长4.8%.将“3.284亿”用科学记数法表示正确的是 A .83.28410⨯ B .732.8410⨯ C .73.28410⨯ D .93.28410⨯ 3.若分式21x x --的值为0,则x 的值为 A . 1或2 B .2 C .1 D .0 4.某品牌吹风机抽样检查的合格率为99%,则下列说法中正确的是 ( )A .购买100个该品牌的吹风机,一定有99个合格B .购买1000个该品牌的吹风机,一定有10个不合格C .购买10个该品牌的吹风机,一定都合格D .即使购买1个该品牌的吹风机,也可能不合格 5.校足球队10名队员的年龄情况如下:则这个队队员年龄的众数和平均数分别是( )A .12, 13.1B .12,13C .13,13.1D .13,136. 某中学的铅球场地如图所示,已知半径OA =10米,2AB π=米,则扇形OAB 的面积为 A. π平方米 B. 5π平方米 C. 10π平方米 D. 20π平方米7.如图,在数轴上,点A 表示的数是B ,C 表示的数是两个连续的整数,则这两个整数为 A .4和5 B . -5和-4 C .3和4 D .-4和-3 8.在平行四边形、正方形、正五边形、正六边形四个图形中是中心对称图形的个数是 A .1 B .2 C .3 D .4 9.如图,A ,B ,C ,D 为⊙O 上四点,若∠BOD =110º, 则∠A 的度数是A . 110ºB . 115ºC .120ºD .125º 二、填空题(本题共18分,每小题3分)DC B A -3-2-13210A11.计算:84a a ÷= .12.分解因式:2242m m -+= .13.如图,B 为地面上一点,测得点B 到树底部C 的距离为10米, 在点B 处放置一个1米高的测角仪BD ,并测得树顶A 的仰角为53°, 则树高AC 约为 米(精确到0.1米). (参考数据:cos53°≈0.60,sin53°≈0.80,tan53°≈1.33)14.如果关于x 的方程x 2﹣2x +k =0的一个根是-1,则另一个根是 .15.乘坐某种出租汽车,当行驶路程小于或等于3千米时,乘车费用都是10元(即起步价10元),当行驶路程大于3千米时,超过3千米的部分每千米收费2元,若一次乘坐这种出租车行驶4千米,则应付车费 元;若一次乘坐这种出租车付费20元,则乘车路程是 千米.(昌平)1.小超同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关结果的条数是1650000 ,这个数用科学记数法表示为A .410165⨯ B .51.6510⨯ C .61065.1⨯ D .710165.0⨯ 2.如图,数轴上有A ,B ,C ,D 四个点,其中表示 -3的相反数的点是 A .点A B .点B C .点C D .点D 3.用5个完全相同的小正方体组合成如图所示的立方体图形,它的主视图为4.四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为 A.12 B. 14 C. 34D.1 5.如图,直线AB ∥CD ,Rt △DEF 如图放置,∠EDF =90°,若∠1+∠F =70°,则∠2的度数为A .20°B .25°C .30°D .40°6.五一期间(5月1日-7日),昌平区每天最高温度(单位:℃)情况如图所示,则表示最高温度的这组数据的中位数是A .24B .25 26D .277.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为MCAB D N友 诚信 爱 国A .2B . 4CD . 8.小明在学习之余去买文具,打算购买5 支单价相同的签字笔和3 本单价相同的笔记本,期间他与售货员对话如下:请你判断在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付A .10元B .11元C .12元D .13元 9.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD . 若CD =AC ,∠A =50°,则∠ACB 的度数为 A .90°B . 95°C .100°D . 105°二、填空题(共6道小题,每小题3分,共18分)11.分解因式:29my m -= .12.若关于x 的一元二次方程2210kx x -+=有实数根,则k 的取值范围是 .13.已知:如图,在△ABC 中,点D 为BC 上一点,CA =CD ,CF 平分∠ACB ,交AD 于点F ,点E 为AB 的中点.若EF =2,则BD = .14.把方程2630x x ++=变形为()2x h k +=的形式,其中h ,k 为常数,则k = .15.在阳光体育课上,小腾在打网球,如图所示,网高0.9m ,球刚好打过网,而且落在离网6 m 的位置上,则球拍击球的高度h = m .(石景山)1.4的相反数是 A .4- B .4C .41 D .41-2.将800000用科学记数法表示为 A .70.810⨯B .5810⨯C .60.810⨯D .48010⨯3.有四张背面完全相同且不透明的卡片,每张卡片的正面分别写有数字2-,3,0,上,洗均匀后放置在桌面上,若随机抽取一张卡片,则抽到的数字恰好是无理数的概率是 A .41 B .21C . 43D .14.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“友”相对的面上的汉字是A .爱B .国C .善D .诚5.如图,CD AB //,AC 的垂直平分线交CD 于点F ,交AC 于点E ,连接AF ,若︒=∠80BAF ,则C ∠的度数为A .︒40B .︒50C .︒60D .︒80 6.如图,△ABC 中,∠C =90°,∠B =60°,AC=,点D 在AC 上,以CD 为直径作⊙O 与BA 相切于点E ,则BE 的长为A .2B .3C .2D .37.在某校科技节“知识竞赛”中共进行四次比赛,甲、乙两个参赛同学,四次比赛成绩情况下表所示:设两同学得分的平均数依次为x 甲,x 乙,得分的方差依次为2S 甲,2S 乙,则下列关系中完全正确的是A .x x =乙甲,22S S >乙甲B .x x =乙甲,22S S <乙甲 C .x x >乙甲,22S S >乙甲D .x x <乙甲,22S S <乙甲8.等腰三角形一个角的度数为50︒,则顶角的度数为 A .50︒ B .80︒ C .65︒ D .50︒或80︒9.如图,等边△ABC 及其内切圆与外接圆构成的图形中,若外接圆的半径为3,则阴影部分的面积为A .π2B .π3C .π4D .π6 11.分解因式:=+-22882y xy x __________.12.分式211x x --的值为零的条件是___________.13.如图,四边形ABCD 为矩形,添加一个条件:,____________可使它成为正方形.14.如图所示,已知函数y x b =+和1y ax =-的图象交点为M ,则不等式1x b ax +<-的解集为___________. 15.综合实践课上,小宇设计用光学原理来测量公园假山的高度,把一面镜子放在与假山AC 距离为21米的B 处,然后沿着射线CB 退后到点E ,这时恰好在镜子里看到山头A ,利用皮尺测量 2.1BE =米,若小宇的身高是1.7米,则假山AC 的高度为________________.(门头沟)1.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为A .25×105B .2.5×106C .2.5×107D .0.25×107FEDCBA DCB AS (千米)t (时)O8成绩(环)甲乙次1234524610779889681082.如果右图是某几何体的三视图,那么这个几何体是A .圆柱B .正方体C .球D .圆锥3.如图,如果数轴上A ,B 两点表示的数互为相反数,那么点B 表示的数为A .2B .-2C .3D .-34.在下列图形中,既是中心对称图形又是轴对称图形的是A B C D5.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是⊙O 上一点,如果∠ADC =26º,那么∠AOB 的度数为 A .13ºB .26ºC .52º D .78º6.如果一个多边形的内角和是外角和的3A .五边形 B .六边形 C .七边形 D .八边形 7.在下列运算中,正确的是A .a 2·a 3=a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a 5+a 5=2a 10 8.甲、乙两人进行射击比赛,他们5次射击的成绩(单位:环)如下图所示: 设甲、乙两人射击成绩的平均数依次为x 甲、x 乙,射击成绩的方差依次为2S 甲、 2S 乙, 那么下列判断中正确的是A .x x =甲乙,22S S =甲乙B .x x =甲乙, 22>S S 甲乙C .x x =甲乙,22<S S 甲乙D .<x x 甲乙, 22<S S 甲乙9.一辆自行车在公路上行驶,中途发生了故障,停下修理一段时间后继续前进.已知行驶路程S (千米)与所用时间t (时)的函数关系的图象如图所示,那么自行车发生故障后继续前进的速度为 A .20千米/时 B .353千米/时 C .10千米/时 D .503千米/时 11.在函数y =x 的取值范围是 . 12.在半径为1的圆中,120°的圆心角所对的弧长是 . 13.分解因式:ax 2-9a = .30°D ABC 60°14.某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在点C 处测得建筑物AB 的顶点A 的仰角为30°,然后向建筑物AB 前进10m 到达点D 处,又测得点 A 的仰角为60°,那么建筑物AB 的高度是 m . 15.为了倡导绿色出行,某市为市民提供了自行车租赁服务,其收费标准如下:如果小明某次租赁自行车3小时,缴费14元,请判断小明该次租赁自行车所在地区的类别是 类(填“A 、B 、C ”中的一个).(平谷)1.根据北京市统计局2015年3月发布的数据,2015年3月北京市工业销售产值累计4006.4亿元,将4006.4用科学记数法表示应为A .40.4006410⨯B .34.006410⨯C .44.006410⨯D .240.06410⨯2. 下列水平放置的四个几何体中,主视图与其它三个不相同的是 A . B . C . D . 3.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为倒数的点是A .点A 与点B B .点A 与点DC .点B 与点DD .点B 与点C4.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为A. 10°.B. 15°.C. 20°.D. 25°. 5.下列运算中,正确的是A .22x x -=B .452x x x ⋅= C .22x y y x ÷= D .()3326x x -=-6.某商场一天中售出某种品牌的运动鞋11双,其中各种尺码的鞋的销售量如下表所示,那么这11双鞋的尺码组成的一组数据中,众数与中位数分别为A. 