专题一 集合与简易逻辑
2021年高考数学经典例题 专题一:集合与简易逻辑【含解析】
专题一 集合与简易逻辑一、单选题1.设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()UAB =( )A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---【答案】C 【解析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果. 【详解】由题意结合补集的定义可知:{}U2,1,1B =--,则(){}U1,1AB =-.故选:C.2.设a ∈R ,则“1a >”是“2a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可. 【详解】求解二次不等式2a a >可得:1a >或0a <, 据此可知:1a >是2a a >的充分不必要条件. 故选:A.3.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4} 【答案】C 【解析】根据集合并集概念求解. 【详解】[1,3](2,4)[1,4)A B ==故选:C4.已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断. 【详解】(1)当存在k Z ∈使得(1)k k απβ=+-时, 若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12kk k m απβ=+-=或()()121kk k m απβ=+-=+,亦即存在k Z ∈使得(1)k k απβ=+-.所以,“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件. 故选:C.5.已知集合P ={|14}<<x x ,{|23}Q x x =<<,则P Q =( ) A .{|12}x x <≤ B .{|23}x x << C .{|34}x x ≤< D .{|14}<<x x【答案】B 【解析】根据集合交集定义求解. 【详解】(1,4)(2,3)(2,3)P Q ==故选:B6.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】将两个条件相互推导,根据能否推导的结果判断充分必要条件. 【详解】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选:B7.设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“AB AC BC +>”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C.8.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为( ) A .1 B .2C .3D .4【答案】D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D.9.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A .2B .3C .4D .6【答案】C 【解析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.10.设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】b =0 时,f(x)=cosx +bsinx =cosx , f(x)为偶函数; f(x)为偶函数时,f(−x)=f(x)对任意的x 恒成立, f(−x)=cos(−x)+bsin(−x)=cosx −bsinxcosx +bsinx =cosx −bsinx ,得bsinx =0对任意的x 恒成立,从而b =0.从而“b =0”是“f(x)为偶函数”的充分必要条件,故选C.11.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.12.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2C .2D .4【答案】B 【解析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-. 故选:B.13.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2} D .{–2,2}【答案】D 【解析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可. 【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2AB =-.故选:D.14.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UA B ⋃=( )A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】首先进行并集运算,然后计算补集即可. 【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U2,3A B =-.故选:A.15.设m R ∈,则“12m ≤≤”是“直线:0l x y m +-=和圆22:2420C x y x y m +--++=有公共点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】根据条件先求m 的取值范围,再比较集合的包含关系,判断充分必要条件. 【详解】圆()()22:123C x y m -+-=-,圆心()1,2,半径3r m =-若直线l 与圆C 有公共点, 则圆心()1,2到直线的距离332m d m -=≤-13m ≤<,{}12m m ≤≤ {}13m m ≤<,所以“12m ≤≤”是“直线:0l x y m +-=和圆22:2420C x y x y m +--++=有公共点”的充分不必要条件.故选:A16.设x ∈R ,则“2560x x -+<”是“|2|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】分别解出两个不等式的解集,比较集合的关系,从而得到两命题的逻辑关系. 【详解】2560x x -+<23x ⇒<<;|2|1x -<13x ⇒<<;易知集合()2,3是()1,3的真子集,故是充分不必要条件. 故选:A. 17.已知集合{}0,1,2,4A =,{}2,nB x x n A ==∈,则AB =( )A .{}0,1,2B .{}0,1,4C .{}0,2,4D .{}1,2,4【答案】D 【解析】由题知{}1,2,4,16B =,再根据集合交集运算求解即可. 【详解】 因为{}0,1,2,4A =,{}1,2,4,16B =,所以{}1,2,4AB =,故选:D.18. “21a =”是“直线1x ay +=与1ax y +=平行”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】首先根基两直线平行求出a 的值,再根据小范围推大范围选出答案.【详解】因为直线1x ay +=与1ax y +=平行, 所以0a ≠ 且两直线的斜率相等即1a a-=解得1a =±; 而当1a =时直线1x ay +=为1x y +=,同时1ax y +=为1x y +=,两直线重合不满足题意;当1a =-时,1x y -=与1x y -+=平行,满足题意;故1a =-,根据小范围推大范围可得:21a =是1a =-的必要不充分条件. 故选:B19.已知命题:p “,a b 是两条不同的直线,α是一个平面,若,b a b α⊥⊥,则//a α”,命题:q “函数1,1()23,1x e x f x x x -⎧≤=⎨->⎩,为R 上的增函数”,下列说法正确的是A .“p q ⌝∧”为真命题B .“p q ∧⌝”为真命题C .“p q ∧” 为真命题D .“p q ⌝∧⌝” 为真命题【答案】D 【解析】依题意得p 是假命题;因为312<又()312f f ⎛⎫> ⎪⎝⎭,得q 是假命题,则可判断正确结果. 【详解】若,b a b α⊥⊥,则//a α或a α⊂,所以命题p 是假命题;函数1,1()23,1x e x f x x x -⎧≤=⎨->⎩,当1x =时()011f e ==,当32x =时3323022f ⎛⎫=⨯-= ⎪⎝⎭,因为312<又()312f f ⎛⎫> ⎪⎝⎭,所以()f x 在R 上不是增函数,故q 是假命题; 所以p ⌝与q ⌝是真命题,故“p q ⌝∧⌝” 为真命题 故选:D .20.记不等式组620x y x y +⎧⎨-≥⎩表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+;命题:(,),212q x y D x y ∀∈+.给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是( ) A .①③ B .①②C .②③D .③④【答案】A 【解析】如图,平面区域D 为阴影部分,由2,6y x x y =⎧⎨+=⎩得2,4x y =⎧⎨=⎩即A (2,4),直线29x y +=与直线212x y +=均过区域D , 则p 真q 假,有p ⌝假q ⌝真,所以①③真②④假.故选A .21.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .5【答案】B 【解析】采用列举法列举出A B 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B22.已知M 、N 为R 的子集,若RM N =∅,{}1,2,3N =,则满足题意的M 的个数为( )A .3B .4C .7D .8【答案】D【解析】根据交集、补集的运算的意义,利用韦恩图可得出M ,N 关系,根据子集求解. 【详解】因为M 、N 为R 的子集,且RM N =∅,画出韦恩图如图,可知,M N ⊆, 因为{}1,2,3N =, 故N 的子集有32=8个. 故选:D23. “0a =”是直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件【答案】A 【解析】根据直线与圆相交的判定,充分条件,必要条件即可求解 【详解】当0a =时,直线为0x y -=,过圆心(0,0),故直线与圆224x y +=相交,当直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交时,圆心到直线的距离222(1)(1)d a a =<++-,化简得220a +>,显然恒成立,不能推出0a =,所以“0a =”是直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交的充分不必要条件, 故选:A24.设集合()222021,2020A x y x y ⎧⎫=+=⎨⎬⎩⎭,(){},2x B x y y ==,则集合A B 中元素的个数为( ) A .0 B .1 C .2 D .3【答案】C【解析】 分别作出2220212020x y +=,2x y =图象,判断交点个数即可.【详解】依题意:集合A B 中元素的个数即2220212020x y +=,2x y =图象交点个数如图所以一共有两个交点,所以集合A B 中元素的个数为2故选:C25.已知集合{}13A x x =≤<,{}B y y m =≤,且A B =∅,则实数m 应满足()A .1m <B .1mC .3m ≥D .3m >【答案】A【解析】根据集合交集定义即可求解.【详解】 解:∵集合{}13A x x =≤<,{}B y y m =≤,A B =∅∴1m <,故选:A .26.命题000:,20p x R x lnx ∃∈+<的否定为( )A .000,20x R x lnx ∃∉+≥B .000,20x R x lnx ∃∈+>C .,20x R x lnx ∀∈+>D .,20x R x lnx ∀∈+≥【答案】D【解析】 根据特称命题的否定是全称命题,直接写出即可.【详解】根据特称命题的否定是全称命题,所以命题p 的否定为,20x R x lnx ∀∈+≥.故选:D.27.已知集合{}220A x x x =-->,则A =R ( ) A .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥ 【答案】B【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果.详解:解不等式220x x -->得12x x -或,所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.28.已知两条直线,a b 和平面α,若b α⊂,则//a b 是//a α的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分又不必要条件 【答案】D【解析】当b α⊂时,若//a b 时,a 与α的关系可能是//a α,也可能是a α⊂,即//a α不一定成立,故////a b a α⇒为假命题;若//a α时,a 与b 的关系可能是//a b ,也可能是a 与b 异面,即//a b 不一定成立,故////a a b α⇒也为假命题;故//a b 是//a α的既不充分又不必要条件故选:D29.设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足:①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T②对于任意x ,y ∈T ,若x <y ,则y x ∈S ; 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素【答案】A【解析】分别给出具体的集合S 和集合T ,利用排除法排除错误选项,然后证明剩余选项的正确性即可.