广西桂林、崇左市2019届高三5月联合模拟数学理科试卷含解析

合集下载

【水印已去除】2019年广西桂林市、崇左市高考数学二模试卷(理科)

【水印已去除】2019年广西桂林市、崇左市高考数学二模试卷(理科)

2019年广西桂林市、崇左市高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合N={x|x2﹣x﹣2≤1},M={﹣2,0,1},则M∩N=()A.[﹣1,2]B.[﹣2,1]C.{﹣2,0,1}D.{0,1}2.(5分)设z=,则|z|=()A.B.2C.1+i D.1﹣i3.(5分)在数列{a n}中,a3=5,a n+1﹣a n﹣2=0(n∈N+),若S n=25,则n=()A.3B.4C.5D.64.(5分)在某项测试中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若P(0<ξ<1)=0.4,则P(0<ξ<2)=()A.0.4B.0.8C.0.6D.0.25.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为12,18,则输出的a的值为()A.1B.2C.3D.66.(5分)已知a,b∈R,则“”是“a<b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)若函数f(x)=x2ln2x,则f(x)在点()处的切线方程为()A.y=0B.2x﹣4y﹣1=0C.2x+4y﹣1=0D.2x﹣8y﹣1=0 8.(5分)已知sin()=2cos(),则sin2θ=()A.B.C.D.9.(5分)已知f(x)是定义在R上的奇函数,且在[0,+∞)上单调递增.若实数m满足f(log3|m﹣1|)+f(﹣1)<0,则m的取值范围是()A.(﹣2,1)∪(1,4)B.(﹣2,1)C.(﹣2,4)D.(1,4)10.(5分)在△ABC中,内角A、B、C的对边分别是a、b、c,若c cos B+b cos C=,且b2+c2﹣a2=bc,则=()A.B.C.2D.11.(5分)过双曲线x2﹣的右支上一点P分别向圆C1:(x+2)2+y2=4和圆C2:(x﹣2)2+y2=1作切线,切点分别为M,N,则|PM|2﹣|PN|2的最小值为()A.5B.4C.3D.212.(5分)安排3名志愿者完成5项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.90种B.150种C.180种D.300种二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量=(1,5),=(2,﹣1),=(m,3),若⊥(),则m=.14.(5分)若x,y满足,则的最大值为.15.(5分)以抛物线C:y2=2px(p>0)的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=2,|DE|=2,则p等于.16.(5分)在大小为75°的二面角α﹣l﹣β内有一点M到两个半平面的距离分别为1和,则点M到棱l的距离等于.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分17.已知数列{a n}中,a1=1,a n+1=2a n+1,(n∈N*).(1)求证:数列{a n+1}是等比数列;(2)求数列{a n}的前n项和.18.某汽车公司为调查4S店个数对该公司汽车销量的影响,对同等规模的A,B,C,D四座城市的4S店一季度汽车销量进行了统计,结果如表:(1)根据统计的数据进行分析,求y关于x的线性回归方程;(2)现要从A,B,D三座城市的10个4S店中选取3个做深入调查,求B城市中被选中的4S店个数X的分布列和期望.附:回归方程=中的斜率和截距的最小二乘法估计公式分别为:=,=﹣19.已知四棱锥S﹣ABCD的底面ABCD是菱形,∠ABC=,SA⊥底面ABCD,E是SC 上的任意一点.(1)求证:平面EBD⊥平面SAC;(2)设SA=AB=2,是否存在点E使平面BED与平面SAD所成的锐二面角的大小为30°?如果存在,求出点E的位置,如果不存在,请说明理由.20.椭圆M:+=1(a>b>0)的离心率e=,过点A(﹣a,0)和B(0,b)的直线与原点间的距离为.(1)求椭圆M的方程;(2)过点E(1,0)的直线l与椭圆M交于C、D两点,且点D位于第一象限,当=3时,求直线l的方程.21.设函数f(x)=e x﹣(a﹣1)x2﹣x.(1)当a=1时,讨论f(x)的单调性;(2)已知函数f(x)在(0,+∞)上有极值,求实数a的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在平面直角坐标系中,已知曲线C的参数方程为(φ为参数),以原点为极点,x轴的非负半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)过点P(1,2)倾斜角为135°的直线l与曲线C交于M、N两点,求PM2+PN2的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+2x,其中a>0.(1)当a=1时,求不等式f(x)≥2的解集;(2)若关于x的不等式|f(2x+a)﹣2f(x)|≤2恒成立,求实数a的取值范围.2019年广西桂林市、崇左市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:集合N={x|x2﹣x﹣2≤1}={x|≤x≤},M={﹣2,0,1},∴M∩N={0,1}.故选:D.2.【解答】解:根据题意,z===(﹣10+10i)=﹣1+i,则|Z|=,故选:A.3.【解答】解:数列{a n}中,a3=5,由于:a n+1﹣a n﹣2=0(n∈N+),故:a n+1﹣a n=2(常数),所以:数列{a n}为等差数列,故:a n=5+2(n﹣3)=2n﹣1,所以:,解得:n=5.故选:C.4.【解答】解:随机变量X服从正态分布N(1,σ2),∴曲线关于x=1对称,∵P(0<ξ<1)=0.4,∴P(1≤ξ<2)=0.4,∴P(0<ξ<2)=P(0<ξ<1)+P(1≤ξ<2)=0.4+0.4=0.8,故选:B.5.【解答】解:根据程序框图:a=12,b=18,由于:a≠b,所以:b=b﹣a=6,由于a=12,b=6,所以:a=6,由于a=b,所以输出a=6.故选:D.6.【解答】解:当a=﹣1,b=1时,满足a<b,但>不成立.当a=1,b=﹣1时,满足>,但a<b不成立.“>”是“a<b”的既不充分也不必要条件.故选:D.7.【解答】解:函数f(x)=x2ln2x的导数为f′(x)=2xln2x+x2•=2xln2x+x,可得f(x)在()处的切线的斜率为k=,可得切线方程为y=(x﹣),即为2x﹣4y﹣1=0.故选:B.8.【解答】解:由sin()=2cos(),得tan()=2,即,∴,则tan.∴sin2θ=.故选:C.9.【解答】解:∵f(x)是定义在R上的奇函数,且在[0,+∞)上单调递增.∴f(x)在(﹣∞,0)上单调递增.∵f(log3|m﹣1|)+f(﹣1)<0,∴f(log3|m﹣1|)<﹣f(﹣1)=f(1),∴log3|m﹣1|<1,∴0<|m﹣1|<3,解可得﹣2<m<4且m≠1故选:A.10.【解答】解:根据题意,在△ABC中,c cos B+b cos C=,则有c×+b×=a=,b2+c2﹣a2=bc,则cos A==,则sin A=,则==2;故选:C.11.【解答】解:设P(x,y),由切线长定理可知|PM|2=|PC1|2﹣|C1M|2=(x+2)2+y2﹣4,|PN|2=|PC2|2﹣|C2N|2=(x﹣2)2+y2﹣1,∴|PM|2﹣|PN|2=(x+2)2﹣(x﹣2)2﹣3=8x﹣3.∵P在双曲线右支上,故x≥1,∴当x=1时,|PM|2﹣|PN|2取得最小值5.故选:A.12.【解答】解:根据题意,分2步进行分析:①、将5项工作分成3组,若分成1、1、3的三组,有=10种分组方法,若分成1、2、2的三组,有=15种分组方法,则将5项工作分成3组,有10+15=25种分组方法;②、将分好的三组全排列,对应3名志愿者,有A33=6种情况,则有25×6=150种不同的分组方法;故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:∵=(1,5),=(2,﹣1),=(m,3),∴=(1+m,8),∵⊥(),∵2(1+m)﹣8=0,∴m=3,故答案为:3.14.【解答】解:满足约束条件的可行域:如下图所示:又∵的表示的是可行域内一点与原点连线的斜率当x=1,y=5时,有最大值5.给答案为:5.15.【解答】解:由对称性可知y A=±,代入抛物线方程可得x A==,设圆的半径为R,则R2=+6,又R2=10+,∴+6=10+,解得p=.故答案为:.16.【解答】解:如图所示,经过点M,作ME⊥β,MF⊥α,垂足分别为E,F.则ME⊥l,MF⊥l.设平面MEF与棱l交于点O,则l⊥平面MEOF.∴l⊥MO.设OM=x,∠EOM=θ1,∠MOF=θ2.则θ1+θ2=,sinθ1=,sinθ2=.cosθ1=,cosθ2=.∴=sin=sin(θ1+θ2)=×+×,解得x=2.故答案为:2.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分17.【解答】解:(1)∵a n+1=2a n+1,(n∈N*),∴a n+1+1=2(a n+1),∴=2,∴数列{a n+1}是以2为公比的等比数列,(2)由(1)知,数列{a n+1}是等比数列,且q=2,首项为a1+1=2,∴a n+1=2•2n﹣1=2n,∴a n=2n﹣1,∴数列{a n}的前n项和s n=(2+22+…+2n)﹣n=﹣n=2n+1﹣n﹣2.18.【解答】解:(1),,==2.9,.∴回归直线方程为;(2)X的可能取值为:0,1,2,3.P(X=0)=;P(X=1)=;P(X=2)=;P(X=3)=.X的分布列为∴X的期望为E(X)=0×.19.【解答】证明:(1)∵SA⊥平面ABCD,BD⊂平面ABCD,∴SA⊥BD.∵四边形ABCD是菱形,∴AC⊥BD.∵AC∩AS=A,∴BD⊥平面SAC.∵BD⊂平面EBD,∴平面EBD⊥平面SAC.解:(2)设AC与BD的交点为O,以OC、OD所在直线分别为x、y轴,以过O垂直平面ABCD的直线为z轴,建立空间直角坐标系(如图),则A(﹣1,0,0),C(1,0,0),S(﹣1,0,2),B(0,﹣,0),D(0,,0).设E(x,0,z),则=(x+1,0,z﹣2),=(1﹣x,0,﹣z),设=,∴,∴E(,0,),∴=(,﹣,).=(0,,0),设平面BDE的法向量=(x,y,z),∵.解得=(2,0,1﹣λ)为平面BDE的一个法向量.同理可得平面SAD的一个法向量为=(),∵平面BED与平面SAD所成的锐二面角的大小为30°,∴cos30°===,解得λ=1.∴E为SC的中点.20.【解答】解(1)据题知,直线AB的方程为bx﹣ay+ab=0.依题意得.解得a2=2,b2=1,所以椭圆M的方程为+y2=1.(2)设C(x1,y1),D(x2,y2),(x2>0,y2>0,),设直线l的方程为x=my+1(m∈R).代入椭圆方程整理得:(m2+2)y2+2my﹣1=0.△=8m2+8>0∴y1+y2=﹣,y1y2=﹣.①由=3,依题意可得:y1=﹣3y2,②结合①②得,消去y2解得m=1,m=﹣1(不合题意).所以直线l的方程为y=x﹣1.21.【解答】解:(1)f'(x)=e x﹣2(a﹣1)x﹣1.当a=1时f'(x)=e x﹣1.由f'(x)≥0有e x﹣1≥0,解得x≥0;f'(x)≤0,∴x≤0.∴函数f(x)在[0,+∞)上单调递增,在(﹣∞,0]上单调递减.(2)设g(x)=f'(x)=e x﹣2(a﹣1)x﹣1,则g'(x)=e x﹣2(a﹣1),∵函数f(x)在(0,+∞)上有极值点,∴函数g(x)在(0,+∞)上有零点.①当时,x>0,∴e x>1,∴g'(x)=e x﹣2(a﹣1)>0,∴g(x)在(0,+∞)上单调递增,∵g(0)=0,∴当x>0时g(x)>g(0)=0恒成立,即函数g(x)在(0,+∞)上没有零点.②当时,2(a﹣1)>1,ln2(a﹣1)>0,g'(x)=e x﹣2(a﹣1)>0时,x>ln2(a﹣1),g'(x)=e x﹣2(a﹣1)<0时,x<ln2(a﹣1),∴g(x)在(0,ln2(a﹣1))上单调递减,在[ln2(a﹣1),+∞)上单调递增∵g(0)=0,且g(x)在(0,ln2(a﹣1))上单调递减,∴g(ln2(a﹣1))<0.对于a>0,当x→+∞时,g(x)→+∞,∴存在x0∈[ln2(a﹣1),+∞)使g(x0)>0.∴函数g(x)在(ln2(a﹣1),+∞)上有零点.∴函数f(x)在(0,+∞)上有极值点时,实数a的取值范围是(,+∞).(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【解答】解(1)依题意,曲线C的普通方程为x2+(y﹣2)2=4,即x2+y2﹣4y=0,故x2+y2=4y,故ρ=4sinθ,故所求极坐标方程为ρ=4sinθ;(2)设直线l的参数方程为(t为参数),将此参数方程代入x2+y2﹣4y=0中,化简可得t2﹣t﹣3=0,显然△>0.设M,N所对应的参数分别为t1,t2,则.∴PM2+PN2=t12+t22=(t1+t2)2﹣2t1t2=8.[选修4-5:不等式选讲]23.【解答】解:(1)当a=1时,f(x)=.当x≥1时,由f(x)≥2可得3x﹣1≥2,解得x≥1;当x<1时,由f(x)≥2可得x+1≥2,解得x≥1;不成立;综上所述,当a=1时,不等式f(x)≥2的解集为[1,+∞).(2)记h(x)=|f(2x+a)﹣2f(x)|=2||x|﹣|x﹣a|+a|=.∴|f(2x+a)﹣2f(x)|max=4a.依题意得4a≤2,∴a≤.所以实数a的取值范围为(0,].。

