高考数学难点突破__解不等式
如何快速解决高考数学中的不等式
如何快速解决高考数学中的不等式高考数学中的不等式一直是让考生头痛的难点。
在考场上,不等式题目往往会占据很大一部分的分值,因此,高考数学中的不等式该如何快速解决呢?以下是一些解决不等式问题的技巧和方法。
一、掌握基本不等式基本不等式常常出现在高考数学考试中,要想在考场上得到高分,必须对其有深入的掌握。
基本不等式的形式是:对于任意正实数$a_1, a_2, …, a_n$,有:$$ \frac{a_1 + a_2 + … + a_n}{n} \geq \sqrt[n]{a_1 a_2 … a_n} $$其中等号成立的条件是$a_1 = a_2 = … = a_n$。
对于初学者来说,要掌握基本不等式,必须掌握求平均数和平均数与几何平均数的关系。
只有当我们能够准确地求出平均数并证明其与几何平均数之间的关系时,才能熟练地运用基本不等式。
二、掌握常用不等式的应用常用不等式有:均值不等式、柯西不等式、夹逼定理等。
这些常用不等式的应用能够帮助我们在解决不等式问题时灵活运用。
其中,均值不等式与基本不等式紧密相连,可以更好地帮助我们理解基本不等式的运用。
三、灵活掌握换元法换元法是解决不等式问题的必备技巧之一,有效地应用换元法能够简化不等式的复杂性。
例如,当一本书中大部分不等式的几个变量均在 $\sqrt{ab}$ 意外时,我们可以使用换元法将$\sqrt{ab}$ 替换成 $t$。
四、加减变形法在解决不等式问题时,加减变形法也是常见的技巧之一。
它的基本思想是将几个不等式加起来或者做差,然后通过加减变形法将其转换为更有利于解决的形式。
这种方法需要我们具有一定的直觉和判断力,能够快速分析加减变形的情况,并能够快速转化为有用的方式。
五、分段讨论法分段讨论法在解决不等式问题时也是一种常见的技巧。
其基本原理是将不等式分为不同的部分,并分别讨论每一部分的不等式情况。
例如,当我们需要解决$|ax+b|<c$的不等式问题时,我们可以将其分为 $ax+b<c$ 和 $ax+b>-c$ 两部分来分别讨论。
高考数学难点突破_难点18__不等式的证明策略
证法三:∵∴a2+b2+c2≥
∴a2+b2+c2≥
证法四:设a=+α,b=+β,c=+γ.
∵a+b+c=1,∴α+β+γ=0
∴a2+b2+c2=(+α)2+(+β)2+(+γ)2
=+ (α+β+γ)+α2+β2+γ2
(1+n)m=1+Cn+Cn2+...+Cnm,
由(1)知miA>niA (1<i≤m,而C=
∴miCin>niCim(1<m<n
∴m0C=n0C=1,mC=nC=m·n,m2C>n2C,...,
mmC>nmC,mm+1C>0,...,mnC>0,
∴1+Cm+Cm2+...+Cmn>1+Cn+C2mn2+...+Cnm,
技巧与方法:除了解法一经常用的重要不等式外,解法二的方法也很典型,即若参数a满足不等关系,a≥f(x),则amin=f(x)max;若 a≤f(x),则amax=f(x)min,利用这一基本事实,可以较轻松地解决这一类不等式中所含参数的值域问题.还有三角换元法求最值用的恰当好处,可以把原问题转化.
故x′2≤,x′∈[-,],x∈[0,],同理y,z∈[0,]
证法三:设x、y、z三数中若有负数,不妨设x<0,则x2>0,=x2+y2+z2≥x2+>,矛盾.
专题01不等式(3大重难点详细讲解)…难点及压轴题突破
第1讲——不等式(3大难点)难点1:基本不等式(1)——配凑均值不等式在高考数学中,我们经常会遇到求两个数的积的最大值,对于这类题我们需要构造不等式,利用基本不等式来求解,即a b +≥【例题】(多选)已知0a >,0b >,且21a b +=,则下列不等式一定成立的有 A.18ab ≤C.2214a b +≥ B.12a b +>D.41313a b +≥++ 【答案】ABD 【解析】由题意, 对于选项A ,我们发现要求的是从a 和b 的乘积的范围,而题目中所给的是2a 和b ,因此我们考虑配凑一个2ab .∵0a >,0b >,且21a b +=,∴22a b+≥ 化简得出ab 的不等式,而我们知道21a b +=,即可得出的范围.∴2121228a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当122a b ==时,等号成立, A 正确; 对于选项B ,我们知道21a b +=,而我们要求的是a 和b 的和的取值范围,我们发现条件是两个数字的和,让我们求的也是两个数字的和,不能使用均值不等式,那该怎么办呢?对于题目条件是两个数字和的形式,我们可以借助题目条件进行换元,我们把其中一个字母用另一个字母来表示,进而利用等式和0a >,0b >求出a 和b 的和的取值范围. ∵12(0,1)b a =-∈,∴0,2a ∈ ⎪⎝⎭ ,∴11,12a b a ⎛⎫+=-∈ ⎪⎝⎭ ,B 正确; 对于选项C ,我们要求2a 和2b b 用含a 的式子表达,得出只含a 的表达式,即可求出2a 和2b 的和的取值范围.∵10,2a ⎛⎫∈ ⎪⎝⎭,∴222222211(12)5415555a b a a a a a ⎛⎫+=+-=-+=-+≥ ⎪⎝⎭, C 错误; 对于选项D , 我们要求411a b ++的范围,分母不是单独的a 和b 1a +和b 分别设为x 和y ,将求411a b++的范围转化为求41x y+的范围,将已知等式化为23x y +=.而所求的是分母中含有x 和y ,已知等式中含有x 和y ,因此我们为了消去分母中的x 和y 考虑用乘法,而由于等式和是3,因此用乘法时需要乘13.设110,x a y b =+>=>, ∴23x y +=,∴24814141141(2)133x y y xx y a b x y x y +++⎛⎫+=+=++= ⎪+⎝⎭,这样,分子和分母中都包含了x 和y ,相乘即可消掉,而基本不等式既可以转化成两数相乘,还可以求范围,因此我们考虑用基本不等式,即可求出411a b++的范围.∴8133y x+++≥=+,当且仅当2y x =时, ∵23x y += ,∴当3(4737x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,D 正确. 故选:ABD.【总结】在求解不等式问题的时候,我们需要注意以下几点:(1)换元法一般是将分母的式子设成两个新的未知量,然后将已知的等式化为两个未知数的等量关系,进而利用“1”的性质求解;(2)如果给出了一个含有,a b 等式,并且所求范围的式子中含有分母项,且分母中含有,a b ,就可以利用“1”的性质,使用不等式来进行计算.【变式训练1】(多选)已知正实数,a b 满足4a b +=,则下列说法正确的是 A. 4ab ≤ B. 223a b +≤ C.1494a b +≥ D.1111a b≤+【答案】ACD 【解析】对于 A , 利用基本不等式2a b+≥, 将 4a b += 代入,得 4ab ≤ , 当且仅当 2,2a b == 时等号成立, 故A 正确;对于B , 222()21628a b a b ab ab +=+-=-≥ , 当且仅当 2,2a b == 等号成立,故B 错误; 对于C ,1414559444444a b b a a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪⎪⎝⎭⎝⎭, 当且仅当 48,33a b == 时等号成立,故C 正确; 对于D ,111114ab aba b a b a bab===≤+++, 当且仅当 2,2a b == 时等号成立, 故D 正确; 故选:ACD【变式训练2】已知821(0,0)a b a b +=>>,则ab 的最大值为 . 【答案】164【解析】由题意,211821821616264a b ab a b +⎛⎫=⨯⨯⨯= ⎪⎝⎭, 当且仅当11,164a b ==时取等号, ∴ab 的最大值为164.故答案为:164.难点2:基本不等式(1)——两个复杂分式求和的最小值在高考数学中,我们经常会遇到两个复杂分式求和的最小值,对于这类题我们需要通过乘以“1”的形式进行转化,而乘以的对象一般是两个分母的加和相关的形式,进而构造不等式,利用基本不等式来求解,即a b +≥【例1】已知实数,x y 满足0x y >>且2x y +≤,则213x y x y++-的最小值为 .【答案】34+ 【解析】由题意,题目给的是,x y 和x y +范围,我们要求的是213x y x y ++-的最小值,即是求213x y x y++-的范围,我们在上一道题中发现,对于这种分式的加和,我们一般是通过乘以“1”的形式进行转化,而乘以的对象一般是两个分母的加和相关的形式,因此我们需要先求3x y x y ++-的范围.∵()2,3222x y x y x y x y x y +≤++-=+=+, ∴()324x y x y x y ++-=+≤,即()1314x y x y ++-≤, 和难点1一样,我们将3x y +和x y -分别看成一个整体,已知的等式中含有3x y +和x y -,我们要求的式子分母中含有3x y +和x y -,若消去分母则需用乘法,而基本不等式既可以转化成两数相乘,还可以求范围,因此我们考虑用基本不等式,即可求出213x y x y++-的范围. ∴()2112112233334343x y x y x y x y x y x y x y x y x y x y ⎛⎫⎛⎫-++≥++-+=++ ⎪ ⎪+-+-+-⎝⎭⎝⎭, ∵0x y >>,∴0x y ->,∴2233x y x yx y x y-++≥+-当且仅当5xy=+∴min21334x y x y ⎛⎫++= ⎪+-⎝⎭,故答案为:34+. 【总结】在求解不等式问题的时候,我们需要注意以下几点: (1)求和的最小值的时候,往往考虑正用基本不等式;(2)如果给出了一个含有,a b 等式,并且所求范围的式子中含有分母项,且分母中含有,a b ,就可以利用“1”的性质,使用不等式来进行计算.【变式训练】若,00x y >>,且224log 3log 9log 81x y +=,则213x y+的最小值为 .【答案】43+ 【解析】由题意,∵0,0x y >>∴4224222222log 31log 3log 3log 3log 3log 42xy+===,()222222log 3log 9log 33log 3x y x y x y ++=⋅=,∴2222log 3log 3x y +=, ∴22x y +=,即()1212x y +=, ∴()21121124182232323323y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=+++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝1823⎛== ⎝⎭当且仅当43y x x y =,即4322y xx y x y ⎧=⎪⎨⎪+=⎩,解得61x y ⎧=-⎪⎨=⎪⎩∴min21433x y ⎛⎫++= ⎪⎝⎭难点3:三个及以上正数的算术——几何平均不等式在高考数学中,我们遇到的不等式证明题往往是两个数以上的,对于两个数以上的这类不等式证明,如何配凑是解决此类问题的难点。