23.5,24B.24,24.5C.24,24D.24.5,24.5 7.如图,表示甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.甲、乙两人前往目的地所行驶的路程S (千米)随时间t (分)变化的函数图象,则每分钟乙比甲多行驶的路程是A .0.5千米B .1千米C .1.5千米D .2千米8.用直尺和圆规作一个角等于已知角,如图,能得出A O B AOB '''∠=∠的依据是 A .(SAS ) B .(SSS ) C .(AAS) D .(A SA )9.如图,△ABC 的顶点A ,B ,C 均在⊙O 上,若∠ABC +∠AOC =90°,则∠AOC 的大小是 A .30° B . 45° C . 60° D . 70° 11.分式2aa -有意义的条件是 . 12.把a ﹣4ab 2分解因式的结果是 .13.下表记录了一名球员在罚球线上投篮的结果.那么,这名球员下次投篮,投中的概率约是_________(精确到0.1).14CD 为 米.15.如图,这个二次函数图象的表达式可能是 .(只写出一个).通州1.3的相反数是( )A .31B .31-C .3D .3-2.据科学家估计,地球的年龄大约是4600000000年,这个数用科学计数法表示为( ) A .4.6×108B .46×108C .4.6×109D .0.46×10103.如图,△ABC 中,∠C =90°,BC =2,AB =3,则下列结论正确的是() A .35sin =A B .32cos =A C .32sin =A D .25tan =A 4 )A C D5.下列说法正确的是( A 100100次这样的游戏一定会中奖B .为了了解全国中学生的心理健康状况,应采用普查的方式C .一组数据0,1,2,1,1的众数和中位数都是1D .若甲组数据的方差20.2S =甲,乙组数据的方差20.5S =乙,则乙组数据比甲组数据稳定A第3题图6.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为( ) A .12B .15C .23D .137.如图,数轴上用点A ,B ,C ,D 表示有理数,下列语句正确的有( )①A②B 点所表示的有理数的绝对值大于C 点所表示的有理数的绝对值; ③A 点所表示的有理数与D点所表示的有理数和为0; ④C 点所表示的有理数与B 点所表示的有理数的乘积大于0 A .①② B .①③C .②③D .③④8.如图,在⊙O 中,如果2AB AC =,那么( ) A .AB =AC B .AB =2ACC .AB <2ACD .AB >2AC9.如图,点A 的坐标为(-1,0),点B 在直线x y =上运动,当线段AB 最短时,点B 的坐标为( )A .(0,0)B .21,21(--C .)22,22(-D .)22,22(--11.分解因式:241x -= .12.将抛物线22y x =向上平移3个单位长度得到的抛物线表达式是 . 13.已知扇形的半径为4㎝,圆心角为120°,则此扇形的弧长是 cm 14.将一副三角尺如图所示叠放在一起,则BE EC的值是 .15.如图,射线OA 、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s 、t 分别表示行驶距离和时间,则这两人骑自行车的速度相差 km/h .房山1. 4的算术平方根是A .16B .2C .﹣2D .±22. 舌尖上的浪费让人触目惊心! 据统计,中国每年浪费的食物总量折合成粮食约为50000000000千克,把50000000000用科学记数法表示为 A .5×1010B . 50×109C . 5×109D .0.5×1011A8题图O第14题图3. 计算62a a ÷的结果是A.3a B .4a C . 8a D. 12a4. 如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠DCE 等于A.35°B. 45°C.55°D.65°5.在下列图形中,既是轴对称图形又是中心对称图形的是6.如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点E ,连接OC , 若CD =6,OE =4,则OC 等于A .3B .4C .5 D .6 7.有11名同学参加了书法比赛,他们的成绩各不相同.若其中一位同学想知道自己能否进入前6名,则他不仅要知道自己的成绩,还要知道这11名学生成绩的 A.方差 B.平均数 C.众数D.中位数8. 如图,A .1:9.A .11. 分解因式: =________________. 12.若分式12x -有意义,则x 的取值范围是________________. 13.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,点H 是AF 的中点,那么CH 的长是.14.如图1,将长为20cm ,宽为2cm 的长方形白纸条,折成图2所示的图形并在其一面着色,则着色部分的面积为cm 2.15.辉三角”中有许多n 的展开式中a 按次数从大到小排列的项的系数.例如,()222a b a +=+开式中的系数1、2、1恰好对应图中第三行的数字.请认真观察此图,写出()3a b +的展开式()3a b += .怀柔BEDCB AA B C D 8822+-x x A图11.如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是A. 4B. 0C. -2D. -42.2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13 100 000人,创历史新高.将数字13 100 000用科学记数法表示为 A .13.1×106B .1.31×107C .1.31×108D .0.131×1083.正八边形的内角和等于A. 720°B. 1080°C. 1440°D.1880° 4. 下列各式计算正确的是A .23523a a a +=B .235()a a = C .623a a a ÷= D .235a a a ⋅= 5. 以下问题,不适合用普查方法的是A.了解某种酸奶中钙的含量B.了解某班学生的课外作业时间C.公司招聘职员,对应聘人员的面试 C. 旅客上飞机前的安检6.一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外其余都相同,从口袋中随机摸一个球,则摸到红球的概率为 A .18B .38C .58D .347.如图,A ,B 两点分别位于一个池塘的两端,小明想用绳子 测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个 主意:先在地上取一个可以直接到达A ,B 的点C ,找到AC ,BC 的中点D ,E ,并且测出DE 的长为10m ,则A ,B 间的距离为A .15mB .25mC .30mD .20m8. 在四边形ABCD 中,AB ∥DC , AD ∥BC ,如果添加一个条件,即可推出该四边形是矩形,那么这个条件可以是A .90D =∠B .AB CD =C .AD BC = D .BC CD =9. 一元二次方程x 2﹣2x +m =0总有实数根,则m 应满足的条件是A. m >1B. m =1 B. m <1C. m ≤1 11.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有_________________性.12.分解因式x 3-9x=__________.13.矩形,菱形,正方形都是特殊的四边形,它们具有很多共性,如___________.(填一条即可). 14. 如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,A将△ABC 折叠,使A 点与BC 的中点D 重合, 折痕为MN ,则线段BN 的长为__________. 15. 观察下列一组坐标:(a,b ),(a,c),(b,c),(b,a),(c,a),(c,b),(a,b),(a,c)…… ,它们是按一定规律排列的,那么第9个坐标是 ,第2015个坐标是 .答案 东城西城海淀朝阳11. 312. )2)(2(3y x y x -+13. 214. π415. 答案不惟一,例如D C ∠=∠丰台顺义11.4a ; 12.()221m -; 13.14.3; 14.3; 15.12,8;(第一空1分第二空2分)昌平石景山11.22x y -; 12.1x =-;13.AB BC =等(答案不唯一)14.1x <- 15.17米;门头沟平谷1114.12;15.答案不唯一,如y =x 2﹣x ;通州1. D2. C3.C4.A5.C.6. D.7. D.8. C.9. C11.(x -1)(x +1);12.223y x =+; 13.83π; 15. 4;房山1.B2.A3.B4.A5.A6.C7.D8.D9.B11. 2(x -2)2 12. 2x ≠ 13. 14. 36 15.322333a a b ab b +++怀柔c,a。
2015年北京市朝阳区中考数学二模试卷(解析版)
2015年北京市朝阳区中考数学二模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)某种埃博拉病毒(EBV)长0.000000665nm左右.将0.000000665用科学记数法表示应为()A.0.665×10﹣6 B.6.65×10﹣7C.6.65×10﹣8D.0.665×10﹣92.(3分)下列二次根式中,能与合并的是()A. B. C.D.3.(3分)在下面的四个几何体中,它们各自的左视图与主视图不相同的是()A.正方体B.三棱柱C.圆柱D.圆锥4.(3分)如图,在△ABC中,D为AB边上一点,DE∥BC交AC于点E.若=,AE=6,则EC的长为()A.6 B.9 C.15 D.185.(3分)在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是()A.10 B.14 C.16 D.406.(3分)某射击教练对甲、乙两个射击选手的5次成绩(单位:环)进行了统计,如表所示:设甲、乙两人射击成绩的平均数分别为、,射击成绩的方差分别为、,则下列判断中正确的是()A.<,> B.=,<C.=,D.=,>7.(3分)一个隧道的横截面如图所示,它的形状是以点O为圆心,5为半径的圆的一部分,M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,则隧道的高(ME的长)为()A.4 B.6 C.8 D.98.(3分)某数学课外活动小组利用一个有进水管与出水管的容器模拟水池蓄水情况:从某时刻开始,5分钟内只进水不出水,在随后的10分钟内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的蓄水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则第12分钟容器内的蓄水量为()A.22 B.25 C.27 D.289.