广西桂林市、崇左市、防城港市2019届高考第一次联合模拟考试数学理试卷

广西桂林市、崇左市、防城港市2019届高考第一次联合模拟考试数学理试卷

广西桂林市、崇左市、防城港市2019届高考第一次联合模拟考试数学试卷(理科)第Ⅰ卷注意事项:第Ⅰ卷共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率k n k k n n p p C k P --=)1()((k=0,1,2,…,n )球的表面积公式S =4πR 2,其中R 表示球的半径 球的体积公式V =334R π,其中R 表示球的半径一、选择题1. 已知集合A ={x ||x|≤2,x ∈R},B ={x |x ≤2,x ∈Z},则A∩B =A. (0,2)B. [0,2]C. {0,2}D. {0,1,2}2. 若(a+4i )i=b+i (a ,b ∈R ),i 为虚数单位,则a+b =A. 3B. 5C. -3D. -53. 函数f (x )=3+sinx ,x ∈[0,1)的反函数的定义域是A. [0,1)B. [1,3+sin1)C. [0,4)D. [0,+ ∞)4. 设S n 是等差数列{a n }的前n 项和,S 5=3(a 2+a 8),则35a a 的值为 A.61 B.31 C.53 D.65 5. 已知函数y=2sin (2x+ϕ)(|ϕ|<2π)的图象经过点(0,1),则该函数的一条对称轴方程为A. x=6π B. x=12πC. x=-12π D. x=-6π 6. 已经双曲线x 2-m 2y 2=m 2(m>0)的一条渐近线与直线2x -y+3=0垂直,则该双曲线的准线方程为A. x=±334B. x=±554C. x=±23 D. x=±25 7. 设(x -b )8=b 0+b 1x+b 2x 2+…+b 8x 8,如果b 5+b 8=-6,则实数b 的值为A.21 B. -21 C.2 D. -28. 在△ABC 中,D 为BC 边上的点,=λ+μ,则λμ的最大值为A. 1B.21 C.31 D.41 9. 已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA=23,AB=1,AC=2,∠BAC=60°,则球O 的表面积为A. 4πB. 12πC. 16πD. 64π10. 定义在R 上的函数y=f (x )是增函数,且函数y=f (x -3)的图象关于点(3,0)成中心对称,若s ,t 满足f (s 2-2s ) ≥-f (2t -t 2),则A. s≥tB. s<tC. |s -1|≥|t -1|D. s+t≥011. 设抛物线C 的方程为y 2=4x ,O 为坐标原点,P 为抛物线的准线与其对称轴的交点,过焦点F 且垂直于x 轴的直线交抛物线于M 、N 两点,若直线PM 与ON 相交于点Q ,则cos ∠MQN=A.55B. -55 C.1010 D. -1010 12. 在8×8棋盘的64个方格中,共有由整数个小方格组成的大小或位置不同的正方形的个数为A. 64B. 128C. 204D. 408第Ⅱ卷注意事项:第Ⅱ卷共10小题,共90分。