高考数学难点突破与解题方法
高考数学难点突破与解题方法随着高考日益逼近,数学作为一门重要的科目,成为许多考生头疼的难题。
其中,存在着一些难点,对于许多考生来说是必须要突破的难关。
本文将介绍一些高考数学难点的突破方法和解题技巧,帮助考生在考试中取得更好的成绩。
一、代数与函数代数与函数是高考数学中的一大难点,其中包括方程、函数和不等式。
首先,要熟练掌握基本的代数知识,比如一元二次方程、分式方程等,切忌死记硬背,要通过大量的练习来加深理解。
其次,要了解各类函数的性质,包括基本初等函数的图像、性质和变化规律等。
高考中常见的函数类型有线性函数、二次函数和指数函数等,掌握它们的性质和变化规律能够解决不少难题。
最后,对于不等式的解法,要掌握常见的不等式性质,比如绝对值不等式、二次式不等式等,通过画图或代入法来解决。
二、立体几何立体几何也是高考数学中的难点之一。
在解题时,要注重对图形性质的理解和几何关系的把握。
了解常见几何图形的特征和性质,包括正方体、正四面体和圆锥等,会对解题有很大帮助。
同时,还需要掌握立体几何的投影问题,如求柱体、圆柱和圆锥的截面面积和体积等。
通过多做一些相关的题目进行练习,能够提高解决立体几何难题的能力。
三、概率与统计概率与统计在高考数学中占有一定的比重,也是一些考生容易忽视的部分。
在解题时,要注意理解概率与统计的基本概念和原理。
掌握概率计算的方法,包括排列组合、事件的计算和条件概率等。
对于统计的问题,要熟悉常见统计量的计算,如均值、中位数和标准差等。
此外,还要注意对数据的分析与解读,包括直方图和折线图的解读,以及数据的比较和推断分析。
四、解题技巧在考试时,掌握一些解题技巧对于突破数学难点是非常有效的。
首先,要学会研读题目,理解题目所给的条件和要求,抓住关键信息。
其次,学会尝试多种解题方法,从不同的角度入手,比较其优劣并选择最合适的方法。
此外,要善于归纳总结,在做题过程中,记录解题思路和方法,方便日后进行复习和总结。
2025届高考数学热点题型归纳与重难点突破: 基本不等式及其应用【21类题型全归纳】(解析版)
1/45热点题型:基本不等式及其应用【题型1】基本不等式的直接使用...............................................................................................................2【题型2】常规凑配法求最值......................................................................................................................3【题型3】“1”的妙用(1):乘“1”法.........................................................................................................5【题型4】“1”的妙用(2):“1”的代换.......................................................................................................6【题型5】二次比一次型................................................................................................................................8【题型6】分离常数型..................................................................................................................................10【题型7】与指数对数结合的基本不等式问题.........................................................................................11【题型8】利用对勾函数..............................................................................................................................13【题型9】判断不等式是否能成立...........................................................................................................16【题型10】换元法(整体思想)...............................................................................................................19【题型11】基本不等式的实际应用问题....................................................................................................22【题型12】与a +b 、平方和、ab 有关问题的最值(和,积,平方和互相转化)...........................26【题型13】基本不等式恒成立与能成立问题...........................................................................................28【题型14】消元法........................................................................................................................................31【题型15】因式分解型................................................................................................................................33【题型16】同除型(构造齐次式)...........................................................................................................35【题型17】万能“k ”法..................................................................................................................................36【题型18】三角换元法(利用三角函数)...............................................................................................38【题型19】基本不等式与其他知识交汇的最值问题...............................................................................40【题型20】含有根式的配凑(根式平方和为定值型)...........................................................................42【题型21】多次运用基本不等式 (43)2/45【题型1】基本不等式的直接使用如果00a b >>,2a b +≤,当且仅当a b =时,等号成立.其中,2a b+叫作a b ,的算a b ,的几何平均数.即正数a b ,的算术平均数不小于它们的几何平均数.常用不等式:若a b ∈,R,则222a b ab +≥,当且仅当a b =时取等号;基本不等式:若a b ∈,R +,则2a b+≥(或a b +≥),当且仅当a b =时取等号.1.若0a >,0b >,且41a b +=,则2216a b +的最小值是________【答案】12【详解】221624a b ab ≥+⨯,则()()2222221616244a b a b ab a b +≥++⨯=+,所以()222411622a b a b +≥+=,当且仅当142a b ==时,等号成立,所以2216a b +有最小值122.若00>>y x ,,10=xy ,则yx 52+的最小值为______.【答案】2【简析】252x y +≥=【巩固练习1】若00>>y x ,,1410x y+=,则xy 的最小值为______.【答案】425【简析】14441052525xy x y xy +=≥⇒≥⇒≥⇒≥【巩固练习2】已知0x >,0y >,且21x y +=,则24x y +的最小值是________3/45【答案】当且仅当【题型2】常规凑配法求最值配凑法:加上一个数或减去一个数使和(积)为定值,然后利用基本不等式求解.1、通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式.2、注意验证取得条件.常见的配凑法求最值模型(1)模型一:)0,02>>≥+n m mn x n mx ,当且仅当mn x =时等号成立;(2)模型二:)0,0(2)(>>+≥+-+-=-+n m ma mn ma a x n a x m a x n mx ,当且仅当mna x =-时等号成立3.若2x >-,则()12f x x x =++的最小值为.【答案】0【解析】由2x >-,得12002x x +>>,,所以11()222022f x x x x x =+=++-≥=++,当且仅当122x x +=+即=1x -时等号成立.4.已知>2,则2+8K2的最小值是()A .6B .8C .10D .12【解题思路】利用基本不等式性质求解即可.【解答过程】因为>2,所以−2>0所以2+8K2=2−2+8K2+4≥216+4=12,当且仅当2−2=8K2,即=4时,等号成立.所以2+8K2的最小值为12.4/45【巩固练习1】函数()4321x x f x =+++(0x >)的最小值为.【答案】1【解析】因为0x >,所以11x +>,所以()44323311111x x x x x f =++=++-≥-=++,当且仅当()4311x x +=+时,即13x =-时,等号成立,故()f x 的最小值为1.【分析】利用基本不等式中常数代换技巧求最值即可.【详解】因为正数a ,b 满足34a b +=,所以()()1318a b +++=,所以()()()()31311311311311011811811b a a b a b a b a b ⎡⎤++⎛⎫⎡⎤+=+⋅+++=++⎢⎥ ⎪⎣⎦++++++⎝⎭⎣⎦()1110106288⎡⎢≥+=+=⎢⎣,当且仅当()()313111b a a b ++=++即1a b ==时,等号成立,所以1311a b +++的最小值为2.