【详解】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8ST =,包含4个元素,排除选项 C ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项D ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128ST =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈,若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍. 若12p ≥,则32311p p p p p <<,故322111,p p p p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆. 若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==, 即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =,此时{}234456*********,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确.故选:A .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.二、填空题30.已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂则实数a 的值为________ 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.点睛:(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.31.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.32.设A 是非空数集,若对任意,x y A ∈,都有,x y A xy A +∈∈,则称A 具有性质P .给出以下命题: ①若A 具有性质P ,则A 可以是有限集;②若12,A A 具有性质P ,且12A A ⋂≠∅,则12A A ⋂具有性质P ;③若12,A A 具有性质P ,则12A A ⋃具有性质P ;④若A 具有性质P ,且A ≠R ,则A R 不具有性质P .其中所有真命题的序号是___________.【答案】①②【解析】举特例判断①;利用性质P 的定义证明②即可;举反例说明③错误;利用反证法,结合举反例判断④.【详解】对于①,取集合{}0,1A =具有性质P ,故A 可以是有限集,故①正确;对于②,取12,x y A A ∈⋂,则1x A ∈,2x A ∈,1y A ∈,2y A ∈,又12,A A 具有性质P ,11,x y A xy A ∴+∈∈,22,x y A xy A +∈∈,1212,x y xy A A A A ∴+∈∈⋂⋂,所以12A A ⋂具有性质P ,故②正确;对于③,取{}1|2,A x x k k Z ==∈,{}2|3,A x x k k Z ==∈,12A∈,23A ∈,但1223A A +∉⋃,故③错误;对于④,假设A R 具有性质P ,即对任意,x y A ∈R ,都有,x y A xy A +∈∈R R ,即对任意,x y A ∉,都有,x y A xy A +∉∉,举反例{}|2,A x x k k Z ==∈,取1A ∉,3A ∉,但134A +=∈,故假设不成立,故④错误;故答案为:①②【点睛】关键点点睛:本题考查集合新定义,解题的关键是对集合新定义的理解,及举反例,特例证明,考查学生的逻辑推理与特殊一般思想,属于基础题.。
专题一 集合与简易逻辑
专题一 集合与简易逻辑【考试要求】理解集合、子集、补集交集、并集的概念。
了解空集和全集的意义,了解属于、包含、相等关系的意义,能熟练使用有关的术语和符号,能正确地表示一些较简单的集合。
了解逻辑联结词“或”、“且”、“非”的含义。
了解命题及命题的逆命题、否命题、逆否命题的有关概念,会分析四种命题的相互关系。
理解充分条件、必要条件和充要条件的意义,掌握命题条件的充分性、必要性和充要性的判断。
【命题导向】集合是每年高考必考的知识点之一,考查方式可以是集合本身的性质与运算,也可以是以集合为载体而考查其它数学知识,特别考查集合语言和集合思想的运用。
集合在命题时,会以基本题型为主,大多数是选择题、填空题,多为学科内的小型综合题,从涉及知识上讲,常与映射、函数、方程、不等式等结合命题,还可能出小型应用题。
简易逻辑在命题时,可分为两大类,一类是条件、命题本身的基本题,多为选择题、填空题;另一类是简易逻辑与其他知识的综合题,主要是与几何知识、函数知识结合的充要条件的论证、复合命题真假的判断问题。
【试题精选】题型1 集合的基本概念与运算1.设I 为全集,321S S S 、、是I 的三个非空子集,且123S S S I = ,则下面论断正确的是( )A .C I Φ=)(321S S SB.⊆1S (C I S 2 C I S 3)C.C I S 1 C I S 2 C I S 3=∅D.⊆1S ( C I S 2 C I S 3)答案:C解析:本题主要考查了全集、子集的概念,以及交集、并集、补集几种集合的运算。
要求考生能借助图形或利用等价转化的方法将复杂问题转化为简单问题。
法一:利用文氏图求解由图可知A 、B 、D 均不成立法二:利用摩根法则C I A C I B=C I (A B ) C I A C I B= C I (A B ) 可知C I S 1 C I S 2 C I S 3=C I (S 1 S 2 S 3)=C I I =∅。
集 合与简易逻辑1.1集 合
集合与简易逻辑1.1集合关键信息项:1、集合的定义2、集合的元素3、集合的表示方法4、集合的分类5、集合的运算11 集合的定义集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。
这些对象称为该集合的元素。
集合通常用大写字母表示,如 A、B、C 等。
111 集合中元素的特性1、确定性:对于一个给定的集合,任何一个对象或者是这个集合的元素,或者不是这个集合的元素,二者必居其一,不存在模棱两可的情况。
2、互异性:集合中的元素是互不相同的,即集合中的任何两个元素都不能相同。
3、无序性:集合中的元素没有顺序之分,例如集合{1, 2, 3}和{3, 2, 1}是同一个集合。
112 集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内,例如{1, 2, 3}。
2、描述法:用确定的条件表示某些对象是否属于这个集合,例如{x | x 是大于 0 小于 5 的整数}。
12 集合的分类1、有限集:含有有限个元素的集合叫做有限集。
2、无限集:含有无限个元素的集合叫做无限集。
3、空集:不含任何元素的集合叫做空集,记作∅。
121 常见的数集1、自然数集:包括 0 和正整数,记作 N。
2、正整数集:记作 N+ 或 N。
3、整数集:记作 Z。
4、有理数集:记作 Q。
5、实数集:记作 R。
13 集合的运算1、交集:由属于集合 A 且属于集合 B 的所有元素组成的集合,记作A ∩ B。
2、并集:由所有属于集合 A 或属于集合 B 的元素组成的集合,记作 A ∪ B。
3、补集:设 U 是一个全集,A 是 U 的一个子集,由 U 中所有不属于 A 的元素组成的集合,叫做子集 A 在全集 U 中的补集,记作∁UA。
131 集合运算的性质1、交集的性质:A ∩ A = AA ∩ ∅=∅A ∩B =B ∩ A若 A ⊆ B,则A ∩ B = A2、并集的性质:A ∪ A = AA ∪∅= AA ∪B = B ∪ A若 A ⊆ B,则 A ∪ B = B3、补集的性质:A ∪(∁UA) = UA ∩ (∁UA) =∅∁U(∁UA) = A132 集合运算的应用集合运算在数学、计算机科学、统计学等领域都有广泛的应用。
专题一-集合-与简易逻辑
专题一集合与简易逻辑一、考点回顾1、集合的含义及其表示法,子集,全集与补集,子集与并集的定义;2、集合与其它知识的联系,如一元二次不等式、函数的定义域、值域等;3、逻辑联结词的含义,四种命题之间的转化,了解反证法;4、含全称量词与存在量词的命题的转化,并会判断真假,能写出一个命题的否定;5、充分条件,必要条件及充要条件的意义,能判断两个命题的充要关系;6、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。
二、经典例题剖析考点1、集合的概念1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。
如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,…};②描述法。
2、两类关系:(1)元素与集合的关系,用∈或∉表示;(2)集合与集合的关系,用⊆,≠⊂,=表示,当A⊆B时,称A是B的子集;当A≠⊂B时,称A是B的真子集。
3、解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题4、注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A⊆B,则有A=∅或A≠∅两种可能,此时应分类讨论例1、下面四个命题正确的是(A)10以内的质数集合是{1,3,5,7} (B)方程x2-4x+4=0的解集是{2,2} (C)0与{0}表示同一个集合(D)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}m}.若B⊆A,则实数m=.例2、已知集合A={-1,3,2m-1},集合B={3,2考点2、集合的运算1、交,并,补,定义:A ∩B={x|x ∈A 且x ∈B},A ∪B={x|x ∈A ,或x ∈B},C U A={x|x ∈U ,且x ∉A },集合U 表示全集;2、运算律,如A ∩(B ∪C )=(A ∩B )∪(A ∩C ),C U (A ∩B )=(C U A )∪(C U B ), C U (A ∪B )=(C U A )∩(C U B )等。
高考数学《集合与简易逻辑》(考纲要求)
第一章 集合、简易逻辑考试内容:集合.子集.补集.交集.并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义,理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.知识结构:基本方法和数学思想1.必须弄清集合的元素是什么,是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… ;2.数形结合是解集合问题的常用方法,解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;3.(1)含n 个元素的集合的子集个数为2n ,真子集(非空子集)个数为2n -1;(2);B B A A B A B A =⇔=⇔⊆(3);)(,)(B C A C B A C B C A C B A C I I I I I I ==4、一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.5.一个语句是否为命题,关键要看能否判断真假,陈述句、反诘问句都是命题,而祁使句、疑问句、感叹句都不是命题;6.判断命题的真假要以真值表为依据。
原命题与其逆否命题是等价命题 ,逆命题与其否命题是等价命题 ,一真俱真,一假俱假,当一个命题的真假不易判断时,可考虑判断其等价命题的真假;7.判断命题充要条件的三种方法:(1)定义法;(2)利用集合间的包含关系判断,若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;(3)等价法:即利用等价关系"A B B A "⇒⇔⇒判断,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法;高考热点分析集合与简易逻辑是高中数学的重要基础知识,是高考的必考内容.本章知识的高考命题热点有以下两个方面:一是集合的运算、集合的有关述语和符号、集合的简单应用、判断命题的真假、四种命题的关系、充要条件的判定等作基础性的考查,题型多以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现.。
集合与简易逻辑
(1)-3___N,0.5___N(2)1.5___Z,-5___Z(3)π___Q,7.12___Q(4)-6.7___R,√3___R
(三)集合的表示法
1)列举法:把集合的元素一一列举出来,写在大括号内,元素之间用逗号隔开如:列举法{0,1,2,3,4,5}
2)描述法:大括号内画一条竖线,竖线的左侧为集合的代表元素,竖线的右侧为元素所具有的特征性质.如:
(二)命题的基本形式:把命题的条件设为P,命题的结论设为Q。即:若P,则Q。
(三)命题的三种运算:或、且、非
(四)命题的四种形式:原命题、逆命题、否命题、逆否命题
(五)命题的四大条件关系:充分不必要条件;必要不充分条件;充要条件;既不充分又不必要条件。
例题:1.已知直线 ,直线 ,则下列四个命题中,正确的命题是()
1.设集合 , ,则 ( )
(A)
(B)
(C)
(D)
2.不等式 的解集是( )
(A)
(B)
(C)
(D)
3.设 , ,则P Q().
(A) (B)
(C) (D)
4.集合 , ∪ ∪ ,则A∪B为().
(A)B(B)A
(C)R(D)无法判定
5.设集合 , .若 ,则实数 的取值范围是_____________
(A)若 ,则
(B
例题2.对于空间两条直线 , 和两个平面 , ,使得 成立的一个条件为()