(3分)如图,点M、N分别在矩形ABCD边AD、BC上,将矩形ABCD沿MN 翻折后点C恰好与点A重合.若此时=,则△AMD′的面积与△AMN的面积的比为()A.1:3 B.1:4 C.1:6 D.1:910.(3分)如图,矩形ABCD中,E为AD中点,点F为BC上的动点(不与B、C重合).连接EF,以EF为直径的圆分别交BE,CE于点G、H.设BF的长度为x,弦FG与FH的长度和为y,则下列图象中,能表示y与x之间的函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.(3分)若分式的值为0,则x的值为.12.(3分)分解因式:3x2﹣12y2=.13.(3分)用一个圆心角为120°,半径为6cm的扇形作一个圆锥的侧面,则这个圆锥的底面圆的半径为.14.(3分)如图,△ABC中,AB=AC,AD是BC边中线,分别以点A、C为圆心,以大于AC长为半径画弧,两弧交点分别为点E、F,直线EF与AD相交于点O,若OA=2,则△ABC外接圆的面积为.15.(3分)如图,点B在线段AE上,∠1=∠2,如果添加一个条件,即可得到△ABC≌△ABD,那么这个条件可以是(要求:不在图中添加其他辅助线,写出一个条件即可)16.(3分)如果一个平行四边形一个内角的平分线分它的一边为1:2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为.三、解答题(本题共30分,每小题5分)17.(5分)已知:如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD ⊥CE于点D.求证:BE=CD.18.(5分)计算:.19.(5分)解不等式x﹣≥x﹣,并把它的解集在数轴上表示出来.20.(5分)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.21.(5分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A (﹣3,1),B (1,n)两点.(1)求反比例函数和一次函数的表达式;(2)设直线AB与y轴交于点C,若点P在x轴上,使BP=AC,请直接写出点P 的坐标.22.(5分)列方程或方程组解应用题:四、解答题(本题共20分,每小题5分)23.(5分)如图,点F在▱ABCD的对角线AC上,过点F、B分别作AB、AC的平行线相交于点E,连接BF,∠ABF=∠FBC+∠FCB.(1)求证:四边形ABEF是菱形;(2)若BE=5,AD=8,sin∠CBE=,求AC的长.24.(5分)某校为了更好的开展“学校特色体育教育”,从全校八年级的各班分别随机抽取了5名男生和5名女生,组成了一个容量为60的样本,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图:某校60名学生体育测试成绩频数分布表(说明:40﹣﹣﹣55分为不合格,55﹣﹣﹣70分为合格,70﹣﹣﹣85分为良好,85﹣﹣﹣100分为优秀)请根据以上信息,解答下列问题:(1)表中的a=,b=;(2)请根据频数分布表,画出相应的频数分布直方图;(3)如果该校八年级共有150名学生,根据以上数据,估计该校八年级学生身体素质良好及以上的人数为.25.(5分)如图,⊙O是△ABC 的外接圆,AB=AC,BD是⊙O的直径,PA∥BC,与DB的延长线交于点P,连接AD.(1)求证:PA是⊙O的切线;(2)若AB=,BC=4,求AD的长.26.(5分)阅读下面材料:小凯遇到这样一个问题:如图1,在四边形ABCD中,对角线AC、BD相交于点O,AC=4,BD=6,∠AOB=30°,求四边形ABCD的面积.小凯发现,分别过点A、C 作直线BD的垂线,垂足分别为点E、F,设AO为m,通过计算△ABD与△BCD 的面积和使问题得到解决(如图2).请回答:(1)△ABD的面积为(用含m的式子表示).(2)求四边形ABCD的面积.参考小凯思考问题的方法,解决问题:如图3,在四边形ABCD中,对角线AC、BD相交于点O,AC=a,BD=b,∠AOB=α(0°<α<90°),则四边形ABCD的面积为(用含a、b、α的式子表示).五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.(7分)已知:关于x的一元二次方程ax2﹣2(a﹣1)x+a﹣2=0(a>0).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(其中x1>x2).若y是关于a的函数,且y=ax2+x1,求这个函数的表达式;(3)在(2)的条件下,结合函数的图象回答:若使y≤﹣3a2+1,则自变量a 的取值范围为.28.(7分)数学活动课上,老师提出这样一个问题:如果AB=BC,∠ABC=60°,∠APC=30°,连接PB,那么PA、PB、PC之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:小蕾:我将图形进行了特殊化,让点P在BA延长线上(如图1),得到了一个猜想:PA2+PC2=PB2.小东:我假设点P在∠ABC的内部,根据题目条件,这个图形具有“共端点等线段”的特点,可以利用旋转解决问题,旋转△PAB后得到△P′CB,并且可推出△PBP′,△PCP′分别是等边三角形、直角三角形,就能得到猜想和证明方法.这时老师对同学们说,请大家完成以下问题:(1)如图2,点P在∠ABC的内部,①PA=4,PC=,PB=.②用等式表示PA、PB、PC之间的数量关系,并证明.(2)对于点P的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.29.(8分)如图,顶点为A(﹣4,4)的二次函数图象经过原点(0,0),点P 在该图象上,OP交其对称轴l于点M,点M、N关于点A对称,连接PN,ON.(1)求该二次函数的表达式;(2)若点P的坐标是(﹣6,3),求△OPN的面积;(3)当点P在对称轴l左侧的二次函数图象上运动时,请解答下面问题:①求证:∠PNM=∠ONM;②若△OPN为直角三角形,请直接写出所有符合条件的点P的坐标.2015年北京市朝阳区中考数学二模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)某种埃博拉病毒(EBV)长0.000000665nm左右.将0.000000665用科学记数法表示应为()A.0.665×10﹣6 B.6.65×10﹣7C.6.65×10﹣8D.0.665×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000665=6.65×10﹣7;故选:B.2.(3分)下列二次根式中,能与合并的是()A. B. C.D.【分析】先化成最简二次根式,再判断即可.【解答】解:A、,不能和合并,故本选项错误;B、,不能和合并,故本选项错误;C、,能和合并,故本选项正确;D、=2不能和合并,故本选项错误;故选:C.3.(3分)在下面的四个几何体中,它们各自的左视图与主视图不相同的是()A.正方体B.三棱柱C.圆柱D.圆锥【分析】主视图、左视图分别从物体正面、左面看所得到的图形.【解答】解:A、主视图与左视图都是正方形;B、主视图为长方形,左视图为中间有一条竖直的实线的长方形,不相同;C、主视图与左视图都是矩形;D、主视图与左视图都是等腰三角形;故选:B.4.(3分)如图,在△ABC中,D为AB边上一点,DE∥BC交AC于点E.若=,AE=6,则EC的长为()A.6 B.9 C.15 D.18【分析】如图,直接运用平行线分线段成比例定理列出比例式,借助已知条件求出EC,即可解决问题.【解答】解:如图,∵DE∥BC,∴,∵=,AE=6,∴EC=9.故选:B.5.(3分)在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是()A.10 B.14 C.16 D.40【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解答】解:∵通过大量重复试验后发现,摸到红球的频率稳定于0.4,∴=0.4,解得:n=10.故选:A.6.(3分)某射击教练对甲、乙两个射击选手的5次成绩(单位:环)进行了统计,如表所示:设甲、乙两人射击成绩的平均数分别为、,射击成绩的方差分别为、,则下列判断中正确的是()A.<,> B.=,<C.=,D.=,>【分析】分别计算平均数和方差后比较即可得到答案.【解答】解:(1)=(10+8+9+8+10)=9;=(9+8+9+10+9)=9;=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2]=0.8;=[(9﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2+(9﹣9)2]=0.4;∴=,>.故选:D.7.(3分)一个隧道的横截面如图所示,它的形状是以点O为圆心,5为半径的圆的一部分,M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,则隧道的高(ME的长)为()A.4 B.6 C.8 D.9【分析】因为M是⊙O弦CD的中点,根据垂径定理,EM⊥CD,则CM=DM=3,在Rt△COM中,有OC2=CM2+OM2,可求得OM,进而就可求得EM.【解答】解:∵M是⊙O弦CD的中点,根据垂径定理:EM⊥CD,又CD=6则有:CM=CD=3,设OM是x米,在Rt△COM中,有OC2=CM2+OM2,即:52=32+x2,解得:x=4,所以EM=5+4=9.故选:D.8.(3分)某数学课外活动小组利用一个有进水管与出水管的容器模拟水池蓄水情况:从某时刻开始,5分钟内只进水不出水,在随后的10分钟内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的蓄水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则第12分钟容器内的蓄水量为()A.22 B.25 C.27 D.28【分析】用待定系数法求出5≤x≤15对应的函数关系式,当x=12时,求出对应的值,即可解答.【解答】解:当5≤x≤15时,设y=kx+b,把(5,20),(15,30)代入得:解得:∴y=x+15,当x=12时,y=12+15=27,故选:C.9.(3分)如图,点M、N分别在矩形ABCD边AD、BC上,将矩形ABCD沿MN 翻折后点C恰好与点A重合.若此时=,则△AMD′的面积与△AMN的面积的比为()A.1:3 B.1:4 C.1:6 D.1:9【分析】由=,可知,易证AN=AM,得到,于是可求出△AMD′的面积与△AMN的面积的比.【解答】解:根据折叠的性质,AN=CN,∠ANM=∠CNM,∵四边形ABCD是矩形,∴AD∥BC,∴∠CNM=∠AMN,∴∠ANM=∠AMN,∴AM=AN,∵=,∴,∴,∴△AMD′的面积:△AMN的面积=1:3.故选:A.10.(3分)如图,矩形ABCD中,E为AD中点,点F为BC上的动点(不与B、C重合).