【巩固练习3】已知0t >,则3321t t t +++的最小值为.1【解析】因为0t >,所以()()()33212133221212221231t t t tt t t t +++++=+=+++++11≥+=,当且仅当()()2321221t t +=+,即t =.所以3321t t t +++1.5/45【题型3】“1”的妙用(1):乘“1”法方法总结:乘“1”法就是指凑出1,利用乘“1”后值不变这个性质,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值.主要解决形如“已知x +y =t (t 为常数),求的最值”的问题,先将再用基本不等式求最值注意:验证取得条件.5.(2023·广东广雅中学校考)若正实数a ,b 满足21a b +=,则12a b+的最小值是________【答案】9【详解】121222()(2)5529b a a b a b a b a b +=++=++≥+,当且仅当2213b a a b a b =⇒==时等号成立6.(2024·江苏南通·二模)设0x >,0y >,122y x+=,则1x y+的最小值为()A .32B.C.32D .3【答案】C【分析】由不等式“1”的代换求解即可.【详解】因为122y x+=,所以112y x+=,因为0x >,0y >,所以111111222x x y xy y y xxy ⎛⎫⎛⎫+=++=+++ ⎪⎪⎝⎭⎝⎭313332222222xy xy =++≥+=+⨯=+当且仅当12112xy xy y x⎧=⎪⎪⎨⎪+=⎪⎩,即2x y ⎧=⎪⎨⎪=⎩时取等.6/45【分析】运用“1”的代换及基本不等式即可求得结果.【详解】因为2x y xy +=,所以211x y+=,所以()214222248x y x y x y x y y x ⎛⎫+=++=+++≥+= ⎪⎝⎭,当且仅当4x y y x =,即4,2x y ==时取等号.所以2x y +的最小值为8【巩固练习2】若0,0x y >>,且25x y +=,则92x y+的最小值为.【答案】5【解析】因为0,0x y >>,且25x y +=,则2155x y+=,可得9292218213135555555x y y x x y x y x y ⎛⎫⎛⎫+=++=++≥= ⎪⎪⎝⎭⎝⎭,当且仅当18255y xx y=,即33x y ==时,等号成立,所以92x y+的最小值为5.故答案为:5.【巩固练习3】已知0x >,0y >,且122x y +=,则21x y +的最小值为.【答案】16【解析】()212182228816,y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭当且仅当82y x x y =时等号成立.即当11,48x y ==时,21x y +取得最小值为16.【题型4】“1”的妙用(2):“1”的代换方法总结:通过常数“1”的代换,把求解目标化为可以使用基本不等式求最值的式子,达到解题的目的.7/45【分析】利用基本不等式求得1aa b+的最小值.【详解】依题意1113a a b a b a a b a b a b ++=+=++≥+=.当且仅当12a b ==时等号成立.【分析】根据“1”的变形技巧化简,再运用均值不等式求解即可.【详解】由条件1x y +=可得2212()()232244x y x y y x y y x x xy x xy x y x xy+++=+=++++=++≥+.当且仅当+=13=x y y x x y ⎧⎪⎨⎪⎩,即x y ⎧⎪⎪⎨⎪⎪⎩时等号成立【巩固练习2】正实数x ,y 满足1x y +=,则11y x y++的最小值是()A .3+B .2+C .5D .112【答案】B 【分析】11y x y++中的“1”用“x y +”代替,分离常数后利用基本不等式即可求解.8/45【详解】因为正实数x ,y 满足1x y +=,所以1122y x y y x y y x x y x y x y +++++=+=++22≥+=+当且仅当1x y x +=⎧⎪⎨=⎪⎩,即21==x y 时等号成立.故11y x y ++的最小值是2+.【巩固练习3】(2024·安徽·三模)已知0,0x y >>,且21x y +=,则2y xxy+的最小值为()A .4B.C.1D.1【答案】D【分析】由21x y +=,可得221y x y xxy x y +=++,再利用基本不等式计算即可得.【详解】2122111y x y y x y y x xy x y x y x y ++=+=+=++≥+=,当且仅当2y x x y =,即1,12y x =-=-时,等号成立.【题型5】二次比一次型基本模型:)0,0(2112>>+≤++=++c a b ac xc b ax c bx ax x ,当且仅当acx =时等号成立9.已知>0,则2−r4的最小值为()A .5B .3C .−5D .−5或3【解题思路】由已知可得2−r4=+4−1.【解答过程】由>0,得2−r4=+4−1≥2−1=3,当且仅当=4,即=2时等号成立,所以2−r4的最小值为3.9/4510.函数()2322x x y x x ++=>-的最小值为.【答案】11【分析】将函数化为9252y x x =-++-,利用基本不等式求其最小值,注意取值条件即可.【详解】由2(2)5(2)992522x x y x x x -+-+==-++--,又20x ->,所以511y ≥+=,当且仅当922x x -=-,即5x =时等号成立,所以原函数的最小值为11.【巩固练习1】已知1x >-,则函数241x x y x ++=+的最小值是.【答案】3【分析】将函数化简,分离常数,然后结合基本不等式即可得到结果.【详解】因为1x >-,()()221(1)44411111x x x x y x x x x +-++++===++-+++13≥-=当且仅当()411x x +=+,即1x =时,等号成立.所以函数241x x y x ++=+的最小值是【巩固练习2】已知正数x ,y 满足23x y +=,则8xyx y+的最大值为.【答案】16【解析】∵正数x ,y 满足23x y +=,∴()()181181161121010210863333x y x y y x y xy x ⎛⎛⎫⎛⎫+=++=++≥⨯+=⨯+= ⎪⎪ ⎝⎭⎝⎭⎝.当且仅当16y xx y=,即42x y ==时取等号,则111886xy x y y x=≤++,其最大值为16.10/45【巩固练习3】已知x ,y 为正实数,且+=1,则r6r3B的最小值为()A .24B .25C .6+42D .62−3【解题思路】把r6r3B变为9+4,然后利用基本不等式中常数代换技巧求解最值即可.【解答过程】因为x ,y 为正实数,且+=1,所以r6r3B==4r9B=9+4=+=13+9+4≥13+=25,当且仅当9=4+=1即=35=25时,等号成立,所以r6r3B的最小值为25.【题型6】分离常数型方法总结:对于分子分母中含有相同单一字母时,可以考虑分离常数例1:2121124x x y x x x xxxx+=+=++=++≥(x >0)例2:()()222222212121111x x y x x x x x x x -=+=-++=+++----11.若1x >,则函数221x y x x +=+-的最小值为()A .4B .5C D .9【答案】C【解析】因为1x >,所以10x ->,所以()2142211x x y x x x x -++=+=+--()4421323711x x x x =++=-++≥=--,当且仅当()411x x -=-,即3x =时取等号,所以函数221x y x x +=+-的最小值为7;故选:C【巩固练习1】已知2x >-,0y >,23x y +=,则2272x y x y++++的最小值为()A .4B .6C .8D .10【答案】B【分析】将已知条件等式化为()227x y ++=,整体代入结合基本不等式即可得解.11/45【详解】因为2x >-,0y >,23x y +=,所以()227x y ++=,20x +>,所以()()22722222222222x y x y y x y x x y x y x y +++++=+++=++++++26≥+=,当且仅当2x y +=,即13x =,73y =时等号成立,即2272x y x y ++++的最小值为6,故选:B .【答案】[,]35【分析】将函数变形为2()24xf x x x =+++,当0x =时,()2f x =;当0x ≠时,11()24f x x x=+++,利用对勾函数的性质和不等式的性质可解.【详解】函数()222224238()24442x x x x f x x x x x x x x x ++++===++++++++,当0x =时,()2f x =;当0x ≠时,11()24f x x x=+++,根据对勾函数的性质可知:当0x >时,44x x +≥,则110451x x<≤++,所以112()5f x <£,当0x <时,44x x +≤-,则110431x x -≤<++,所以5()23f x £<,综上所述,函数22238()4x x f x x x ++=++在x ∈R 上的值域是511[,]35.【题型7】与指数对数结合的基本不等式问题方法总结:结合指数对数的计算公式变形得出积为定值或和为定值的形式,再利用基本不等式求解12.(多选)已知2102105ab ==,则下列结论正确的是()12/45【分析】由题意可知lg 2a =,b =,根据对数函数的单调性可知D错误;2101010a b ⋅=,可知A 正确;利用基本不等式可知2a b +B 正确;在根据lg 2b =>,利用不等式的性质,即可判断C 正确.【详解】由题可知lg 2a =,1lg52b ==2>,所以a b <,D 错误;因为2210101010a b a b +⋅==,有21a b +=.所以A 正确;由基本不等式得2a b +≥18ab ≤,当且仅当2a b =时,取等号;又因为lg 2a =,2lg5b =,所以2a b ≠,故18ab <,B 正确;由于lg 20a =>,lg 2b =>,所以2lg 2ab >,C 正确13.(2020·山东·高考真题)(多选)已知a >0,b >0,且a +b =1,则()A .2212a b +≥B .122a b ->C .22log log 2ab +≥-D≤【答案】ABD【分析】根据1a b +=,结合基本不等式及二次函数知识进行求解.【详解】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确;对于B ,211a b a -=->-,所以11222a b-->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭,当且仅当12a b ==时,等号成立,故C 不正确;对于D,因为2112a b =+≤++=,,当且仅当12a b ==时,等号成立,故D 正确【详解】22422a b a b +=+≥=222,a b =即11,24a b ==时等号成立13/45【巩固练习2】已知实数x y ,满足32x y +=,则3271x y z =++的最小值是________.