(A) , ,
(B) , ,
(C) , ,
(D) , ,
考点分析
(一)注意集合中元素的互异性
对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.
例1:集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为()
专题一-集合-与简易逻辑
专题一-集合-与简易逻辑专题一集合与简易逻辑一、考点回顾1、集合的含义及其表示法,子集,全集与补集,子集与并集的定义;2、集合与其它知识的联系,如一元二次不等式、函数的定义域、值域等;3、逻辑联结词的含义,四种命题之间的转化,了解反证法;4、含全称量词与存在量词的命题的转化,并会判断真假,能写出一个命题的否定;5、充分条件,必要条件及充要条件的意义,能判断两个命题的充要关系;6、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。
二、经典例题剖析考点1、集合的概念1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:例1、下面四个命题正确的是(A)10以内的质数集合是{1,3,5,7} (B)方程x2-4x+4=0的解集是{2,2}(C)0与{0}表示同一个集合(D)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}例2、已知集合A={-1,3,2m-1},集合B={3,2m}.若B⊆A,则实数m=.考点2、集合的运算1、交,并,补,定义:A∩B={x|x∈A且x∈B},A∪B={x|x∈A,或x∈B},CUA={x|x∈U,且x∉A},集合U表示全集;2、运算律,如A∩(B∪C)=(A∩B)∪(A∩C),CU (A∩B)=(CUA)∪(CUB),CU (A∪B)=(CUA)∩(CUB)等。
3、学会画Venn图,并会用Venn图来解决问题。
例3、设集合A={x|2x+1<3},B={x|-3<x<2},则A⋂B等于()(A){x|-3<x<1} (B) {x|1<x<2} (C){x|x>-3}(D) {x|x<1}图例4、经统计知,某村有电话的家庭有35家,有农用三轮车的家庭有65家,既有电话又有农用三轮车的家庭有20家,则电话和农用三轮车至少有一种的家庭数为图( )A. 60B. 70C. 80D. 90例5、(2008广东卷)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员}。
专题一 集合与简易逻辑
专题1集合与简易逻辑一.知识网络以“集合”为基础,由“运算”分枝杈.二.高考考点1.对于集合概念的认识与理解,重点是对集合的识别与表达.2.对集合知识的综合应用,重点考查准确使用数学语言的能力以及运用数形结合思想解决问题的能力.3.理解逻辑联结词“或”“且”“非”的含义;命题的四种形式;相关命题的等价转换,重点考查逻辑推理和分析问题的能力.4.充分条件与必要条件的判定与应用.三.知识要点(一)集合1.集合的基本概念(1)集合的描述性定义:某些指定的对象集在一起就成为一个集合.认知:集合由一组指定的(或确定的)对象的全体组成,整体性是其重要特征之一.集合的元素须具备以下三个特性:(I)确定性:对于一个给定的集合,任何一个对象是否为这个集合的元素是明确的,只有“是”与“否”两种情况.(II)互异性:集合中的任何两个元素都不相同.(III)无序性:集合中的元素无前后顺序之分.(2)集合的表示方法集合的一般表示方法主要有(I)列举法:把集合中的元素一一列举出来的方法.提醒:用列举法表示集合时,须注意集合中元素的“互异性”与“无序性”,以防自己表示有误或被他人迷惑.(II)描述法:用确定的条件表示某些对象是否属于这个集合的方法.①描述法的规范格式:{x|p(x),x∈A}其中,大括号内的竖线之前的文字是“集合的代表元素”,竖线后面是借助代表元素描述的集合中元素的属性及范围(即判断对象是否属于集合的确定的条件).②认知集合的过程:认清竖线前的代表元素;考察竖线后面代表元素的属性及范围结合前面的考察与集合的意义认知集合本来面目.例:认知以下集合:;;;,其中M={0,1}.分析:对于A,其代表元素是有序数对(x,y),即点(x,y)点(x,y)坐标满足函数式y=x2-1(x ∈R) 点(x,y)在抛物线y=x2-1上集合A是抛物线y=x2-1(x∈R)上的点所组成的集合.对于B,其代表元素为y y是x的二次函数:y=x2-1(x∈R),再注意到集合的意义是范围集合B是二次函数y=x2-1(x∈R)的取值范围集合B是二次函数y=x2-1(x∈R)的值域,故B={y|y≥-1}.对于C,其代表元素是x x是二次函数y=x2-1的自变量集合C是二次函数y=x2-1的自变量的取值范围集合C是二次函数y=x2-1(x∈R)的定义域,即C=R.对于D,其代表元素是x x是集合M的子集集合D由M的(全部)子集组成,故D={φ,{0},{1},{0,1}}.(III)数轴法和文氏图法:文氏图法是指用一条封闭曲线围成的区域(内部)表示集合的方法.此为运用数形结合方法解决集合问题的原始依据.评注:集合的符号语言与文字语言的相互转化,是师生研究集合的基本功.为了今后的继续性发展,这一软性作业必须高质量完成.2.集合间的关系(1)子集(I)子集的定义(符号语言):若x∈A x∈B,则A B(注意:符号的方向性)规定:空集是任何集合的子集,即:对任何一个集合A,都有φ A显然:任何一个集合都是自身的子集, 即A A.(II)集合的相等:若A B且B A,则A=B.(III)真子集定义:若A B且A≠B;则A B(即A是B的真子集).特例:空集是任何非空集合的真子集.(2)全集,补集(I)定义设I是一个集合,A I,由I中所有不属于A的元素组成的集合,叫做I中子集A的补集(或余集),记作A,即A={x|x∈I,且x A}.在这里,如果集合I含有我们所要研究的各个集合的全部元素,则将I称为全集,全集通常用U表示.(II)性质:φ=U;U=φ;(A)=A(III)认知:补集思想为我们运用“间接法”解题提供理论支持.对于代数中的探求范围等问题,当正面入手头绪繁多或较为困难时,要想到运用“间接法”进行转化求解.(3)交集,并集(I)定义:①由所有属于集合A且属于B的元素所组成的集合,叫做A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B};②由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(II)认知:上面定义①、②中的一字之差(“且”与“或”之差),既凸显交集与并集的个性,又展示二者之间的关系.在这里,要特别注意的是,并集概念中的“或”与生活用语中的“或”含义不同,并集概念中的“或”源于生活,但又高于生活中的“或”:生活用语中的“或”是“或此”.“或彼”.二者只取其一,并不兼有;而并集概念中的“或”是“或此”.“或彼”“或彼此”,可以兼有.因此,“x∈A或x∈B”包括三种情形:x∈A且x B;x∈B且x A;x∈A且x∈B.(III)基本运算性质①“交”的运算性质A∩A=A;A∩φ=φ;A∩B= B∩A;A∩ A =φ;(A∩B)∩C= C∩(A∩B)= A∩B∩C②“并”的运算性质A∪A=A;A∪φ=A;A∪B= B∪A;A∪A=I;(A∪B)∪C=A∪(B∪C)= A∪B∪C③交.并混合运算性质A∪(B∩C)= (A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C);A∩(A∪C)=AA∪(A∩B)=A(IV )重要性质①A∩B=A A B;A∪B=B A B;②A∩B=(A∪B);A∪B=(A∩B)上述两个性质,是今后解题时认知、转化问题的理论依据.(二)简易逻辑1.命题(1)定义(I)“或”.“且”“非”这些词叫做逻辑联结词.(II)可以判断真假的词句叫做命题.其中,不含逻辑联结词的命题叫做简单命题,由简易命题与逻辑联结词构成的命题叫做复合命题.复合命题的构成形式:①p或q;②p且q;③非p(即命题p的否定).(2)复合命题的真假判断(I)当p、q同时为假时“p或q”为假,其它情况时为真;(II)当p、q同时为真时“p且q”为真,其它情况时为假;(III)“非p”与p的真假相反.(3)认知(I)这里的“或”与集合的“并”密切相关(并集又称为或集):集合的并集是用“或”来定义的:A∪B={x| x∈A或x∈B}.“p或q”成立的含义亦有三种情形:p成立但q不成立;q成立但p不成立,p,q同时成立.它们依次对应于A∪B中的A∩ B;B∩ A;A∩B.不过,A∪B强调的是一个整体,而“p或q”是独立的三种情形的松散联盟.(II)“或”、“且”联结的命题的否定形式:“p或q”的否定p且q;“p且q” p或q.它们类似于集合中的(A∪B)=(A)∩(B),(A∩B)=(A)∪(B)(4)四种命题(I)四种命题的形式:用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,则四种命题的形式为原命题:若p则q;逆命题:若q则p;否命题:若p则q逆否命题:若q则p.(II)四种命题的关系①原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一.②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.除①、②之外,四种命题中其它两个命题的真伪无必然联系.2.充分条件与必要条件(I)定义:若p q则说p是q的充分条件,q是p的必要条件;若p q则说p 是q的充分必要条件(充要条件).(II)认知:①关注前后顺序:若p q则前者为后者的充分条件;同时后者为前者的必要条件.②辨析条件、结论注意到条件与结论的相对性.若条件结论,则这一条件为结论的充分条件;若结论条件,则这一条件为结论的必要条件.③充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语.四.经典例题例1.判断下列命题是否正确.(1)方程组的解集为{(x,y)|x=-1或y=2};(2)设P={x|y=x2},Q={(x,y)|y=x2},则p Q;(3)设,则M N;(4)设,,则集合等于M∪N;分析:(1)不正确.事实上,方程组的解为有序实数对(-1,2),而-1或2不是有序实数对,故命题为假.正确解题:方程组解集应为(初始形式)=={(-1,2)}(2)不正确.在这里,P为数集,Q为点集,二者无公共元素,应为P∩Q=φ.(3)为认知集合中的元素的属性,考察代表元素的特征与联系:对两集合的代表元素表达式实施通分,对于集合M,其代表元素,2k+1为任意奇数;对于集合N,其代表元素,k+2为任意整数.由此便知M N,故命题正确.(4)不正确.反例:注意到这里f(x),g(x)的定义域未定,取,,则f(x)·g(x)=1(x≠-3且x≠1),此时f(x)g(x)=0无解.揭示:一般地,设函数f(x),g(x)的定义域依次为P、Q,且,,则有例2.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}(1)若A∩B=B,求a的值;(2)若A∪B=B,求a的值.解:集合A={-4,0}(1)A∩B=B B A即B{-4,0}由有关元素与B的从属关系,引入(第一级)讨论.(I)若0∈B,则有a2-1=0a=1(以下由a的可能取值引入第2级讨论).又当a=-1时,方程x2+2(a+1)x+a2-1=0x2=0x=0此时B={0}符合条件;当a=1时,方程x2+2(a+1)x+a2-1=0x2+4x=0x(x+4)=0此时B=A符合条件.(II)若-4∈B,则有16+2(a+1)(-4)+a2-1=0a2-8a+7=0(a-1)(a-7)=0 a=1或a=7当a=1时,由(I)知B=A符合条件;当a=7时,方程x2+2(a+1)x+a2-1=0x2+16x+48=0(x+12)(x+4)=0x=-12或x=-4此时B={-12,-4} A.(III)注意到B A,考察B=φ的特殊情形:B=φ=4(a+1)2-4(a2-1)<0 a<-1,此时集合B显然满足条件.于是综合(I)、(II)、(III)得所求a的取值集合为{a|a=1或a≤-1}.(2)集合B中至少有两个元素①而方程x2+2(a+1)x+a2-1=0至多有两个实根集合B中至多有两个元素②∴由①、②得集合B中只含两个元素B=A此时,由(1)知a=1,即所求a的的数值为a=1.点评:(1)在这里,对有关事物进行“特殊”和“一般”的“一分为二”的讨论尤为重要:对集合A.B 的关系,分别考察特殊(相等)和一般(真包含)情形,引出第一级讨论;对集合B的存在方式,又分别考察特殊(B=φ)和一般(B≠φ)的两种情形,引出第二级讨论.“特殊”(特殊关系或特殊取值)是分类讨论的切入点.(2)空集φ作为一个特殊集合,既是解题的切入点,又是设置陷阱的幽灵,注意到“一般”与“特殊”相互依存的辩证关系,解题时应适时考察“特殊”,自觉去构建“特殊”与“一般”的辩证统一.例3.已知A={x|x2-4x+3<0,x∈R},B={x|21-x+a≤0且x2-2(a+7)x+5≤0,x∈R}若A B,试求实数a的取值范围.解:A={x|1<x<3}=(1,3)注意A B,故对任意x∈(1,3),不等式21-x+a≤0与x2-2(a+7)x+5≤0总成立.(1)对任意x∈(1,3),f(x)=x2-2(a+7)x+5≤0总成立,f(x)=0有两实根,且一根不大于1,而另一根不小于3①(2)令g(x)=-21-x, x∈(1,3),则对任意x∈(1,3),21-x+a≤0总成立.a≤g(x)总成立a≤g min(x) a≤-1②∴将①.②联立得-4≤a≤-1.∴所求实数a的取值范围为{a|-4≤a≤-1}.点评与揭示:在某个范围内不等式恒成立的问题,要注意向最值问题的等价转化:(1)当f(x)在给定区间上有最值时a≤f(x)恒成立a≤f min(x)a≥f(x)恒成立a≥f max(x)(2)当f(x)在给定区间上没有最值时a≤f(x)恒成立a≤f(x)的下确界a≥f(x)恒成立a≥f(x)的上确界例4.