《电磁场与电磁波》期末复习题及答案
电磁场与电磁波期末试题
一、选择题(10×2=20分)1.产生电场的源为( C )A 位移电流和传导电流;B 电荷和传导电流;C 电荷和变化的磁场;D 位移电流和变化的磁场。
2.在有源区,静电场电位函数满足的方程是( A )A 泊松方程;B 亥姆霍兹方程;C 高斯方程;D 拉普拉斯方程。
3. 如果真空中有一个点电荷q 放在直角坐标系的原点,则坐标),,(z y x 处的电位=Φ( D )A 22241z y xq++πε; B 222041z y x q++πε; C 22241zy x q ++πε; D 22241zy x q ++πε。
4. 某金属在频率为1MHz 时的穿透深度为60m μ,当频率提高到4 MHz 时,其穿透深度为( B )A 15m μ;B 30m μ;C 120m μ;D 240m μ。
5. 在正弦电磁场中,位移电流应与该处电场的方向一致,其相位( C ) A 与电场相同; B 与电场相反; C 超前电场90°; D 滞后电场90°。
6. 一个半径为a 的导体球,球外为非均匀电介质,介电常数为a r 0εε=,设导体球的球心与坐标原点重合,则导体球与无穷远点的电容为( B )A a 04πε; B a 08πε; C a 012πε; D a 02πε。
7.对于非磁性介质,平行极化的均匀平面斜入射到介质分界面上,发生全透射的条件为( B )A 反射波平行极化;B 入射角等于布儒斯特角;C 入射角等于临界角;D 入射波为左旋园极化。
8.麦克思韦提出的( D )的概念,使在任何状态下的全电流都可保持连续A 传导电流;B 时变电流;C 运流电流;D 位移电流。
9. 如图所示的一个电量为q 的点电荷放在060导体内坐标),(d a 处,为求解导体包围空间的电位,需要( C )个镜像电荷A 1个;B 3个;C 5个;D 8个。
10. 已知良导体的电导率磁导率和介电常数分别为σμ和ε,则频率为ω的平面电磁波入射到该导体上时的集肤深度为( A )Aωμσ2; B 2ωμσ; Cωμσ21; D σωμ2。
《电磁场与电磁波》试题含答案
E
;
E x 分量
� ˆ x + ye ˆ y + xe ˆz A = − x 2e
,试求
�
(2)若在 xy 平面上有一边长为 2 的正方形,且正方形的中心在坐标原点,试求该矢量 A 穿 过此正方形的通量。 17.已知某二维标量场 u ( x, y ) = x + y ,求 (1)标量函数的梯度; (2)求出通过点 (1,0) 处梯度的大小。
三、计算题
15.矢量函数
(每小题 10 分,共 30 分) � ˆ x + yze ˆz A = − yx 2 e
,试求
� ∇ ⋅ A (1) � (2) ∇ × A � � ˆx − e ˆy ˆ x − 2e ˆz B = e A = 2 e 16.矢量 , ,求
(1 ) A − B (2)求出两矢量的夹角 17.方程 u ( x, y, z ) = x + y + z 给出一球族,求 (1)求该标量场的梯度; (2)求出通过点 (1,2,0) 处的单位法向矢量。
。
等于零,则此两个矢量必然相互垂直。 关系。 函
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 数的旋度来表示。
二、简述题
(每小题 5 分,共 20 分) � � ∂B ∇×E = − ∂t ,试说明其物理意义,并写出方程的积分形式。 11.已知麦克斯韦第二方程为
(1) 求出入射波磁场表达式; (2) 画出区域 1 中反射波电、磁场的方向。
�
区域 1 图3