【答案】7【解析】33271331117x y x y z =++=++≥==,当且仅当333x y =,即1x =,13y =时取等号.所以3271x y z =++的最小值为7【分析】对于A ,根据对数函数的性质分析判断,对于C ,由已知可得34log 12,log 12x y ==,从而可得111x y +=,对于D ,利用基本不等式判断,对于B ,由111x y+=,得x y xy +=分析判断.【详解】对于A ,因为3412x y ==,所以34121211log 120,log 120log 3log 4x y ==>==>,因为1212log 4log 30>>,所以121211log 3log 4>,所以x y >,所以A 正确;对于C ,由3412x y ==,得34log 12,log 12x y ==,所以121212341111log 3log4log 121log 12log 12x y +=+=+==,所以C 错误;对于D ,因为0x y >>,所以111x y=+>,得4xy >,所以D 正确;对于B ,因为111x y+=,所以4x y xy +=>,所以B 错误.【题型8】利用对勾函数当无法取等时需要结合对勾函数图像,利用单调性来得出最值14/4514.当2x ≥时,42x x ++的最小值为.【答案】3【分析】根据对勾函数的单调性求最值.【详解】设2x t +=,则4422x t x t+=+-+,又由2x ≥得4t ≥,而函数42y t t=+-在[)4,+∞上是增函数,因此4t =时,y 取得最小值44234+-=15.已知函数()|lg |f x x =.若0a b <<,且()()f a f b =,则4a b +的取值范围是()A .(4,)+∞B .[4,)+∞C .(5,)+∞D .[5,)+∞【答案】C【分析】根据函数图象得lg lg a b -=,则1b a=,令1()44g b a b b b =+=+,利用对勾函数的图象与性质即可求出其范围.【详解】由()()f a f b =得|lg ||lg |a b =.根据函数|lg |y x =的图象及0a b <<,则lg lg a b -=,即lg 1ab =,可得01a b <<<,1b a=,令1()44g b a b b b=+=+,根据对勾函数可得()g b 在(1,)+∞上单调递增,则()(1)5g b g >=.所以4a b +的取值范围是(5,)+∞【巩固练习1】函数y =x +51x +(x ≥2)取得最小值时的x 值为.【答案】2【分析】令x +1=t (t ≥3),则有()f t =t +5t-1在[3,+∞)上单调递增,当t =3时,即可求解.【详解】依题意,y =x +51x +=x +1+51x +-1(x ≥2),15/45设x +1=t (t ≥3).因为f (t )=t +5t-1在[3,+∞)上单调递增,所以当t =3,即x =2时,y =x +51x +(x ≥2)取得最小值.【巩固练习2】已知函数()lg 2f x x =+,若实数,a b 满足0b a >>,且()()f a f b =,则2a b+的取值范围是_______.【答案】(3,+∞)【分析】易知()lg 2lg 2lg lg 11a b a b ab a +=+⇒=⇒=,<22a b a a+=+≥()22=a b a a ++∈+∞3,【巩固练习3】若对任意[]1,2x ∈,()2110mx m x -+-≤恒成立,求实数m 的取值范围法一:对勾函数参变分离后结合对勾函数性质当1x =时,20-<,成立;当(]1,2x ∈时,由题可得21x m x x+≤-对任意(]1,2x ∈恒成立,令21x y x x+=-,则有min m y ≤,(]1,2x ∈,()()21121312131x y x x x x +==+-++++-+,令211t x x =+++,(]12,3x +∈,根据对勾函数的性质可得113,3t ⎛⎤∈ ⎥⎝⎦,所以13,32y t ⎡⎫=∈+∞⎪⎢-⎣⎭,所以当2x =时,min 32y =,故实数m 的取值范围为3,2⎛⎤-∞ ⎥⎝⎦;法二:分类讨论令()()211f x mx m x =-+-,①当0m =时,()1f x x =--,对任意[]1,2x ∈,()()120f x f ≤=-<恒成立;16/45②当0m >时,函数()f x 图象开口向上,若对任意[]1,2x ∈,()0f x ≤恒成立,只需()()1020f f ⎧≤⎪⎨≤⎪⎩,解得32m ≤,故当302m <≤时,对任意[]1,2x ∈,()0f x ≤恒成立;③当0m <时,对任意[]1,2x ∈,10x -≥,10mx -<,()()()11220f x mx x =---≤-<恒成立;综上可知,实数m 的取值范围为3,2⎛⎤-∞ ⎥⎝⎦.【题型9】判断不等式是否能成立(1)基本不等式的前提是“一正”“二定”“三相等”;其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)连续使用不等式要注意取得一致.【分析】根据基本不等式求解最值判断ABC ,根据复合函数最值求法求解判断D .【详解】对于A ,114x y x =++,当4x =-时,104y =-<,不符合要求,错误;对于B,2y ==时取等号,=得241x +=显然不成立,所以等号取不到,即y 的最小值不是2,错误;对于C ,因为01x <<,所以10x ->,211111112212(1)212y x x x x ⎛⎫=+=⋅≥⋅= ⎪--⎝⎭⎛⎫ ⎪⎝⎭,17/45当且仅当12x =时取等号,最小值是2,正确;对于D,y =22x -≤≤,0y ≥,则2224y x x =-+++=+,当240x -=即2x =或2-时,2y 有最小值4,即y 有最小值2,故D 正确.【巩固练习1】下列不等式证明过程正确的是()A .若,R a b ∈,则2b a a b +≥=B .若x >0,y >0,则lg lg x y +≥C .若x <0,则4x x+4≥-=-D .若x <0,则222x x -+>=【答案】D【解析】∵,b a a b 可能为负数,如1b aa b ==-时,2b a a b+=-,∴A 错误;∵lg ,lg x y 可能为负数,如lg lg 1x y ==-时,lg lg 2,2x y +=-=,∴B 错误;∵40,0x x <<,如441,x x =-=-时,544x x+=-<-,∴C 错误;∵0x <,2(0,1)x ∈,21x ->,∴222x x -+>=,当且仅当22-=x x ,即0x =等号成立,∴D 正确.【分析】利用不等式的性质和均值不等式,以及对勾函数的单调性求最值,并根据全称命题与特称命题的真假判断,即可选出真命题.【详解】解:对于A ,()22212110x x x x x x -≥-⇒-+=-≥ 恒成立,则x ∀∈R ,都有21x x x -≥-,A 选项正确;对于B ,当(1,)x ∈+∞时,1(0,)x -∈+∞,18/4544111511x x x x ∴+=-++≥=--(当且仅当3x =时取等号),4[5,)1x x ∴+∈+∞-,(1,)x ∴∃∈+∞,使得461x x +=-,B 选项正确;对于C ,当0a b <<时,0b aa b+<,C 选项错误;对于D ,当(2,)x ∈+∞)+∞,令)t =+∞,4y t t=+在)+∞上单调递增,44t t ∴+>,4,D 选项错误【分析】利用基本不等式求最值判断ABD ,结合二次函数的性质判断C .【详解】12x <时,120x ->.112212xx -+≥=-,当且仅当11212x x -=-,即=0x 时等号成立,所以11212x x -+-的最小值是2,即1212x x-+-的最小值是1,从而1221x x +-的最大值是1-,A 正确;2y ==+≥1=1=无实数解,因此等号不能取得,2不是最小值,B 错;1[,2]2x ∈时,11[,2]2x ∈,y ===,因为1122x ≤≤,所以112x =时,y =,12x=时,y =,19/45154x =时,4y ==.所以值域是4,C 正确;0x >,0y >且2x y +=,13x y ++=,31x y x ++23333311111y y x y x y x-=+=-+=+-+++,则33111(1)()224111x y x y y x y x y x ++=+++=++≥+=+++,当且仅当11x y y x +=+,即1x y =+时等号成立,所以31x y x++的最小值是4-1=3,D 正确.【题型10】换元法(整体思想)对于两个分式的最值问题可以考虑整体法或换元法配凑整体配凑法原理是把目标当作一个整体,然后利用基本不等式求最值.单分母换元:当2个分母的和为定值,可以把其中一个分母进行换元双分母换元:当2个分母均为字母加减常数时,可以把2个分母都换元17.(单分母换元)已知20<<a ,则aa 21421-+的最小值是________A .6B .8C .4D .9【解题思路】可以设12b a =-,则有21a b +=,求142a b+的最小值,用乘“1”法即可【答案】9【解答过程】解:设12b a =-,则有21a b +=,()91414252122a b a a a b ⎛⎫+=++≥+= ⎪-⎝⎭当且仅当1−22=81−2,即a =16时取等号,所以12+41−2的最小值是9.18.(双分母换元)已知正数b a ,满足2=+b a ,则141+++b ba a 的最大值是()A .29B .411C .1D .3720/45【解题思路】设1,1x a y b =+=+,则有4x y +=,求144145x y x y x y ⎛⎫--+=-+ ⎪⎝⎭最小值,结合乘1法即可【解答过程】解:+1+4+1=1−1+1+4−4+1=5﹣(1+1+4+1),∵a +b =2,∴a +1+b +1=4,1+1+4+1=14(1+1+4+1)(a +1+b +1)=14(1+4++1+1+4(+1)+1),+1+1+4(+1)+1≥24=4(当且仅当+1+1=4(+1)+1,即a =13,b =53时,等号成立),故14(1+4++1+1+4(+1)+1)≥14×9,即1+1+4+1≥94,故+1+4+1=5﹣(1+1+4+1)≤11419.已知x ,y 为正实数,则162y x x x y++的最小值为()A .6B .5C .4D .3【答案】A【分析】x ,y 为正实数,利用基本不等式求162y x x x y++的最小值.【详解】x ,y 为正实数,则2161622622yx y xx x x yx x y ++=+-≥=++,当且仅当2162x y xx x y+=+,即2y x =时等号成立.最小值为6【巩固练习1】已知1a b c ++=,其中a ,b ,0c >,则19a b c++的最小值为.【答案】16【解析】因为1a b c ++=,,,0a b c >,则19199[()]()10b c a a b c a b c a b c a b c ++=+++=+++++1016≥+=,当且仅当9b c a a b c +=+,即13,44a b c =+=时取等号,所以19a b c++的最小值为16【巩固练习2】已知实数0,2a b >>,且121123a b +=+-,则2a b +的最小值是.【答案】24【解析】因为0,2a b >>,且121123a b +=+-,所以36112a b +=+-,所以()()()()32121362212661212b a a b a b a b a b -+⎡⎤⎡⎤+=++-+=+++⎣⎦⎢⎥+-+-⎣⎦1224≥+=,当且仅当()()3212112b a a b -+=+-,即22(1)b a -=+,5,14a b ==时等号成立【分析】令2,,(0,0)c m c n m n -==>>,则2m n +=,由此可将4a b a b c +++变形为421m n+-,结合基本不等式,即可求得答案。