已知p:-2≤x≤10,q:1-m≤x≤1+m(m>0),若是q的必要而不充分条件,求实数m的取值范围.分析:从认知与q入手,为了化生为熟,将,q分别与集合建立联系.解:由已知得:x<-2或x>10;q:x<1-m或x>1+m(m>0).令A={x|x<-2或x>10},B={x| x<1-m或x>1+m(m>0)},则由是q的必要而不充分条件得B A或m9∴所求实数m的取值范围为[9,+∞).点评:从认知已知条件切入,将四种命题或充要条件问题向集合问题转化,是解决这类问题的又一基本策略.例5.设有两个命题,p:函数f(x)=+2ax+4的图像与x轴没有交点;Q:不等式恒成立,若“P或Q”为真,“P且Q”为假,则实数a的取值范围是()A.(-∞,-2]B.[2,+∞)C.[-2,2]D.(-2,2)分析:(ⅰ)化简或认知P、Q:函数f(x)=+2ax+4的图像与x轴没有交点,△=-2<a<2∴P: -2<a<2①又不等式恒成立a小于的最小值②+≥=2③∴由②、③得a﹤2即Q: a﹤2(ⅱ)分析、转化已知条件“P或Q”为真P、Q中至少有一个为真a﹤2④“P且Q”为假P、Q中至少有一个为假或为真a≤-2或a≥2⑤于是由④⑤得,同时满足上述两个条件的a的取值范围是a≤-2∴实数a的取值范围为(-∞,-2].例6. 若p:-2﹤m﹤0,0﹤n﹤1;q:关于x的方程有两个小于1的正根,试分析p是q的什么条件?分析:在这里,q是关于x的二次方程有两个小于1的正根的条件,为便于表述,设该方程的两个实根为,且.然后根据韦达定理进行推理.解:设,为方程的两个实根,且,则该方程的判别式为:△=又由韦达定理得∴当0﹤﹤1时,由②得-2﹤m﹤0,0﹤n﹤1即q p③另一方面,若在p的条件下取m=-1,n=0.75,则这一关于x的二次方程的判别式△===1-3﹤0,从而方程无实根∴p q④于是由③④得知,p是q的必要但不充分的条件.点评:若令f(x)=,则借助二次函数y=的图像易得关于x的二次方程有两个小于1的正根的充要条件为在这里容易产生错误结论为:方程x2+mx+n=0有两个小于1的正根的充要条件是想一想:错在哪里?你能举出反例吗?注意到这里的p由※式中部分条件构造而成,它关于m、n的限制当然更为宽松.五.高考真题1.设I为全集,S1,S2,S3是I的三个非空子集,且S1∪S2∪S3=I,则下面判断正确的是()A.S1∩(S2∪S3)=φ B. S1(S2∩S3)C.S1∩S2∩S3=φ D. S1(S2∪S3)分析:对于比较复杂的集合运算的问题,一要想到利用有关结论化简,二要想到借助特取法或文氏图筛选.解法一(直接法):注意到A∩B=(A∪B),A∪B=(A∩B)及其延伸,∴S1∩S2∩S3=(S1∪S2∪S3)=I=φ,故选C解法二(特取法):令S1={1,2},S2={2,3},S3={1,3}I={1,2,3}则S1={3}S2={1}S3={2}由此否定A、B;又令S1=S2=S3={a},则I={a},S2=S3=φ,由此否定D.故本题应选C2.已知向量集合,则M∩N等于()A.{(1,1)} B. {(1,1),(-2,-2)} C .{(-2,-2)} D.φ分析:首先考虑化生为熟.由向量的坐标运算法则得,又令=(x,y),则有,消去λ得4x-3y+2=0,∴M={(x,y)|4x-3y+2=0,x,y∈R}.同理={(x,y)|5x-4y+2=0,x,y∈R}∴M∩N=={(-2,-2)},∴本题应选C点评:从认知集合切入,适时化生为熟,乃是解决集合问题的基本方略.3.设集合I={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},那么点P(2,3)∈A∩(B)的充要条件是()A.m>-1,n<5B m<-1,n<5C m>-1,n>5 D m<-1,n>5分析:由题设知P(2,3) ∈A,且P(2,3)∈B(※)又B={(x,y)|x+y-n>0},∴由(※)得,故本题应选A4.设函数,区间M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有()A.0个 B 1个 C 2个 D 无数多个分析:从认知集合切入.这里的集合N为函数f(x),(x∈M)的值域.注意到f(x)的表达式中含有|x|,为求f(x)的值域,先将f(x)化为分段函数的形式,以便于化整为零,逐段分析.∴当x>0时,f(x)<0;当x=0时,f(x)=0;当x<0时,f(x)>0.由此可知,当x≠0时,f(x) (x∈M)的值域与定义域M不可能相等;又当x=0时,f(x)的定义域为{0},故不存在a<b使区间[a,b]仅含元素0,因此,本题应选A.点评:解决分段函数问题的基本策略:分段考察,综合结论.在这里,认知集合N仍是解题成败的关键所在.5.函数,其中P,M为实数集R的两个非空子集,又规定f(P)={y|y=f(x),x∈P}f(M)={y|y=f(x),x∈M},给出下列四个判断:①若P∩M=φ,则f(P)∩f(M)= φ;②若P∩M≠φ,则f(P)∩f(M)≠φ;③若P∪M=R,则f(P)∪f(M)= R;④若P∪M≠R,则f(P)∪f(M)≠ R其中正确判断有()A.1个B2个C3个D4个分析:首先认知f(P),f(M):f(P)为函数y=f(x)(x∈P)的值域;f(M)为函数y=f(x)(x∈M)的值域.进而考虑仿照第1题,从构造反例切入进行筛选.(1)取P={x|x≥0},M={x|x<0},则f(P)={x|x≥0}, f(M)={x|x>0}此时P∩M=φ,P∪M=R,但f(P)∩f(M) ≠φ,f(P) ∪f(M)≠ R由此判断①.③不正确(2)当P∩M≠φ时,则由函数f(x)的定义知P∩M={0}(否则便由f(x)的解析式导出矛盾),所以0∈f(P),0∈f(M),从而f(P)∩f(M)≠φ.由此判断②正确.(3)当P∪M≠R时,若0P∪M,则由函数f(x)的定义知,0f(P) ∪f(M)若存在非零x0P∪M,(※),易知x0f(P)当x0f(M)时,有x0f(P)∪f(M);当x0∈f(M)时,则易知-x0∈M.注意到这里-x0≠0,所以-x0P,从而-x0f(P).又∵x0M,∴-x0f(M),∴-x0f(P)∪f(M)(※※)∴由①.②知当P∪M≠R时,一定有f(P) ∪f(M)≠ R.故判断④正确.点评:认知f(P).f(M)的本质与特殊性,是本题推理和筛选的基础与保障.6.设全集I=R,(1)解关于x的不等式|x-1|+a-1>0(a∈R);(2)设A为(1)中不等式的解集,集合,若(A)∩B恰有3个元素,求a的取值范围.分析:(1)原不等式|x-1|>1-a,运用公式求解须讨论1-a的符号.(2)从确定A与化简B切入,进而考虑由已知条件导出关于a的不等式(组),归结为不等式(组)的求解问题.解:(1)原不等式|x-1|>1-a当1-a<0,即a>1时,原不等式对任意x∈R成立;当1-a=0,即a=1时,原不等式|x-1|>0x≠1;当1-a>0,即a<1时,原不等式x-1<a-1或x-1>1-ax<a或x>2-a于是综合上述讨论可知,当a>1时,原不等式的解集为R;当a≤1时,原不等式的解集为(-∞,a)∪(2-a,+ ∞)(2)由(1)知,当a>1时,A=φ;当a≤1时, A={x|a≤x≤2-a}注意到==∴∴(A)∩B恰有3个元素A恰含三个整数元素.(A有三个元素的必要条件)(对A=[a,2-a]的右端点的限制)(对A=[a,2-a]的左端点的限制)故得-1<a≤0,∴所求a的取值范围为.点评:不被集合B的表象所迷惑,坚定从化简与认知集合B切入.当问题归结为A恰含三个整数时,寻觅等价的不等式组,既要考虑A含有三个整数的必要条件(宏观的范围控制),又要考虑相关区间的左\右端点的限制条件(微观的左右“卡位”),两方结合导出已知条件的等价不等式组.集合与简易逻辑专题练习一.选择题(每题4分,共32分)1.已知全集U,M、N是U的非空子集,且M N,则必有()A. M NB. M NC.M=ND.M=N2.满足{1}A{1,2,3,4,5},且A中所有元素之和为奇数的集合A的个数是()A.5B.6C.7D.83.已知p:A B;q:A B=B ,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.设p:x<-1或x>1; q:x<-2或x>1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.设,,,并且,,,则()A.x+y∈YB.x+y∈XC.x+y∈MD.x+m∈Y6.已知集合,,,则M,N,P满足关系()A.M=N PB.M N=PC.M N PD.N P M7.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的()A.逆否命题B.逆命题C.否命题D.原命题8.给出命题:p:3≥3;q:函数在R上是连续函数,则在下列三个复合命题:“p且q”;“p或q”;“非p”中,真命题的个数为()A.0B.1C.2D.3二.填空题(每题5分,共20分)1.已知命题或,,则p是q的条件.2.已知命题且,,则p是q的条件.3.“p或q为真命题”是“p且q为真命题”的条件.4.已知真命题“”和“”,则“”是“”的条件.三.解答题(本大题共有4题,满分48分)1.(本题满分12分)已知非空集合,求函数的值域.2.(本题满分12分)已知集合,且A∩B≠,A∩C= 同时成立,求实数a和集合A.3.(本题满分12分)已知集合,,C=A∩B,当C中仅含两个元素时,求实数m的取值范围.4.(本题满分12分)已知集合,且(A∪B)∩C=,(A∪B)∪C=R,求a,b的值。
高考数学强基计划专题1集合与简易逻辑
2022年高考数学尖子生强基计划专题1集合与简易逻辑 一、真题特点分析:1. 突出对思维能力的考查。
例1.【2020年武汉大学9】设A 是集合{}12345678910,,,,,,,,,的子集,只含有3个元素,且不含相邻的整数,则这种子集A 的个数为( ) A. 32B. 56C. 72D. 84答案:B 进行分类讨论例2.【2020 年清华大学】已知集合{},,1,2,3,,2020A B C ⊆,且A B C ⊆⊆,则有序集合组(),,A B C 的个数是( ).A .20202B .20203C .20204D .20205答案:C例3.【北大】已知()01,2,...,i x i n >=11.n i i x ==∏求证:))11.nni i x =≥∏【解析】不等式;柯西不等式或AM GM -平均不等式. 法一:AM GM -不等式.调和平均值n n ni n H G =≤=⎛⎫∑≤n i n ⎛⎫∑ni ≤∑ni ⎛⎫≤∑1nn i i n n +⎛⎫≤+=∑∑,即)1≤,即))1n ni ix ≤∏法二:由11.ni ix ==∏及要证的结论分析,由柯西不等式得))211i i x x ⎫≥⎪⎭,从而可设1i i y x =,且1111.n ni i i iy x ====∏∏从而本题也即证))11.n ni i y =≥∏从而))211nni ii x x ⎫+≥⎪⎭∏,即))21nnii ix y ≥∏,假设原式不成立,即))11,nni i x =<∏则))11.nni i y =<∏从而))21nnii ix y <∏,矛盾.得证.2.注重和解题技巧,考查学生应用知识解决问题的能力。
例4.【北大】10、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根. 【解析】设()2,f x ax bx c =++()2,g x dx ex f =++则由()()f x g x =,可得()()()()()()220,40.a d x b e x c f b e a d c f -+-+-=∆=----=由()()30f x g x +=可得()()()()()()223330,34330.a d x b e x c f b e a d c f +++++=∆=+-++=化简得223124,b e ac df +=+即()22434e df ac b -=-又240.b ac ->240.e df ∴-<()g x ∴没有实根.二、应试和准备策略1. 注意知识点的全面数学题目被猜中的可能性很小,一般知识点都是靠平时积累,因此,要求学生平时要把基础知识打扎实。
专题一 第一讲 集合与简易逻辑
[理](2011· 沈阳模拟)A={1,2,3},B={x∈R|x2-ax+1 =0,a∈A},则A∩B=B时,a的值是 A.2 B.2或3 ( )
C.1或3
D.1或2
解析:验证a=1时B=∅满足条件;验证a=2时B={1}
也满足条件.
答案:D
2. (2011· 全国新课标卷)已知集合M={0,1,2,3,4,},N ={1,3,5,},P=M∩N,则P的子集共有 A.2个 B.4个 ( )
C.充分必要条件
B.必要不充分条件
D.既不充分又不必要条件
[解析] 显然a=1时一定有N⊆M,反之则不一定成立, 如a=-1.故是充分不必要条件. [答案] A
6.(2011•合肥模拟)给定空间中的直线l及平面α.条件“直
线l与平面α内两条相交直线都垂直”是“直线l与平面α
垂直”的 A.充分不必要条件 C.充要条件 B.必要不充分条件 D.既非充分也非必要条件 ( )
的集合共有6个.
[答案] A
[点评] 解决这类试题的关键是透彻理解新定义,抓住新
定义的本质,推出正确结论,有时还可以通过反例推翻
其中的结论.
1 [理]若x∈A,则工团 ∈A,就称A是伙伴关系集合,集 x
合M={-1,0, ,2 ,1,2,3,4}的所有非空子集中具有伙 伴关系的集合的个数为 ( )
[联知识 串点成面] 1.四种命题有两组等价关系,即原命题与其逆否命题等价,否 命题与逆命题等价. 2.含有逻辑联结词的命题的真假判断:命题 p∨q,只要 p,q 至少有一为真,即为真命题,换言之,见真则真;命题 p∧q,只 要 p,q 至少有一为假,即为假命题,换言之,见假则假;綈 p 和 p 为一真一假两个互为对立的命题. 3.“或”命题和“且”命题的否定:命题 p∨q 的否定是綈 p ∧綈 q;命题 p∧q 的否定是綈 p∨綈 q.