区域 2《电磁场与电磁波》试题2一、填空题(每小题 1 分,共 10 分)
1.在均匀各向同性线性媒质中,设媒质的介电常数为 ε ,则电位移矢量 D 和电场 E 满足的 方程为: 。
电磁场与电磁波期末复习题
电磁场与电磁波模拟题一、选择题1. 已知:e e e e e e z y x z y x B A 432;543++=++=;计算:A⃗×B ⃗⃗= ( A ) A. e x ⃗⃗⃗⃗+2e y ⃗⃗⃗⃗⃗(10−12)+e z ⃗⃗⃗⃗ B. 4e x ⃗⃗⃗⃗⃗⃗⃗+2e y ⃗⃗⃗⃗⃗⃗⃗+e z ⃗⃗⃗⃗ C. 6e x ⃗⃗⃗⃗−12e y ⃗⃗⃗⃗⃗+20e z ⃗⃗⃗⃗D. 6e x ⃗⃗⃗⃗+12e y ⃗⃗⃗⃗⃗(A y B z −A z B y )+20e z ⃗⃗⃗⃗2. E ⃗⃗=e x ⃗⃗⃗⃗(x 2+bxz )+e y ⃗⃗⃗⃗⃗(xy 2+ay )+e z ⃗⃗⃗⃗(z −z 2+czx −2xyz )为无源场,求a ,b ,c 的值分别为:( B )A. a=3,b=3,c=1B. a=-1,b=2,c=-2C. a= -2 b=2 ,c=1D. a=1 ,b=2 ,c=-2 3. 自由空间中毕澳-萨伐卡定律表述正确的是:( A ) A. B ⃗⃗=μ04π∫J ⃗×R ⃗⃗R 3dV V B. B ⃗⃗=μ04π∮Idl ⃗×R ⃗⃗R 3 S C. B ⃗⃗=μ02π∮Idl ⃗×R ⃗⃗R 2 CD. B ⃗⃗=μ02π∫J S ⃗⃗⃗⃗⃗×R ⃗⃗R 3dS S4.对于线性及各向同性的媒质,电磁场的电场强度、电位移矢量、磁场强度、磁感应强度本构关系不正确的是( D )A. D⃗⃗=εE ⃗⃗ B. B ⃗⃗=μH ⃗⃗ C. J ⃗=σE ⃗⃗ D. H ⃗⃗=μB ⃗⃗ 5.静电场中电场能量存在于整个电场空间中,和电场强度及电位移矢量相关,下面正确的是:(A )A. W e =12∮φD ⃗⃗∙dS ⃗S +12∫E ⃗⃗∙D ⃗⃗dV V B. W e =12∮φD ⃗⃗∙dl ⃗C +12∫E ⃗⃗∙D ⃗⃗dV VC. W e =12∮φD ⃗⃗∙dS ⃗ S +12∮E ⃗⃗∙D ⃗⃗dlCD. W e =12∮φD ⃗⃗∙dl ⃗C +12∮E ⃗⃗∙D ⃗⃗dl C6. 恒定磁场中磁场能量存在于整个磁场空间中,下面正确的是:(A )A. W m =12∫J ⃗∙A ⃗dVV =12∫H ⃗⃗∙B ⃗⃗dV VB. W e =12∫H ⃗⃗∙B ⃗⃗dVVC. W e =12∫J ⃗∙A ⃗dVV =12∫H ⃗⃗∙B ⃗⃗dV V D. W m =12∫J ⃗∙A ⃗dV V +12∫H ⃗⃗∙B ⃗⃗dV V7. 设点电荷2q 在球坐标系中(d ,0,0)处,接地导体球半径为a,的球心在z=0处,两者组成系统中,在r>a处的电位函数为:()A. φ=q4πε[√22d√r2+(a2d)2−2r a2dcosθ]B. φ=q2πε[d√r2+(2d)2−2r2dcosθ]C. φ=q4πε[d√r2+(d)2−2rdcosθ]D. φ=q2πε[√d√r2+(2d)2−2r2dcosθ]8.无界空间中,媒质为线性及各向同性材料,电磁波传播满足的波动方程为:()A. ∇2E⃗⃗−μεð2E⃗⃗ðt2=μðJ⃗ðt+∇∙ρε;∇2H⃗⃗−μεð2H⃗⃗ðt2=∇×J⃗B. ∇2E⃗⃗+μεð2E⃗⃗ðt2=μðJ⃗ðt+∇∙ρε;∇2H⃗⃗+μεð2H⃗⃗ðt2=∇×J⃗C. ∇2E⃗⃗−μεð2E⃗⃗ðt2=μðJ⃗ðt−∇∙ρε;∇2H⃗⃗−μεð2H⃗⃗ðt2=∇∙J⃗D. ∇2E⃗⃗+μεð2E⃗⃗ðt2=μðJ⃗ðt−∇∙ρε;∇2H⃗⃗+μεð2H⃗⃗ðt2=∇∙J⃗9.