2019年最新广西高考数学一模试卷(理)及答案解析

2019年最新广西高考数学一模试卷(理)及答案解析

广西高考数学一模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则A∩B=()A.[﹣1,0] B.[﹣1,2] C.[0,1] D.(﹣∞,1]∪[2,+∞)2.设复数z=1+i,i是虚数单位,则+()2=()A.1﹣3i B.1﹣i C.﹣1﹣i D.﹣1+i3.“log22x>0”是“x>1”成立的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.下列函数是偶函数,且最小正周期为π的是()A.y=sin(π﹣2x)B.y=sin2xcos2x C.y=cos22x+1 D.y=cos(2x﹣π)5.阅读如图所示的程序框图,运行相应的程序,若判断框内是n≤6,则输出的S为()A.B.C.D.6.已知双曲线,它的一个顶点到较近焦点的距离为1,焦点到渐近线的距离是,则双曲线C的方程为()A.x2﹣=1 B.﹣y2=1 C.﹣y2=1 D.x2﹣=17.已知数列{a n}是等比数列,且a3=1,a5a6a7=8,则a9=()A.2 B.4 C.6 D.88.一个几何体的三视图如图,则该几何体的表面积为()A.8+6B.10+8 C.12+4 D.14+29.将函数y=sin2x的图象向左平移φ(φ>0)个单位,得到g(x)的图象,若g(x)的图象关于直线x=对称,则φ的最小值为()A.B.C.D.10.若x,y满足不等式组,z=x﹣y的最大值为4,则实数a=()A.4 B.C.5 D.11.已知圆C:x2+y2﹣2x+4y=0关于直线3x﹣ay﹣11=0对称,则圆C中以(,﹣)为中点的弦长为()A.1 B.2 C.3 D.412.已知曲线f(x)=e x﹣ax在点(0,f(0))处的切线方程为3x+y+b=0,则下列不等式恒成立的是()A.f(x)≥2﹣4ln2 B.f(x)≤2﹣4ln2 C.f(x)≥4﹣8ln2 D.f(x)≤4﹣8ln2二、填空题(共4小题,每小题5分,满分20分)13.(2x﹣)6展开式中常数项为(用数字作答).14.向量=(1,﹣2)与=(3,t)的夹角为θ,=(1,﹣3),⊥,则cosθ=.15.设函数f(x)=,若存在实数b,使函数y=f(x)﹣b有且只有2个零点,则实数b的取值范围是.16.已知等差数列{a n}的前n项和为S n,a1=﹣1,(a n+1﹣4)n=2S n,则S n= .三、解答题(共5小题,满分60分)17.在三角形ABC中,角A,B,C的对边分别是a,b,c.若b=,c=3,B+C=3A.(1)求边a;(2)求sin(B+)的值.18.某地区交通执法部门从某日上午9时开始对经过当地的200名车辆驾驶人员驾驶的车辆进行超速测试并分组,并根据测速的数据制作了频率分布图:(Ⅱ)若在第2,3,4,5组用分层抽样的方法随机抽取12名驾驶人员做回访调查,并在这12名驾驶人员中任意选3人,这3人中超速在[20%,80%)内的人数记为ξ,求ξ的数学期望.19.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AC⊥AD,AB⊥BC,PA=AB=BC=1,AC=AD,点E在棱PB上,且PE=2EB.(1)求证:PD∥平面EAC.(2)求平面ACE和平面ABCD所成锐二面角的余弦值.20.已知椭圆G:+=1(a>b>0)的离心率为,左顶点为A,上顶点为E,O是坐标原点,△OAE面积为.(1)求椭圆G的方程;(2)若过椭圆G的右焦点作垂直于x轴的直线m与G在第一象限内交于点M,平行于AM的直线l与椭圆G相交于B,C两点,判断直线MB,MC是否关于直线m对称,并说明理由.21.设函数f(x)=x3+ax2+bx(x>0)的图象与x轴相切于M(3,0).(1)求f(x)的解析式,并求y=+4lnx的单调减区间;(2)是否存在两个不等正数s,t(x>t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t,若不存在,请说明理由.请在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分[选修4-1:几何证明选讲]22.如图,A,B,C,D四点在同一圆上,AB∥CD,AD的延长线与BC的延长线交于E点.(1)证明:EC=ED.(2)延长CD到F,延长DC到G,连接EF、EG,使得EF=EG,证明:A,B,G,F四点共圆.[选修4-4:坐标系与参数方程]23.已知曲线C1的参数方程为(θ为参数),曲线C2的极坐标方程为ρ=2cosθ+6sinθ.(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程;(2)曲线C1,C2是否相交,若相交请求出公共弦的长,若不相交,请说明理由.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|(a∈R).(1)若a=4,求不等式f(x)≥5的解集;(2)若存在x∈R,使f(x)≤4成立,求a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则A∩B=()A.[﹣1,0] B.[﹣1,2] C.[0,1] D.(﹣∞,1]∪[2,+∞)【考点】交集及其运算.【分析】直接由一元二次不等式化简集合B,则A交B的答案可求.【解答】解:∵B={x|x2﹣2x≤0}={x|0≤x≤2},∴A∩B={x|﹣1≤x≤1}∩{x|0≤x≤2}={x|0≤x≤1}.则A∩B的区间为:[0,1].故选C.2.设复数z=1+i,i是虚数单位,则+()2=()A.1﹣3i B.1﹣i C.﹣1﹣i D.﹣1+i【考点】复数代数形式的混合运算.【分析】利用复数的运算法则和共轭复数的定义即可得出.【解答】解:复数z=1+i,i是虚数单位,则+()2=+(1﹣i)2=1﹣i﹣2i=1﹣3i,故选:A3.“log22x>0”是“x>1”成立的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:若log22x>0,则2x>1,得x>0,则“log22x>0”是“x>1”成立的必要不充分条件,故选:B.4.下列函数是偶函数,且最小正周期为π的是()A.y=sin(π﹣2x)B.y=sin2xcos2x C.y=cos22x+1 D.y=cos(2x﹣π)【考点】三角函数的周期性及其求法.【分析】根据正弦型函数及余弦型函数的性质,我们逐一分析四个答案中的四个函数的周期性及奇偶性,然后和题目中的条件进行比照,即可得到答案.【解答】D解:A中,函数y=sin(π﹣2x)=sin2x为奇函数,不满足条件;B中,函数y=sin2xcos2x=sin4x周期为,不满足条件;C中,函数y=cos22x+1=cos4x+周期为,不满足条件;D中,函数y=cos(2x﹣π)=﹣cos2x是最小正周期为π的偶函数,满足条件;故选:D.5.阅读如图所示的程序框图,运行相应的程序,若判断框内是n≤6,则输出的S为()A.B.C.D.【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,n的值,当n=8时,此时应该不满足条件n≤6,退出循环,输出S的值为.【解答】解:模拟执行程序框图,可得:S=0,n=2满足条件n≤6,S=,n=4满足条件n≤6,S=,n=6满足条件n≤6,S=+=,n=8由题意,此时应该不满足条件n≤6,退出循环,输出S的值为,故选:C.6.已知双曲线,它的一个顶点到较近焦点的距离为1,焦点到渐近线的距离是,则双曲线C的方程为()A.x2﹣=1 B.﹣y2=1 C.﹣y2=1 D.x2﹣=1【考点】双曲线的简单性质.【分析】由题意可得c﹣a=1,求出渐近线方程和焦点的坐标,运用点到直线的距离公式,可得b=,由a,b,c的关系,可得a,进而得到所求双曲线的方程.【解答】解:双曲线的一个顶点(a,0)到较近焦点(c,0)的距离为1,可得c﹣a=1,由双曲线的渐近线方程为y=x,则焦点(c,0)到渐近线的距离为d==b=,又c2﹣a2=b2=3,解得a=1,c=2,即有双曲线的方程为x2﹣=1.故选:A.7.已知数列{a n}是等比数列,且a3=1,a5a6a7=8,则a9=()A.2 B.4 C.6 D.8【考点】等比数列的通项公式.【分析】设等比数列{a n}的公比为q,由a3=1,a5a6a7=8,可得=1,=8,解得q3,即可得出.【解答】解:设等比数列{a n}的公比为q,∵a3=1,a5a6a7=8,∴=1,=8,解得q3=2.则a9==4.8.一个几何体的三视图如图,则该几何体的表面积为()A.8+6B.10+8 C.12+4 D.14+2【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个直四棱柱,由三视图求出几何元素的长度,由面积公式求出各个面的面积,加起来即可求出几何体的表面积.【解答】解:根据三视图可知几何体是一个直四棱柱,由俯视图知底面是等腰梯形:上底、下底分别是1、3,梯形的高是1,则腰长是,且直四棱柱的高是2,∴几何体的表面积S==12+4,故选:C.9.将函数y=sin2x的图象向左平移φ(φ>0)个单位,得到g(x)的图象,若g(x)的图象关于直线x=对称,则φ的最小值为()A. B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得φ的最小值.【解答】解:将函数y=sin2x的图象向左平移φ(φ>0)个单位,得到g(x)=sin2(x+φ)=sin(2x+2φ)的图象,若g(x)的图象关于直线x=对称,则+2φ=kπ+,k∈Z,则φ的最小值为,故选:A.10.若x,y满足不等式组,z=x﹣y的最大值为4,则实数a=()A.4 B.C.5 D.【考点】简单线性规划.【分析】作出可行域,变形目标函数,平移直线可得z的最值,可得a的方程,解方程可得.【解答】解:作出不等式组所对应可行域(如图△ABC),变形目标函数z=x﹣y可得y=x﹣z,平移直线y=x可知:当直线经过点A(a,3﹣a)时,直线截距最小值,z取最大值,代值可得a﹣(3﹣a)=4,解得a=,故选:B.11.已知圆C:x2+y2﹣2x+4y=0关于直线3x﹣ay﹣11=0对称,则圆C中以(,﹣)为中点的弦长为()A.1 B.2 C.3 D.4【考点】直线与圆的位置关系.【分析】由已知直线3x﹣ay﹣11=0过圆心C(1,﹣2),从而得到a=4,点(1,﹣1)到圆心C(1,﹣2)的距离d=1,圆C:x2+y2﹣2x+4y=0的半径r=,由此能求出圆C中以(,﹣)为中点的弦长.【解答】解:∵圆C:x2+y2﹣2x+4y=0关于直线3x﹣ay﹣11=0对称,∴直线3x﹣ay﹣11=0过圆心C(1,﹣2),∴3+2a﹣11=0,解得a=4,∴(,﹣)=(1,﹣1),点(1,﹣1)到圆心C(1,﹣2)的距离d==1,圆C:x2+y2﹣2x+4y=0的半径r==,∴圆C中以(,﹣)为中点的弦长为:2=2=4.故选:D.12.已知曲线f(x)=e x﹣ax在点(0,f(0))处的切线方程为3x+y+b=0,则下列不等式恒成立的是()A.f(x)≥2﹣4ln2 B.f(x)≤2﹣4ln2 C.f(x)≥4﹣8ln2 D.f(x)≤4﹣8ln2 【考点】利用导数研究曲线上某点切线方程.【分析】求出函数的导数,可得切线的斜率,由切线的方程可得斜率,解方程可得a,求出单调区间、极值和最值,即可得到结论.【解答】解:f(x)=e x﹣ax的导数为f′(x)=e x﹣a,可得在点(0,f(0))处的切线斜率为1﹣a,由切线方程为3x+y+b=0,可得1﹣a=﹣3,即有a=4,可得f′(x)=e x﹣4,当x>ln4时,f′(x)>0,f(x)递增;当x<ln4时,f′(x)<0,f(x)递减.可得f(x)在x=ln4处取得极小值,也为最小值4﹣8ln2.即为f(x)≥4﹣8ln2.故选:C.二、填空题(共4小题,每小题5分,满分20分)13.(2x﹣)6展开式中常数项为60 (用数字作答).【考点】二项式定理.【分析】用二项展开式的通项公式得展开式的第r+1项,令x的指数为0得展开式的常数项.【解答】解:(2x﹣)6展开式的通项为=令得r=4故展开式中的常数项.故答案为6014.向量=(1,﹣2)与=(3,t)的夹角为θ,=(1,﹣3),⊥,则cosθ=.【考点】平面向量数量积的运算.【分析】根据向量的数量积的运算和向量的夹角公式计算即可.【解答】解:∵=(1,﹣2)与=(3,t)的夹角为θ,=(1,﹣3),⊥,∴3×1﹣3t=0,∴t=1,∴=(3,1),∴||=,||=,•=1×3﹣2×1=1,∴cosθ==故答案为:.15.设函数f(x)=,若存在实数b,使函数y=f(x)﹣b有且只有2个零点,则实数b的取值范围是(0,+∞).【考点】函数零点的判定定理.【分析】由题意可得函数f(x)=的图象和直线y=b有2个交点,分类讨论,数形结合求得a的取值范围.【解答】解:由题意可得函数y=f(x)=的图象和直线y=b有且只有2个交点,当a=0 时,f(x)=,如图(1)所示,函数y=f(x)的图象和直线y=b之多有一个交点,不满足条件.当a>0时,f(x)=的图象如图(2)所示,此时,应有b>0.当a<0时,f(x)=的图象如图(3)所示,此时,函数y=f(x)的图象和直线y=b之多有一个交点,不满足条件.综上可得,b>0,故答案为:(0,+∞).16.已知等差数列{a n}的前n项和为S n,a1=﹣1,(a n+1﹣4)n=2S n,则S n= .【考点】等差数列的前n项和.【分析】设等差数列{a n}的公差为d,a1=﹣1,则a n+1=﹣1+nd,S n=﹣n+d,代入(a n+1﹣4)n=2S n,化简整理即可得出.【解答】解:设等差数列{a n}的公差为d,a1=﹣1,则a n+1=﹣1+nd,S n=﹣n+d,代入(a n+1﹣4)n=2S n,可得:(﹣5+nd)n=﹣2n+n(n﹣1)d,化为:d=3.则S n=﹣n+=.故答案为:.三、解答题(共5小题,满分60分)17.在三角形ABC中,角A,B,C的对边分别是a,b,c.若b=,c=3,B+C=3A.(1)求边a;(2)求sin(B+)的值.【考点】正弦定理的应用;两角和与差的正弦函数.【分析】(1)由条件利用余弦定理求得a的值.(2)由条件利用正弦定理求得sinB的值,可得cosB的值,再利用两角和差的正弦公式,求得sin(B+)的值.【解答】解:(1)三角形ABC中,∵b=,c=3,B+C=3A,∴A=,利用余弦定理可得a2=b2+c2﹣2bc•cosA=5,∴a=.(2)由正弦定理=,可得=,∴sinB=,再结合b<c,可得B为锐角,∴cosB==,∴sin(B+)=sinBcos+cosBsin=+•=.18.某地区交通执法部门从某日上午9时开始对经过当地的200名车辆驾驶人员驾驶的车辆进行超速测试并分组,并根据测速的数据制作了频率分布图:(Ⅱ)若在第2,3,4,5组用分层抽样的方法随机抽取12名驾驶人员做回访调查,并在这12名驾驶人员中任意选3人,这3人中超速在[20%,80%)内的人数记为ξ,求ξ的数学期望.【考点】离散型随机变量的期望与方差;分层抽样方法.【分析】(Ⅰ)由频率=,能求出z,y,x的值.(Ⅱ)若在第2,3,4,5组用分层抽样的方法随机抽取12名驾驶人员,则第2,3,4,5组抽取的人数分别是4,3,2,1,设任意选取的3人超速在(20%,80%)的人数是ξ,则ξ=2或ξ=3,由此能求出ξ的数学期望.【解答】解:(Ⅰ)由题意得x=200×0.01=2,y=6÷200=0.03,z=0.88÷20=0.044.(Ⅱ)若在第2,3,4,5组用分层抽样的方法随机抽取12名驾驶人员,则第2,3,4,5组抽取的人数分别是4,3,2,1,设任意选取的3人超速在(20%,80%)的人数是ξ,则ξ=2或ξ=3,P(ξ=2)==,P(ξ=3)==,∴Eξ==.19.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AC⊥AD,AB⊥BC,PA=AB=BC=1,AC=AD,点E在棱PB上,且PE=2EB.(1)求证:PD∥平面EAC.(2)求平面ACE和平面ABCD所成锐二面角的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)根据线面平行的判定定理即可证明PD∥平面EAC.(2)建立坐标系,求出平面的法向量,利用向量法即可求平面ACE和平面ABCD所成锐二面角的余弦值.【解答】证明:(1)∵AB⊥BC,AB=BC=1,∴AC=,∠BAC=,∵AC=AD,AC⊥AD,∴CD=2,∠ACD=,∴∠BAC=∠ACD,则AB∥CD,连接BD,交AC于M,连EM,则,又PE=2EB,在△BPD中,,∴PD∥EM,∵PD⊄平面EAC,EM⊂平面EAC,∴PD∥平面EAC(2)建立如图所示的空间坐标系如图:则A(0,0,0),P(0,0,1),B(0,1,0),C(1,1,0),E(0,,),设=(x,y,z)是平面AEC的一个法向量,则=(1,1,0),(0,,),则•=x+y=0,•=y+z=0,得,令y=1,则x=﹣1,z=﹣2,则=(﹣1,1,﹣2),同理平面ABCD的法向量为==(0,0,1),则cos<,>==,即平面ACE和平面ABCD所成锐二面角的余弦值是.20.已知椭圆G:+=1(a>b>0)的离心率为,左顶点为A,上顶点为E,O是坐标原点,△OAE面积为.(1)求椭圆G的方程;(2)若过椭圆G的右焦点作垂直于x轴的直线m与G在第一象限内交于点M,平行于AM的直线l与椭圆G相交于B,C两点,判断直线MB,MC是否关于直线m对称,并说明理由.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和实际行动面积公式,及a,b,c的关系,解得a,b,进而得到椭圆方程;(2)求得椭圆的右焦点坐标,M,A的坐标,求得斜率.可设BC的方程为y=x+t,代入椭圆方程3x2+4y2=12,可得x2+tx+t2﹣3=0,设B(x1,y1),C(x2,y2),运用韦达定理和直线的斜率公式,可得k MB+k MC=0,进而得到直线MB和直线MC关于直线m对称.【解答】解:(1)由题意可得e==,由A(﹣a,0),E(0,b),可得△OAE面积为,即有ab=,又a2﹣b2=c2,解得a=2,b=,c=1,即有椭圆的方程为+=1;(2)椭圆的右焦点为(1,0),可得M(1,),A(﹣2,0),k AM==,设BC的方程为y=x+t,代入椭圆方程3x2+4y2=12,可得x2+tx+t2﹣3=0,设B(x1,y1),C(x2,y2),即有x1+x2=﹣t,x1x2=t2﹣3,由k MB+k MC=+=+===0.即有直线MB和直线MC关于直线m对称.21.设函数f(x)=x3+ax2+bx(x>0)的图象与x轴相切于M(3,0).(1)求f(x)的解析式,并求y=+4lnx的单调减区间;(2)是否存在两个不等正数s,t(x>t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t,若不存在,请说明理由.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)由已知得f′(x)=3x2+2ax+b.依题意f(3)=0,f′(3)=0,解方程即可求出f(x)=x3﹣6x2+9x.(2)由函数的定义域是正数知,s>0,故极值点x=3不在区间[s,t]上,由此利用分类讨论思想能求出不存在正数s,t满足要求.【解答】解:(1)∵f(x)=x3+ax2+bx,∴f′(x)=3x2+2ax+b.依题意则有f(3)=0,f′(3)=0,即27+9a+3b=0,①27+6a+b=0,②解得a=﹣6,b=9,∴f(x)=x3﹣6x2+9x.则y=+4lnx=x2﹣6x+9+4lnx,x>0,y′=2x﹣6+==,由y′<0得1<x<2,即y=+4lnx的单调减区间为(1,2).(2)f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),由f′(x)=0,得x=1或x=3.列表讨论,得:由函数的定义域是正数知,s>0,故极值点x=3不在区间[s,t]上,①若极值点1∈[s,t],此时0<s≤1≤t<3,在此区间上f(x)的最大值是4,不可能等于t,故在区间[s,t]上没有极值点;②若f(x)=x3﹣6x2+9x在[s,t]上单调增,即0<s<t≤1或3<s<t,则,即,解得不合要求.(3)若f(x)=x3﹣6x2+9x在[s,t]上单调减,即1≤s<t<3,则,两式相减并除s﹣t,得:(s+t)2﹣6(s+t)﹣st+10=0,①两式相除并开方,得[s(s﹣3)]2=[t(t﹣3)]2,即s(3﹣s)=t(3﹣t),整理,并除以s﹣t,得:s+t=3,②则①、②得,即s,t是方程x2﹣3x+1=0的两根,即s=,t=不合要求;综上,不存在正数s,t满足要求.…请在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分[选修4-1:几何证明选讲]22.如图,A,B,C,D四点在同一圆上,AB∥CD,AD的延长线与BC的延长线交于E点.(1)证明:EC=ED.(2)延长CD到F,延长DC到G,连接EF、EG,使得EF=EG,证明:A,B,G,F四点共圆.【考点】与圆有关的比例线段.【分析】(1)根据四点共圆,得到四边形的一个外角等于不相邻的一个内角,根据两直线平行,同位角相等,等量代换得到两个角相等,从而两条边相等,得到结论;(2)根据第一问做出的边和角之间的关系,得到两个三角形全等,根据全等三角形的对应角相等,根据平行的性质定理,等量代换,得到四边形的一对对角相等,得到四点共圆.【解答】(1)证明:因为A,B,C,D四点在同一圆上,所以∠EDC=∠EBA因为CD∥AB,所以∠ECD=∠EBA,所以∠EDC=∠ECD,所以EC=ED.(2)解:由(1)知,AE=BE,因为EF=EG,故∠EFD=∠EGC从而∠FED=∠GEC连接AF,BG,△EFA≌△EGB,故∠FAE=∠GBE又CD∥AB,∠FAB=∠GBA,所以∠AFG+∠GBA=180°故A,B.G,F四点共圆.[选修4-4:坐标系与参数方程]23.已知曲线C1的参数方程为(θ为参数),曲线C2的极坐标方程为ρ=2cosθ+6sinθ.(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程;(2)曲线C1,C2是否相交,若相交请求出公共弦的长,若不相交,请说明理由.【考点】圆的参数方程;简单曲线的极坐标方程.【分析】(1)根据同角三角函数关系消去参数θ,即可求出曲线C1的普通方程,曲线C2的极坐标方程两边同乘ρ,根据极坐标公式进行化简就可求出直角坐标方程;(2)先求出两个圆心之间的距离与两半径和进行比较,设相交弦长为d,因为两圆半径相等,所以公共弦平分线段C1C2,建立等量关系,解之即可.【解答】解:(1)由得(x+2)2+y2=10∴曲线C1的普通方程为得(x+2)2+y2=10∵ρ=2cosθ+6sinθ∴ρ2=2ρcosθ+6ρsinθ∵ρ2=x2+y2,x=ρcosθ,y=ρsinθ∴x2+y2=2x+6y,即(x﹣1)2+(y﹣3)2=10∴曲线C2的直角坐标方程为(x﹣1)2+(y﹣3)2=10(2)∵圆C1的圆心为(﹣2,0),圆C2的圆心为(1,3)∴∴两圆相交设相交弦长为d,因为两圆半径相等,所以公共弦平分线段C1C2∴∴d=∴公共弦长为[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|(a∈R).(1)若a=4,求不等式f(x)≥5的解集;(2)若存在x∈R,使f(x)≤4成立,求a的取值范围.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)不等式即|x﹣1|+|x﹣4|≥5,通过去绝对值符号,列出不等式组,分别求出每个不等式组的解集,再取并集即得所求.(2)利用f(x)=|x﹣1|+|x﹣a|≥|a﹣1|,由题意可得|a﹣1|≤4,由此解得a的范围.【解答】解:(1)解:(Ⅰ)当a=4时,不等式f(x)≥5,即|x﹣1|+|x﹣4|≥5,等价于,或,或.解得:x≤0或x≥5.…故不等式f(x)≥6的解集为{x|x≤0,或x≥5};(2)∵f(x)=|x﹣1|+|x﹣a|≥|(x﹣1)﹣(x﹣a)|=|a﹣1|.(当x=1时等号成立)所以:f(x)min=|a﹣1|.…由题意得:|a﹣1|≤4,解得:﹣3≤a≤5.…。