高考数学中的方程不等式解法总结
高考数学中的方程不等式解法总结高考数学往往是让许多中学生感到头疼的难题,其难点之一便是方程和不等式。
方程和不等式是数学中最基本的概念,也是数学中最常用的两种方法之一。
因为它们在数学中的应用非常广泛,所以高考数学中方程和不等式的考查也非常重要。
本文将对高考数学中的方程不等式解法进行总结。
一、方程解法1. 分离变量法分离变量法是一种较为基础的方程求解方法,该方法只适用于对于有一些特殊形式的方程.例题:求解方程 $y'= \frac{2x}{y}$解析:将方程变形为 $\frac{dy}{dx} = \frac{y}{2x}$ ,两边同时乘以 $dx$ ,得到 $ydy = \frac{1}{2}xdx$,进行积分,得到$\frac{1}{2}y^2 = \frac{1}{4}x^2 + C$ 。
再带入初始条件即可求出常数 $C$ .2. 思维转换法这种方法适用于使用较为复杂的方程,通过将难解的方程变为可以求解的形式.例题:求解方程 $\sin x = x^2-2x$解析:利用思维转换法,左右两边同时加上 $1-x$,化简为$\sin x + 1 - x = x^2-x+1$,然后再将左右两边取平方,得到 $(\sin x+1-x)^2 = (x^2-x+1)^2 $。
经过化简,我们可以得到一个较为容易求解的二次方程。
3. 因式分解法针对某些特定形式的方程,我们可以使用因式分解的方法解决.例题:求解方程 $x^2+(a+b)x+ab=0$,其中 $a,b \in \rm{R.}$解析:将该二次方程进行因式分解,得到 $(x+a)(x+b)=0$,解得 $x=-a$ 或 $x=-b$.二、不等式解法1. 分类讨论法分类讨论法是不等式解题的基本方法,通过对不等式的不同情况进行分类,以及比较大小情况,来得出不等式的解.例题:已知 $x,y \in \rm{R}$ ,求 $x^2+y^2 \leq 1$ 的解.解析:首先,将 $x^2+y^2 \leq 1$ 转化为标准形式,得到$x^2+y^2 - 1 \leq 0$。
数学不等式题解题技巧和突破方法
数学不等式题解题技巧和突破方法数学不等式题在高中数学中占有重要地位,也是考试中常见的题型之一。
解不等式题需要一定的技巧和方法,下面将介绍一些常见的解题技巧和突破方法。
1. 分类讨论法不等式题中常常需要对不同情况进行分类讨论,以找到合适的解题方法。
例如,当不等式中存在绝对值时,可以将其分为正数和负数两种情况进行讨论。
又如,当不等式中有分式时,可以根据分子分母的正负性进行分类讨论。
通过分类讨论,可以将复杂的不等式转化为简单的情况进行求解。
2. 套路法解不等式题时,有一些常见的套路可以帮助我们快速解题。
例如,对于形如a^2 - b^2 > 0的不等式,可以将其因式分解为(a+b)(a-b)>0,并根据乘积为正的性质得到解集。
又如,对于形如a^2 + b^2 > 0的不等式,可以直接得到解集为全体实数。
掌握这些套路可以极大地提高解题效率。
3. 变量替换法有时候,通过合适的变量替换可以简化不等式的形式,从而更容易求解。
例如,当不等式中存在平方根时,可以通过令变量等于平方根的形式,将其转化为简单的二次不等式。
又如,当不等式中存在分式时,可以通过变量替换将其转化为一次不等式。
变量替换的关键是找到合适的变量,使得不等式的形式更简单。
4. 递推法有些不等式题目可以通过递推的方式求解。
递推法的关键是找到递推关系式,通过递推关系式将问题化简为简单的情况。
例如,对于形如a^n - b^n > 0的不等式,可以通过递推关系式(a-b)(a^(n-1) + a^(n-2)b + ... + ab^(n-2) + b^(n-1))>0得到解集。
递推法可以帮助我们快速求解复杂的不等式题目。
5. 反证法有些不等式题目可以通过反证法求解。
反证法的关键是假设不等式不成立,然后推导出矛盾的结论。
通过反证法可以排除一些不可能的情况,从而找到合适的解集。
例如,对于形如a^2 + b^2 >= 2ab的不等式,可以假设a^2 + b^2 < 2ab,然后推导出矛盾的结论,从而得出a^2 + b^2 >= 2ab的结论。
高考数学中的解不等式题技巧
高考数学中的解不等式题技巧高中数学中的解不等式是一个常见、重要而又复杂的话题,这也是每年高考必考的内容之一。
为了在高考中拿到更高的数学成绩,解不等式题的优秀技巧和方法就是必不可少的。
本文将为大家详细介绍高考数学中的解不等式题技巧。
一、确定不等式类型解不等式首先要确定不等式的类型,例如一次不等式、二次不等式以及一次不等式与二次不等式混合形式。
不同类型的不等式可能需要不同的解题方法和工具,所以正确地区分不同类型的不等式是解题的第一要素。
二、移项变号不等式中的每项都可以加上或减去相同的数,也可以乘以或除以相同的数,但是要注意判断是不是乘以负数。
在移项变号的过程中,必须保证不等式的方向不变,因为在不等式两侧同时加上一个正数,不等式转化成一个更大的不等式,而在不等式两侧同时加上一个负数,不等式转化成一个更小的不等式。
三、化简如果一个不等式的系数较复杂或有分数,可以通过合并同类项、约分、通分等等化简的方式,使其变得更简单明了,从而更方便地应用解不等式的技巧。
四、双边平方在处理二次不等式时,我们可以使用“双边平方”的方式将其化简成一次不等式,并继续应用一次不等式的解题方法。
不过,需要注意的是,双边平方的过程会使原不等式一些根号项的变化,并且有时会引入不合法解。
因此,在解二次不等式时,需要先判断根号里面的内容的正负,再进行双边平方,确定解的范围,并得出正确的解。
五、裂项在解不等式时,有时我们发现一个不等式的系数和项数都很复杂,难以应用一般的解题方法,这时候可以尝试使用“裂项”的方法,将不等式分解成几个部分,然后分别处理每个部分,最后得到整个不等式的解。
裂项方法的使用需要观察不等式的因式分解式,找到化简的方法,并找出合理的间隔点以及分段条件。
六、代入对于较复杂的不等式,我们可以先猜测一个解,然后代入验证是否成立,从而快速或全面地解出不等式的解。
这种方法的优点是简单易行,而且针对某些形式的不等式,代入还可以直接得到答案,缩短解题时间。
高考数学如何解决复杂的不等式题目
高考数学如何解决复杂的不等式题目不等式是高考数学中一个重要的考点,也是考生们容易遇到困惑的难题。
通过掌握一定的解题思路和技巧,我们可以有效地解决复杂的不等式题目。
本文将介绍一些解决不等式题目的方法和策略,帮助考生们应对高考中的挑战。
一、一元一次不等式的解法一元一次不等式是最简单的不等式形式,其解法与一元一次方程相似。
我们可以通过移项和化简的方式来求解。
首先,将所有的项都移到同一边,得到一个等式。
然后我们可以根据系数的正负以及零的位置来判断解集的情况,最后得到不等式的解。
二、二次不等式的解法二次不等式的解法相对复杂一些,需要通过因式分解或配方法等方式来求解。
在解二次不等式时,我们首先要将其转化为一个二次方程,然后再找到方程的解集。
我们可以通过以下两种方法来解二次不等式:1. 因式分解法:将二次不等式化为一个二次方程,通过因式分解将其展开为二个一次因式相乘的形式,然后根据因式的正负来确定解的范围。
2. 配方法:对于一般的二次不等式,我们可以通过配方法将其转化为完全平方的形式。
通过将方程配成完全平方后,我们可以通过解方程的方式来求解不等式。
三、绝对值不等式的解法绝对值不等式是一种特殊的不等式形式,在解法上需要注意绝对值的性质。
对于一元绝对值不等式,我们可以根据绝对值的定义将其分为两种情况来解决:1. 绝对值的定义:|a| = a (a≥0); |a| = -a (a<0)。
2. 情况一:如果不等式中的绝对值对应的是一个非负数,我们可以直接去掉绝对值符号,根据非负数的性质来解不等式。
3. 情况二:如果不等式中的绝对值对应的是一个负数,我们需要将绝对值转化为相反数的形式,然后在解不等式。
四、多元不等式的解法多元不等式是由多个变量构成的不等式,其解法要考虑多个变量之间的关系。
在解多元不等式时,我们可以通过以下步骤来进行:1. 将所有的项移到同一边,化简成一个等式。
2. 利用一元不等式的解法,将多元不等式转化为一元不等式。
高考数学如何解决复杂的不等式问题
高考数学如何解决复杂的不等式问题高考数学中,不等式问题一直是考试中的难点之一。
解决复杂的不等式问题需要灵活运用不等式的性质以及各种解不等式的方法。
本文将介绍解决复杂不等式问题的一些有效方法与技巧,帮助考生在高考数学中更好地应对不等式题目。
一、一元一次不等式一元一次不等式是最简单的不等式问题,形式一般为ax+b>0或ax+b<0。
解决一元一次不等式问题,可以通过下面的步骤进行:1. 化简不等式:将一元一次不等式化简为标准形式。
即将不等式左右两边移项,使得系数为正或负。
2. 约束条件:根据不等式中的约束条件,判断解的范围。
3. 解不等式:根据一元一次不等式的性质,得到不等式的解集。
二、一元二次不等式一元二次不等式是高考数学中常见的复杂不等式类型之一。
一元二次不等式的解决方法一般分为以下几种情况:1. 利用一元二次不等式的图像解题:将一元二次不等式转化为图像,通过观察图像的形状来确定解的范围和解集。
2. 利用配方法解题:对一元二次不等式进行配方法,将其化为平方形式,并利用平方的性质来解决不等式。
3. 利用根的性质解题:对一元二次不等式利用根的性质来解题。
即求出一元二次不等式的根,并根据根的位置来判断解的范围。
三、绝对值不等式绝对值不等式是数学中常见的不等式类型之一。
解决绝对值不等式问题,可以按照以下步骤进行:1. 分情况讨论:将绝对值不等式进行分情况讨论,根据绝对值的定义来确定绝对值的取值范围。
2. 解不等式:将不等式的绝对值表达式划分为两个部分,分别求解,得到不等式的解。
四、常见的不等式定理与性质在解决复杂不等式问题时,常常需要用到一些不等式定理与性质。
以下是一些常见的不等式定理与性质:1. 线性不等式性质:对于线性不等式,若两边同乘(除)一个正数,则不等号方向不变;若两边同乘(除)一个负数,则不等号方向反向。
2. 开方不等式性质:对于开方不等式,若两边平方,则不等号方向不变。
3. 加减不等式性质:对于加减不等式,若右边加(减)一个数,则不等号方向不变。
高考数学难点突破难点(三角形中的三角函数式-不等式的证明策略)
4
1 cos
cos B ,
2 2.