集合与简易逻辑(高考知识点复习总结)
专题一:集合与常用逻辑用语一、知识梳理:1、集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合。
集合中的每一个对象称为该集合的元素。
集合的常用表示法:______ 、 ____ 。
集合元素的特征: _____ 、 ____ 、 _______。
2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆B ,或B ⊃A ,读作“集合A 包含于集合B ”或“集合B 包含集合A ”。
即:若A a ∈则B a ∈,那么称集合A 称为集合B 的子集注:空集是任何集合的子集。
3、真子集:如果A ⊆B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ⊆B 或B ⊇A ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,⊆。
集合的子集个数:设含有n 个元素的集合A ,则A 的子集个数为________;A的真子集个数为 ;A 的非空子集个数为 ;A 的非空真子集个数为 。
4、补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ∉∈且,|。
5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。
通常全集记作U 。
6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ⋂(读作“A 交B ”),即:B A ⋂=}{B x A x x ∈∈且,|。
B A ⋂=A B ⋂,B A ⋂B B A A ⊆⋂⊆,。
7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ⋃(读作“A 并B ”),即:B A ⋂=}{B x A x x ∈∈或,|。
B A ⋃=A B ⋃,⊆A B A ⋃,⊆B B A ⋃。
8、元素与集合的关系:有 、 两种,集合与集合间的关系,用 。
高考焦点专题 集合与简易逻辑
焦点专题1 集合与简易逻辑【基础盘点】1、基本关系:①元素与集合的关系:如a {,,}a b c ,a ∅;②集合与集合间的关系: 如{}a {,,}a b c ,也可以定作{}a {,,}a b c ,∅{,,}a b c .2、基本运算:①交{02}{sin }x x y y x <<==,②并{02}{sin }x x y y x <<==,③补,设{02}A x x =<<,A R =.3、四种命题:①原命题“若p ,则q ”的逆命是,否命题是,逆否命题是.(命题的否定是),②原命题与它的有相同的真假,否命题与它的有相同的真假.4、充要条件:①p q ⇒,则p 是q 的条件,q 是p 的条件;②p q ⇒⇐/,则p 是q 的条件; ③p q ⇔,则p 是q 的条件.5、联结词: ①p q ∨为真,则;②p q ∧为真,则;③p 与p ⌝必一真一;6、“∀”与“∃”:①“x ∀,有p ”的否定(命题的否定)是;②“x ∃,有p ”的否定(命题的否定)是;【真题回顾】1、(2010广东文)若集合A ={0,1,2,3},B ={1,2,4},则集合A B =A.{0,1,2,3,4}B.{1,2,3,4}C.{1,2}D.{0}2、(2010广东理)若集合{}|21A x x =-<<,{}|02B x x =<<,则集合A B =A.{}|11x x -<<B.{}|21x x -<<C.{}|22x x -<<D.{}|01x x <<3、(2009广东文)已知全集U =R ,则正确表示集合{1,0,1}M =-和2{0}N x x x =+=关系的韦恩(Venn)图是4、(2009广东理)巳知全集U =R ,集合{22}M x x =-≤≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn)图如图1所示,则阴影部分所示的集合的元素共有A.3个 C.2个 C.1个 D.无穷个5、(2008广东文)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A ={参加北京奥运会比赛的运动员},集合B ={参加北京奥运会比赛的男运动员}.集合C ={参加北京奥运会比赛的女运动员},则下列关系正确的是A.A ⊆BB.B ⊆CC.A ∩B =CD.B ∪C =A6、(2008广东理)已知命题:p 所有有理数都是实数,命题:q 正数的对数都是负数,则下列命题中为真命题的是A.()p q ⌝∨B.p q ∧C.()()p q ⌝∧⌝D.()()p q ⌝∨⌝7、(2010广东文)“x >0”是32x 成立的A.充分非必要条件B.必要非充分条件C.非充分非必要条件D.充要条件8、(2010广东理)“14m <”是“一元二次方程20x x m ++=有实数解”的 A.充分非必要条件 B.充分必要条件C.必要非充分条件D.非充分非必要条件【名模精选】9、(2010湛江一模文)已知集合}1,1{-=M ,}0,1{-=N ,则MN = A.}1,0,1{- B.}1,1{- C.{1}-D.{1,0} 10、(2010湛江一模理)已知集合}1,1{-=M ,}0|{2=+=x x x N ,则MN = A.}1,0,1{- B.}1,1{-C.{1}-D.{0} 11、(2010湛江一模文)“2x x >”是“1x >”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件12、(2010广州一模文)已知p :直线a 与平面α内无数条直线垂直,q :直线a 与平面α垂直.则p 是q 的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件13、(2010广州一模理)已知集合{}1,1A =-,{}10B x ax =+=,若B A ⊆,则实数a 的所有可能取值的集合为A.{}1-B.{}1C.{}1,1-D.{}1,0,1-14、(2010茂名一模文)若全集{1,2,3,4}u =且{2}u C A =,则集合A 的真子集共有( )A.3个B.5个C.7个D.8个15、(2010深圳一模文)已知集合{11}A =-,,{|124}x B x =≤<,则A B 等于A.{101}-,,B.{1}C.{11}-,D.{01},16、(2010深圳一模文)已知E ,F ,G ,H 是空间四点,命题甲:E ,F ,G ,H 四点不共面,命题乙:直线EF 和GH 不相交,则甲是乙成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 17、(2010深圳一模理)设集合}21|{<-=x x M ,{|(3)0}N x x x =-<,那么“M a ∈”是“N a ∈”的A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件18、(2010惠州一模文)若集合{}21,A m =-,集合{}2,9B =,则“3m =-”是“{}9A B =”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件19、(2010汕头一模文)如果命题“()p q ⌝或”为假命题,则A.p 、q 均为真命题B.p 、q 均为假命题C.p 、q 中至少有一个为真命题D.p 、q 中至多有一个为真命题20、(2010广州二模文)设全集{}1,2,3,4,5U =,集合{}2,3,4A =,{}2,5B =, 则()U B A =A.{}5B. {}125,,C. {}12345,,,,D.∅ 21、(2010广州二模文)命题“若,x y 都是偶数,则x y +也是偶数”的逆否命题是A.若x y +是偶数,则x 与y 不都是偶数B.若x y +是偶数,则x 与y 都不是偶数C.若x y +不是偶数,则x 与y 不都是偶数D.若x y +不是偶数,则x 与y 都不是偶数22、(2010佛山二模文)设U =R ,集合{}|1A y y x =>,}{2,1,1,2B =--,则下列结论正确的是A.}{2,1AB =-- B.()(,0)U A B =-∞ C.(0,)AB =+∞ D.}{()2,1U A B =--23、(2010佛山二模理)设U =R ,集合{}|1A y y x =≥,}{240B x Z x =∈-≤,则下列结论正确的是A.}{2,1AB =-- B.()(,0)U A B =-∞C.[0,)A B =+∞D.}{()2,1U A B =--24、(2010茂名二模文)已右集合221{|340},{|21}x M x x x N x -=+-<=>则M∩N= A.(-4,1) B.1(4,)2- C.1(,1)2 D.(1,+∞)25、(2010茂名二模文)设32()log (f x x x =++,则对任意实数,,0a b a b +≥是()()0f a f b +≥的A.充分必要条件B.充分而非必要条件C.必要而非充分条件D.既非充分也非必要条件26、(2010深圳二模文){}1234U =若,,,,{}12M =,,{}23N =,,则 U M N =() A.{}2 B.{}4 C.{}1 2 3,, D.{}1,2,427、(2010深圳二模文)命题:“若21x <,则11x -<<”的逆否命题是A.若21x ≥,则1x ≥,或1x ≤-B.若11x -<<,则21x <C.若1x >,或1x <-,则21x >D.若1x ≥,或1x ≤-,则21x ≥28、(2010惠州二模文)集合{}20,2,A a =,{}1,B a =,若{}1A B =,则a 的值为A. 0B. 1C.-1D. 1±29、(2010惠州二模理)对于非零向量,,a b “a b ”是“+=a b 0”的A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件30、(2010惠州三模文)设条件:0p a >;条件2:0q a a +≥,那么p 是q 的什么条件A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件【参考答案】1~5ADBCD 6~10DAACC11~15BBDCB 16~20AAACB21~25CDDCA 26~30BDCAA。
高中数学竞赛讲义01:集合与简易逻辑
集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A中,称属于A,记为,否则称不属于A,记作。
例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号表示集合的方法。
例如{有理数},分别表示有理数集和正实数集。
定义2 子集:对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,则A 叫做B的子集,记为,例如。
规定空集是任何集合的子集,如果A是B的子集,B也是A的子集,则称A与B相等。
如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。
定义3 交集,定义4 并集,定义5 补集,若称为A在I中的补集。
定义6 差集,。
定义7 集合记作开区间,集合记作闭区间,R记作定理1 集合的性质:对任意集合A,B,C,有:(1)(2);(3)(4)【证明】这里仅证(1)、(3),其余由读者自己完成。
(1)若,则,且或,所以或,即;反之,,则或,即且或,即且,即(3)若,则或,所以或,所以,又,所以,即,反之也有定理2 加法原理:做一件事有类办法,第一类办法中有种不同的方法,第二类办法中有种不同的方法,…,第类办法中有种不同的方法,那么完成这件事一共有种不同的方法。
定理3 乘法原理:做一件事分个步骤,第一步有种不同的方法,第二步有种不同的方法,…,第步有种不同的方法,那么完成这件事一共有种不同的方法。
二、方法与例题1.利用集合中元素的属性,检验元素是否属于集合。
例1 设,求证:(1);(2);(3)若,则[证明](1)因为,且,所以(2)假设,则存在,使,由于和有相同的奇偶性,所以是奇数或4的倍数,不可能等于,假设不成立,所以(3)设,则(因为)。
高考数学专题一+集合与简易逻辑
专题一 集合与简易逻辑【考点聚焦】考点1:集合中元素的基本特征,集合的表示法,元素与集合的关系,集合与集合之间的包含关系,集合的交、并、补运算。
考点2:绝对值不等式、一元二次不等式及分工不等式的解法。
考点3:简单命题与复合命题的相关概念,真假命题的判断,四种命题及其关系,反证法的证题思想。
考点4:充分必要条件的有关概念及充分条件与必要条件的判断。
【自我检测】1、_____________________________,称集合A 是集合B 的子集;2、_____________________________,叫做集合U 中子集A 的补集;3、_____________________________,叫做A 与B 的交集;4、_____________________________,叫做A 与B 的并集;5、如果已知_____________,那么p 是q 的充分条件,q 是p 的必要条件;如果_____________,那么p 是q 的充分且必要条件;【重点∙难点∙热点】 问题1:集合的相关概念1 解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x |x ∈P },要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,通过数形结合直观地解决问题2 注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,则有A =∅或A ≠∅两种可能,此时应分类讨论例1:设A ={(x ,y )|y 2-x -1=0},B ={(x ,y )|4x 2+2x -2y +5=0},C ={(x ,y )|y =kx +b },是否存在k 、b ∈N ,使得(A ∪B )∩C =∅,证明此结论思路分析:由集合A 与集合B 中的方程联立构成方程组,用判别式对根的情况进行限制,可得到b 、k 的范围,又因b 、k ∈N ,进而可得b 、k 的值解 ∵(A ∪B )∩C =∅,∴A ∩C =∅且B ∩C =∅∵⎩⎨⎧+=+=bkx y x y 12 ∴k 2x 2+(2bk -1)x +b 2-1=0 ∵A ∩C =∅ ∴Δ1=(2bk -1)2-4k 2(b 2-1)<0 ∴4k 2-4bk +1<0,此不等式有解, 其充要条件是16b 2-16>0, 即 b 2>1①∵⎩⎨⎧+==+-+b kx y y x x 052242∴4x 2+(2-2k )x +(5+2b )=0 ∵B ∩C =∅,∴Δ2=(1-k )2-4(5-2b )<0 ∴k 2-2k +8b -19<0, 从而8b <20, 即 b <2 5 ②由①②及b ∈N ,得b =2代入由Δ1<0和Δ2<0组成的不等式组,得⎪⎩⎪⎨⎧<--<+-032,018422k k k k ∴k =1,故存在自然数k =1,b =2,使得(A ∪B )∩C =∅点评 本题主要考查考生对集合及其符号的分析转化能力,即能从集合符号上分辨出所考查的知识点,进而解决问题 解决此题的关健是将条件(A ∪B )∩C =∅转化为A ∩C =∅且B ∩C =∅,这样难度就降低了演变1:已知集合A ={(x ,y )|x 2+mx -y +2=0},B ={(x ,y )|x -y +1=0,且0≤x ≤2},如果A ∩B ≠∅,求实数m 的取值范围点拨与提示:本题考查学生对集合及其符号的分析转化能力,A ∩B ≠∅即是两集合中方程联立的方程组在[0,2]上有解。
集合与简易逻辑
集合与简易逻辑
嘿,集合就像个大口袋,啥都能装。
你想想,一群数字放一起就是个集合。
我有个同学做数学题,就用集合的概念,可清楚了。
简易逻辑呢,哇哦,就像个侦探在找真相。
有个人判断事情,用简易逻辑,一下子就明白了。
集合里的元素各有特点,这多有趣。
就像一群小伙伴,每个人都不一样。
有次考试就考集合的元素,可把人难住了。
逻辑判断能让你不迷糊,嘿,这很重要。
就像有个指南针,不会走丢。
我认识一个人,做决策就靠简易逻辑。
集合的运算也不简单呀,哇,就像玩游戏得有规则。
有个人算集合的并集交集,费了好大劲。
逻辑推理就像破案,可刺激了。
有次讨论问题,用逻辑推理,真相大白。
集合的表示方法有好几种呢,这可不是小事。
就像有不同的语言表达同一件事。
我看到一个题,要求用不同方法表示集合。
简易逻辑让你思维更清晰,这多棒。
就像给大脑洗了个澡。
有个学生学了简易逻辑,做题都顺了。
集合可以很大很大,也可以很小很小,嘿,这多神奇。
就像宇宙一样广阔,也像针尖一样小。
有个问题就关于集合的大小。
总之,集合和简易逻辑很有用,能让你的数学更厉害。
专题一+集合与简易逻辑课件-2025届广西中职对口升学数学一轮复习
常用的逻辑联结词有“且”“或”“非”,符号分别为
“∧”“∨”“﹁”.