连接EF,以EF为直径的圆分别交BE,CE于点G、H.设BF的长度为x,弦FG与FH的长度和为y,则下列图象中,能表示y与x之间的函数关系的图象大致是()A.B.C.D.【分析】作EM⊥BC于M,设AB=CD=a,AD=BC=2b,根据勾股定理表示出BE=CE=,然后用锐角三角函数表示出FG、FH,发现FG+FH为定值,即可得到结论.【解答】解:如图,作EM⊥BC于M,∵点E是矩形ABCD的边AD上的中点,∴BE=CE,∠EBM=∠ECM,∴点M是BC的中点,设AB=CD=a,AD=BC=2b,则BM=CM=b,EM=a,∴BE=CE=,∴sin∠EBM=sin∠ECM=,∵EF是⊙O的直径,∴∠BGF=∠CHF=90°∵BF=x,∴CF=2b﹣x,∴FG=BF•sin∠EBM=,FH=CF•sin∠ECM=,∴FG+FH=,∵ab为定值,∴FG+FH=为定值,故选:D.二、填空题(本题共18分,每小题3分)11.(3分)若分式的值为0,则x的值为3.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:2x﹣6=0且x+1≠0,解得x=3.故答案为:3.12.(3分)分解因式:3x2﹣12y2=3(x﹣2y)(x+2y).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3x2﹣12y2,=3(x2﹣4y2),=3(x+2y)(x﹣2y).13.(3分)用一个圆心角为120°,半径为6cm的扇形作一个圆锥的侧面,则这个圆锥的底面圆的半径为2cm.【分析】易得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:扇形的弧长==4π,故圆锥的底面半径为4π÷2π=2.故答案为:2.14.(3分)如图,△ABC中,AB=AC,AD是BC边中线,分别以点A、C为圆心,以大于AC长为半径画弧,两弧交点分别为点E、F,直线EF与AD相交于点O,若OA=2,则△ABC外接圆的面积为4π.【分析】利用等腰三角形的性质结合三角形外接圆的作法得出O点即为△ABC 外接圆的圆心,进而求出其面积.【解答】解:∵AB=AC,AD是BC边中线,∴AD垂直平分BC,∵分别以点A、C为圆心,以大于AC长为半径画弧,两弧交点分别为点E、F,∴EF垂直平分AC,∵直线EF与AD相交于点O,∴点O即为△ABC外接圆圆心,∴AO为△ABC外接圆半径,∴△ABC外接圆的面积为:4π.故答案为:4π.15.(3分)如图,点B在线段AE上,∠1=∠2,如果添加一个条件,即可得到△ABC≌△ABD,那么这个条件可以是AC=AD或∠ABC=∠ABD或∠C=∠D(要求:不在图中添加其他辅助线,写出一个条件即可)【分析】已知已经有一对角和一条公共边,所以再找一对边或一对角就可以得到两三角形全等.【解答】解:已经有∠CAB=∠DAB,AB=AB,再添加AC=AD,利用SAS证明;或添加∠ABC=∠ABD,利用ASA证明;或添加∠C=∠D,利用AAS证明,(答案只要符合即可).故答案为AC=AD或∠ABC=∠ABD或∠C=∠D16.(3分)如果一个平行四边形一个内角的平分线分它的一边为1:2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为8或10.【分析】由平行四边形的性质和角平分线的定义得出AB=AE;分两种情况:①当AE=1,DE=2时;②当AE=2,DE=1时;即可求出平行四边形ABCD的周长.【解答】解:如图所示:①当AE=1,DE=2时,∵四边形ABCD是平行四边形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,∴平行四边形ABCD的周长=2(AB+AD)=8;②当AE=2,DE=1时,同理得:AB=AE=2,∴平行四边形ABCD的周长=2(AB+AD)=10;故答案为:8或10.三、解答题(本题共30分,每小题5分)17.(5分)已知:如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD ⊥CE于点D.求证:BE=CD.【分析】根据垂直的定义以及等量代换可知∠CBE=∠ACD,根据已知条件∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,根据全等三角形的判定AAS即可证明△BEC≌△CDA,再利用全等三角形的性质证明即可.【解答】证明:∵BE⊥CE,AD⊥CE,∴∠BEC=∠CDA=90°,∴∠EBC+∠ECB=90°,又∵∠DCA+∠ECB=90°,∴∠EBC=∠DCA,又∵BC=AC,在△BEC与△CDA中,,∴△BEC≌△CDA(AAS),∴BE=CD.18.(5分)计算:.【分析】原式第一项利用负整数指数幂法则计算,第二项化为最简二次根式,第三项利用特殊角的三角函数值计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=4+2﹣4﹣1=2﹣1.19.(5分)解不等式x﹣≥x﹣,并把它的解集在数轴上表示出来.【分析】先去分母、移项得到3x﹣4x≥﹣2+4,然后合并后把x的系数化为1即可得到不等式的解集,再利用数轴表示解集.【解答】解:去分母得3x﹣4≥4x﹣2,移项得3x﹣4x≥﹣2+4,合并得﹣x≥2,系数化为1得x≤﹣2,用数轴表示为:.20.(5分)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.【分析】原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:(a﹣2)2+b(b﹣2a)+4(a﹣1)=a2﹣4a+4+b2﹣2ab+4a﹣4=a2+b2﹣2ab=(a﹣b)2,∵a﹣b=,∴原式=2.21.(5分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A (﹣3,1),B (1,n)两点.(1)求反比例函数和一次函数的表达式;(2)设直线AB与y轴交于点C,若点P在x轴上,使BP=AC,请直接写出点P 的坐标.【分析】(1)把A (﹣3,1)代入y=,把A (﹣3,1),B(1,﹣3)代入y=kx+b,即可得到结果;(2)直线AB与y轴交于点C,求得C(0,﹣2),求出AC==3,由于点P在x轴上,设P(a,0)根据AC=PB和两点间的距离公式得3=,解得a=4,或a=﹣2,即可得到结果.【解答】解:(1)把A (﹣3,1)代入y=,得,解得m=﹣3,∴反比例函数的表达式为,当x=1时,,∴B(1,﹣3);把A (﹣3,1),B(1,﹣3)代入y=kx+b,∴,解得:,∴一次函数的表达式为y=﹣x﹣2;(2)∵直线AB与y轴交于点C,∴C(0,﹣2),∴AC==3,∵点P在x轴上,∴设P(a,0)∵AC=PB,∴3=,解得:a=4,或a=﹣2,∴P(4,0)或(﹣2,0).22.(5分)列方程或方程组解应用题:【分析】设小白家这两年用水的年平均下降率为x,根据图示可得,实用新型冲水马桶之后,两年之后全年用水量只剩下64000升,据此列方程求解.【解答】解:设小白家这两年用水的年平均下降率为x,由题意,得(1﹣x)2=64000,解得:x1=1.8,x2=0.2,∵x=1.8不符合题意,舍去,∴x=0.2=20%.答:小白家这两年用水的年平均下降率为20%.四、解答题(本题共20分,每小题5分)23.(5分)如图,点F在▱ABCD的对角线AC上,过点F、B分别作AB、AC的平行线相交于点E,连接BF,∠ABF=∠FBC+∠FCB.(1)求证:四边形ABEF是菱形;(2)若BE=5,AD=8,sin∠CBE=,求AC的长.【分析】(1)由外角的性质可得∠AFB=∠FBC+∠FCB,又因为∠ABF=∠FBC+∠FCB,易得AB=AF,由菱形的判定定理可得结论;(2)作DH⊥AC于点H,由特殊角的三角函数可得∠CBE=30°,由平行线的性质可得∠2=∠CBE=30°,利用锐角三角函数可得AH,DH,由菱形的性质和勾股定理得CH,得AC.【解答】(1)证明:∵EF∥AB,BE∥AF,∴四边形ABEF是平行四边形.∵∠ABF=∠FBC+∠FCB,∠AFB=∠FBC+∠FCB,∴∠ABF=∠AFB,∴AB=AF,∴▱ABEF是菱形;(2)解:作DH⊥AC于点H,∵,∴∠CBE=30°,∵BE∥AC,∴∠1=∠CBE,∵AD∥BC,∴∠2=∠1,∴∠2=∠CBE=30°,Rt△ADH中,,DH=AD•sin∠2=4,∵四边形ABEF是菱形,∴CD=AB=BE=5,Rt△CDH中,,∴.24.(5分)某校为了更好的开展“学校特色体育教育”,从全校八年级的各班分别随机抽取了5名男生和5名女生,组成了一个容量为60的样本,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图:某校60名学生体育测试成绩频数分布表(说明:40﹣﹣﹣55分为不合格,55﹣﹣﹣70分为合格,70﹣﹣﹣85分为良好,85﹣﹣﹣100分为优秀)请根据以上信息,解答下列问题:(1)表中的a=18,b=50%;(2)请根据频数分布表,画出相应的频数分布直方图;(3)如果该校八年级共有150名学生,根据以上数据,估计该校八年级学生身体素质良好及以上的人数为120.【分析】(1)根据样本容量和百分比求出频数,根据样本容量和频数求出百分比;(2)根据频数画出频数分布直方图;(3)求出八年级学生身体素质良好及以上的人数的百分比,根据总人数求出答案.【解答】解:(1)60×30%=18,30÷60×100%=50%,∴a=18,b=50%;(2)如图,(3)150×(30%+50%)=120.25.(5分)如图,⊙O是△ABC 的外接圆,AB=AC,BD是⊙O的直径,PA∥BC,与DB的延长线交于点P,连接AD.(1)求证:PA是⊙O的切线;(2)若AB=,BC=4,求AD的长.【分析】(1)连接OA交BC于点E,根据垂径定理的推论求得OA⊥BC,然后根据平行线的性质证得∠PAO=90°,即可证得结论.(2)根据勾股定理求得AE,得出tanC=,根据∠D=∠C,得出tanD==,从而求得AD的长.【解答】(1)证明:连接OA交BC于点E,由AB=AC可得OA⊥BC,∵PA∥BC,∴∠PAO=∠BEO=90°.∵OA为⊙O的半径,∴PA为⊙O的切线.(2)解:根据(1)可得CE=BC=2.Rt△ACE中,,∴tanC=.∵BD是直径,∴∠BAD=90°,又∵∠D=∠C,∴tanD==,∴AD=.26.(5分)阅读下面材料:小凯遇到这样一个问题:如图1,在四边形ABCD中,对角线AC、BD相交于点O,AC=4,BD=6,∠AOB=30°,求四边形ABCD的面积.小凯发现,分别过点A、C 作直线BD的垂线,垂足分别为点E、F,设AO为m,通过计算△ABD与△BCD 的面积和使问题得到解决(如图2).请回答:(1)△ABD的面积为(用含m的式子表示).(2)求四边形ABCD的面积.参考小凯思考问题的方法,解决问题:如图3,在四边形ABCD中,对角线AC、BD相交于点O,AC=a,BD=b,∠AOB=α(0°<α<90°),则四边形ABCD的面积为(用含a、b、α的式子表示).