2 cos2 3
4
整理得 4 2 cos2α+2cosα-3 2 =0(M)
(2cosα- 2 )(2 2 cosα+3)=0,∵2 2 cosα+3≠0,
AC 2
∴2cosα- 2 =0.从而得 cos
.
22
解法二:由题设条件知 B=60°,A+C=120°
7.解:由 a、b、3c 成等比数列,得:b2=3ac
∴sin2B=3sinC·sinA=3(- 1 )[cos(A+C)-cos(A-C)] 2
∵B=π-(A+C).∴sin2(A+C)=- 3 [cos(A+C)-cos ]
2
2
即 1-cos2(A+C)=- 3 cos(A+C),解得 cos(A+C)=- 1 .
∠APB=180°-∠ABP-∠BAP=120°-θ,
●歼灭难点训练
一、选择题
1.(★★★★★)给出四个命题:(1)若 sin2A=sin2B,则△ABC 为等腰三角形;(2)若 sinA=cosB,则△ABC 为直角三角形;(3)若 sin2A+sin2B+sin2C<2,则△ABC 为钝角三角形;
(4)若 cos(A-B)cos(B-C)cos(C-A)=1,则△ABC 为正三角形.以上正确命题的个数是( )
三、解答题
4.(★★★★)已知圆内接四边形 ABCD 的边长分别为 AB=2,BC=6,CD=DA=4,求四边
形 ABCD 的面积.
5.(★★★★★)如右图,在半径为 R 的圆桌的正中央上空挂一盏电灯,
高考数学技巧解决不等式的简便方法
高考数学技巧解决不等式的简便方法不等式在高考数学中占据重要地位,掌握解决不等式问题的技巧对于学生们来说至关重要。
本文将介绍几种简便的方法,帮助高中生们更加有效地解决不等式题目。
方法一:零点法对于一元一次不等式,使用零点法是相对简便的方法。
假设不等式为f(x)>0,我们可以先求出f(x)的零点,然后根据零点的位置判断不等式的解集。
举例来说,如果我们有不等式2x+3>0,首先求出方程2x+3=0的解x=-1.5,可以得到方程的解集为x>-1.5。
方法二:区间判断法区间判断法适用于一元二次不等式。
我们可以先将一元二次不等式化为二次函数的形式,然后通过判断二次函数的取值范围来确定不等式的解集。
举例来说,如果我们有不等式x^2-4x+3<0,我们可以将该不等式化简为(x-1)(x-3)<0。
然后我们绘制出二次函数y=(x-1)(x-3)的图像,通过观察图像在x轴的上方还是下方来确定不等式的解集。
方法三:增减法增减法适用于一些特殊的不等式,例如当不等式中存在绝对值,或者不等式左右两侧都是函数时,可以使用增减法来解决问题。
举例来说,如果我们有不等式|3x-1|<2,我们可以根据绝对值的性质将该不等式化简为-2<3x-1<2。
然后我们可以根据不等式的形式来进行分析,得到解集-1<x<1。
方法四:因式分解法对于一些复杂的不等式,通过因式分解可以将不等式化为简单的形式,从而更方便地求解。
举例来说,如果我们有不等式x^3+x^2+x<0,我们可以对该不等式进行因式分解,得到x(x+1)(x+1)<0。
然后我们可以根据不等式的性质来确定解集。
方法五:数轴法数轴法是解决不等式问题常用的方法之一。
通过绘制数轴,将不等式中的关键点标出,并根据关键点的位置来确定解集。
举例来说,如果我们有不等式2x^2-3x-2>0,我们可以先求出方程2x^2-3x-2=0的解x=-1和x=2,然后在数轴上标出这两个点。
2021年高考数学重难点复习:破解函数不等式
2021年高考数学重难点复习妙解函数不等式一.方法综述对于仅利用函数的奇偶性、单调性即可求解的不等式问题,师生已有应对的良好方法,重在应用转化与化归思想,转化成解答具体不等式或不等式组问题.在近几年的高考试题中,出现了一类抽象函数、导数、不等式交汇的重要题型,这类问题由于涉及抽象函数,很多学生解题时,突破不了由抽象而造成的解题障碍,不能从容应对不等式的求解问题.实际上,根据所给不等式,联想导数的运算法则,构造适当的辅助函数,然后利用导数判断其单调性是解决此类问题的通法.常见的构造函数方法有如下几种:(1)利用和、差函数求导法则构造函数①对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x);②对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x);特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx .(2)利用积、商函数求导法则构造函数①对于不等式f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x);②对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数()()()()()0f x F x g x g x ≠=. (3)利用积、商函数求导法则的特殊情况构造函数①对于不等式'()xf x +f(x)>0(或<0),构造函数F(x)=()xf x ;②对于不等式'()xf x -f(x)>0(或<0),构造函数()()()0f x F x x x ≠=; ③对于不等式'()xf x +()nf x >0(或<0),构造函数F(x)=()n x f x ;④对于不等式'()xf x -()nf x >0(或<0),构造函数()()()0n f x F x x x ≠=; ⑤对于不等式f′(x)+f(x)>0(或<0),构造函数F(x)=()x e f x ;⑥对于不等式f′(x)-f(x)>0(或<0),构造函数()()xf x F x e =; ⑦对于不等式f(x)+f′(x)tan x>0(或<0),构造函数F(x)=sin ()xf x ;⑧对于不等式f(x)-f′(x)tan x>0(或<0),构造函数()()()sin 0sin f x F x x x≠=; ⑨对于不等式f′(x)-f(x)tan x>0(或<0),构造函数F(x)=cos ()xf x ; ⑩对于不等式f′(x)+f(x)tan x>0(或<0),构造函数()()()cos 0cos f x F x x x≠=. ⑪(理)对于不等式f′(x)+()kf x >0(或<0),构造函数F(x)=()kx e f x ;⑫(理)对于不等式f′(x)-()kf x >0(或<0),构造函数()()kx f x F x e=; 二.解题策略类型一 构造具体函数求解【例1】【2020届河北冀州中学期中】已知函数()f x 是定义在R 上的可导函数,对于任意的实数x ,都有2()()x f x e f x -=,当0x <时()()0f x f x '+>,若(21)(1)a e f a f a ++…,则实数a 的取值范围是( ) A .[0,2]3 B .2[,0]3- C .[0,)+∞ D .(-∞,0]【答案】B【解析】Q 2()()x f x e f x -=,∴()()()x x xf x e f x e f x e --==-, 令()()xg x e f x =,则()()g x g x -=,当0x <时()()0f x f x '+>,∴()[()()]0x g x e f x f x '''=+>,即函数()g x 在(,0)-∞上单调递增,∴()g x 在(0,)+∞上单调递减, (21)(1)a e f a f a ++Q …,211(21)(1)a a e f a e f a ++∴++…,(21)(1)g a g a ∴++…,|21||1|a a ++„, 解可得,203a -剟,故选B . 【指点迷津】对于与函数有关的不等式的求解问题:通常是代入函数的解析式,直接求解不等式的解集,若不等式不易解或不可解,则将问题转化为构造新函数,利用新函数的性质——单调性与奇偶性等,结合函数的图象求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.对于复合函数问题,先换元,再构造函数,是常用的方法.。
高考数学如何快速解决复杂的不等式问题
高考数学如何快速解决复杂的不等式问题不等式问题在高考数学中占据重要的位置,解决复杂的不等式问题需要灵活运用相关的数学知识和技巧。
本文将介绍一些方法和策略,帮助同学们快速解决复杂的不等式问题。
一、一元一次不等式一元一次不等式是最简单的不等式问题之一,其解的思路与方程类似。
首先,将不等式中的常数项移项,使得不等式变为等式,并写出其解集;然后,根据不等号的性质确定解集的范围。
例如,对于不等式2x+3>5,可以将常数项移项得到2x>2,然后除以2得到x>1,即解集为(1,+∞)。
二、一元二次不等式一元二次不等式在高考数学中出现频率较高,解决这类不等式问题可以使用图像法、开口方向法和根判别法等方法。
1. 图像法:将一元二次不等式转化为一元二次方程,并绘制出关于x的二次函数图像。
通过观察函数图像与x轴的位置关系,确定不等式的解集。
例如,对于不等式x^2-4x+3<0,可以将其转化为方程x^2-4x+3=0,求得方程的根x=1和x=3,在图像上标出这两个根,并观察函数图像在根之间的部分与x轴的位置关系,确定解集为(1,3)。
2. 开口方向法:将一元二次不等式转化为标准形式,并确定开口的方向。
例如,对于不等式2x^2+5x+3>0,可以通过求解方程2x^2+5x+3=0,得到方程的根x=-1和x=-3/2,再观察二次曲线的开口方向,确定解集为(-∞,-3/2)∪(-1,+∞)。
3. 根判别法:对于一元二次不等式ax^2+bx+c(a>0),通过求解方程ax^2+bx+c=0,得到方程的两个根x1和x2。
根据二次函数的凹凸性,确定解集的范围。
例如,对于不等式x^2+6x+9>0,方程的根为x=-3,因为a=1>0,所以二次曲线开口向上,根据函数图像与x轴的关系,确定解集为(-∞,-3)∪(-3,+∞)。
三、绝对值不等式绝对值不等式是高考数学中常见的一类问题,可以通过分情况讨论的方法求解。
高考不等式专题-讲解
解:
的解集是{x| -7<x 3}
变式3:解不等式
解:
注:如果知道分母的正负,则可以去分母,化分式不等式为整式不等式。
(五).解高次不等式(可分解的)
1.解高次不等式的步骤:
(1)因式分解
(2)未知数系数化正
(3)穿根(从右上角开始,奇穿偶回)
2.穿根法使用步骤:
①将不等式化为 形式,并将各因式x的系数化“+”;
化分式不等式为标准型:方法:移项,通分,右边化为0,左边化为 的形式
将分式不等式进行形如以下四类的等价变形:
(1)
(2)
(3)
(4)
3.例题讲解:解不等式: .