空间区域中电磁能守恒的坡印廷定理为:()A. −ddt ∫wdVV=∫J⃗∙VE⃗⃗dV+∮S⃗∙dS S⃗⃗⃗⃗S SB. ddt ∫wdVV=∫J⃗∙VE⃗⃗dV−∮S⃗∙dS S⃗⃗⃗⃗S SC. ddt ∫wdVV=∫J⃗∙VE⃗⃗dV+∮S⃗∙dS S⃗⃗⃗⃗S SD. −ddt ∫wdVV=∫J⃗∙VE⃗⃗dV−∮S⃗∙dS S⃗⃗⃗⃗S S10.均匀平面波在两种媒质都为理想介质中传播时,其反射系数和透射系数为:()A. Γ=E rmE im =η2−η1η2+η1;τ=E tmE im=1+Γ=2η2η2+η1B. Γ=E rmE im =η2+η1η2−η1;τ=E tmE im=1+Γ=2η2η2+η1C. Γ=E rmE im =η2−η1η2+η1;τ=E tmE im=1+Γ=2η2η2−η1D. Γ=E rmE im =η2+η1η2−η1;τ=E tmE im=1+Γ=2η2η2−η111.计算:e n⃗⃗⃗⃗⃗(A⃗⃗∙B⃗⃗)+ A⃗×B⃗⃗=( )A. e n⃗⃗⃗⃗⃗A⃗B⃗⃗(cosθ−sinθ)B. e n⃗⃗⃗⃗⃗A⃗B⃗⃗(cosθ+sinθ)C. e n⃗⃗⃗⃗⃗AB(cosθ+sinθ)D. e n⃗⃗⃗⃗⃗AB(cos θ−sin θ) 12. 计算:∫∇∙F ⃗dV V +∫∇×F ⃗∙dS ⃗S = (A ) A .∮F ⃗∙dS ⃗+∮F ⃗∙dl ⃗C S B .∮F ⃗×dS ⃗+∮F ⃗×dl ⃗C S C .∮∇×F ⃗∙dS ⃗S D .∮∇×F ⃗∙dl ⃗c13.真空中库伦定律的公式,正确的是:( B )A.E r ⃗⃗⃗⃗⃗=12πε0∫ρS R ⃗⃗⃗R 3dS S B.E r ⃗⃗⃗⃗⃗=14πε0∫ρl R⃗⃗⃗R 3dl l C.E r ⃗⃗⃗⃗⃗=14πε0∫ρR ⃗⃗⃗R 2dV V D. E r ⃗⃗⃗⃗⃗=12πε0∫ρR⃗⃗⃗R 3dV V 14.从宏观效应来分析,在电磁场的作用下,媒质会发生极化、磁化和传导三种现象,对应媒质的三种特性的参数分别是: ( A ) A.介电系数ε、磁导率μ、电导率σ B.介电系数σ、磁导率ε、电导率μ C.介电系数μ、磁导率σ、电导率ε D.介电系数μ、磁导率ε、电导率σ15.静电场中,对于点电荷、线电荷、面电荷、体电荷,电位函数与求解公式正确的是:( A )A. φ=14πε∑qiR in i=1+cB. φ=14πε∫ρl dl R 2l +cC. φ=14πε∫ρS dS R 2S+cD. φ=14πε∫ρ dV R 2V+c16.由电流元Idl ⃗产生的恒定磁场,其矢量磁位的公式正确的是:( B ) A. A ⃗=μ4π∫Idl ⃗R 2l +C ⃗ B. A ⃗=μ4π∫Idl ⃗Rl +C ⃗; C.A⃗=μ2π∫Idl⃗R 2 l +C ⃗D. A⃗=μ2π∫Idl⃗Rl +C⃗; 17. 设点电荷2q 在直角坐标系中(0,0,h )处,在z=0处有无限大接地导体,两者组成系统中,在z >0处的电位函数为:( ) A.φ=q2πε[√x 2+y 2+(z−h)2−√x 2+y 2+(z+h)2] B.φ=q 4πε[222−222] C.φ=q2πε[222−222] D.φ=q4πε[222−222]18.无界空间里为线性及各向同性材料,电磁波传播满足的波动方程为:( )A. ∇2E⃗⃗−μεð2E⃗⃗ðt2=μðJ⃗ðt+1ε∇ρ∇2H⃗⃗−μεð2H⃗⃗ðt2=∇×j⃗B.