2019年桂林、百色、崇左五市高考数学理科模拟试卷

2019年桂林、百色、崇左五市高考数学理科模拟试卷

2019年桂林、百色、崇左五市高考数学理科模拟试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数3+4ii 2+的实部与虚部分别为( ) A .2,1 B .2,i C .11,2- D .11,2i - 2.已知集合{}2310A x x x =+<,{}1B x x =>,则A B U 等于( ) A .{}12x x << B .{}51x x -<< C .{}1x x > D .{}5x x >-3.圆M :()2216x y ++=与直线30x y ++=相交于A 、B 两点,则AB 等于( )A .2B .4C .4.612x x ⎛⎫+ ⎪⎝⎭的展开式中常数项为( )A .52B .160C .52- D .160-5.若n ∏为等比数列{}n a 的前n 项积,则“212a >”是“31∏>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.一个几何体的三视图如图所示,则该几何体的体积为( )A .3B .4C .5D .67.已知变量x ,y 满足约束条件24,4312,1,y x y y -+≤⎧⎪+≤⎨⎪≥⎩则2z x y =+的最小值为( )A .12-B .1C .2-D .1128.若正整数N 除以正整数m 后的余数为n ,则记为()mod N n m ≡,例如()102mod4≡.如图所示程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的i 等于( )A .4B .8C .16D .32 9.已知等差数列{}n a 的前n 项和为n S ,8430S S =-≠,则412S S 的值为( ) A .13- B .112- C .112 D .1310.已知函数()()sin f x A x ωϕ=+(0ω>,0πϕ-<<)的部分图象如图所示,则下列判断错误的是( )A .函数()f x 的最小正周期为2B .函数()f x 的值域为[]4,4-C .函数()f x 的图象关于10,03⎛⎫⎪⎝⎭对称D .函数()f x 的图象向左平移3π个单位后得到sin y A x ω=的图象 11.函数()()2244log x x f x x -=-的图象大致为( )A .B .C .D .12.已知双曲线C :22221x y a b -=(0a >,0b >)的左顶点为A ,点0,3B ⎛⎫⎪ ⎪⎝⎭.若线段AB 的垂直平分线过右焦点F ,则双曲线C 的离心率为( )A .2B ..3 D .第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知实数x ,y 满足不等式组12,11,x y x y ≤+≤⎧⎨-≤-≤⎩则11y z x +=+的最大值是 .14.已知1sin cos 5θθ+=,(,)2πθπ∈,则tan θ= .15.直线x a =分别与曲线21y x =+,ln y x x =+交于A ,B ,则||AB 的最小值为 .16.设圆C 满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l :20x y -=的距离为d .当d 最小时,圆C 的面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知各项均为正数的等差数列{}n a 满足:422a a =,且1a ,4,4a 成等比数列,设{}n a 的前n 项和为n S . (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列2n n S n ⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,求证:3n T <.18.某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第x 年与年销量y (单位:万件)之间的关系如表:(Ⅰ)在图中画出表中数据的散点图;(Ⅱ)根据(Ⅰ)中的散点图拟合y 与x 的回归模型,并用相关系数甲乙说明; (Ⅲ)建立y 关于x 的回归方程,预测第5年的销售量约为多少?. 32.6≈ 2.24≈,41418i i i x y ==∑.参考公式:相关系数()()niix x y y r --=∑,回归方程y a bx =+中斜率和截距的最小二乘法估计公式分别为:1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.19.如图,在正三棱柱111ABC A BC -中,点E ,F 分别是棱1CC ,1BB 上的点,且2EC FB =.(Ⅰ)证明:平面AEF ⊥平面11ACC A ;(Ⅱ)若2AB EC ==,求二面角C AF E --的余弦值. 20.已知椭圆C 的中心在原点,焦点在x 轴上,离心率2e <.以两个焦点和短轴的两个端点为顶点的四边形的周长为8,面积为 (Ⅰ)求椭圆C 的方程;(Ⅱ)若点00(,)P x y 为椭圆C 上一点,直线l 的方程为0034120x x y y +-=,求证:直线l 与椭圆C 有且只有一个交点.21.设函数()ln nf x m x x=+,曲线()y f x =在点(1,(1))f 处的切线方程为1y x =-.(Ⅰ)求实数m ,n 的值; (Ⅱ)若1b a >>,()2a b Af +=,()()2f a f b B +=,()()1bf b af a C b a-=--,试判断A ,B ,C 三者是否有确定的大小关系,并说明理由.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C的参数方程为3cos ,x y αα=⎧⎪⎨=⎪⎩(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为cos()3πρθ+=.(Ⅰ)求直线l 的直角坐标方程和曲线C 的普通方程;(Ⅱ)设点P 为曲线C 上任意一点,求点P 到直线l 的距离的最大值. 23.选修4-5:不等式选讲 已知函数1()||2f x x a a=-+(0a ≠). (Ⅰ)若不等式()()1f x f x m -+≤恒成立,求实数m 的最大值; (Ⅱ)当12a <时,函数()()|21|g x f x x =+-有零点,求实数a 的取值范围.2019年桂林、百色、崇左五市高考数学理科模拟试卷一、选择题1-5:ADBAB 6-10:CCCBD 11、12:AA二、填空题 13.2 14.43- 15.2 16.2π 三、解答题17.(Ⅰ)解:根据题意,等差数列{}n a 中,设公差为d ,422a a =,且1a ,4,4a 成等比数列,10a >,即111132(),(3)16,a d a d a a d +=+⎧⎨⋅+=⎩解得12a =,2d =,所以数列{}n a 的通项公式为1(1)22(1)2n a a n d n n =+-=+-=. (Ⅱ)证明:由(Ⅰ)知12a d ==,则2(1)222n n n S n n n -=+⨯=+, ∴122n n n nS n b n +==⋅. ∴12323412222n n n T +=++++…,(*)2311231 22222n n n n n T ++=++++…,(**) ∴1231121111222222n n n n T ++=++++-…, ∴1121111(1)11111112222331222222212n n n n n n n n n n T ----+++=++++-=+-=--<-….∴3n T <.18.解:(Ⅰ)作出散点图如图:(Ⅱ)由(Ⅰ)散点图可知,各点大致分布在一条直线附近,由题中所给表格及参考数据得:52x =,692y =,41418i i i x y ==∑32.6≈,42130i i x ==∑,4441115()()418138732i i i i ii i i x x y y x y x y ===--=-=-⨯=∑∑∑,2.24===≈,4()()730.99962.2432.6iix x y y r --==≈⨯∑.∵y 与x 的相关系数近似为0.9996,说明y 与x 的线性相关程度相当大, ∴可以用线性回归模型拟合y 与x 的关系.(Ⅲ)由(Ⅱ)知:52x =,692y =,41418i i i x y ==∑,42130i x ==∑,421()5i i x x =-=∑,1221735ni ii ni i x y nx yb x nx==-==-∑∑,697352252a y bx =-=-⨯=-, 故y 关于x 的回归直线方程为7325yx =-, 当5x =时,7352715y =⨯-=, 所以第5年的销售量约为71万件.19.(Ⅰ)证明:取线段AE 的中点G ,取线段AC 的中点M ,连接MG ,GF ,BM ,则12MG EC BF ==, 又////MG EC BF ,∴MBFG 是平行四边形,故//MB FG .∵MB AC ⊥,平面11ACC A ⊥平面ABC ,平面11ACC A 平面ABC AC =, ∴MB ⊥平面11ACC A ,而//BM FG , ∴FG ⊥平面11ACC A , ∵FG ⊂平面AEF , ∴平面AEF ⊥平面11ACC A .(Ⅱ)以MA 、MB 、MG 为x 轴,y 轴,z 轴建立空间直角坐标系M xyz -,则(1,0,0)A ,(1,0,0)C -,(1,0,2)E -,F ,(2,0,0)AC =-,(1AF =-,(2,0,2)AE =-,设平面ACF 的一个法向量111(,,)m x y z =,则有0,0,m AC m AF ⎧⋅=⎪⎨⋅=⎪⎩即111120,0,x x z -=⎧⎪⎨-++=⎪⎩令11y =,则(0,1,m =,设平面AEF 的一个法向量222(,,)n x y z =,则有0,0,n AE n AF ⎧⋅=⎪⎨⋅=⎪⎩即22222220,0,x z x z -+=⎧⎪⎨-+=⎪⎩令21x =,则(1,0,1)n =, 设二面角C AF E --的平面角θ,则|||3cos |cos ,|||||m n m n m n θ⋅-=<>===⋅.20.解:(Ⅰ)依题意,设椭圆C 的方程为22221(0)x y a b a b+=>>,焦距为2c ,由题设条件知,48a =,2a =,1222c b ⨯⨯⨯=2224b c a +==,所以b =1c =,或1b =,c =,故椭圆C 的方程为22143x y +=. (Ⅱ)当00y =时,由2200143x y +=,可得02x =±, 当02x =,00y =时,直线l 的方程为2x =,直线l 与曲线C 有且只有一个交点(2,0).当02x =-,00y =时,直线l 的方程为2x =-,直线l 与曲线C 有且只有一个交点(2,0)-.当00y ≠时,直线l 的方程为001234x x y y -=,联立方程组0022123,4 1.43x x y y x y -⎧=⎪⎪⎨⎪+=⎪⎩消去y ,得22220000(43)2448160y x x x x y +-+-=.①由点00(,)P x y 为曲线C 上一点,得2200143x y +=,可得22004312y x +=.于是方程①可以化简为220020x x x x -+=,解得0x x =, 将0x x =代入方程001234x x y y -=可得0y y =,故直线l 与曲线C 有且有一个交点00(,)P x y ,综上,直线l 与曲线C 有且只有一个交点,且交点为00(,)P x y .21.解:(Ⅰ)2'()m n f x x x=-. 由于(1)0,'(1)1,f n f m n ==⎧⎨=-=⎩所以1m =,0n =. (Ⅱ)由(Ⅰ)知()ln f x x =.(i)ln ln ln 1022a b a b A B ++-=-=≥=, 而a b ≠,故A B >.(ii )ln ln ln(1)2a b b b a a A C b a +--=---1()ln ln ln 2a b b a b b a a b a b a +⎡⎤=--++-⎢⎥-⎣⎦. 设函数()()lnln ln 2x a g x x a x x a a x a +=--++-,(0,)x ∈+∞, 则'()ln 2x a x a g x x x a +-=++,2()''()()a x a g x x x a -=+. 当x a >时,''()0g x >,所以'()g x 在(,+)a ∞上单调递增; 又'()'()0g x g a >=,因此()g x 在(,)a +∞上单调递增. 又b a >,所以()()0g b g a >=,即0A C ->,即A C >.(iii )ln ln ln ln 12b b a a a b C B b a -+-=---1(ln ln )22a b a b b a a b b a ++=-+--. 设()ln ln 22x a x a h x x a x a ++=--+,(0,)x ∈+∞. 则111'()ln ln 2222a h x x a x =+--,有2''()2x a h x x -=. 当x a >时,''()0h x >,所以'()h x 在(,)a +∞上单调递增,有'()'()0h x h a >=.所以()h x 在(,)a +∞上单调递增.又b a >,所以()()0h b h a >=,即0C B ->,故C B >. 综上可知:A C B >>.22.解:(Ⅰ)因为直线l的极坐标方程为cos()3πρθ+=,即1(cos )2ρθθ=0x -=. 曲线C的参数方程为3cos x y αα=⎧⎪⎨=⎪⎩(α是参数),利用同角三角函数的基本关系消去α, 可得22193x y +=.(Ⅱ)设点(3cos )P αα为曲线C 上任意一点,则点P 到直线l 的距离|)42d πα+-==, 故当cos()14πα+=-时,d23.解:(Ⅰ)1()||2f x m x m a a +=+-+. ∵()()||||||f x f x m x a x m a m -+=--+-≤, ∴()()1f x f x m -+≤恒成立当且仅当||1m ≤, ∴11m -≤≤,即实数m 的最大值为1. (Ⅱ)当12a <时,()()|21|g x f x x =+-1|||21|2x a x a=-+-+131,,2111,,221131,.22x a x a a x a a x a x a x a ⎧-+++<⎪⎪⎪=--++≤≤⎨⎪⎪-+->⎪⎩∴2min 11121()()02222a a g x g a a a-++==-+=≤, ∴210,2210,a a a ⎧<<⎪⎨⎪-++≤⎩或20,210,a a a <⎧⎨-++≥⎩ ∴102a -≤<, ∴实数a 的取值范围是1[,0)2-.。