解法1:化为两个不等式组来解:
∵ x∈φ或 ,
∴原不等式的解集是 .
解法2:化为二次不等式来解:
∵ ,∴原不等式的解集是
点评:提倡用解法2,避免分类讨论,提高解题速率。
(答: );
(2)已知 ,且 则 的取值范围是______
(答: )
(二)解一元一次不等式(组)
1.一元一次不等式
1.1定义:只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式.
注:一元一次不等式的一般形式是ax+b>O或ax+b<O(a≠O,步骤
说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.
2. 2一元一次不等式组的解集:一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.
高考数学难点突破_难点08__奇偶性与单调性(二)
难点8 奇偶性与单调性(二)函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识.●难点磁场(★★★★★)已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f [log 2(x 2+5x +4)]≥0.●案例探究 [例1]已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值. 命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目.知识依托:主要依据函数的性质去解决问题.错解分析:题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.技巧与方法:借助奇偶性脱去“f ”号,转化为x cos 不等式,利用数形结合进行集合运算和求最值.解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得且x ≠0,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数, ∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, ∴B =A ∪{x |1≤x ≤5}={x |1≤x <6},又g (x )=-3x 2+3x -4=-3(x -21)2-413知:g (x )在B 上为减函数,∴g (x )max =g (1)=-4.[例2]已知奇函数f (x )的定义域为R ,且f (x )在[0,+∞)上是增函数,是否存在实数m ,使f (cos2θ-3)+f (4m -2m cos θ)>f (0)对所有θ∈[0,2π]都成立?若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由.命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属★★★★★题目.知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题.错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法.技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题.解:∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数.于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ),即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0.设t =cos θ,则问题等价地转化为函数g (t )=t 2-mt +2m -2=(t -2m )2-42m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正.∴当2m<0,即m <0时,g (0)=2m -2>0⇒m >1与m <0不符; 当0≤2m≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0⇒4-22<m <4+22,∴4-22<m ≤2.当2m>1,即m >2时,g (1)=m -1>0⇒m >1.∴m >2 综上,符合题目要求的m 的值存在,其取值范围是m >4-22.●锦囊妙计本难点所涉及的问题以及解决的方法主要有:(1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.(2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题.●歼灭难点训练 一、选择题1.(★★★★)设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于( )A.0.5B.-0.5C.1.5D.-1.52.(★★★★)已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0,则a 的取值范围是( )A.(22,3)B.(3,10)C.(22,4)D.(-2,3)二、填空题3.(★★★★)若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________.4.(★★★★)如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),试比较f (31),f (32),f (1)的大小关系_________. 三、解答题5.(★★★★★)已知f (x )是偶函数而且在(0,+∞)上是减函数,判断f (x )在(-∞,0)上的增减性并加以证明.6.(★★★★)已知f (x )=xx a 2112+-⋅ (a ∈R )是R 上的奇函数,(1)求a 的值;(2)求f (x )的反函数f -1(x );(3)对任意给定的k ∈R +,解不等式f -1(x )>lgkx+1. 7.(★★★★)定义在(-∞,4]上的减函数f (x )满足f (m -sin x )≤f (m 21+-47+cos 2x )对任意x ∈R 都成立,求实数m 的取值范围.8.(★★★★★)已知函数y =f (x )=c bx ax ++12 (a ,b ,c ∈R ,a >0,b >0)是奇函数,当x >0时,f (x )有最小值2,其中b ∈N 且f (1)<25.(1)试求函数f (x )的解析式;(2)问函数f (x )图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.参考答案难点磁场解:∵f (2)=0,∴原不等式可化为f [log 2(x 2+5x +4)]≥f (2). 又∵f (x )为偶函数,且f (x )在(0,+∞)上为增函数, ∴f (x )在(-∞,0)上为减函数且f (-2)=f (2)=0 ∴不等式可化为log 2(x 2+5x +4)≥2 ① 或log 2(x 2+5x +4)≤-2 ② 由①得x 2+5x +4≥4 ∴x ≤-5或x ≥0 ③由②得0<x 2+5x +4≤41得2105--≤x <-4或-1<x ≤2105+-④由③④得原不等式的解集为{x |x ≤-5或2105--≤x ≤-4或-1<x ≤2105+-或x ≥0} 歼灭难点训练一、1.解析:f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)=-f (1.5)=-f (-0.5+2)= f (-0.5)=-f (0.5)=-0.5.答案:B2.解析:∵f (x )是定义在(-1,1)上的奇函数又是减函数,且f (a -3)+f (9-a 2)<0. ∴f (a -3)<f (a 2-9).∴⎪⎩⎪⎨⎧->-<-<-<-<-9319113122a a a a ∴a ∈(22,3). 答案:A二、3.解析:由题意可知:xf (x )<0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或∴x ∈(-3,0)∪(0,3)答案:(-3,0)∪(0,3) 4.解析:∵f (x )为R 上的奇函数 ∴f (31)=-f (-31),f (32)=-f (-32),f (1)=-f (-1),又f (x )在(-1,0)上是增函数且-31> -32>-1. ∴f (-31)>f (-32)>f (-1),∴f (31)<f (32)<f (1). 答案:f (31)<f (32)<f (1)三、5.解:函数f (x )在(-∞,0)上是增函数,设x 1<x 2<0,因为f (x )是偶函数,所以 f (-x 1)=f (x 1),f (-x 2)=f (x 2),由假设可知-x 1>-x 2>0,又已知f (x )在(0,+∞)上是减函数,于是有f (-x 1)<f (-x 2),即f (x 1)<f (x 2),由此可知,函数f (x )在(-∞,0)上是增函数.6.解:(1)a =1.(2)f (x )=1212+-x x (x ∈R )⇒f --1(x )=log 2xx -+11 (-1<x <1).(3)由log 2xx-+11>log 2k x +1⇒log 2(1-x )<log 2k ,∴当0<k <2时,不等式解集为{x |1-k <x <1};当k ≥2时,不等式解集为{x |-1<x <1}.7.解:⎪⎩⎪⎨⎧++-≥++-≤-⎪⎪⎪⎩⎪⎪⎪⎨⎧+-+≥-≤+-+≤-1sin sin 4721sin 4 cos 4721sin 4cos 47214sin 222x x m m x m x m x m x m x m 即,对x ∈R 恒成立,⎪⎩⎪⎨⎧=≥≤∴21233m m m 或∴m ∈[23,3]∪{21}. 8.解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即c bx c bx c bx ax c bx ax -=+⇒+-+-=++1122∴c =0,∵a >0,b >0,x >0,∴f (x )=bx x b a bx ax 112+=+≥22b a ,当且仅当x =a 1时等号成立,于是22b a =2,∴a =b 2,由f (1)<25得b a 1+<25即b b 12+<25,∴2b2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴f (x )=x +x1. (2)设存在一点(x 0,y 0)在y =f (x )的图象上,并且关于(1,0)的对称点(2-x 0,-y 0)也在y =f (x )图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1y xx y x x消去y 0得x 02-2x 0-1=0,x 0=1±2.∴y =f (x )图象上存在两点(1+2,22),(1-2,-22)关于(1,0)对称.Von Neumann 说过:In mathematics you don't understand things .You just get used to them.掌握了课本,一般的数学题就都可以做了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点19 解不等式不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式.●难点磁场(★★★★)解关于x 的不等式2)1(--x x a >1(a ≠1). ●案例探究[例1]已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[-1,1],m +n ≠0时nm n f m f ++)()(>0.