【分析】(1)首先得出AE的长,再利用三角形的面积公式求出即可;(2)根据直角三角形的性质可得AE=,再根据三角形的面积公式可得S△=,同理再表示CF=,然后再表示△BCD的面积,再求两ABD个三角形的面积和可得答案;(3)方法与(2)类似.【解答】解:(1)∵AO=m,∠AOB=30°,∴AE=m,∴△ABD的面积为:×m×6=;故答案为:m;(2)由题意可知∠AEO=90°.∵AO=m,∠AOB=30°,∴AE=.=.∴S△ABD同理,CF=.=.∴S△BCD=S△ABD+S△BCD=6.∴S四边形ABCD解决问题:分别过点A、C作直线BD的垂线,垂足分别为点E、F,设AO为x,∵AO=x,∠AOB=α,∴AE=x•sinα.=BD•AE=x•sinα•b,∴S△ABD同理,CF=(4﹣x)•sinα,=BD•CF=b•(4﹣x)•sinα,∴S△BCD=S△ABD+S△BCD=.∴S四边形ABCD故答案为:.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.(7分)已知:关于x的一元二次方程ax2﹣2(a﹣1)x+a﹣2=0(a>0).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(其中x1>x2).若y是关于a的函数,且y=ax2+x1,求这个函数的表达式;(3)在(2)的条件下,结合函数的图象回答:若使y≤﹣3a2+1,则自变量a 的取值范围为0<a≤.【分析】(1)由于a>0,则计算判别式的值得到△>0,于是根据判别式的意义可判断方程有两个不相等的实数根;(2)利用求根公式可得到x1=1,x2=1﹣,于是得到y=ax2+x1=a﹣1;(3)把y≤﹣3a2+1理解为一次函数y=a﹣1与二次函数y=﹣3a2+1比较函数值的大小,先求出两函数的交点坐标,然后写出抛物线都在直线上方所对应的自变量的范围即可,注意a>0.【解答】(1)证明:∵△=[﹣2(a﹣1)]2﹣4a(a﹣2)=4.∴△>0,∴方程有两个不相等的实数根;(2)解:x==∵a>0,x1>x2,∴x1=1,x2=1﹣,∴y=ax2+x1=a﹣1,即这个函数的表达式为y=a﹣1(a>0);(3)解:如图,解方程组得或,即抛物线y=﹣3a2+1与直线y=a﹣1的两个交点坐标为(﹣1,﹣2)、(,﹣),当y≤﹣3a2+1时,0<a≤.故答案为0<a≤.28.(7分)数学活动课上,老师提出这样一个问题:如果AB=BC,∠ABC=60°,∠APC=30°,连接PB,那么PA、PB、PC之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:小蕾:我将图形进行了特殊化,让点P在BA延长线上(如图1),得到了一个猜想:PA2+PC2=PB2.小东:我假设点P在∠ABC的内部,根据题目条件,这个图形具有“共端点等线段”的特点,可以利用旋转解决问题,旋转△PAB后得到△P′CB,并且可推出△PBP′,△PCP′分别是等边三角形、直角三角形,就能得到猜想和证明方法.这时老师对同学们说,请大家完成以下问题:(1)如图2,点P在∠ABC的内部,①PA=4,PC=,PB=2.②用等式表示PA、PB、PC之间的数量关系,并证明.(2)对于点P的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.【分析】(1)根据结论代入即可填写;(2)根据△ABP≌△CBP′得出PA=P′C,∠A=∠BCP′,即可得出PA、PB、PC之间的数量关系;(3)当点P在CB的延长线上时,得出PA2+PB2=PC2.【解答】解:(1)①PB==.故答案为:;②PA2+PC2=PB2,证明:作∠PBP′=∠ABC=60°,且使BP′=BP,连接P′C、P′P,如图1:∵∠ABC=PBP′∴∠ABP=∠CBP′,∵AB=CB,在△ABP与△CBP′中,,∴△ABP≌△CBP′,∴PA=P′C,∠A=∠B CP′,在四边形ABCP中,∵∠ABC=60°,∠APC=30°,∴∠A+∠BCP=270°,∴∠BCP′+∠BCP=270°,∴∠PCP′=360°﹣(∠BCP′+∠BCP)=90°,∵△PBP′是等边三角形,∴PP′=PB,在Rt△PCP′中,P'C2+PC2=P'P2,∴PA2+PC2=PB2;(2)点P在其他位置时,不是始终具有②中猜想的结论,举例:如图2,当点P在CB的延长线上时,结论为PA2+PB2=PC2.29.(8分)如图,顶点为A(﹣4,4)的二次函数图象经过原点(0,0),点P 在该图象上,OP交其对称轴l于点M,点M、N关于点A对称,连接PN,ON.(1)求该二次函数的表达式;(2)若点P的坐标是(﹣6,3),求△OPN的面积;(3)当点P在对称轴l左侧的二次函数图象上运动时,请解答下面问题:①求证:∠PNM=∠ONM;②若△OPN为直角三角形,请直接写出所有符合条件的点P的坐标.【分析】(1)根据二次函数图象的顶点设出二次函数的关系式,再很据二次函数图象经过原点,求出a的值,即可得出二次函数的关系式;(2)设直线OP的解析式为y=kx,将A点代入,求出直线OP的解析式,再把x=﹣4代入y=﹣x,求出M的坐标,根据点M、N关于点P对称,求出N的坐标,从而得出MN的长,再根据三角形的面积公式即可得出答案.(3)①设对称轴l交x轴于点B,作PC⊥l于点C,由P在二次函数图象上,设P,再由O的坐标,表示出直线OP的解析式,进而表示出M,N及H的坐标,设对称轴l交x轴于点B,作PC⊥l于点C,构建相似三角形:△NCP∽△NBO.由相似三角形的对应角相等证得结论;②△OPN能为直角三角形,理由为:分三种情况考虑:若∠ONP为直角,由①得到∠PNM=∠ONM=45°,可得出三角形ACN为等腰直角三角形,得到PC=CN,将表示出的PC及CN代入,得到关于m的方程,求出方程的解得到m的值为0或4±,进而得到此时A与P重合,不合题意,故∠ONP不能为直角;若∠PON为直角,利用勾股定理得到OP2+ON2=PN2,由P的坐标,利用勾股定理表示出OP2,由OB及BN,利用勾股定理表示出ON2,由PC及CN,利用勾股定理表示出PN2,代入OP2+ON2=PN2,得到关于m的方程,求出方程的解得到m的值为4±4或0,然后判断∠PON是否为直角;若∠NPO为直角,则有△PMN∽△BMO∽△BON,由相似得比例,将各自的值代入得到关于m的方程,求出方程的解得到m的值为4,此时A与P重合,故∠NPO不能为直角,综上,点P 在对称轴l左侧的二次函数图象上运动时,△OPN不能为直角三角形.【解答】(1)解:设二次函数的表达式为y=a(x+4)2+4,把点(0,0)代入表达式,解得.∴二次函数的表达式为,即;(2)解:设直线OP为y=kx(k≠0),将P(﹣6,3)代入y=kx,解得,∴.当x=﹣4时,y=2.∴M(﹣4,2).∵点M、N关于点A对称,∴N(﹣4,6).∴MN=4.∴S=S△OMN+S△PMN=12;△PON(3)①证明:设点P的坐标为,其中t<﹣4,设直线OP为y=k′x(k′≠0),将P代入y=k′x,解得.∴.当x=﹣4时,y=t+8.∴M(﹣4,t+8).∴AN=AM=4﹣(t+8)=﹣t﹣4.设对称轴l交x轴于点B,作PC⊥l于点C,则B(﹣4,0),C.∴OB=4,NB=4+(﹣t﹣4)=﹣t,PC=﹣4﹣t,NC==.则,.∴.又∵∠NCP=∠NBO=90°,∴△NCP∽△NBO.∴∠PNM=∠ONM.②△OPN能为直角三角形,理由如下:解:分三种情况考虑:(i)若∠ONP为直角,由①得:∠PNM=∠ONM=45°,∴△PCN为等腰直角三角形,∴CP=NC,即m﹣4=m2﹣m,整理得:m2﹣8m+16=0,即(m﹣4)2=0,解得:m=4,此时点A与点P重合,故不存在P点使△OPN为直角三角形;(ii)若∠PON为直角,根据勾股定理得:OP2+ON2=PN2,∵OP2=m2+(﹣m2﹣2m)2,ON2=42+m2,AN2=(m﹣4)2+(﹣m2﹣2m+m)2,∴m2+(﹣m2﹣2m)2+42+m2=(m﹣4)2+(﹣m2﹣2m+m)2,整理得:m(m2﹣8m﹣16)=0,解得:m=0或m=﹣4﹣4或﹣4+4(舍去),当m=0时,P点与原点重合,故∠PON不能为直角,当m=﹣4﹣4,即P(﹣4﹣4,4)时,N为第四象限点,成立,故∠PON 能为直角;(iii)若∠NPO为直角,可得∠NPM=∠OBM=90°,且∠PMN=∠BMO,∴△PMN∽△BMO,又∵∠MPN=∠OBN=90°,且∠PNM=∠OND,∴△PMN∽△BON,∴△PMN∽△BMO∽△BON,∴=,即=,整理得:(m﹣4)2=0,解得:m=4,此时A与P重合,故∠NPO不能为直角,综上,点P在对称轴l左侧的二次函数图象上运动时,△OPN能为直角三角形,当m=4+4,即P()时,N为第四象限的点成立.。
北京市朝阳区中考数学二模试题
北京市朝阳区2013年中考数学二模试题学校 班级 姓名一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.的绝对值是A .2B .12C .12D .22.我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为 A .57.510´ B.57.510-´C .40.7510-´ D.67510-´ 3.如图,在△ABC 中,DE ∥BC ,如果AD =3,BD =5,那么DEBC的值是 A. 35 B. 925 C. 38 D. 584.从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为A .19B .18C .29D .135.如图,圆锥的底面半径OA 为2,母线AB 为3,则这个圆锥的侧面积为 A.3π B. 6π C. 12π D. 18π6.如图,下列水平放置的几何体中,主视图不是..长方形的是7. 某校篮球课外活动小组21名同学的身高如下表则该篮球课外活动小组21名同学身高的众数和中位数分别是A .176,176B .176,177C .176,178D .184,1788.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第 3格、第4格、第5格,此时这个正方体朝上..一面的字是 A .我 B .的 C .梦 D .中二、填空题(本题共16分,每小题4分) 9.在函数y =x 的取值范围是 .10.分解因式:32242x x x -+= .11.如图,在⊙O 中,直径CD ⊥弦AB 于点E ,点F 在弧AC 上, 若∠BCD =32°,则∠AFD 的度数为 .12.如图,在平面直角坐标系xOy 中,直线AB 与x 、y 轴分别交于点A 、B ,且A (-2,0),B (0,1),在直线 AB 上截取BB 1=AB ,过点B 1分别作x 、y 轴的垂线,垂足分别为点A 1 、C 1,得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别作x 、y 轴的垂线,垂足分别为点A 2 、C 2,得到矩形OA 2B 2C 2;在直线 AB 上截取B 2B 3= B 1B 2,过点B 3分别作x 、y 轴的垂线,垂足分别为点A 3 、C 3,得到矩形OA 3B 3C 3;……则第3个矩形OA 3B 3C 3的面积是 ;第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共30分,每小题5分)13.