桂林市、崇左市2019届高三联合调研考试理科数学试卷

桂林市、崇左市2019届高三联合调研考试理科数学试卷

桂林市、崇左市2019届高三联合调研考试理科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2+5x>0},B={x|﹣3<x<4},则A∩B等于()A.(﹣5,0)B.(﹣3,0)C.(0,4) D.(﹣5,4)2.已知复数z满足=(a∈R),若z的虚部为﹣3,则z的实部为()A.﹣1 B.1 C.3 D.53.某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在()A.第3组B.第4组C.第5组D.第6组4.已知数列{a n}满足:=,且a2=2,则a4等于()A.﹣B.23 C.12 D.115.已知角θ的终边过点(2sin2﹣1,a),若sinθ=2sin cos,则实数a 等于()A.﹣B.﹣C.±D.±6.执行如图的程序框图,若输入k的值为3,则输出S的值为()A.10 B.15 C.18 D.217.已知非零向量、满足|﹣|=|+2|,且与的夹角的余弦值为﹣,则等于()A.B.C.D.28.如果实数x,y满足约束条件,则z=3x+2y+的最大值为()A.7 B.8 C.9 D.119.如图是某几何体的三视图,则该几何体的体积为()A.12 B.15 C.18 D.2110.已知函数f(x)=设m>n≥﹣1,且f(m)=f(n),则m•f (m )的最小值为( ) A .4B .2C .D .211.已知双曲线C :﹣=1(a >0,b >0)的左焦点为F (﹣c ,0),M 、N 在双曲线C 上,O 是坐标原点,若四边形OFMN 为平行四边形,且四边形OFMN 的面积为cb ,则双曲线C 的离心率为( )A .B .2C .2D .212.已知函数f (x )=﹣x 2﹣6x ﹣3,g (x )=2x 3+3x 2﹣12x +9,m <﹣2,若∀x 1∈[m ,﹣2),∃x 2∈(0,+∞),使得f (x 1)=g (x 2)成立,则m 的最小值为( ) A .﹣5 B .﹣4 C .﹣2 D .﹣3第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量()AB m n =, ,(21)BD =, ,(38)AD =, ,则mn = .14.71(4)2x - 的展开式中3x 的系数为 .15. 若函数32()3f x x x a =--(0a ≠)只有2个零点,则a = .16.在等腰三角形ABC 中,23A π∠=,AB =,将它沿BC 边上的高AD 翻折,使BCD △ 为正三角形,则四面体ABCD 的外接球的表面积为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知公差不为0的等差数列{}n a 的前n 项和n S ,11S +,3S ,4S 成等差数列,且1a ,2a ,5a 成等比数列.(1)求数列{}n a 的通项公式;(2)若4S ,6S ,10S 成等比数列,求n 及此等比数列的公比.18. 4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取10 名学生参加问卷调查.各组人数统计如下:(1)从参加问卷调查的10 名学生中随机抽取两名,求这两名学生来自同一个小组的概率;(2)在参加问卷调查的10 名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用X 表示抽得甲组学生的人数,求X 的分布列及数学期望.19. 如图,在正方体1111ABCD A BC D - 中,F ,G 分别是棱1CC ,1AA 的中点,E 为棱AB 上一点,113B M MA = 且GM ∥ 平面1B EF .(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.20. 已知椭圆C :22221x y a b +=(0a b >> )的离心率e =,直线10x -=被以椭圆C (1)求椭圆C 的方程;(2)过点(40)M , 的直线l 交椭圆于A ,B 两个不同的点,且MA MB λ=⋅ ,求λ 的取值范围.21. 已知函数3()ln(1)ln(1)(3)f x x x k x x =+---- (k ∈R ) (1)当3k = 时,求曲线()y f x = 在原点O 处的切线方程; (2)若()0f x > 对(01)x ∈, 恒成立,求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为2sin 0ρθθ-=.(1)写出直线l 的普通方程及曲线C 的直角坐标方程;(2)已知点(01)P ,,点0)Q ,直线l 过点Q 且曲线C 相交于A ,B 两点,设线段AB 的中点为M ,求PM 的值. 23.选修4-5:不等式选讲 已知函数()23f x x x =-++. (1)求不等式()15f x ≤的解集;(2)若2()x a f x -+≤对x ∈R 恒成立,求a 的取值范围.桂林市、崇左市2019届高三联合调研考试理科数学试卷数学参考答案(理科)一、选择题1.已知集合A={x|x2+5x>0},B={x|﹣3<x<4},则A∩B等于()A.(﹣5,0)B.(﹣3,0)C.(0,4) D.(﹣5,4)【考点】交集及其运算.【分析】求出关于A的解集,从而求出A与B的交集.【解答】解:∵A={x||x2+5x>0}={x|x<﹣5或x>0},B={x|﹣3<x<4},∴A∩B={x|0<x<4},故选:C.2.已知复数z满足=(a∈R),若z的虚部为﹣3,则z的实部为()A.﹣1 B.1 C.3 D.5【考点】复数代数形式的乘除运算.【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由z的虚部为﹣3求得a值,则答案可求.【解答】解:∵=,∴=(2+ai)(1﹣i)=2+a+(a﹣2)i,∴a﹣2=﹣3,即a=﹣1.∴实部为2+a=2﹣1=1.故选:B.3.某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在()A.第3组B.第4组C.第5组D.第6组【考点】频率分布直方图.【分析】根据频率分布直方图求出前4组的频数为22,且第四组的频数8,即可得到答案.【解答】解:由图可得,前第四组的频率为(0.0375+0.0625+0.075+0.1)×2=0.55,则其频数为40×0.55=22,且第四组的频数为40×0.1×2=8,故中位数落在第4组,故选:B4.已知数列{a n}满足:=,且a2=2,则a4等于()A.﹣B.23 C.12 D.11【考点】等比数列的通项公式.【分析】数列{a n}满足:=,可得a n+1=2(a n+1),利用等比数列的通+1项公式即可得出.+1=2(a n+1),即数列{a n+1}是【解答】解:∵数列{a n}满足:=,∴a n+1等比数列,公比为2.则a4+1=22(a2+1)=12,解得a4=11.故选:D.5.已知角θ的终边过点(2sin2﹣1,a),若sinθ=2sin cos,则实数a等于()A.﹣B.﹣C.±D.±【考点】任意角的三角函数的定义.【分析】利用二倍角公式化简,再利用正弦函数的定义,建立方程,即可得出结论.【解答】解:2sin2﹣1=﹣cos=﹣,2sin cos=﹣,∵角θ的终边过点(2sin2﹣1,a),sinθ=2sin cos,∴=﹣,∴a=﹣,故选B.6.执行如图的程序框图,若输入k的值为3,则输出S的值为()A.10 B.15 C.18 D.21【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的n,S的值,当n=5,S=15时,不满足条件S<kn=15,退出循环,输出S的值为15,即可得解.【解答】解:模拟程序的运行,可得k=3,n=1,S=1满足条件S<kn,执行循环体,n=2,S=3满足条件S<kn,执行循环体,n=3,S=6满足条件S<kn,执行循环体,n=4,S=10满足条件S<kn,执行循环体,n=5,S=15此时,不满足条件S<kn=15,退出循环,输出S的值为15.故选:B.7.已知非零向量、满足|﹣|=|+2|,且与的夹角的余弦值为﹣,则等于()A.B.C.D.2【考点】平面向量数量积的运算.【分析】由向量的平方即为模的平方.可得•=﹣2,再由向量的夹角公式:cos<,>=,化简即可得到所求值.【解答】解:非零向量、满足|﹣|=|+2|,即有(﹣)2=(+2)2,即为2+2﹣2•=2+4•+42,化为•=﹣2,由与的夹角的余弦值为﹣,可得cos<,>=﹣==,化简可得=2.故选:D.8.如果实数x,y满足约束条件,则z=3x+2y+的最大值为()A.7 B.8 C.9 D.11【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移直线,得到最优解,求出斜率的最值,即可求z的最大值.【解答】解:作出不等式对应的平面区域(阴影部分),由u=3x+2y,平移直线u=3x+2y,由图象可知当直线u=3x+2y经过点A时,直线u=3x+2y的截距最大,此时u最大.而且也恰好是AO的连线时,取得最大值,由,解得A(1,2).此时z的最大值为z=3×1+2×2+=9,故选:C.9.如图是某几何体的三视图,则该几何体的体积为()A.12 B.15 C.18 D.21【考点】棱柱、棱锥、棱台的体积.【分析】由已知中的三视图可得:该几何体是一个长宽高分别为4,3,3的长方体,切去一半得到的,进而得到答案.【解答】解:由已知中的三视图可得:该几何体是一个长宽高分别为4,3,3的长方体,切去一半得到的,其直观图如下所示:其体积为:×4×3×3=18,故选:C10.已知函数f(x)=设m>n≥﹣1,且f(m)=f(n),则m•f(m)的最小值为()A.4 B.2 C.D.2【考点】函数的最值及其几何意义;分段函数的应用.【分析】做出f(x)的图象,根据图象判断m的范围,利用基本不等式得出最小值.【解答】解:做出f(x)的函数图象如图所示:∵f(m)=f(n),m>n≥﹣1,∴1≤m<4,∴mf(m)=m(1+)=m+≥2.当且仅当m=时取等号.故选:D.11.已知双曲线C:﹣=1(a>0,b>0)的左焦点为F(﹣c,0),M、N在双曲线C上,O是坐标原点,若四边形OFMN为平行四边形,且四边形OFMN的面积为cb,则双曲线C的离心率为()A.B.2 C.2 D.2【考点】双曲线的简单性质.【分析】设M(x0,y0),y0>0,由四边形OFMN为平行四边形,四边形OFMN的面积为cb,由x0=﹣,丨y0丨=b,代入双曲线方程,由离心率公式,即可求得双曲线C的离心率.【解答】解:双曲线C:﹣=1(a>0,b>0)焦点在x轴上,设M(x0,y0),y0>0,由四边形OFMN为平行四边形,∴x0=﹣,四边形OFMN的面积为cb,∴丨y0丨c=cb,即丨y0丨=b,∴M(﹣,b),代入双曲线可得:﹣=1,整理得:,由e=,∴e2=12,由e>1,解得:e=2,故选D.12.已知函数f(x)=﹣x2﹣6x﹣3,g(x)=2x3+3x2﹣12x+9,m<﹣2,若∀x1∈[m,﹣2),∃x2∈(0,+∞),使得f(x1)=g(x2)成立,则m的最小值为()A.﹣5 B.﹣4 C.﹣2D.﹣3【考点】函数的最值及其几何意义.【分析】利用导数先求出函数g(x)的最小值,再根据函数f(x)的图象和性质,即可求出m的最小值【解答】解:∵g(x)=2x3+3x2﹣12x+9,∴g′(x)=6x2+6x﹣12=6(x+2)(x﹣1),则当0<x<1时,g′(x)<0,函数g(x)递减,当x>1时,g′(x)>0,函数g(x)递增,∴g(x)min=g(1)=2,∵f(x)=﹣x2﹣6x﹣3=﹣(x+3)2+6≤6,作函数y=f(x)的图象,如图所示,当f (x )=2时,方程两根分别为﹣5和﹣1, 则m 的最小值为﹣5, 故选:A二、填空题13.7 14.140- 15.4- 16.15π 三、解答题17. 1)设数列{}n a 的公差为d由题意可知3142215210S S S a a a d =++⎧⎪=⎨⎪≠⎩,整理得1112a d a =⎧⎨=⎩ ,即112a d =⎧⎨=⎩ 所以21n a n =-(2)由(1)知21n a n =- ,∴2n S n = ,∴416S = ,836S = ,又248n S S S = ,∴22368116n == ,∴9n = ,公比8494S q S == 18.由已知得,问卷调查中,从四个小组中抽取的人数分别为3 ,4 ,2 ,1 ,从参加问卷调查的10 名学生中随机抽取两名的取法共有21045C = 种, 这两名学生来自同一小组的取法共有22234210C C C ++= 种.所以所求概率102459P == (2)由(1)知,在参加问卷调查的10 名学生中,来自甲、丙两小组的学生人数分别为3 ,2 .X 的可能取值为0 ,1 ,2 ,22251(0)10C P X C === ,1132253(1)5C C P X C === ,23253(2)10C P X C === .所以X 的分布列为()012105105E X =⨯+⨯+⨯=19.(1)证明:取11A B 的中点N ,连接AN ,因为1=3B M MA ,所以M 为1A N 的中点,又G 为1AA 的中点,所以GM AN ∥ , 因为GM ∥ 平面1B EF ,GM ⊂ 平面11ABB A ,平面11ABB A 平面11B EF B E =所以1GM B E ∥ ,即1AN B E ∥ ,又1B N AE ∥ ,所以四边形1AEB N 为平行四边形,则1AE B N = ,所以E 为AB 的中点.(2)解:以D 为坐标原点,建立如图所示的空间直角坐标系D xyz - ,不妨令正方体的棱长为2 ,则1(222B ,,) ,(210)E ,, ,(021)F ,, ,1(202)A ,, ,可得1(012)B E =--,, ,(211)EF =-,, ,设()m x y z =,, 是平面1B EF 的法向量,则12020m B E y z m EF x y z ⎧⋅=--=⎪⎨⋅=-++=⎪⎩ ,令2z = ,得(142)m =--,, 易得平面11ABC D 的一个法向量为1(202)n DA ==,,所以cos 22m n m n mn⋅===,故所求锐二面角的余弦值为4220.解:(1)因为原点到直线10x -=的距离为12, 所以2221()()22b += (0b > ),解得1b = .又22222314c b e a a ==-= ,得2a =所以椭圆C 的方程为2214x y += .(2) 当直线l 的斜率为0 时,12MA MB λ=⋅=当直线l 的斜率不为0 时,设直线l :4x my =+ ,11()A x y , ,22()B x y , ,联立方程组22414x my x y =+⎧⎪⎨+=⎪⎩ ,得22(4)8120m y my +++= 由22=6448(4)0m m ∆-+> ,得212m >, 所以122124y y m=+ 21122212(1)312(1)44m MA MB y m m λ+=⋅===-++由212m > ,得2330416m <<+ ,所以39124λ<< . 综上可得:39124λ<≤ ,即39(12]4λ∈,21.解:(1)当3k = 时,211()9(1)11f x x x x'=+--+- ,∴(0)11f '= 故曲线()y f x = 在原点O 处的切线方程为11y x =(2)22223(1)()1k x f x x+-'=- 当(01)x ∈, 时,22(1)(01)x -∈, ,若23k -≥ ,2223(1)0k x +-> ,则()0f x '> ,∴()f x 在(01), 上递增,从而()(0)0f x f >= .若23k <-,令()0(01)f x x '=⇒=,,当(0x ∈时,()0f x '< ,当1)x ∈ 时,()0f x '>,∴min ()(0)0f x f f =<= 则23k <- 不合题意.故k 的取值范围为2[)3-+∞,22.解:(1)由直线l 的参数方程消去t ,得l 的普通方程为sin cos cos 0x y ααα-+= ,由2sin 0ρθθ-=得22sin cos 0ρθθ-= 所以曲线C的直角坐标方程为2y = (2)易得点P 在l,所以tan PQ k α===,所以56πα= 所以l的参数方程为2112x y t ⎧=-⎪⎪⎨⎪=+⎪⎩ ,代入2y = 中,得21640t t ++= .设A ,B ,M 所对应的参数分别为1t ,2t ,0t . 则12082t t t +==- ,所以08PM t ==23.解:(1)因为213()532212x x f x x x x --<-⎧⎪=-⎨⎪+>⎩,,≤≤, ,13x <-≤所以当3x <- 时,由()15f x ≤ 得83x -<-≤ ; 当32x -≤≤ 时,由()15f x ≤ 得32x -≤≤ ; 当2x > 时,由()15f x ≤ 得27x <≤ 综上,()15f x ≤ 的解集为[87]-,(2)(方法一)由2()x a f x -+≤ 得2()a x f x +≤ ,因为()(2)(3)5f x x x --+=≥ ,当且仅当32x -≤≤ 取等号, 所以当32x -≤≤ 时,()f x 取得最小值5 . 所以,当0x = 时,2()x f x + 取得最小值5 , 故5a ≤ ,即a 的取值范围为(5]-∞,(方法二)设2()g x x a =-+ ,则max ()(0)g x g a == , 当32x -≤≤ 时,()f x 的取得最小值5 , 所以当0x = 时,2()x f x + 取得最小值5 , 故5a ≤ ,即a 的取值范围为(5]-∞,。