要点归纳
六、简易逻辑
4.充要条件的定义
(1)对于两个命题p,q,若有p⇒q,则称p是q的充分条件,q是p的必要条件.
小贴士:p是q的充分条件,是指只要具备了条件p,那么q就一定成立,即命题中的条件
是充分的;q是p的必要条件,是指若不具备条件q,则p就不能成立,即q是p成立的必不可少
(3)自然数集. 所有自然数组成的集合叫作自然数集,记作N.
(4)整数集. 所有整数组成的集合叫作整数集,记作Z.
(5)有理数集. 所有有理数组成的集合叫作有理数集,记作Q.
(6)实数集.所有实数组成的集合叫作实数集,记作R.
小贴士:空集是最“小”的集合.0,{0},∅的关系具体为:0∈{0};0∉ ∅;
句叫作命题.正确的命题叫作真命题,记作T;错误的命题叫作假命题,记
作F,T和F叫作命题的真值(有的书上用1和0作为命题的真值).p与q为等值
的命题记作p=q.
要点归纳
六、简易逻辑
2.量词
常用的量词有全称量词和存在量词,用符号表示分别为∀和∃.含有全称
量词的命题为全称命题;含有存在量词的命题为存在性命题.
例如:“个子高的同学”不能构成集合,形容词“高”导致不满足集合元素的确定性;
例如:{1,2,1}是错误的,集合元素不能重复出现,不满足集合元素的互异性.
要点归纳
一、集合的概念与表示法
4.常用的集合
(1)空集. 不含任何元素的集合叫作空集,记作∅
(2)正整数集. 所有正整数组成的集合叫作正整数集,记作N+或N*.
(3)若p⇒q且q⇒p,则p是q的充要条件.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考综合复习专题1集合与简易逻辑一.知识网络以“集合”为基础,由“运算”分枝杈.二.高考考点1.对于集合概念的认识与理解,重点是对集合的识别与表达.2.对集合知识的综合应用,重点考查准确使用数学语言的能力以及运用数形结合思想解决问题的能力.3.理解逻辑联结词“或”“且”“非”的含义;命题的四种形式;相关命题的等价转换,重点考查逻辑推理和分析问题的能力.4.充分条件与必要条件的判定与应用.三.知识要点(一)集合1.集合的基本概念认知:集合由一组指定的(或确定的)对象的全体组成,整体性是其重要特征之一.集合的元素须具备以下三个特性:(I)确定性:对于一个给定的集合,任何一个对象是否为这个集合的元素是明确的,只有“是”与“否”两种情况.(II)互异性:集合中的任何两个元素都不相同.(III)无序性:集合中的元素无前后顺序之分.(2)集合的表示方法(I)列举法:把集合中的元素一一列举出来的方法.提醒:用列举法表示集合时,须注意集合中元素的“互异性”与“无序性”,以防自己表示有误或被他人迷惑.(II)描述法:用确定的条件表示某些对象是否属于这个集合的方法.①描述法的规范格式:{x|p(x),x∈A}其中,大括号内的竖线之前的文字是“集合的代表元素”,竖线后面是借助代表元素描述的集合中元素的属性及范围(即判断对象是否属于集合的确定的条件).②认知集合的过程:认清竖线前的代表元素;考察竖线后面代表元素的属性及范围结合前面的考察与集合的意义认知集合本来面目.例:认知以下集合:;;;,其中M={0,1}.分析:对于A,其代表元素是有序数对(x,y),即点(x,y)点(x,y)坐标满足函数式y=x2-1(x∈R) 点(x,y)在抛物线y=x2-1上集合A是抛物线y=x2-1(x∈R)上的点所组成的集合.对于B,其代表元素为y y是x的二次函数:y=x2-1(x∈R),再注意到集合的意义是范围集合B是二次函数y=x2-1(x∈R)的取值范围集合B是二次函数y=x2-1(x∈R)的值域,故B={y|y≥-1}.对于C,其代表元素是x x是二次函数y=x2-1的自变量集合C是二次函数y=x2-1的自变量的取值范围集合C是二次函数y=x2-1(x∈R)的定义域,即C=R.对于D,其代表元素是x x是集合M的子集集合D由M的(全部)子集组成,故D={φ,{0},{1},{0,1}}.(III)数轴法和文氏图法:文氏图法是指用一条封闭曲线围成的区域(内部)表示集合的方法.此为运用数形结合方法解决集合问题的原始依据.评注:集合的符号语言与文字语言的相互转化,是师生研究集合的基本功.为了今后的继续性发展,这一软性作业必须高质量完成.2.集合间的关系(1)子集(I)子集的定义(符号语言):若x∈A x∈B,则A B(注意:符号的方向性)规定:空集是任何集合的子集,即:对任何一个集合A,都有φ A显然:任何一个集合都是自身的子集, 即A A.(II)集合的相等:若A B且B A,则A=B.(III)真子集定义:若A B且A≠B;则A B(即A是B的真子集).特例:空集是任何非空集合的真子集.(2)全集,补集(I)定义:I是一个集合,A I,由I中所有不属于A的元素组成的集合,叫做I中子集A的补集(或余集),记作A,即A={x|x∈I,且x A}.在这里,如果集合I含有我们所要研究的各个集合的全部元素,则将I称为全集,全集通常用U表示.(II)性质:φ=U;U=φ;(A)=A(III)认知:补集思想为我们运用“间接法”解题提供理论支持.对于代数中的探求范围等问题,当正面入手头绪繁多或较为困难时,要想到运用“间接法”进行转化求解.(3)交集,并集(I)定义:①由所有属于集合A且属于B的元素所组成的集合,叫做A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B};②由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(II)认知:上面定义①、②中的一字之差(“且”与“或”之差),既凸显交集与并集的个性,又展示二者之间的关系.在这里,要特别注意的是,并集概念中的“或”与生活用语中的“或”含义不同,并集概念中的“或”源于生活,但又高于生活中的“或”:生活用语中的“或”是“或此”.“或彼”.二者只取其一,并不兼有;而并集概念中的“或”是“或此”.“或彼”“或彼此”,可以兼有.因此,“x∈A或x∈B”包括三种情形:x∈A且x B;x∈B且x A;x∈A且x∈B.(III)基本运算性质①“交”的运算性质:A∩B=A;A∩φ=φ;A∩B= B∩A;A∩ A =φ;(A∩B)∩C= C∩(A∩B)= A∩B∩C②“并”的运算性质:A∪A=A;A∪φ=A;A∪B= B∪A;A∪A=I;(A∪B)∪C=A∪(B∪C)= A∪B∪C③交.并混合运算性质A∪(B∩C)= (A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C);A∩(A∪C)=A A∪(A∩B)=A(IV )重要性质①A∩B=A A B;A∪B=B A B;②A∩B=(A∪B);A∪B=(A∩B)上述两个性质,是今后解题时认知、转化问题的理论依据.(二)简易逻辑1.命题(1)定义(I)“或”.“且”“非”这些词叫做逻辑联结词.(II)可以判断真假的词句叫做命题.其中,不含逻辑联结词的命题叫做简单命题,由简易命题与逻辑联结词构成的命题叫做复合命题.复合命题的构成形式:①p或q;②p且q;③非p(即命题p的否定).(2)复合命题的真假判断(I)当p、q同时为假时“p或q”为假,其它情况时为真;(II)当p、q同时为真时“p且q”为真,其它情况时为假;(III)“非p”与p的真假相反.(3)认知(I)这里的“或”与集合的“并”密切相关(并集又称为或集):集合的并集是用“或”来定义的:A∪B={x| x∈A或x∈B}.“p或q”成立的含义亦有三种情形:p成立但q不成立;q成立但p不成立,p,q同时成立.它们依次对应于A∪B中的A∩ B;B∩ A;A∩B.不过,A∪B强调的是一个整体,而“p或q”是独立的三种情形的松散联盟.(II)“或”、“且”联结的命题的否定形式:“p或q”的否定p且q;“p且q” p或q.它们类似于集合中的(A∪B)=(A)∩(B),(A∩B)=(A)∪(B)(4)四种命题(I)四种命题的形式:(II)四种命题的关系①原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一.②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.除①、②之外,四种命题中其它两个命题便是的真伪无必然联系.2.充分条件与必要条件(I)定义:若p q则说p是q的充分条件,q是p的必要条件;若p q则说p 是q的充分必要条件(充要条件).(II)认知:①关注前后顺序:若p q则前者为后者的充分条件;同时后者为前者的必要条件.②辨析条件、结论注意到条件与结论的相对性.若条件结论,则这一条件为结论的充分条件;若结论条件,则这一条件为结论的必要条件.③充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语.四.经典例题例1.判断下列命题是否正确.(1)方程组的解集为{(x,y)|x=-1或y=2};(2)设P={x|y=x2},Q={(x,y)|y=x2},则p Q;(3)设,则M N;(4)设,,则集合等于M∪N;分析:(1)不正确.事实上,方程组的解为有序实数对(-1,2),而-1或2不是有序实数对,故命题为假.正确解题:方程组解集应为(初始形式)=={(-1,2)}(2)不正确.在这里,P为数集,Q为点集,二者无公共元素,应为P∩Q=φ.(3)为认知集合中的元素的属性,考察代表元素的特征与联系:对两集合的代表元素表达式实施通分,对于集合M,其代表元素,2k+1为任意奇数;对于集合N,其代表元素,k+2为任意整数.由此便知M N,故命题正确.(4)不正确:注意到这里f(x),g(x)的定义域未定,取,,则f(x)·g(x)=1(x≠-3且x≠1),此时f(x)g(x)=0无解.且,,则有例2.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}(1)若A∩B=B,求a的值;(2)若A∪B=B,求a的值.解:集合A={-4,0}(1)A∩B=B B A即B{-4,0}由有关元素与B的从属关系,引入(第一级)讨论.(I)若0∈B,则有a2-1=0a=1(以下由a的可能取值引入第2级讨论).又当a=-1时,方程x2+2(a+1)x+a2-1=0x2=0x=0此时B={0}符合条件;当a=1时,方程x2+2(a+1)x+a2-1=0x2+4x=0x(x+4)=0此时B=A符合条件.(II)若-4∈B,则有16+2(a+1)(-4)+a2-1=0a2-8a+7=0(a-1)(a-7)=0 a=1或a=7当a=1时,由(I)知B=A符合条件;当a=7时,方程x2+2(a+1)x+a2-1=0x2+16x+48=0(x+12)(x+4)=0 x=-12或x=-4此时B={-12,-4} A.(III)注意到B A,考察B=φ的特殊情形:B=φ=4(a+1)2-4(a2-1)<0a<-1,此时集合B显然满足条件.于是综合(I)、(II)、(III)得所求a的取值集合为{a|a=1或a≤-1}.(2)集合B中至少有两个元素①而方程x2+2(a+1)x+a2-1=0至多有两个实根集合B中至多有两个元素②∴由①、②得集合B中只含两个元素B=A此时,由(1)知a=1,即所求a的的数值为a=1.点评:(1)在这里,对有关事物进行“特殊”和“一般”的“一分为二”的讨论尤为重要:对集合A.B的关系,分别考察特殊(相等)和一般(真包含)情形,引出第一级讨论;对集合B的存在方式,又分别考察特殊(B=φ)和一般(B≠φ)的两种情形,引出第二级讨论.“特殊”(特殊关系或特殊取值)是分类讨论的切入点.(2)空集φ作为一个特殊集合,既是解题的切入点,又是设置陷阱的幽灵,注意到“一般”与“特殊”相互依存的辩证关系,解题时应适时考察“特殊”,自觉去构建“特殊”与“一般”的辩证统一.