计算:)214452-⎛⎫︒ ⎪⎝⎭.14.计算:2312()111x x x -÷-+- .15.如图,为了测量楼AB 的高度,小明在点C 处测得楼AB 的顶端A 的仰角为30º,又向前走了20米后到达点D ,点B 、D 、C 在同一条直线上,并在点D 测得楼AB 的顶端A 的仰角为60º,求楼AB 的高.16.已知:如图,E 、F 为BC 上的点,BF=CE ,点A 、D 分别在BC 的两侧,且AE ∥DF ,AE =DF . 求证:AB ∥CD .17.如图,在平面直角坐标系xOy 中,一次函数y kx =-2的图象与x 、y 轴分别交于点A 、B ,与反比例函数32y x =-(x <0)的图象交于点3()2M n -,. (1)求A 、B 两点的坐标;(2)设点P 是一次函数y kx =-2图象上的一点,且满足△APO 的面积是△ABO 的面积的2倍,直接写出点P 的坐标.18.某新建小区要铺设一条全长为2200米的污水排放管道,为了尽量减少施工对周边居民所造成的影响,实际施工时,每天铺设的管道比原计划增加10%,结果提前5天完成这一任务,原计划每天铺设多少米管道?四、解答题(本题共20分,每小题5分)19.如图,在平行四边形ABCD 中,AD = 4,∠B =105º,E 是BC 边的中点,∠BAE =30º,将△ABE 沿AE 翻折,点B 落在点F 处,连接FC ,求四边形ABCF 的周长.B20.如图,在△ABC 中,AC=BC ,D 是BC 上的一点,且满足∠BAD =12∠C ,以AD 为直径的⊙O 与AB 、AC 分别相交于点E 、F . (1)求证:直线BC 是⊙O 的切线; (2)连接EF ,若tan ∠AEF =43,AD =4,求BD 的长.21.今年“五一”假期,小翔参加了学校团委组织的一项社会调查活动,了解他所在小区家庭的教育支出情况.调查中,小翔从他所在小区的500户家庭中,随机调查了40个家庭,并将调查结果制成了部分统计图表.(注:每组数据含最小值,不含最大值)根据以上提供的信息,解答下列问题:(1)频数分布表中的a = ,b = ; (2)补全频数分布直方图;(3)请你估计该小区家庭中,教育支出不足1500元的家庭大约有多少户?22.阅读下列材料:小华遇到这样一个问题,如图1, △ABC 中,∠ACB =30º,BC =6,AC =5,在△ABC 内部有一点P ,连接PA 、PB 、PC ,求PA +PB +PC 的最小值.B 1100 1300 1500 1700 1900 2100 2300 (元)教育支出频数分布表 教育支出频数分布直方图小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC 绕点C 顺时针旋转60º,得到△EDC ,连接PD 、BE ,则BE 的长即为所求.(1)请你写出图2中,PA +PB +PC 的最小值为 ; (2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD 中,∠ABC =60º,在菱形ABCD 内部有一点P ,请在图3中画出并指明长度等于PA +PB +PC 最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD 的边长为4,请直接写出当PA +PB +PC 值最小时PB 的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x 的一元二次方程x 2m )x m = 0.(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)此方程有一个根是3,在平面直角坐标系xOy 中,将抛物线y x 2m )x m向右平移3个单位,得到一个新的抛物线,当直线y x b 与这个新抛物线有且只有一个公共点时,求b 的值.24.如图,在平面直角坐标系xOy 中,抛物线y ax 2bx 4与x 轴交于点A (2,0)、B (6,0),与y 轴交于点C ,直线CD ∥x 轴,且与抛物线交于点D ,P 是抛物线上一动 点.B图2B图3C B 图1(1)求抛物线的解析式; (2)过点P 作PQ ⊥CD 于点Q ,将△CPQ 绕点C 顺时针旋转,旋转角为α(0º﹤α﹤90º),当cos α=35,且旋转后点P 的对应点'P 恰好落在x 轴上时,求点P 的坐标.25. 在□ABCD 中,E 是AD 上一点,AE =AB ,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB =∠EAB ,连接AG .(1)如图1,当EF 与AB 相交时,若∠EAB =60°,求证:EG =AG +BG ; (2)如图2,当EF 与AB 相交时,若∠EAB = α(0º﹤α﹤90º),请你直接写出线段EG 、AG 、BG 之间的数量关系(用含α的式子表示);(3)如图3,当EF 与CD 相交时,且∠EAB =90°,请你写出线段EG 、AG 、BG 之间的数量关系,并证明你的结论.图3 图2 F 图1 F数学试卷参考答案一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)9. x≥2310. 22(1)x x- 11. 32° 12.24,2n2+2n三、解答题(本题共30分,每小题5分)13. 解:)2142-⎛⎫︒⎪⎝⎭4312=-+-……………………………………………………4分1=. ………………………………………………………………………5分14. 解:2312111x x x骣÷ç-?÷ç÷ç桫-+-()()3(1)11(1)1(1)x xx x x x⎡⎤++=-⎢⎥+-+-⎣⎦221x¸-………………………………2分()()2242111xx x x+=÷+--…………………………………………………………………3分()()()()1124112x xxx x+-+=⋅+-…………………………………………………………4分2x=+ (5)分15. 解:由题意可知∠ACB=30°,∠ADB=60°,CD=20,在Rt△ABC中,()tan30=20AB BC BD=⋅︒+.………………………………1分在Rt△ABD中,tan60=AB BD BD=⋅︒………………………………………2分∴()20BD BD+…………………………………………………………3分∴10BD= (4)分∴AB= (5)分16. 证明:∵AE∥DF,∴∠AEB=∠DFC. ………………………………………………………………1分∵BF =CE ,∴BF +EF =CE +EF .即BE =CF . ………………………………………………………………………2分 在△ABE 和△DCF 中,AE DF AEB DFC BE CFì=ïïï??íïï=ïïî∴△ABE ≌△DCF . … ……………………………………………………………3分 ∴∠B =∠C. ………………………………………………………………………4分 ∴AB ∥CD. … ……………………………………………………………………5分17. 解:(1)∵点3()2M n -,在反比例函数32y x =-(x <0)的图象上,∴1n = (1)分∴3()2M -,1.∵一次函数y kx =-2的图象经过点3()2M -,1,∴3122k =--.∴2k =-.∴一次函数的解析式为22y x =--.∴A (1,0),B (0,2) . ………………………………………………………3分(2)P 1(3,4),P 2(1,4) . (5)分18. 解:设原计划每天铺设x 米管道.…………………………………………………1分由题意,得220022005(110%)x x=++ ……………………………………………3分解得 40x =. ……………………………………………………………4分经检验40x =是原方程的根. …………………………………………………5分答:原计划每天铺设40米管道.四、解答题(本题共20分,每小题5分) 19.解:作BG ⊥AE ,垂足为点G , ∴∠BGA =∠BGE =90º.在平行四边形ABCD 中,AD = 4, ∵E 是BC 边的中点,∴112.22BE EC BC AD ====……………………………………………………1分 ∵∠BAE =30º,∠ABC =105º, ∴∠BEG =45º.由已知得△ABE ≌△AFE .∴AB =AF ,BE =FE ,∠BEF =90º. 在Rt△BGE 中,BG =GE……… ………………………………………………………………2分 在Rt△ABG 中,∴AB =AF=………………………………………………………………………3分在Rt△ECF 中,FC = ………………………………………………… ……4分 ∴四边形ABCF的周长4+……………………………………………………5分20. (1)证明:在△ABC 中,∵AC=BC , ∴∠ CAB = ∠B .∵∠ CAB +∠B +∠C =180º, ∴2∠B +∠C =180º.∴12B C ??=90º. ……………………………………………………1分 ∵∠BAD =12∠C ,∴B BAD ??=90º.∴∠ADB =90º. ∴AD ⊥BC.∵AD 为⊙O 直径的,∴直线BC 是⊙O 的切线. …………………………………………………2分(2)解:如图,连接DF ,∵AD 是⊙O 的直径,∴∠AFD = 90º. ……………………………………………………………………3分 ∵∠ADC =90º,∴∠ADF +∠FDC =∠CD +∠FDC =90º.∴∠ADF =∠C . …………………………………………………………………4分∵∠ADF =∠AEF ,tan ∠AEF =43, ∴tan ∠C =tan ∠ADF =43. 在Rt△ACD 中,设AD =4x ,则CD =3x .∴5.AC x ∴BC =5x ,BD =2x . ∵AD =4,B∴x=1.∴BD=2. …………………………………………………………………………5分21.解:(1)a=3,b=0.075;……………………………………………………………2分(2)…………………………3分(3)500(0.050.15)100⨯+=.所以该小区家庭中,教育支出不足1500元的家庭大约有100户.…………5分21.解:(1 (1)分(2)①如图,…………………………………………2分BD;……………………………………………………………………………3分 . …………………………………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. (1)证明:∵△=()()2441m m---.……………………………………………… 1分 =2412m m-+=()228m-+…………………………………………………………2分∴△>0. …………………………………………………………………3分∴无论m取何值,方程总有两个不相等的实数根.