广西桂林市、崇左市2019届高三联合调研考试理科综合试题

广西桂林市、崇左市2019届高三联合调研考试理科综合试题

绝密★启用前2019年高考桂林市、崇左市联合调研考试理科综合能力测试注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共12页。

2.答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

3.答第1卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在本试卷上无效。

4.答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域内做答。

答在本试卷上无效。

5.第33、34题为物理选考题,第35、36题为化学选考题,第37、38题为生物选考题,请按题目要求从每科中分别任选一题做答,并用2B铅笔在答题卡上把所选题目题号后的方框涂黑。

6.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H-l C-12 0-16 Si- 28 Pb-207第Ⅰ卷(选择题共126分)一、选择题:本题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列关于生物体的组成、结构与功能的叙述中,正确的是A.T2噬菌体、乳酸菌、酵母菌中都有核糖体和DNAB.线粒体、核糖体、染色体、质粒中都含有核糖C.受体、限制酶、抗体都具有特异性识别功能D.细胞器之间都可以通过囊泡进行物质运输2.下列有关生物学实验的表述准确的是A.用口腔上皮细胞观察DNA和RNA的分布时,可见细胞中多数区域呈红色B.观察线粒体在根尖细胞中的分布时,用健那绿染液对盐酸水解后的根尖细胞染色C.低温诱导植物染色体数目的变化实验可选用洋葱根尖成熟区细胞来观察诱导效果D.在“观察DNA和RNA的分布”及“观察植物细胞的有丝分裂”两实验中盐酸的作用相同3.一个基因型为AaBb的二倍体高等动物细胞进行细胞分裂,下列叙述错误的是A.该细胞若进行减数分裂,在减数第一次分裂前期细胞出现四分体B.该细胞若进行有丝分裂,在后期时细胞含有4个染色体组C.该细胞分裂结束后,产生子细胞的基因型一定有4种D.该细胞分裂的后期,每条染色体上含的DNA分子数目是1个或2个4.如图表示某人体内的特异性免疫调节过程,甲乙丙丁代表细胞,1代表抗原,2代表物质。

2019年高考桂林市贺州市崇左市联合调研考试数学试卷(理科)试题及答案

2019年高考桂林市贺州市崇左市联合调研考试数学试卷(理科)试题及答案
0 . 0 0 2
频率
(1 ) 假 设 每年的梅雨季节天 气相互独立 , 求 该 地区 未 0 . 0 0 1 来三年里至少有两年梅雨季节的降雨量超过 3 5 0 m m的概 率;
1 0 02 0 03 0 04 0 05 0 0 降雨量
(2 ) 老李在该地区承包了 2 0 亩土地种植杨梅, 他过去种植的甲品种杨梅, 平均每年的总利 润为 2 8 万元.而乙品种杨梅的亩产量 n (k 亩) 与降雨量之间的关系如下面统计表所示, 又知 g / 乙品种杨梅的单位利润为 3 , 请你帮助老李分析, 他来年应该种植哪个品种的杨 2 -0 . 0 1 n ( 元/ k g ) 梅可以使总利润 ξ (万元) 的期望更大?并说明理由. 降雨量 亩产量 [ 1 0 0 , 2 0 0 ) 5 0 0 [ 2 0 0 , 3 0 0 ) 7 0 0 [ 3 0 0 , 4 0 0 ) 6 0 0 [ 4 0 0 , 5 0 0 ] 4 0 0
x = 3 +t , .以坐标原点为极点, 轴的正半轴为极 x ( t 为参数) y =7 + 3 t ,
2 2 2 轴建立极坐标系, 曲线 C的极坐标方程为 ρ a s i n θ +4 c o s θ =2 a ( a >0 ) .
(1 ) 求曲线 C的直角坐标方程; , N两点, (2 ) 已知点 P 直线 l 与曲线 C交于 M 且| , 求a 的值. ( 0 , 4 ) , P M| P N| =1 4 |
3 5 3 0 2 5 2 0 1 5 1 0 5 0

1 月 2 月 3 月 4 月 5 月 6 月 7 月 8 月 9 月 1 0 月1 1 月1 2 月 月份 各月最低气温平均值 各月最高气温平均值
那么, 下列叙述错误的是 A .各月最高气温平均值与最低气温平均值总体呈正相关 B .全年中, 2 月份的最高气温平均值与最低气温平均值的差值最大 【数学试卷 第1 页 (共 4 页) 理科】

广西桂林市、崇左市高三理数5月份第二次联考试卷附解析

广西桂林市、崇左市高三理数5月份第二次联考试卷附解析

有两个极值点,那么实数 的取值范围是〔 〕
A.
B.
C.
D.
二、填空题
13.向量

,那么
________.
14.假设等比数列 满足

,那么
________.
15.过
作与双曲线


的两条渐近线平行的直线,分别交两渐近
线于 A、B 两点,假设
16.函数
①假设
,那么
②假设
,那么
四点共圆〔为坐标原点〕,那么双曲线的离心率为________.

∵直线 、 都平行于渐近线,
∴可设直线 的方程为
,直线 的方程为

∴过点 平行与 的直线 的方程为

过点 平行与 的直线 的方程为

分别联立方程


解得

,即线段 与 互相垂直平分,
那么四边形
为菱形,其外接圆圆心在 、 的交点处,


那么




∴双曲线的离心率
故答案为: .
, ,
【分析】根据题意写出 ,
7.【解析】【解答】
展开式中含 的项为:

所以 故答案为:B.
的展开式中 项的系数为 18,
【分析】利用二项式展开定理可知含 的项为:
, 计算即可。
8.【解析】【解答】由三视图知该几何体的直观图如以下列图:
其中
平面 ABC,

那么

所以
平面 APC,
所以
所以四个面都是直角三角形
所以该几何体的外表积
的通项公式,进而利用裂项相消法可求得 .

2019年广西桂林市高考数学一模试卷(理科)(有答案解析)

2019年广西桂林市高考数学一模试卷(理科)(有答案解析)
6.答案:A
解析:解:平面向量
的模都为 2,且< , >=90°,
若 =λ (λ≠0),
建立平面直角坐标系如图:则
=(2,2),
M( , ),

=2× +2× =4.
故选:A. 利用已知条件建立坐标系,求出相关的向量,通过向量的数量积求解即可. 本题考查平面向量的数量积的运算,转化为坐标运算,使问题简化.
12.答案:B
解析:解:由题意,A(lnm,m),B(2 ,m),其中 2 >lnm,且 m>0,
∴|AB|=2 -lnm,
10.答案:C
解析:解:∵在直三棱柱 ABC-A1B1C1 中,AB=AC=AA1=1,AB⊥AC, ∴以 A 为原点,AB,AC,AA1 所在直线分别为 x,y,z 轴,建立空间 直角坐标系, ∵点 E 为棱 AA1 的中点,
∴C1(0,1,1),B1(1,0,1),E(0,0, ),C(0,1,0),
A. 2
B. 2+ln2
C. e2
D. 2e-ln
二、填空题(本大题共 4 小题,共 20.0 分)
13. 已知 i 为虚数单位,复数 Z1=4-2i,Z2=1+i,那么 =______.
14. 在(x2- )5 的展开式中,x 的系数为______.
15. 已知函数 f(x)=cos2ωx(ω>0)在(0, )内存在两条互相平行的切线,则 ω 的取值范围______
的两个交点分别是 A,
B,若存在抛物线 M 使得△FAB 是等边三角形,则双曲线 N 的离心率的取值范围是( )
A. ( ,+∞)
B. (1, )
C. ( ,+∞)
D. (1,+∞)

2019届高三5月联合模拟数学理科试题(解析版)

2019届高三5月联合模拟数学理科试题(解析版)

.
10. 在
中,内角 、 、 的对边分别是 、 、 ,若
A.
B.
【答案】 C 【解析】 【分析】 先利用余弦定理化简
C. 2 得 a= , 再利用余弦定理化简
【详解】把余弦定理代入
得 a= ,


.,Biblioteka D.,则()得 A= , 再代入 即得解 .
所以
.
故选: C
【点睛】本题主要考查余弦定理解三角形,意在考查学生对该知识的理解掌握水平和分析推理能力

A. 240 种
B. 150 种
C. 125 种
D. 120 种
【答案】 B 【解析】 【分析】 先把 5 项工作分成三组,再把工作分配给 3 名志愿者得解 .
【详解】把 5 项工作分成三组,有
种方法,
再把工作分配给三个志愿者有
种方法,
由乘法分步原理得共有
种方法 .
故选: B
【点睛】本题主要考查排列组合的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力
.
第Ⅱ卷(共 90 分) 二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)
时,如 a=1,b=-1, 但是 a <b 不成立,所以“
”是“
”非充分性条件;
再考虑必要性,
时, a=-1,b=1, 但是
不成立,所以“
”是“
”非充必要性条件 .
故“
”是“
”的既不充分又不必要条件 .
故选: D
【点睛】本题主要考查充分必要条件的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力
3. 在数列 中,

,若
,则 ( )
A. 3

广西省2019届高三5月考前模拟适应性联合数学试题(理)

广西省2019届高三5月考前模拟适应性联合数学试题(理)