例3.已知A={x|x2-4x+3<0,x∈R},B={x|21-x+a≤0且x2-2(a+7)x+5≤0,x∈R}若A B,试求实数a的取值范围.解:A={x|1<x<3}=(1,3)注意A B,故对任意x∈(1,3),不等式21-x+a≤0与x2-2(a+7)x+5≤0总成立.(1)对任意x∈(1,3),f(x)=x2-2(a+7)x+5≤0总成立,f(x)=0有两实根,且一根不大于1,而另一根不小于3①(2)令g(x)=-21-x, x∈(1,3),则对任意x∈(1,3),21-x+a≤0总成立.a≤g(x)总成立a≤g min(x) a≤-1②∴将①.②联立得-4≤a≤-1.∴所求实数a的取值范围为{a|-4≤a≤-1}.点评与揭示:在某个范围内不等式恒成立的问题,要注意向最值问题的等价转化:(2)当f(x)在给定区间上没有最值时:a≤f(x)恒成立a≤f(x)的下确界;a≥f(x)恒成立a≥f(x)的上确界例4.已知p:-2≤x≤10,q:1-m≤x≤1+m(m>0),若是q的必要而不充分条件,求实数m的取值范围.分析:从认知与q入手,为了化生为熟,将,q分别与集合建立联系.解:由已知得:x<-2或x>10;q:x<1-m或x>1+m(m>0).令A={x|x<-2或x>10},B={x| x<1-m或x>1+m(m>0)},则由是q的必要而不充分条件得B A或m9∴所求实数m的取值范围为[9,+∞).点评:从认知已知条件切入,将四种命题或充要条件问题向集合问题转化,是解决这类问题的又一基本策略.例5.设有两个命题,p:函数f(x)=+2ax+4的图像与x轴没有交点;Q:不等式恒成立,若“P或Q”为真,“P且Q”为假,则实数a的取值范围是()A.(-∞,-2)B.[2,+∞]C.[-2,2]D.(-2,2)分析:(ⅰ)化简或认知P、Q:函数f(x)=+2ax+4的图像与x轴没有交点,△=-2<a<2∴P: -2<a<2①又不等式恒成立a小于的最小值②+≥=2③∴由②、③得a﹤2即Q: a﹤2(ⅱ)分析、转化已知条件“P或Q”为真P、Q中至少有一个为真a﹤2 ④“P且Q”为假P、Q中至少有一个为假或为真a≤-2或a≥2⑤于是由④⑤得,同时满足上述两个条件的a的取值范围是a≤-2例6. 若p:-2﹤m﹤0,0﹤n﹤1;q:关于x的方程有两个小于1的正根,试分析p是q的什么条件?分析:在这里,q是关于x的二次方程有两个小于1的正根的条件,为便于表述,设该方程的两个实根为,且.然后根据韦达定理进行推理.解:设,为方程的两个实根,且,则该方程的判别式为:△=又由韦达定理得∴当0﹤﹤1时,由②得-2﹤m﹤0,0﹤n﹤1即q p ③另一方面,若在p的条件下取m=-1,n=0.75,则这一关于x的二次方程的判别式△===1-3﹤0,从而方程无实根∴p q④于是由③④得知,p是q的必要但不充分的条件.点评:若令f(x)=,则借助二次函数y=的图像易得关于x的二次方程有两个小于1的正根的充要条件为在这里容易产生错误结论为:方程x2+mx+n=0有两个小于1的正根的充要条件是想一想:错在哪里?你能举出反例吗?注意到这里的p由※式中部分条件构造而成,它关于m、n的限制当然更为宽松.五.高考真题1.(2005·全国卷A)设I为全集,S1,S2,S3是I的三个非空子集,且S1∪S2∪S3=I,则下面判断正确的是()A.S1∩(S2∪S3)=φ B. S1(S2∩S3)C.S1∩S2∩S3=φ D. S1(S2∪S3)分析:对于比较复杂的集合运算的问题,一要想到利用有关结论化简,二要想到借助特取法或文氏图筛选.解法一(直接法):注意到A∩B=(A∪B),A∪B=(A∩B)及其延伸,∴S1∩S2∩S3=(S1∪S2∪S3)=I=φ,故选C解法二(特取法):令S1={1,2},S2={2,3},S3={1,3}I={1,2,3}则S1={3}S2={1}S3={2}由此否定A、B;又令S1=S2=S3={a},则I={a},S2=S3=φ,由此否定D.故本题应选C2.(2004·安徽春招卷):已知向量集合,则M∩N等于()A.{(1,1)} B. {(1,1),(-2,-2)} C .{(-2,-2)} D.φ分析:首先考虑化生为熟.由向量的坐标运算法则得,又令=(x,y),则有,消去λ得4x-3y+2=0,∴M={(x,y)|4x-3y+2=0,x,y∈R}.同理={(x,y)|5x-4y+2=0,x,y∈R}∴M∩N=={(-2,-2)},∴本题应选C点评:从认知集合切入,适时化生为熟,乃是解决集合问题的基本方略.B)的充要条件是()A.m>-1,n<5B m<-1,n<5C m>-1,n>5 D m<-1,n>5分析:由题设知P(2,3) ∈A,且P(2,3)∈B(※)又B={(x,y)|x+y-n>0},∴由(※)得,故本题应选A4.(2004·江苏卷)设函数,区间M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有()A.0个 B 1个 C 2个 D 无数多个分析:从认知集合切入.这里的集合N为函数f(x),(x∈M)的值域.注意到f(x)的表达式中含有|x|,为求f(x)的值域,先将f(x)化为分段函数的形式,以便于化整为零,逐段分析.∴当x>0时,f(x)<0;当x=0时,f(x)=0;当x<0时,f(x)>0.由此可知,当x≠0时,f(x) (x∈M)的值域与定义域M不可能相等;又当x=0时,f(x)的定义域为{0},故不存在a<b使区间[a,b]仅含元素0,因此,本题应选A.点评:解决分段函数问题的基本策略:分段考察,综合结论.在这里,认知集合N仍是解题成败的关键所在.5.(2004·北京卷)函数,其中P,M为实数集R的两个非空子集,又规定f(P)={y|y=f(x),x∈P}f(M)={y|y=f(x),x∈M},给出下列四个判断:①若P∩M=φ,则f(P)∩f(M)= φ;②若P∩M≠φ,则f(P)∩f(M)≠φ;③若P∪M=R,则f(P)∪f(M)= R;④若P∪M≠R,则f(P)∪f(M)≠ R其中正确判断有()A.1个B2个C3个D4个分析:首先认知f(P),f(M):f(P)为函数y=f(x)(x∈P)的值域;f(M)为函数y=f(x)(x∈M)的值域.进而考虑仿照第1题,从构造反例切入进行筛选.(1)取P={x|x≥0},M={x|x<0},则f(P)={x|x≥0}, f(M)={x|x>0}此时P∩M=φ,P∪M=R,但f(P)∩f(M) ≠φ,f(P) ∪f(M)≠ R由此判断①.③不正确(2)当P∩M≠φ时,则由函数f(x)的定义知P∩M={0}(否则便由f(x)的解析式导出矛盾),所以0∈f(P),0∈f(M),从而f(P)∩f(M)≠φ.由此判断②正确.(3)当P∪M≠R时,若0P∪M,则由函数f(x)的定义知,0f(P) ∪f(M)若存在非零x0P∪M, (※),易知x0f(P)当x0f(M)时,有x0f(P)∪f(M);当x0∈f(M)时,则易知-x0∈M.注意到这里-x0≠0,所以-x0P,从而-x0f(P).又∵x0M,∴-x0f(M),∴-x0f(P)∪f(M)(※※)∴由①.②知当P∪M≠R时,一定有f(P) ∪f(M)≠ R.故判断④正确.点评:认知f(P).f(M)的本质与特殊性,是本题推理和筛选的基础与保障.6.(2004·辽宁卷)设全集I=R,(1)解关于x的不等式|x-1|+a-1>0(a∈R);(2)设A为(1)中不等式的解集,集合,若(A)∩B恰有3个元素,求a的取值范围.分析:(1)原不等式|x-1|>1-a,运用公式求解须讨论1-a的符号.(2)从确定A与化简B切入,进而考虑由已知条件导出关于a的不等式(组),归结为不等式(组)的求解问题.解:(1)原不等式|x-1|>1-a当1-a<0,即a>1时,原不等式对任意x∈R成立;当1-a=0,即a=1时,原不等式|x-1|>0x≠1;当1-a>0,即a<1时,原不等式x-1<a-1或x-1>1-a x<a或x>2-a于是综合上述讨论可知,当a>1时,原不等式的解集为R;当a≤1时,原不等式的解集为(-∞,a)∪(2-a,+ ∞)(2)由(1)知,当a>1时,A=φ;当a≤1时, A={x|a≤x≤2-a}注意到==∴∴(A)∩B恰有3个元素A恰含三个整数元素.(A有三个元素的必要条件)(对A=[a,2-a]的右端点的限制)(对A=[a,2-a]的左端点的限制)故得-1<a≤0,点评:不被集合B的表象所迷惑,坚定从化简与认知集合B切入.当问题归结为A恰含三个整数时,寻觅等价的不等式组,既要考虑A含有三个整数的必要条件(宏观的范围控制),又要考虑相关区间的左\右端点的限制条件(微观的左右“卡位”),两方结合导出已知条件的等价不等式组.简易逻辑一、逻辑联系书上介绍了“或、且、非”三个联结词.这三个联结词的使用构成了命题之间的运算.我们称之为三种基本逻辑运算. “或”就是“或A”,“或B”,“或A与B”三者的总和!与集合求“并”一致;“且”就是“既A且B”等同于集合求“交”;而“非”与集合求“补”更是一样.可见,“或、且、非”是三种运算,且可以用集合的三种运算来描述,如让集合A与命A Bq例1.分别写出由下列各组命题构成的“p或q”“p且q”“非p”形式的复合命题:(1)p:是有理数,q:是无理数(2)p:方程x2+x-1=0的两根符号不同,q:方程x2+x-1=0的两根绝对值不同本例主要训练学生对逻辑联结词“或、且、非”的的应用,加深对逻辑联结词的理解.解:(1)p或q:是有理数或无理数,p且q:是有理数且是无理数,非p:不是有理数(2)p或q:方程x2+x-1=0的两根符号不同或绝对值不同.p且q:方程x2+x-1=0的两根符号不同且绝对值不同.非p:方程x2+x-1=0的两根符号相同.例2.分别指出下列复合命题的形式及构成它的简单命题.(1)x=2或x=3是方程x2-5x+6=0的根(2)p既大于3又是无理数(3)直角不等于90° (4) x+1≥x-3.(5)垂直于弦的直径,平分这条弦,并且平分这条弦所对的两条弧本全主要考查对逻辑联结词“或、且、非”的理解.解:(1)这个命题是p或q的形式,其中p:x=2是方程x2-5x+6=0的根.q:x=3是方程x2-5x+6=0的根.(2)这个命题是p且q的形式,其中p:p大于3,q:p是无理数(3)这个命题是非p的形式,其中p:直角等于90°(4)这个命题是p且q的形式,其中p:x+1>x+3,q:x+1=x-3(5)这个命题是p且q的形式,其中p:垂直于弦的直径平分这条弦,q:垂直于弦的直径平分这条弦所对的两条弧说明:有的“p或q”与“p且q”形式的复合命题语句中.字面上未出现“或”与“且”字,如此例中的(2)与(4).此时应从语句的陈述中搞清含义从而分清是“p或q”还是“p且q”形式,一般,若两个命题属于同时都要满足的为“且”,属于并理的为“或”.例3.分别指出由下列命题构成的“p或q”“p且q”“非p”形式的复合命题的真假.(1) p:4∈{2,3}, q:2∈{2,3}.(2) p:1是奇数,q:1是质数(3)p:0∈, q:{x|x2-3x-5<0, x∈R}(4)p:5≤5, q:27不是质数(5)p:不等式x2+2x-8<0的解集是{x|-4<x<2},q:不等式x2+2x-8<0的解集是{x|x<-4或x>2}.解:(1)因为p假,q真,所以“p或q”为真,“p且q”为假,“非p”为真.(2)因为p真q假,所以“p或q”为真,“p且q”为假,“非p”为假.(3)p或q:0∈或{x|x-3x-5<0, x∈R }p且q:0∈且{x|x-3x-5<0, x∈R }非p:0.因为p假q真,所以“p或q”为真,“p且q”为假,“非p”为真.