(2)把x=-3代入原方程,解得m=1. …………………………………………………4分∴23y x x=+.B即23924y x ⎛⎫=+- ⎪⎝⎭.依题意,可知新的抛物线的解析式为239'24y x ⎛⎫=-- ⎪⎝⎭. (5)分即2'3y x x =+∵抛物线'y 与直线y x b =+只有一个公共点,∴23x x x b -=+..…………………………………………………………………6分 即240x x b --=. ∵△=0.∴()()2440b --⨯-=.解得b = -4. ……………………………………………………………………7分24. 解:(1)根据题意得424036640a b a b -+=⎧⎨++=⎩,.…………………………………………………………1分解得1343a b ⎧=-⎪⎪⎨⎪=⎪⎩,.所以抛物线的解析式为214433y x x =-++.………………………………2分 (2)如图1,过点Q 的对应点'Q 作EF ⊥CD 于点E ,交x 轴于点F .设P (x ,y ),则CQ = x ,PQ =4- y .由题意可知'CQ = CQ = x ,''P Q =PQ =4- y ,∠CQP =∠C ''Q P =90°. ∴'''''QCQ CQ E P Q F CQ E ∠+∠=∠+∠=90°.∴'''P Q F QCQ α∠=∠=.……………………………………………………3分 又∵cos α=35, ∴4'5EQ x = ,3'(4)5FQ y =-. ∴43(4)455x y +-=. ∵214433y x x =-++, 整理可得2145x =.∴1x =2x =-.∴P .………………………………………………………………5分如图2,过点Q 的对应点'Q 作EF ⊥CD 于点E ,交x 轴于点F . 设P (x ,y ),则CQ =- x ,PQ =4- y .可得'''P Q F QCQ α∠=∠=.……………………………………………………6分又∵cos α=35,∴4'5EQ x =- ,3'(4)5FQ y =-.∴434(4)55x y -+=-.∵214433y x x =-++, 整理可得2145x =.∴1x =2x =-∴(P -.……………………………………………………………7分∴P或(P -.25. 解:(1)证明:如图,作∠GAH =∠EAB 交GE 于点H .∴∠GAB =∠HAE . ………………………………………………………………1分 ∵∠EAB =∠EGB ,∠APE =∠BPG ,∴∠ABG =∠AEH .∵又AB =AE ,∴△ABG ≌△AEH . ………………2分 ∴BG =EH ,AG =AH .∵∠GAH =∠EAB =60°, ∴△AGH 是等边三角形. ∴AG =HG .∴EG =AG +BG . …………………………………………………………………3分(2) 2sin .2EG AG BG α=+…………………………………………………………5分(3).EG BG =-……………………………………………………………6分如图,作∠GAH =∠EAB 交GE 于点H .∴∠GAB =∠HAE . ∵∠EGB =∠EAB =90°,∴∠ABG +∠AEG =∠AEG +∠AEH =180°.∴∠ABG =∠AEH .∵又AB =AE ,∴△ABG ≌△AEH . ………………7分∴BG =EH ,AG =AH .∵∠GAH =∠EAB =90°,F∴△AGH是等腰直角三角形.=HG.∴.=-…………………………………………………………8分EG BG说明:各解答题其它正确解法请参照给分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015朝阳区中考数学二模一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)某种埃博拉病毒(EBV)长0.000000665nm左右.将0.000000665用科学记数法表示应为()A.0.665×10﹣6B.6.65×10﹣7C.6.65×10﹣8D.0.665×10﹣92.(3分)下列二次根式中,能与合并的是()A.B.C.D.3.(3分)在下面的四个几何体中,它们各自的左视图与主视图不相同的是()A.正方体B.三棱柱C.圆柱D.圆锥4.(3分)如图,在△ABC中,D为AB边上一点,DE∥BC交AC于点E.若=,AE=6,则EC的长为()A.6 B.9 C.15 D.185.(3分)在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是()A.10 B.14 C.16 D.406.(3分)某射击教练对甲、乙两个射击选手的5次成绩(单位:环)进行了统计,如表所示:设甲、乙两人射击成绩的平均数分别为、,射击成绩的方差分别为、,则下列判断中正确的是()A.<,>B.=,<C.=,D.=,>7.(3分)一个隧道的横截面如图所示,它的形状是以点O为圆心,5为半径的圆的一部分,M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,则隧道的高(ME的长)为()A.4 B.6 C.8 D.98.(3分)某数学课外活动小组利用一个有进水管与出水管的容器模拟水池蓄水情况:从某时刻开始,5分钟内只进水不出水,在随后的10分钟内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的蓄水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则第12分钟容器内的蓄水量为()A.22 B.25 C.27 D.289.(3分)如图,点M、N分别在矩形ABCD边AD、BC上,将矩形ABCD沿MN翻折后点C恰好与点A重合.若此时=,则△AMD′的面积与△AMN的面积的比为()A.1:3 B.1:4 C.1:6 D.1:910.(3分)如图,矩形ABCD中,E为AD中点,点F为BC上的动点(不与B、C重合).连接EF,以EF为直径的圆分别交BE,CE于点G、H.设BF的长度为x,弦FG与FH的长度和为y,则下列图象中,能表示y与x之间的函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.(3分)若分式的值为0,则x的值为.12.(3分)分解因式:3x2﹣12y2=.13.(3分)用一个圆心角为120°,半径为6cm的扇形作一个圆锥的侧面,则这个圆锥的底面圆的半径为.14.(3分)如图,△ABC中,AB=AC,AD是BC边中线,分别以点A、C为圆心,以大于AC长为半径画弧,两弧交点分别为点E、F,直线EF与AD相交于点O,若OA=2,则△ABC外接圆的面积为.15.(3分)如图,点B在线段AE上,∠1=∠2,如果添加一个条件,即可得到△ABC≌△ABD,那么这个条件可以是(要求:不在图中添加其他辅助线,写出一个条件即可)16.(3分)如果一个平行四边形一个内角的平分线分它的一边为1:2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为.三、解答题(本题共30分,每小题5分)17.(5分)已知:如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.求证:BE=CD.18.(5分)计算:.19.(5分)解不等式x﹣≥x﹣,并把它的解集在数轴上表示出来.20.(5分)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.21.(5分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A (﹣3,1),B (1,n)两点.(1)求反比例函数和一次函数的表达式;(2)设直线AB与y轴交于点C,若点P在x轴上,使BP=AC,请直接写出点P的坐标.22.(5分)列方程或方程组解应用题:四、解答题(本题共20分,每小题5分)23.(5分)如图,点F在▱ABCD的对角线AC上,过点F、B分别作AB、AC的平行线相交于点E,连接BF,∠ABF=∠FBC+∠FCB.(1)求证:四边形ABEF是菱形;(2)若BE=5,AD=8,sin∠CBE=,求AC的长.24.(5分)某校为了更好的开展“学校特色体育教育”,从全校八年级的各班分别随机抽取了5名男生和5名女生,组成了一个容量为60的样本,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图:某校60名学生体育测试成绩频数分布表正正正正不合格(说明:40﹣﹣﹣55分为不合格,55﹣﹣﹣70分为合格,70﹣﹣﹣85分为良好,85﹣﹣﹣100分为优秀)请根据以上信息,解答下列问题:(1)表中的a=,b=;(2)请根据频数分布表,画出相应的频数分布直方图;(3)如果该校八年级共有150名学生,根据以上数据,估计该校八年级学生身体素质良好及以上的人数为.25.(5分)如图,⊙O是△ABC 的外接圆,AB=AC,BD是⊙O的直径,PA∥BC,与DB的延长线交于点P,连接AD.(1)求证:PA是⊙O的切线;(2)若AB=,BC=4,求AD的长.26.(5分)阅读下面材料:小凯遇到这样一个问题:如图1,在四边形ABCD中,对角线AC、BD相交于点O,AC=4,BD=6,∠AOB=30°,求四边形ABCD的面积.小凯发现,分别过点A、C作直线BD的垂线,垂足分别为点E、F,设AO为m,通过计算△ABD 与△BCD的面积和使问题得到解决(如图2).请回答:(1)△ABD的面积为(用含m的式子表示).(2)求四边形ABCD的面积.参考小凯思考问题的方法,解决问题:如图3,在四边形ABCD中,对角线AC、BD相交于点O,AC=a,BD=b,∠AOB=α(0°<α<90°),则四边形ABCD的面积为(用含a、b、α的式子表示).五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.(7分)已知:关于x的一元二次方程ax2﹣2(a﹣1)x+a﹣2=0(a>0).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(其中x1>x2).若y是关于a的函数,且y=ax2+x1,求这个函数的表达式;(3)在(2)的条件下,结合函数的图象回答:若使y≤﹣3a2+1,则自变量a的取值范围为.28.(7分)数学活动课上,老师提出这样一个问题:如果AB=BC,∠ABC=60°,∠APC=30°,连接PB,那么PA、PB、PC之间会有怎样的等量关系呢?经过思考后,部分同学进行了如下的交流:小蕾:我将图形进行了特殊化,让点P在BA延长线上(如图1),得到了一个猜想:PA2+PC2=PB2.小东:我假设点P在∠ABC的内部,根据题目条件,这个图形具有“共端点等线段”的特点,可以利用旋转解决问题,旋转△PAB后得到△P′CB,并且可推出△PBP′,△PCP′分别是等边三角形、直角三角形,就能得到猜想和证明方法.这时老师对同学们说,请大家完成以下问题:(1)如图2,点P在∠ABC的内部,①PA=4,PC=,PB=.②用等式表示PA、PB、PC之间的数量关系,并证明.