广西省2019届高三5月考前模拟适应性联合数学试题(理)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|310}A x x =+<,2{|610}B x x x =--≤,则A B =( )A .11[,]32-B .φC .1(,)3-∞D .1{}32.复数1()1a R ai∈+在复平面内对应的点在第一象限,则a 的取值范围是( ) A .0a < B .01a << C .1a > D .1a <-3.若椭圆C :22221(0)x y a b a b +=>>的短轴长等于焦距,则椭圆的离心率为( )A .12B .2 D .44.在ABC ∆中,3cos 5B =,5AC =,6AB =,则内角C 的正弦值为( ) A .2425 B .1625 C. 925 D .7255.如图是一个几何体的三视图,则该几何体的体积是( )A . 13B .23 C. 1 D .436.若向量(1,0)a =,(1,2)b =,向量c 在a 方向上的投影为2,若//c b ,则||c 的大小为( )A . 2B .7.执行如图的程序框图,输出的S 的值是( )A .28B .36 C. 45 D .558.若以函数sin (0)y A x ωω=>的图象中相邻三个最值点为顶点的三角形是面积为1的直角三角形,则ω的值为( ) A .1 B .2 C. π D .2π9.已知底面是边长为2的正方体的四棱锥P ABCD -中,四棱锥的侧棱长都为4,E 是PB 的中点,则异面直线AD 与CE 所成角的余弦值为( )A .4.3 C. 12 D .210.定义,min{,},a a ba b b a b≤⎧=⎨>⎩,设21()m i n {,}f xx x=,则由函数()f x 的图象与x 轴、直线2x =所围成的封闭图形的面积为( )A .712 B .512 C. 1ln 23+ D .1ln 26+ 11.函数11()33x f x -=-是( )A .奇函数B .偶函数C.既是奇函数也是偶函数 D .既不是奇函数也不是偶函数12.设实数,,,,a b c d e 满足关系:8a b c d e ++++=,2222216a b c d e ++++=,则实数e 的最大值为( ) A . 2 B .165 C. 3 D .25二、填空题:本大题共4小题,每小题5分. 13.已知平面向量,的夹角为,||=4,||=2,则|﹣2|= .14.运行如图程序框图若输入的n 的值为3,则输出的n 的值为 .15.如图,三棱锥S﹣ABC中,SA⊥平面ABC,AB=6,BC=12,AC=6.SB=6,则三棱锥S﹣ABC外接球的表面积为.16.已知数列{a n}中,a1=1,其前n项和为S n,且S n=a n a n+1,若数列{}的前n项和T n=,则n=.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(Ⅰ)求角A的大小;(Ⅱ)若,,求BC边上的高.18.为了调研某地区男性的身高情况,研究机构在该地区随机抽取了30位不同的男性居民进行身高测量,现将数据整理如下(单位:cm):157 168 169 172 159 175 175 176 176 191 159 159 173 174180 181 170 181 187 157 158 161 162 164 165 178 168 182 184(1)请将上述数据整理并绘制在如图的茎叶图中;(2)用样本估计总体若从该地区所有男性居民中随机选取4人,记4人中身高超过175cm的人数为X,求X的分布列和数学期望.19.已知四棱柱ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,底面ABCD为菱形,点F在AA1上,∠DAB=120°,AA1=AB=3AF=3,=λ(0<λ<1).(1)若CE∥平面BDF,求λ的值;(2)求平面CDE与平面BDF所成的锐二面角的余弦值.20.已知椭圆C: +=1(a>b>0)的离心率为,且(4,0)在椭圆C 上,圆M:x2+y2=r2与直线l:y=8x的一个交点的横坐标为1.(1)求椭圆C的方程与圆M的方程;(2)已知A(m,n)为圆M上的任意一点,过点A作椭圆C的两条切线l1,l2.试探究直线l1,l2的位置关系,并说明理由.21.已知函数f(x)=x2﹣4lnx(1)求函数f(x)的单调区间;(2)若函数g(x)=+3lnx﹣ax(a>0),证明:函数g(x)有且仅有1个零点.[选修4-4:坐标系与参数方程选讲]22.已知曲线C的参数方程为,(α为参数),以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,点A的极坐标为(2,).(1)写出曲线C的极坐标方程,并求出曲线C在点(,1)处的切线l的极坐标方程;(2)若过点A的直线m与曲线C相切,求直线m的斜率k的值.[不等式选讲]23.已知m,n∈R+,且m>n(1)若n>1,比较m2+n与mn+m的大小关系,并说明理由;(2)若m+2n=1,求+的最小值.广西省2019届高三5月考前模拟适应性联合数学试题(理)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1-5:BACAD 6-10: DCCAC 11、12:DB二、填空题:本大题共4小题,每小题5分.13.已知平面向量,的夹角为,||=4,||=2,则|﹣2|=.【考点】平面向量数量积的运算.【分析】由条件即可求出,且,从而进行数量积的运算便可求出的值,从而便可得出的值.【解答】解:根据条件:;∴=16+16+16=16×3;∴.故答案为:.14.运行如图程序框图若输入的n的值为3,则输出的n的值为1.【考点】程序框图.【分析】计算循环中n与i的值,当i=7时满足判断框的条件,退出循环,输出结果即可.【解答】解:模拟执行程序,可得i=0,n=3执行循环体,满足条件n为奇数,n=10,i=1不满足条件i≥7,执行循环体,不满足条件n为奇数,n=5,i=2不满足条件i≥7,执行循环体,满足条件n为奇数,n=16,i=3不满足条件i≥7,执行循环体,不满足条件n为奇数,n=8,i=4不满足条件i≥7,执行循环体,不满足条件n为奇数,n=4,i=5不满足条件i≥7,执行循环体,不满足条件n为奇数,n=2,i=6不满足条件i≥7,执行循环体,不满足条件n为奇数,n=1,i=7满足条件i≥7,退出循环,输出n的值为1.故答案为:1.15.如图,三棱锥S﹣ABC中,SA⊥平面ABC,AB=6,BC=12,AC=6.SB=6,则三棱锥S﹣ABC外接球的表面积为216π.【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】由SA⊥平面ABC,可得SA⊥AB,SA的长度.由于AB2+BC2=AC2,可得∠ABC=90°.可把此三棱锥补成长方体,其外接球的直径为SC的长.【解答】解:∵SA⊥平面ABC,∴SA⊥AB.∴SA==6.∵AB2+BC2=62+122=180==AC2,∴∠ABC=90°.可把此三棱锥补成长方体,其外接球的直径为SC的长.SC2=SA2+AC2==216,解得SC=,∴2R=6,解得R=3.故所求的外接球的表面积S=4πR2=4π×=216π.故答案为:216π.16.已知数列{a n}中,a1=1,其前n项和为S n,且S n=a n a n+1,若数列{}的前n项和T n=,则n=99.【考点】数列的求和.【分析】通过S n=a n a n+1,利用a n+1=S n+1﹣S n化简可知数列{a n}的通项公式,进而裂项可知=﹣,并项相加、比较即得结论.【解答】解:∵S n=a n a n+1,∴a n+1=S n+1﹣S n=a n+1a n+2﹣a n a n+1,整理得:a n+2﹣a n=2,又∵a1=1,a2==2,∴数列{a n}的通项公式a n=n,∴===﹣,又∵T n==1﹣=,∴n=99,故答案为:99.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(Ⅰ)求角A的大小;(Ⅱ)若,,求BC边上的高.【考点】余弦定理;正弦定理.【分析】(Ⅰ)由正弦定理及三角函数恒等变换化简已知等式可得cosAsinB=sinB,由sinB≠0,解得cosA,结合A的范围即可得解.(Ⅱ)由余弦定理可解得:,设BC边上的高为h,由,即可解得h的值.【解答】(本题满分为15分)解:(Ⅰ)由及正弦定理可得:,…因为sinC=sin(A+B)=sinAcosB+cosAsinB,所以,…因为sinB≠0,所以,…因为0<A<π,所以.…(Ⅱ)由余弦定理可知:,…所以:,解得:.…设BC边上的高为h,由,…得:,…解得:h=1.…18.为了调研某地区男性的身高情况,研究机构在该地区随机抽取了30位不同的男性居民进行身高测量,现将数据整理如下(单位:cm):157 168 169 172 159 175 175 176 176 191 159 159 173 174180 181 170 181 187 157 158 161 162 164 165 178 168 182 184(1)请将上述数据整理并绘制在如图的茎叶图中;(2)用样本估计总体若从该地区所有男性居民中随机选取4人,记4人中身高超过175cm的人数为X,求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)由该地区随机抽取了30位不同的男性居民身高测量数据,能作出茎叶图.(2)抽取30人中10人身高超过175cm,概率为,X的可能取值为0,1,2,3,4,且X~B(4,),由此能求出X的分布列和数学期望.【解答】解:(1)由该地区随机抽取了30位不同的男性居民身高测量数据,能作出茎叶图:(2)抽取30人中10人身高超过175cm,概率为,X的可能取值为0,1,2,3,4,且X~B(4,),P(X=0)=()4=,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==,0 1 2 3 4∵X~B(4,),∴EX=.19.已知四棱柱ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,底面ABCD为菱形,点F在AA1上,∠DAB=120°,AA1=AB=3AF=3,=λ(0<λ<1).(1)若CE∥平面BDF,求λ的值;(2)求平面CDE与平面BDF所成的锐二面角的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)取BC中点G,连结AG,分别以AG、AD、AA1所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出λ的值.(2)求出平面CDE的一个法向量和平面BDF的一个法向量,由此能求出平面CDE与平面BDF所成的锐二面角的余弦值.【解答】解:(1)如图所示,取BC中点G,连结AG,∵∠DAB=120°,∴AG⊥AD,又A1A⊥面ABCD,∴分别以AG、AD、AA1所在直线为x,y,z轴,建立空间直角坐标系,则D(0,﹣3,1),B(,﹣,0),C(),F(0,0,1),A1(0,0,3),∴=(0,﹣3,1),=(,﹣,0),设平面BDF的法向量=(x,y,z),则,取x=,得=(),==(0,3λ,﹣3λ),则==(﹣,﹣,3﹣3λ),∵CE∥平面BDF,∴=﹣,解得.(2)设平面CDE的一个法向量为=(x,y,z),∵=(﹣),=(0,3,﹣3),∴,取x=1,得=(1,),cos<>===,∴平面CDE与平面BDF所成的锐二面角的余弦值为.20.已知椭圆C: +=1(a>b>0)的离心率为,且(4,0)在椭圆C 上,圆M:x2+y2=r2与直线l:y=8x的一个交点的横坐标为1.(1)求椭圆C的方程与圆M的方程;(2)已知A(m,n)为圆M上的任意一点,过点A作椭圆C的两条切线l1,l2.试探究直线l1,l2的位置关系,并说明理由.【考点】椭圆的简单性质.【分析】(1)由题意列关于a,b,c的方程组,求解方程组得到a,b的值,则椭圆方程可求;求得直线和圆的交点(1,8),即可得到圆的方程;(2)当过点A与椭圆C相切的一条切线的斜率不存在时,切线方程为x=±4,得到直线y=±7恰好为过点A与椭圆相切的另一条切线,于是两切线l1,l2互相垂直;当过点A(m,n)与椭圆C相切的切线的斜率存在时,设切线方程为y ﹣n=k(x﹣m),联立直线方程和椭圆方程,得到关于x的一元二次方程,利用判别式等于0能推导出直线l1、l2始终相互垂直.【解答】解:(1)由题意得b=4,e==,又a2﹣c2=16,解得a=7,b=4,c=.∴椭圆C的方程为+=1;由题意可得圆M:x2+y2=r2与直线l:y=8x的一个交点为(1,8),即有r2=65,则圆M的方程:x2+y2=65;(2)如图,①当过点A与椭圆C: +=1相切的一条切线的斜率不存在时,此时切线方程为x=±4,∵点A在圆M:x2+y2=65上,则A(±4,±7),∴直线y=±7恰好为过点A与椭圆相切的另一条切线,于是两切线l1,l2互相垂直;②当过点A(m,n)与椭圆C相切的切线的斜率存在时,设切线方程为y﹣n=k(x﹣m),由,得(49+16k2)x2+32k(n﹣mk)x+16k2m2﹣32kmn+16n2﹣49×16=0,由于直线与椭圆相切,∴△=1024k2(n﹣mk)2﹣4(49+16k2)(16k2m2﹣32kmn+16n2﹣49×16)=0,整理,得(16﹣m2)k2+2mnk+49﹣n2=0,∴k1k2=,∵P(m,n)在圆x2+y2=65上,∴m2+n2=65,∴16﹣m2=n2﹣49,∴k1k2=﹣1,则两直线互相垂直.综上所述,直线l1、l2始终相互垂直.21.已知函数f(x)=x2﹣4lnx(1)求函数f(x)的单调区间;(2)若函数g(x)=+3lnx﹣ax(a>0),证明:函数g(x)有且仅有1个零点.【考点】利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,从而求出函数的单调区间即可;(2)通过讨论a的范围结合函数的单调性以及根的判别式证明即可.【解答】(1)解:f(x)的定义域是(0,+∞),f′(x)=,故0<x<时,f′(x)<0,x>时,f′(x)>0,∴f(x)在(0,)递减,在(,+∞)递增;(2)证明:g(x)=+lnx﹣ax,g′(x)=,令g′(0)=0,得:x2﹣ax+1=0,当△=a2﹣4≤0,即0<a≤2时,g′(x)>0,g(x)在(0,+∞)递增,∴g(x)最多只有一个零点;∵g(x)=x(x﹣2a)+lnx,0<x<2a且x<1时,g(x)<0,当x>2a且x>1时,g(x)>0,∴g(x)有且只有一个零点;当△=a2﹣4>0,即a>2时,不妨设方程x2﹣ax+1=0的两根是x1,x2,(x1<x2),则0<x1<1<x2,则在区间(0,x1),(x2,+∞)递增,在(x1,x2)递减,由于﹣ax1+1=0,∴g(x1)=+lnx1﹣ax1=lnx1﹣﹣1,令h(t)=lnt﹣t2﹣1,t∈(0,1),则h′(t)=﹣t>0,∴h(t)在(0,1)递增,∴h(x1)<h(1)=﹣<0,由此得g(x2)<g(x1)<0,又∵x>2a且x>1时,g(x)>0,故g(x)在(0,+∞)有且只有一个零点,综上,a>0时,g(x)有且只有一个零点.[选修4-4:坐标系与参数方程选讲]22.已知曲线C的参数方程为,(α为参数),以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,点A的极坐标为(2,).(1)写出曲线C的极坐标方程,并求出曲线C在点(,1)处的切线l的极坐标方程;(2)若过点A的直线m与曲线C相切,求直线m的斜率k的值.【考点】简单曲线的极坐标方程.(α为参数),利用cos2α+sin2α=1,(1)曲线C的参数方程为,【分析】即可得出直角坐标方程,进而得出极坐标方程.点(,1)在曲线C上,故切线的斜率=﹣=﹣,即可得出切线方程,进而化为极坐标方程.(2)点A的极坐标化为直角坐标A,即A(2,2).设过直线m的斜率为k,y=k(x﹣2)+2,利用直线与圆相切的性质即可得出.(1)曲线C的参数方程为,(α为参数),∵cos2α+sin2α=1,【解答】解:∴x2+y2=3.可得极坐标方程为:ρ2=3,即.∵点(,1)在曲线C上,故切线的斜率k=﹣=﹣,故切线的方程为:y﹣1=(x﹣),可得:x+y=3.即cosθ+ρsinθ=3.(2)点A的极坐标为(2,),化为直角坐标A,即A(2,2).设过直线m的斜率为k,y=k(x﹣2)+2,∵直线与圆相切,∴=,∴k2﹣8k+1=0,解得k=4.[不等式选讲]23.已知m,n∈R+,且m>n(1)若n>1,比较m2+n与mn+m的大小关系,并说明理由;(2)若m+2n=1,求+的最小值.【考点】基本不等式.【分析】(1)作差法比较即可;(2)“乘1法”结合基本不等式的性质求出最小值即可.【解答】解:(1)由题意得:m2+n﹣(mn+m)=m2﹣mn+n﹣m=(m﹣1)(m﹣n),∵n>1,故m>1,故(m﹣1)(m﹣n)>0,即m2+n>mn+m;(2)由题意得:+=(+)(m+2n)=2+++2≥8,当且仅当m=2n=时“=”成立.。