(1)用定义证明f (x )在[-1,1]上是增函数;(2)解不等式:f (x +21)<f (11-x );(3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围.命题意图:本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力,属★★★★★级题目.知识依托:本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用.错解分析:(2)问中利用单调性转化为不等式时,x +21∈[-1,1],11-x ∈[-1,1]必不可少,这恰好是容易忽略的地方.技巧与方法:(1)问单调性的证明,利用奇偶性灵活变通使用已知条件不等式是关键,(3)问利用单调性把f (x )转化成“1”是点睛之笔.(1)证明:任取x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=2121)()(x x x f x f --+·(x 1-x 2)∵-1≤x 1<x 2≤1,∴x 1+(-x 2)≠0,由已知2121)()(x x x f x f --+>0,又 x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x )在[-1,1]上为增函数. (2)解:∵f (x )在[-1,1]上为增函数,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧-<+≤-≤-≤+≤-112111111211x x x x 解得:{x |-23≤x <-1,x ∈R }(3)解:由(1)可知f (x )在[-1,1]上为增函数,且f (1)=1,故对x ∈[-1,1],恒有f (x )≤1,所以要f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,即要t 2-2at +1≥1成立,故t 2-2at ≥0,记g (a )=t 2-2at ,对a ∈[-1,1],g (a )≥0,只需g (a )在[-1,1]上的最小值大于等于0,g (-1)≥0,g (1)≥0,解得,t ≤-2或t =0或t ≥2.∴t 的取值范围是:{t |t ≤-2或t =0或t ≥2}.[例2]设不等式x 2-2ax +a +2≤0的解集为M ,如果M ⊆[1,4],求实数a 的取值 范围.命题意图:考查二次不等式的解与系数的关系及集合与集合之间的关系,属★★★★级题目.知识依托:本题主要涉及一元二次不等式根与系数的关系及集合与集合之间的关系,以及分类讨论的数学思想.错解分析:M =∅是符合题设条件的情况之一,出发点是集合之间的关系考虑是否全面,易遗漏;构造关于a 的不等式要全面、合理,易出错.技巧与方法:该题实质上是二次函数的区间根问题,充分考虑二次方程、二次不等式、二次函数之间的内在联系是关键所在;数形结合的思想使题目更加明朗.解:M ⊆[1,4]有n 种情况:其一是M =∅,此时Δ<0;其二是M ≠∅,此时Δ>0,分三种情况计算a 的取值范围.设f (x )=x 2 -2ax +a +2,有Δ=(-2a )2-(4a +2)=4(a 2-a -2) (1)当Δ<0时,-1<a <2,M =∅[1,4] (2)当Δ=0时,a =-1或2.当a =-1时M ={-1}1,4];当a =2时,m ={2}[1,4]. (3)当Δ>0时,a <-1或a >2.设方程f (x )=0的两根x 1,x 2,且x 1<x 2,那么M =[x 1,x 2],M ⊆[1,4]⇔1≤x 1<x 2≤4⎩⎨⎧>∆≤≤>>⇔0,410)4(,0)1(且且a f f即⎪⎪⎩⎪⎪⎨⎧>-<>>->+-210071803a a a a a 或,解得:2<a <718,∴M ⊆[1,4]时,a 的取值范围是(-1,718). ●锦囊妙计解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题:(1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法.(2)掌握用序轴标根法解高次不等式和分式不等式,特别要注意因式的处理方法.(3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法. (4)掌握含绝对值不等式的几种基本类型的解法.(5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式.(6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论. ●歼灭难点训练 一、选择题1.(★★★★★)设函数f (x )=⎪⎪⎩⎪⎪⎨⎧≥-<<-+-≤+)1(11)11(22)1()1(2x xx x x x ,已知f (a )>1,则a 的取值范围是( )A.(-∞,-2)∪(-21,+∞) B.(-21,21) C.(-∞,-2)∪(-21,1)D.(-2,-21)∪(1,+∞)二、填空题2.(★★★★★)已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b),则f (x )·g (x )>0的解集是__________. 3.(★★★★★)已知关于x 的方程sin 2x +2cos x +a =0有解,则a 的取值范围是__________. 三、解答题4.(★★★★★)已知适合不等式|x 2-4x +p |+|x -3|≤5的x 的最大值为3. (1)求p 的值;(2)若f (x )=11+-x x p p ,解关于x 的不等式f --1(x )>k x p +1log (k ∈R +)5.(★★★★★)设f (x )=ax 2+bx +c ,若f (1)=27,问是否存在a 、b 、c ∈R ,使得不等式:x 2+21≤f (x )≤2x 2+2x +23对一切实数x 都成立,证明你的结论. 6.(★★★★★)已知函数f (x )=x 2+px +q ,对于任意θ∈R ,有f (sin θ)≤0,且f (sin θ+2)≥2.(1)求p 、q 之间的关系式; (2)求p 的取值范围;(3)如果f (sin θ+2)的最大值是14,求p 的值.并求此时f (sin θ)的最小值.7.(★★★★)解不等式log a (x -x 1)>18.(★★★★★)设函数f (x )=a x满足条件:当x ∈(-∞,0)时,f (x )>1;当x ∈(0,1]时,不等式f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,求实数m 的取值范围.参考答案难点磁场解:原不等式可化为:2)2()1(--+-x a x a >0,即[(a -1)x +(2-a )](x -2)>0.当a >1时,原不等式与(x -12--a a )(x -2)>0同解. 若12--a a ≥2,即0≤a <1时,原不等式无解;若12--a a <2,即a <0或a >1,于是a >1时原不等式的解为(-∞,12--a a )∪(2,+∞).当a <1时,若a <0,解集为(12--a a ,2);若0<a <1,解集为(2,12--a a )综上所述:当a >1时解集为(-∞,12--a a )∪(2,+∞);当0<a <1时,解集为(2,12--a a );当a =0时,解集为∅;当a <0时,解集为(12--a a ,2).歼灭难点训练一、1.解析:由f (x )及f (a )>1可得:⎩⎨⎧>+-≤1)1(12a a ① 或⎩⎨⎧>+<<-12211a a ② 或⎪⎩⎪⎨⎧>-≥1111aa ③ 解①得a <-2,解②得-21<a <1,解③得x ∈∅ ∴a 的取值范围是(-∞,-2)∪(-21,1)答案:C 二、2.解析:由已知b >a 2∵f (x ),g (x )均为奇函数,∴f (x )<0的解集是(-b ,-a 2),g (x )<0的解集是(-2,22a b -).由f (x )·g (x )>0可得:⎪⎩⎪⎨⎧-<<--<<-⎪⎩⎪⎨⎧<<<<⎩⎨⎧<<⎩⎨⎧>>2222,0)(0)(0)(0)(2222a x b a x b b x a b x a x g x f x g x f 或即或 ∴x ∈(a 2,2b )∪(-2b,-a 2) 答案:(a 2,2b )∪(-2b,-a 2)3.解析:原方程可化为cos 2x -2cos x -a -1=0,令t =cos x ,得t 2-2t -a -1=0,原问题转化为方程t 2-2t -a -1=0在[-1,1]上至少有一个实根.令f (t )=t 2-2t -a -1,对称轴t =1,画图象分析可得⎩⎨⎧≤≥-0)1(0)1(f f 解得a ∈[-2,2].答案:[-2,2]三、4.解:(1)∵适合不等式|x 2-4x +p |+|x -3|≤5的x 的最大值为3,∴x -3≤0,∴|x -3|=3-x .若|x 2-4x +p |=-x 2+4x -p ,则原不等式为x 2-3x +p +2≥0,其解集不可能为{x |x ≤3}的子集,∴|x 2-4x +p |=x 2-4x +p .∴原不等式为x 2-4x +p +3-x ≤0,即x 2-5x +p -2≤0,令x 2-5x +p -2=(x -3)(x -m ),可得m =2,p =8.(2)f (x )=1818+-x x ,∴f --1(x )=log 8x x -+11 (-1<x <1),∴有log 8x x -+11>log 8kx +1,∴log 8(1-x )<log 8k ,∴1-x <k ,∴x >1-k .∵-1<x <1,k ∈R +,∴当0<k <2时,原不等式解集为{x |1-k <x <1};当k ≥2时,原不等式的解集为{x |-1<x <1}.5.解:由f (1)=27得a +b +c =27,令x 2+21=2x 2+2x +23x ⇒=-1,由f (x )≤2x 2+2x +23推得 f (-1)≤23. 由f (x )≥x 2+21推得f (-1)≥23,∴f (-1)=23,∴a -b +c =23,故 2(a +c )=5,a +c =25且b =1,∴f (x )=ax 2+x +(25-a ).依题意:ax 2+x +(25-a )≥x 2+21对一切x ∈R 成立,∴a ≠1且Δ=1-4(a -1)(2-a )≤0,得(2a -3)2≤0,∴f (x )=23x 2+x +1易验证:23x 2+x +1≤2x 2+2x +23对x ∈R 都成立.∴存在实数a =23,b =1,c =1,使得不等式:x 2+21≤f (x )≤2x 2+2x +23对一切x ∈R 都成立.6.解:(1)∵-1≤sin θ≤1,1≤sin θ+2≤3,即当x ∈[-1,1]时,f (x )≤0,当x ∈[1,3]时,f (x )≥0,∴当x =1时f (x )=0.∴1+p +q =0,∴q =-(1+p )(2)f (x )=x 2+px -(1+p ),当sin θ=-1时f (-1)≤0,∴1-p -1-p ≤0,∴p ≥0 (3)注意到f (x )在[1,3]上递增,∴x =3时f (x )有最大值.即9+3p +q =14,9+3p -1-p =14,∴p =3.此时,f (x )=x 2+3x -4,即求x ∈[-1,1]时f (x )的最小值.又f (x )=(x +23)2-425,显然此函数在[-1,1]上递增.∴当x =-1时f (x )有最小值f (-1)=1-3-4=-6.7.解:(1)当a >1时,原不等式等价于不等式组⎪⎪⎩⎪⎪⎨⎧>->-a xx11011由此得1-a >x 1.因为1-a <0,所以x <0,∴a-11<x <0. (2)当0<a <1时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧<->-a xx11011由 ①得x >1或x <0,由②得0 <x <a -11,∴1<x <a -11. 综上,当a >1时,不等式的解集是{x |a-11<x <0},当0<a <1时,不等式的解集为{x |1<x <a-11}.① ②。