(2)对于点P的其他位置,是否始终具有②中的结论?若是,请证明;若不是,请举例说明.29.(8分)如图,顶点为A(﹣4,4)的二次函数图象经过原点(0,0),点P在该图象上,OP交其对称轴l于点M,点M、N关于点A对称,连接PN,ON.(1)求该二次函数的表达式;(2)若点P的坐标是(﹣6,3),求△OPN的面积;(3)当点P在对称轴l左侧的二次函数图象上运动时,请解答下面问题:①求证:∠PNM=∠ONM;②若△OPN为直角三角形,请直接写出所有符合条件的点P的坐标.参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】0.000000665=6.65×10﹣7;故选:B.2.【解答】A、,不能和合并,故本选项错误;B、,不能和合并,故本选项错误;C、,能和合并,故本选项正确;D、=2不能和合并,故本选项错误;故选:C.3.【解答】A、主视图与左视图都是正方形;B、主视图为长方形,左视图为中间有一条竖直的实线的长方形,不相同;C、主视图与左视图都是矩形;D、主视图与左视图都是等腰三角形;故选B.4.【解答】如图,∵DE∥BC,∴,∵=,AE=6,∴EC=9.故选B.5.【解答】∵通过大量重复试验后发现,摸到红球的频率稳定于0.4,∴=0.4,解得:n=10.故选A.6.【解答】(1)=(10+8+9+8+10)=9;=(9+8+9+10+9)=9;=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2]=0.8;=[(9﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2+(9﹣9)2]=0.4;∴=,>.故选D.7.【解答】∵M是⊙O弦CD的中点,根据垂径定理:EM⊥CD,又CD=6则有:CM=CD=3,设OM是x米,在Rt△COM中,有OC2=CM2+OM2,即:52=32+x2,解得:x=4,所以EM=5+4=9.故选D.8.【解答】当5≤x≤15时,设y=kx+b,把(5,20),(15,30)代入得:解得:∴y=x+15,当x=12时,y=12+15=27,故选:C.9.【解答】根据折叠的性质,AN=CN,∠ANM=∠CNM,∵四边形ABCD是矩形,∴AD∥BC,∴∠CNM=∠AMN,∴∠ANM=∠AMN,∴AM=AN,∵=,∴,∴,∴△AMD′的面积:△AMN的面积=1:3.故选:A.10.【解答】如图,作EM⊥BC于M,∵点E是矩形ABCD的边AD上的中点,∴BE=CE,∠EBM=∠ECM,∴点M是BC的中点,设AB=CD=a,AD=BC=2b,则BM=CM=b,EM=a,∴BE=CE=,∴sin∠EBM=sin∠ECM=,∵EF是⊙O的直径,∴∠BGF=∠CHF=90°∵BF=x,∴CF=2b﹣x,∴FG=BF•sin∠EBM=,FH=CF•sin∠ECM=,∴FG+FH=,∵ab为定值,∴FG+FH=为定值,故选:D.二、填空题(本题共18分,每小题3分)11.【解答】由题意可得:2x﹣6=0且x+1≠0,解得x=3.故答案为:3.12.【解答】3x2﹣12y2,=3(x2﹣4y2),=3(x+2y)(x﹣2y).13.【解答】扇形的弧长==4π,故圆锥的底面半径为4π÷2π=2.故答案为:2.14.【解答】∵AB=AC,AD是BC边中线,∴AD垂直平分BC,∵分别以点A、C为圆心,以大于AC长为半径画弧,两弧交点分别为点E、F,∴EF垂直平分AC,∵直线EF与AD相交于点O,∴点O即为△ABC外接圆圆心,∴AO为△ABC外接圆半径,∴△ABC外接圆的面积为:4π.故答案为:4π.15.【解答】已经有∠CAB=∠DAB,AB=AB,再添加AC=AD,利用SAS证明;或添加∠ABC=∠ABD,利用ASA证明;或添加∠C=∠D,利用AAS证明,(答案只要符合即可).故答案为AC=AD或∠ABC=∠ABD或∠C=∠D16.【解答】如图所示:①当AE=1,DE=2时,∵四边形ABCD是平行四边形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,∴平行四边形ABCD的周长=2(AB+AD)=8;②当AE=2,DE=1时,同理得:AB=AE=2,∴平行四边形ABCD的周长=2(AB+AD)=10;故答案为:8或10.三、解答题(本题共30分,每小题5分)17.【解答】证明:∵BE⊥CE,AD⊥CE,∴∠BEC=∠CDA=90°,∴∠EBC+∠ECB=90°,又∵∠DCA+∠ECB=90°,∴∠EBC=∠DCA,又∵BC=AC,在△BEC与△CDA中,,∴△BEC≌△CDA(AAS),∴BE=CD.18.【解答】原式=4+2﹣4﹣1=2﹣1.19.【解答】去分母得3x﹣4≥4x﹣2,移项得3x﹣4x≥﹣2+4,合并得﹣x≥2,系数化为1得x≤﹣2,用数轴表示为:.20.【解答】(a﹣2)2+b(b﹣2a)+4(a﹣1)=a2﹣4a+4+b2﹣2ab+4a﹣4=a2+b2﹣2ab=(a﹣b)2,∵a﹣b=,∴原式=2.21.【解答】(1)把A (﹣3,1)代入y=,得,解得m=﹣3,∴反比例函数的表达式为,当x=1时,,∴B(1,﹣3);把A (﹣3,1),B(1,﹣3)代入y=kx+b,∴,解得:,∴一次函数的表达式为y=﹣x﹣2;(2)∵直线AB与y轴交于点C,∴C(0,﹣2),∴AC==3,∵点P在x轴上,∴设P(a,0)∵AC=PB,∴3=,解得:a=4,或a=﹣2,∴P(4,0)或(﹣2,0).22.【解答】设小白家这两年用水的年平均下降率为x,由题意,得(1﹣x)2=64000,解得:x1=1.8,x2=0.2,∵x=1.8不符合题意,舍去,∴x=0.2=20%.答:小白家这两年用水的年平均下降率为20%.四、解答题(本题共20分,每小题5分)23.【解答】(1)证明:∵EF∥AB,BE∥AF,∴四边形ABEF是平行四边形.∵∠ABF=∠FBC+∠FCB,∠AFB=∠FBC+∠FCB,∴∠ABF=∠AFB,∴AB=AF,∴▱ABEF是菱形;(2)解:作DH⊥AC于点H,∵,∴∠CBE=30°,∵BE∥AC,∴∠1=∠CBE,∵AD∥BC,∴∠2=∠1,∴∠2=∠CBE=30°,Rt△ADH中,,DH=AD•sin∠2=4,∵四边形ABEF是菱形,∴CD=AB=BE=5,Rt△CDH中,,∴.24.【解答】(1)60×30%=18,30÷60×100%=50%,∴a=18,b=50%;(2)如图,(3)150×(30%+50%)=120.25.【解答】(1)证明:连接OA交BC于点E,由AB=AC可得OA⊥BC,∵PA∥BC,∴∠PAO=∠BEO=90°.∵OA为⊙O的半径,∴PA为⊙O的切线.(2)解:根据(1)可得CE=BC=2.Rt△ACE中,,∴tanC=.∵BD是直径,∴∠BAD=90°,又∵∠D=∠C,∴tanD==,∴AD=.26.【解答】(1)∵AO=m,∠AOB=30°,∴AE=m,∴△ABD的面积为:×m×6=;故答案为:m;(2)由题意可知∠AEO=90°.∵AO=m,∠AOB=30°,∴AE=.∴S△ABD=.同理,CF=.∴S△BCD=.∴S四边形ABCD=S△ABD+S△BCD=6.解决问题:分别过点A、C作直线BD的垂线,垂足分别为点E、F,设AO为x,∵AO=x,∠AOB=α,∴AE=x•sinα.∴S△ABD=BD•AE=xb,同理,CF=(4﹣x)•sinα,∴S△BCD=.DB•CF=b•(4﹣x)•sinα,∴S四边形ABCD=S△ABD+S△BCD=.故答案为:.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.【解答】(1)证明:∵△=[﹣2(a﹣1)]2﹣4a(a﹣2)=4.∴△>0,∴方程有两个不相等的实数根;(2)解:x==∵a>0,x1>x2,∴x1=1,x2=1﹣,∴y=ax2+x1=a﹣1,即这个函数的表达式为y=a﹣1(a>0);(3)解:如图,解方程组得或,即抛物线y=﹣3a2+1与直线y=a﹣1的两个交点坐标为(﹣1,﹣2)、(,﹣),当y≤﹣3a2+1时,0<a≤.故答案为0<a≤.28.【解答】(1)①PB==.故答案为:;②PA2+PC2=PB2,证明:作∠PBP′=∠ABC=60°,且使BP′=BP,连接P′C、P′P,如图1:∵∠ABC=PBP′∴∠ABP=∠CBP′,∵AB=CB,在△ABP与△CBP′中,,∴△ABP≌△CBP′,∴PA=P′C,∠A=∠BCP′,在四边形ABCP中,∵∠ABC=60°,∠APC=30°,∴∠A+∠BCP=270°,∴∠BCP′+∠BCP=270°,∴∠PCP′=360°﹣(∠BCP′+∠BCP)=90°,∵△PBP′是等边三角形,∴PP′=PB,在Rt△PCP′中,P'C2+PC2=P'P2,∴PA2+PC2=PB2;(2)点P在其他位置时,不是始终具有②中猜想的结论,举例:如图2,当点P在CB的延长线上时,结论为PA2+PB2=PC2.29.【解答】(1)解:设二次函数的表达式为y=a(x+4)2+4,把点(0,0)代入表达式,解得.∴二次函数的表达式为,即;(2)解:设直线OP为y=kx(k≠0),将P(﹣6,3)代入y=kx,解得,∴.当x=﹣4时,y=2.∴M(﹣4,2).∵点M、N关于点A对称,∴N(﹣4,6).∴MN=4.∴S△PON=S△OMN+S△PMN=12;(3)①证明:设点P的坐标为,其中t<﹣4,设直线OP为y=k′x(k′≠0),将P代入y=k′x,解得.∴.当x=﹣4时,y=t+8.∴M(﹣4,t+8).∴AN=AM=4﹣(t+8)=﹣t﹣4.设对称轴l交x轴于点B,作PC⊥l于点C,则B(﹣4,0),C.∴OB=4,NB=4+(﹣t﹣4)=﹣t,PC=﹣4﹣t,NC==.则,.∴.又∵∠NCP=∠NBO=90°,∴△NCP∽△NBO.∴∠PNM=∠ONM.②△OPN能为直角三角形,理由如下:解:分三种情况考虑:(i)若∠ONP为直角,由①得:∠PNM=∠ONM=45°,∴△PCN为等腰直角三角形,∴CP=NC,即m﹣4=m2﹣m,整理得:m2﹣8m+16=0,即(m﹣4)2=0,解得:m=4,此时点A与点P重合,故不存在P点使△OPN为直角三角形;(ii)若∠PON为直角,根据勾股定理得:OP2+ON2=PN2,∵OP2=m2+(﹣m2﹣2m)2,ON2=42+m2,AN2=(m﹣4)2+(﹣m2﹣2m+m)2,∴m2+(﹣m2﹣2m)2+42+m2=(m﹣4)2+(﹣m2﹣2m+m)2,整理得:m(m2﹣8m﹣16)=0,解得:m=0或m=﹣4﹣4或﹣4+4(舍去),当m=0时,P点与原点重合,故∠PON不能为直角,当m=﹣4﹣4,即P(﹣4﹣4,4)时,N为第四象限点,成立,故∠PON能为直角;(iii)若∠NPO为直角,可得∠NPM=∠OBM=90°,且∠PMN=∠BMO,∴△PMN∽△BMO,又∵∠MPN=∠OBN=90°,且∠PNM=∠OND,∴△PMN∽△BON,∴△PMN∽△BMO∽△BON,∴=,即=,整理得:(m﹣4)2=0,解得:m=4,此时A与P重合,故∠NPO不能为直角,综上,点P在对称轴l左侧的二次函数图象上运动时,△OPN能为直角三角形,当m=4+4,即P()时,N为第四象限的点成立.。