广西桂林百色梧州北海崇左五市最新高三5月联合模拟理科综合物理试题word版含详细答案

广西桂林百色梧州北海崇左五市最新高三5月联合模拟理科综合物理试题word版含详细答案

广西桂林五市2019届高三5月联合模拟理科综合物 理 试 题二、选择题:共8小题,每小题6分,在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求,全部选对得6分,选对但不全的得3分,有选错的得0分14.下列叙述正确的是A .三种射线中αβγ、、,α射线的电离能力最弱,穿透能力最强B .按照玻尔理论,氢原子核外电子从半径较小的轨道跃迁到较大的轨道时,电子的动能减小,原子总能量增大C .金属的逸出功随入射光频率的增大而增大D .一束光照射到某金属表面不发生光电效应,是因为该束光的强度太弱15.金星和地球在同一平面内绕太阳公转,且公转轨道均视为圆形,如图所示,在地球上观测,发现金星与太阳可呈现的视角(太阳与金星均视为质点,它们与眼睛连线的夹角)有最大值,最大视角的正弦值为n ,则金星的公转周期为A .322(1)n -年 B .324(1)n - C .3n 年 D 年 16.一物体做直线运动的v-t 图像如图所示,下列说法正确的是A .第1s 内和第5s 内的运动方向相反B .0~4s 内和0~6s 内的平均速度相等C .第5s 内和第6s 内的动量变化量相等D .第6s 内所受的合外力做负功17.使用高压水枪作为切割机床的切刀具有独特优势,得到广泛应用,如图所示,若水柱截面为S ,水流以速度v 垂直射到被切割的钢板上,之后水速减为零,已知水的密度为ρ,则水对钢板的冲力力为A .Sv ρB .2Sv ρC .212Sv ρD .12Sv ρ18.在竖直平面内有一方向斜向上且与水平方向成α=30°角的匀强电场,电场中有一质量为m ,电量为q 的带电小球,用长为L 的不可伸长的绝缘细线悬挂于O 点,如图所示,开始小球静止于M 点,细线恰好哦水平,重力加速度大小取g ,现用外力将小球拉到最低点P ,然后无初速度释放,则以下判断正确的是A .场强E 的大小为mgqB .小球到达M 点时的动能为0C .小球从P 到M 电势能减少(1mgLD .若小球运动到M 点,细线突然断裂,小球将做匀变速直线运动19.如图为远距离输电示意图,发电机的输出电压1U 和输电线的电阻和理想变压器匝数均不变,且1234::n n n n =,当用户消耗的功率增大时,下列表述正确的是A .用户的总电阻增大B .用户两端的电压4U 减小C .1234::U U U U =D .用户端增加的功率等于升压变压器多输入的功率20.如图所示,两方向相反,磁感应强度大小均为B 的匀强磁场被边长为L 的等边三角形ABC 边界分开,三角形内磁场方向垂直纸面向里,三角形顶点A 处由一质子源,能沿∠BAC 的角平分线发射速度不同的质子(质子重力不计),所有质子均能通过C 点,质子比荷1q m k=,则质子的速度可能为A .BL k B .2BL k C .23BL k D .8BL k21.如图所示,两根足够长的光滑金属导轨MN 、PQ ,间距为L ,电阻不计,两导轨构成的平面与水平面成θ角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考桂林市、崇左市联合模拟考试数学试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A. B. C. D.【答案】D【解析】【分析】首先求解出集合,根据交集定义求得结果.【详解】则本题正确选项:【点睛】本题考查集合运算中的交集运算,属于基础题.2.设,则()A. B.2 C. D.【答案】A【解析】【分析】先化简复数z,再求|z|得解.【详解】由题得,所以|z|=.故选:A【点睛】本题主要考查复数的除法运算和复数的模的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.在数列中,,,若,则()A. 3B. 4C. 5D. 6【答案】C 【解析】 【分析】 先通过得到数列是等差数列,再列方程组求出n 的值.【详解】因为,所以=d ,所以数列是等差数列,所以.故选:C【点睛】本题主要考查等差数列性质的判定,考查等差数列的通项和前n 项和的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.4.在某项测试中,测量结果服从正态分布,若,则( )A.B.C.D.【答案】B 【解析】 分析】由正态分布的图像和性质得得解.【详解】由正态分布的图像和性质得得解.故选:B【点睛】本题主要考查正态分布的图像和性质,考查正态分布指定区间的概率的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的分别为12,18,则输出的的值为( )A. 1B. 2C. 3D. 6【答案】D【解析】【分析】直接按照程序框图运行程序即可.【详解】12<18,b=18-12=6,12>6,a=12-6=6,a=b,输出a=6.故选:D【点睛】本题主要考查程序框图和更相减损术,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.已知,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件【答案】D【解析】【分析】从充分性和必要性两个方面判断分析得解.【详解】先考虑充分性,时,如a=1,b=-1,但是a<b不成立,所以“”是“”非充分性条件;再考虑必要性,时,a=-1,b=1,但是不成立,所以“”是“”非充必要性条件. 故“”是“”的既不充分又不必要条件.故选:D【点睛】本题主要考查充分必要条件的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.若函数,则在点处的切线方程为()A. B. C. D.【答案】B【解析】【分析】先求切线的斜率,再求切线的方程得解.【详解】由题得,所以切线的斜率k=所以切线方程为.故选:B【点睛】本题主要考查导数的几何意义和切线方程的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.已知,则()A. B. C. D.【答案】C【解析】【分析】先化简已知得,再求,再求得解.【详解】由题得.当在第一象限时,.当在第三象限时,.故选:C【点睛】本题主要考查三角函数化简求值,考查同角的三角函数关系和和角的正切,考查二倍角公式,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.已知是定义在上的奇函数,且在上单调递增.若实数满足,则的取值范围是()A. B. C. D.【答案】A【解析】【分析】先得到函数f(x)是R上的增函数,再利用函数的奇偶性和单调性化简不等式,解不等式得解.【详解】因为是定义在上的奇函数,且在上单调递增,所以函数f(x)是R上的增函数,由题得,所以,所以,所以|m-1|<3,所以-3<m-1<3,所以-2<m<4,因为|m-1|>0,所以m≠1,故m∈.故选:A【点睛】本题主要考查函数的奇偶性和单调性的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.在中,内角、、的对边分别是、、,若,且,则()A. B. C. 2 D.【答案】C【解析】【分析】先利用余弦定理化简得a=,再利用余弦定理化简得A=,再代入即得解.【详解】把余弦定理代入得a=,由得.所以.故选:C【点睛】本题主要考查余弦定理解三角形,意在考查学生对该知识的理解掌握水平和分析推理能力.11.过双曲线的右支上一点分别向圆:和圆:作切线,切点分别为,则的最小值为()A. 5B. 4C. 3D. 2【答案】A【解析】【分析】求得两圆的圆心和半径,设双曲线的左右焦点为,,连接,,,,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.【详解】圆的圆心为,半径为;圆的圆心为,半径为,设双曲线的左右焦点为,,连接,,,,可得.当且仅当为右顶点时,取得等号,即最小值5.故选:.【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力,属于中档题.12.安排3名志愿者完成5项不同的工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A. 240种B. 150种C. 125种D. 120种【答案】B【解析】【分析】先把5项工作分成三组,再把工作分配给3名志愿者得解.【详解】把5项工作分成三组,有种方法,再把工作分配给三个志愿者有种方法,由乘法分步原理得共有种方法.故选:B【点睛】本题主要考查排列组合的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量,,.若,则__________.【答案】3.【解析】【分析】直接利用向量垂直的坐标表示求m的值.【详解】由题得,因为,所以2m+2-8=0,所以m=3.故答案为:3【点睛】本题主要考查向量垂直的坐标表示,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.若实数满足,则的最大值为__________.【答案】5.【解析】【分析】先作出可行域,再利用斜率结合数形结合分析解答得解.【详解】由题得不等式组对应的可行域如图所示阴影部分,表示的是点(x,y)和原点所在直线的斜率,联立.由图得可行域内的点A(1,5)和原点所在直线的斜率最大,且等于.故的最大值为5.故答案为:5【点睛】本题主要考查线性规划的最值问题,考查斜率的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.以抛物线:的顶点为圆心的圆交于两点,交的准线于两点.已知,,则等于__________.【答案】.【解析】【分析】画出图形,利用勾股定理以及圆的半径列出方程求解即得p的值.【详解】如图:,,,,,,,,解得:,故答案为:.【点睛】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查数形结合思想,属于中档题.16.在大小为的二面角内有一点到两个半平面的距离分别为1和,则点到棱的距离等于__________.【答案】2.【解析】【分析】设垂足分别为,,先计算的长,再利用外接圆的直径为到棱的距离,即可求得结论.【详解】由题意,设垂足分别为,,则在中,,,,设到棱的距离为,则故答案为:2【点睛】本题主要考查余弦定理正弦定理解三角形,考查二面角,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列中,满足,.(1)证明:数列为等比数列;(2)求数列的前项和.【答案】(1)见解析;(2).【解析】【分析】(1)直接利用等比数列的定义证明;(2)先求出,再利用分组求和求数列的前项和. 【详解】(1)∵∴又因为,∴数列是以2为首项,2为公比的等比数列(2)由(1)知,∴,∴.故.【点睛】本题主要考查等比数列性质的证明,考查等比数列求和和分组求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.某汽车公司为调查店个数对该公司汽车销量的影响,对同等规模的四座城市的店一季度汽车销量进行了统计,结果如下:(1)根据统计的数据进行分析,求关于的线性回归方程;(2)现要从三座城市的10个店中选取3个做深入调查,求城市中被选中的店个数的分布列和期望.附:回归方程中的斜率和截距的最小二乘法估计公式分别为:;.【答案】(1);(2)见解析.【解析】【分析】(1)直接利用最小二乘法求关于的线性回归方程;(2)先求出的可能取值为:0,1,2,3.再求出它们对应的概率和分布列,最后求出其期望.【详解】(1);,..所以回归直线方程为.(2)的可能取值为:0,1,2,3.;;;.的分布列为所以的期望为.【点睛】本题主要考查回归直线方程的求法,考查随机变量的分布列和期望,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.已知四棱锥的底面是菱形,,底面,是上的任意一点.(1)求证:平面平面;(2)设,是否存在点使平面与平面所成的锐二面角的大小为?如果存在,求出点的位置,如果不存在,请说明理由.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先证明平面,再证明平面平面;(2)设与的交点为,以、所在直线分别为、轴,以过垂直平面的直线为轴建立空间直角坐标系(如图),利用向量法求出,解方程即得解.【详解】(1)证明:∵平面,平面,∴.∵四边形是菱形,∴.∵,∴平面∵平面,∴平面平面.(2)设与的交点为,以、所在直线分别为、轴,以过垂直平面的直线为轴建立空间直角坐标系(如图),则,,,,.设,则,,设,∴∴,∴.,设平面的法向量,∵,∴.求得为平面的一个法向量.同理可得平面的一个法向量为∵平面与平面所成的锐二面角的大小为,∴,解得:.∴为中点.【点睛】本题主要考查空间几何元素垂直关系的证明,考查二面角的计算,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.20.椭圆的离心率,过点和的直线与原点间的距离为. (1)求椭圆的方程;(2)过点的直线与椭圆交于、两点,且点位于第一象限,当时,求直线的方程. 【答案】(1);(2) .【解析】【分析】(1)由题得到关于a,b,c的方程组,解方程组即得解;(2)设,(,),设直线的方程为.联立直线和椭圆方程,利用韦达定理求出m的值得解.【详解】(1)据题知,直线的方程为.依题意得.解得,,所以椭圆的方程为.(2)设,(,),设直线的方程为.代入椭圆方程整理得:.∴,.①由,依题意可得:,②结合①②得,消去解得,(不合题意).所以直线的方程为.【点睛】本题主要考查椭圆的标准方程的求法,考查直线和椭圆的位置关系,考查直线方程的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.设函数.(1)当时,讨论单调性;(2)已知函数在上有极值,求实数的取值范围.【答案】(1)在上单调递增,在上单调递减;(2).【解析】【分析】(1)利用导数求函数的单调性;(2)先设,再对a分类讨论,求出函数f(x)的单调性,作函数的图像,分析得到实数的取值范围.【详解】(1).当时.由有,解得;.所以函数在上单调递增,在上单调递减.(2)设,,因为函数在上有极值点,所以函数在上有零点.当时,,∴,∴,∴在上单调递增,∵,所以当时恒成立,即函数在上没有零点.当时,,,时,,时,,∴上单调递减,在上单调递增∵,且在上单调递减,∴.对于,当时,,所以存在使.所以函数在上有零点.所以函数在上有极值点时,实数的取值范围是.【点睛】本题主要考查利用导数研究函数的单调性,利用导数研究函数的极值,意在考查学生对这些知识的理解掌握水平和分析推理能力.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在平面直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)过点倾斜角为的直线与曲线交于两点,求的值.【答案】(1);(2)8.【解析】【分析】(1)先求出曲线的普通方程为,再化成极坐标方程;(2)先写出直线的参数方程(为参数),再将直线的参数方程代入圆的方程,利用直线参数方程t的几何意义解答.【详解】(1)依题意,曲线的普通方程为,即,故,故,故所求极坐标方程为;(2)设直线的参数方程为(为参数),将此参数方程代入中,化简可得,显然.设所对应的参数分别为,,则.∴.【点睛】本题主要考查参数方程、普通方程和极坐标方程的互化,考查直线参数方程t的几何意义解答,意在考查学生对这些知识的理解掌握水平和分析推理能力.23.已知函数,其中.(1)当时,求不等式的解集;(2)若关于的不等式恒成立,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)利用分类讨论法解绝对值不等式;(2)先求出,再求出.解不等式即得解.【详解】(1)当时,.当时,由;当时,由不成立;综上所述,当时,不等式的解集为.(2)记则.∴.依题意得,∴.所以实数的取值范围为【点睛】本题主要考查分类讨论法解绝对值不等式,考查绝对值不等式的恒成立的问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

相关文档
最新文档