(4) p或q:5≤5或27不是质数,p且q:5≤5且27不是质数,非p:5>5.因为p为5<5或5=5,而5=5为真,故p为真,又q也为真,所以,“p或q”为真,“p且q”为真,“非p”为假.(5) p或q:不等式x2+2x-8<0的解集是{x|-4<x<2}或是{x|x<-4或x>2}.p且q:不等式x2+2x-8<0的解集是{x|-4<x<2}且是{x|x<-4或x>2}.非p:不等式x2+2x-8<0的解集不是{x|-4<x<2}.因为p真q假,所以“p或q”为真,“p且q”为假,“非p”为假.说明:注意复合命题“p或q”与“p且q”是用逻辑联结词“或”与“且”联结命题是p与q.而不能用“或”与“且”去联结命题p与q中的条件.又非p是对p的否定,命题中的“是”的否定有时为“不是”,有时为“不都是”,要视“是”的含义而定.二、四种命题:逆否命题考察下面命题:(1) 如果两角是对顶角,那么这两角相等(2) 如果两角不相等,那么这两角不是对顶角可以发现,其中一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定. 这样的两个命题叫做互为逆否命题,把其中一个命题叫做原命题,另一个就叫做原命题的逆否命题.一个命题和它的逆否命题要么同时为真,要么同时为不真,我们可用下面的命题来检验这个结论:a. 如果一个整数能够被2整除,那么它是一个偶数例1.写出下列的命题的逆命题,否命题和逆否命题(1) 在ΔABC中,若a>b, 则∠A>∠B.(2)直角三角形两直角边的平方和等于斜边的平方.(3)当c>0时,若a>b, 则ac>bc.分析:由原命题写出逆命题,否命题和逆否命题时注意以规律:①交换原命题的条件和结论.所得命题就是逆命题.②同时否定原命题的条件和结论所得命题就是否命题.③交换原命题的条件和结论并且同时否定.所得命题就是逆否命题.解答:(1)逆命题:在ΔABC中,若∠A>∠B,则a>b.否命题:在ΔABC中,若a≤b,则∠A≤∠B. 逆否命题:在ΔABC中,若∠A≤∠B则a≤b.(2)逆命题:如果一个三角形两边的平方和等于第三边的平方.那么这个三角形为直角三角形.否命题:若一个三角形不是直角三角形.那么该三角形任何边的平方和不等于第三边的平方.逆否命题:如果一个三角形任两边的平方和不等于第三边的平方,那么这个三角形不是直角三角形.(3)逆命题:当c>0时,若ac>bc,则a>b.否命题:当c>0时,若a≤b,则ac≤bc.逆否命题:当c>0时,若ac≤bc,则a≤b.说明:某些命题存在大前提,写其它命题时应注意保留.例2.已知命题“如果|a|≤1,那么关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集是空集”写出它的逆命题,否命题,逆否命题,并判断它们的真假.分析:判断原命题,逆命题,否命题,逆否命题的真假时,只要判断原命题与逆命题的真假,就可知道其它两个命题的真假,不必一一判断.解答:逆命题:如果关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集是空集.那么,|a|≤1.否命题:如果|a|>1,那么关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集不是空集.逆否命题:如果关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集不是空集,那么|a|>1.①先判断原命题的真假.当|a|≤1时a2-4<0,Δ=(a+2)2+4(a2-4)=5a2+4a-12=5(a+)2--12≤5(1+)2--12<0,故(a2-4)x2+(a+2)x-1≥0的解集为,故原命题为真,则逆否命题亦真.②对于逆命题,当(a2-4)x2+(a+2)x-1≥0的解为空集时,先研究a2-4=0得a=-2,满足题意,这样a=-2与|a|≤1矛盾,故命题为假,而否命题与逆命题互为逆否命题,故否命题亦为假.三、充要条件考察命题:“若两角是对顶角,则此两角相等”,显然,它是一个真实的命题.它正确地揭示了条件“两角是对顶角”与结论“两角相等”之间必然的逻辑联系.容易看出,如果“两角是对顶角”这个条件成立,就可以充分保证“两有相等”这个结论也成立,我们记:p:两角是对顶角;q:两角相等即假言命题“p→q”是真命题,此时可以说p经过推理可得出q,也就是说,如果p成立,那么q一定成立,记作:p q.如果把上述命题改为它等价的逆否命题:“若两角不相等,则两角不是对顶角”那么,不难看出,要使“两角是对顶角”成立,“两角相等”是必不可少的,即.为了便于说明条件和结论之间的联系.我们称“两角是对顶角”是“两角相等”的充分条件,而“两角相等”是“两角是对顶角”的必要条件.一般地,如果已知p q那么我们说,p是q的充分条件,q是p的必要条件.如果由p推不出q,命题为假,记作p q.例1.设命题甲为“0<x<5”,命题乙为“|x-2|<3”,那么A、甲是乙的充分条件,但不是乙的必要条件B、甲是乙的必要条件,但不是乙的充分条件C、甲是乙的充要条件D、甲既不是乙的充分条件,也不是乙的必要条件分析:本题研究的是命题甲与乙之间的“”关系,不等式|x-2|<3的解是-1<x<5.显然,当x满足0<x<5时一定满足-1<x<5,反之亦然,如x=-0.5满足-1<x<5,但不满足0<x<5,即甲乙,乙甲,故甲是乙的充分不必要条件.答案:A.例2.下列各小题中,p是q的什么条件?(在“充分非必要条件”,“必要非充分条件”,“充要条件”“既不充分也不必要条件”中选一种)(1) p:|x-2|≤3,q:x≥-1或x≤5.(2) p:-2<a<0, 0<b<1.q:关于x的方程x2+ax+b=0有两个小于1的正根.分析:先简化条件p或q,注意正面推导与反面验证,通过考察即可得出它们的关系.解答:(1)p:-1≤x≤5,q:x≥-1或x≤5. 由于{x|-1≤x≤5}{x|x≥-1或x≤5}.所以p q,但q p,所以p是q的充分非必要条件.(2)若-2<a<0, 0<b<1, 不妨取a=1, b=,则Δ=a2-4b=1-<0.关于x的方程x2+ax+b=0无实根,所以p q.右关于x的方程x2+ax+b=0有两个小于1的正根,设0<x1≤x2<1,则x1+x2=-a, x1x2=b, 所以0<-a<2, 0<b<1,即-2<a<0, 0<b<1,即q p.故p是q的必要而不充分条件.说明:由于新教材的原因,原旧教材中的符号一律被取代,同学们在时候的时候千万以新教材的为准!在线测试选择题1.如图U是全集,M,P,S是U的三个子集,则阴影部分所表示的集合是().A、(M∩P)∩SB、(M∩P)∪SC、(M∩P)∩(C U S)D、(M∩P)∪(C U S)2.已知复合命题“p或q”为真,“非p”为假,则().A、p真,q假B、p假,q真C、p假,q可能真,也可能假D、p真,q可能真,也可能假3.在一个“若p则q”形式的命题中,已知p:两个实数a,b满足|a-b|<2;q:两个实数a, b满足|a-|<1, 且|b-|<1.那么().A、p是q的充分但不必要条件B、p是q的必要但不充分条件C、p是q的充要条件D、p不是q的充分条件,也不是q的必要条件4.设U={1,2,3,4,5}, A∩B={2},(C U A)∩B={4}, (C U A)∩(C U B)={1,5},则()A、3∈A,且3∈BB、3A,但3∈BC、3A,且3 BD、3∈A,但3 B5.集合A={x|x2-2x-3>0},B={x|x2+ax+b≤0}.若A∪B=R,A∩B={x|3<x≤4},则()A、a=2,b=3B、a=-3,b=-4C、a=1,b=2D、a=-3, b=4答案与解析答案:1、C 2、D 3、B 4、D 5、B解析:1.阴影包含在M∩P中,但不含S中的元素. 答案:C2.由“非p”假知p真,此时,不论q真假如何,“p或q”都真. 答案:D3.由q成立,有|a-b|=|a-+-b|≤|a-|+|b-|<2,即p成立. 反过来不行.答案:B4.3A∩B,假设3A,由 (C U A)∩B={4},3B,这与(C U A)∩(C U B)={1,5}矛盾,从而3∈A,3 B.答案:D 5.A=(-∞,-1)∪(3,+∞),由A∪B可知B包含[-1,3],又A∩B=(3,4),可知B=[-1,4].于是a=-(-1+4)=-3, b=(-1)×4=-4.答案:B谈“简易逻辑”的学习数学课也学逻辑,这对许多高一新同学来说,似乎有些突破:语文课学逻辑,政治课讲逻辑,为什么数学课也学逻辑?且此逻辑与彼逻辑是何关系?!其实数学中的逻辑学知识与语文文法和哲学中的逻辑从本质上讲是一个东西,都叫形式逻辑.它是人们思维的方法与工具.数学领域内充满了逻辑,数学思维就是一种逻辑思维,不研究逻辑,就无法研究数学,就无法真正进入数学.我们在高中一年级接触的逻辑,称为“简易逻辑”.之所以说“简易”,是因为它仅涉及逻辑学中最基本、最简单的部分知识,是逻辑学的起步.但同学们不要因其浅显而小看,它正是你可以进入逻辑学大门的钥匙.没有对它的接受与认识,你就休想进入逻辑世界,因而你的数学思维也会显得残缺不全.这就是说,每一个进入高一的学生都要认识它,接受它,从而掌握它,应用它.下面我们逐一认识一下简易逻辑中的一些基本知识.整个“简易逻辑”包含两个部分:一是逻辑基本概念与运算,二是初步的逻辑判断.打开课本,首先映入眼帘的是“命题”.课本上定义为“可以判断真假的语句”.顾名思义,不能断定真假的语句就不是命题.比如“12>5”与“0.5是整数”就是命题.而“x>5”则不是命题.但“若x=6,则x>5”却成了一个命题,因为其可以断定真假了.由此,诸如“12>5”之类的命题称之无条件型命题,或称绝对命题;而“若x=6,则x>5”则叫条件型命题.书上没有给出这种分类,但书上有“若A则B”型命题,不就是这类命题吗?课本上介绍了“或、且、非”三个联结词,但在做复合命题时没有指出这是逻辑运算,也没有指出除此之外是否还有逻辑联结词,因此需要对这三个字认识一下.首先,这三个联结词的使用构成了命题之间的运算,我们称之为三种基本逻辑运算.探求一下它们的内涵,不就与集合运算中的“并、交、补”,“或”就是“或A”、“或B”、“或A与B”三者的总和!与集合求“并”一致;“且”就是“既A且B”,等同于集合求“交”;而“非”与集合求“补”更是一样.可见,“或、且、非”是三种运算,且可以用集合的三种运算来描述.另一个问题是,是否仅有这三个联结词.仅就逻辑用语而言,逻辑联结词应当还有不少,比如“若…则”,“因为…所以…”,这些联结词也构建命题与命题之间的逻辑关系.只是“或、且、非”是三种最基本联结词,且定义最基本的三种运算,而课本中只研究介绍这些内容而已.在接触“非”运算之后,有三个地方需要进一步明确,其一是不要把所有命题都看成另一命题的否定.诚然,“12>5”是“12≤5”的否定,这在逻辑上是没有问题的.但如果对所有命题都如此而论,就无法确定评价尺度与标准了,而且这种正、反否定的思维必然造成思维无果,又累及人身.因此,把一些命题称之为元命题(即基本元),由此去构建其他命题或评判其他命题就尤其有必要,因此课本上只把带“非”的命题称为命题否定,而不带“非”的元命题称为简单命题.其二,对简单复合命题取“非”有何法则,也需了解,不然就会乱套.如对“A或B”取非,遵循“非A且非B”法则;对“A且B”取非,遵循“非A或非B”法则;就与集合运算中的德摩根法则一样,掌握了这个法则,则课本上的相关例、习题就不难接受了.其三是否命题与命题的否定.否命题应当有“若非A则非B”形式,用于求原命题的否命题.命题的否定应当遵循“若A且非B”,通常用于反证法的否定.对于命题“若A则B”,同学们作出它的真值表并不难,但初学的同学将它们用于逻辑判断却不一定能得心应手.。