∇2E⃗⃗+μεð2E⃗⃗ðt2=μðJ⃗ðt+1ε∇ρ∇2H⃗⃗+μεð2H⃗⃗ðt2=∇×j⃗C.∇2E⃗⃗−μεð2E⃗⃗ðt2=μðJ⃗ðt−1ε∇ρ∇2H⃗⃗−μεð2H⃗⃗ðt2=∇×j⃗D.∇2E⃗⃗+μεð2E⃗⃗ðt2=μðJ⃗ðt−1ε∇ρ∇2H⃗⃗+μεð2H⃗⃗ðt2=∇×j⃗19.无界空间里媒质为线性及各向同性材料,电磁波传播满足的达朗贝尔方程为:( A)A. ∇2A⃗−μεð2A⃗ðt2=−μJ⃗ ; ∇2φ−μεð2φðt2=−ρεB.∇2A⃗−μεð2A⃗ðt2=μJ⃗ ; ∇2φ−μεð2φðt2=ρεC.∇2A⃗+μεð2A⃗ðt2=−μJ⃗ ; ∇2φ+μεð2φðt2=−ρεD. ∇2A⃗+μεð2A⃗ðt2=μJ⃗ ; ∇2φ+μεð2φðt2=ρε20. E⃗⃗⃗=e x⃗⃗⃗⃗⃗E xm cos(ωt−kz+ϕx)+e y⃗⃗⃗⃗⃗E ym sin(ωt−kz+ϕy)复矢量:(A)A. E m=e x⃗⃗⃗⃗⃗E xm e j(−kz+ϕz)+e y⃗⃗⃗⃗⃗E ym e j(−kz+ϕy−π2)B. E m=e x⃗⃗⃗⃗⃗E xm e j(−kz+ϕz)+e y⃗⃗⃗⃗⃗E ym e j(−kz+ϕy+π2)C. E m=e x⃗⃗⃗⃗⃗E xm e j(−kz−ϕz)+e y⃗⃗⃗⃗⃗E ym e j(−kz−ϕy)D. E m=e x⃗⃗⃗⃗⃗E xm e j(−kz−ϕz)+e y⃗⃗⃗⃗⃗E ym e j(−kz−ϕy)二、填空题1.矢量函数A⃗⃗通量的密度称为散变 ,即div A⃗⃗= ;2.自由电荷在其周边空间中形成的电场称为电磁场,为无旋场;恒定电流在其周边空间形成的磁场称为恒定磁场,为无散场。
《电磁场与电磁波》期末考试试卷一
一、选择题(5小题,共15分)(3分)[1] 比较位移电流与传导电流,下列陈述中,不正确的是: A. 位移电流与传导电流一样,也是电荷的定向运动 B. 位移电流与传导电流一样,也能产生涡旋磁场 C. 位移电流与传导电不同,它不产生焦耳热损耗(3分)[2] 恒定电流场中,不同导电媒质交界面上自由电荷面密度0σ=的条件是 A 、1122γεγε> B 、1122γεγε= C 、1122γεγε< (3分)[3] 已知电磁波的电场强度为)sin()cos(),(z t e z t e t z E y x βωβω---=,则该电磁波为A 、左旋圆极化波B 、右旋圆极化波C 、椭圆极化波(3分)[4] xOz 平面为两种媒质的分界面,已知分界面处z y x e e e H26101++=,z y e e H242+=,则分界面上有电流线密度为:A 、z S e J 10=B 、z x S e e J 410+=C 、z S e J 10-=(3分)[5] 若介质1为理想介质,其介电常数102εε=,磁导率10μμ=,电导率10γ=;介质2为空气。
平面电磁波由介质1向分界平面上斜入射,入射波电场强度与入射面平行,若入射角/4θπ=,则介质2 ( 空气) 中折射波的折射角'θ为 A 、/4π B 、/2π C 、/3π二、填空题(5小题,共20分)(4分)[1] 恒定磁场中不同媒质分界面处, H 与B 满足的边界条件是:( ), ( ) 或( ),( )。
(4分)[2] 静电比拟是指( ), 静电场和恒定电流场进行静电比拟时,其对应物理量间的比似关系是( )。
(4分)[3] 镜像法的理论根据是( )。
镜像法的基本思想是用集中的镜像电荷代替( ) 的分布。
(4分)[4] 如图所示,导体杆ab 在磁感应强度0sin B B t ω=的均匀磁场中,以速度v 向右平移。
设t=0 时导体杆ab 与cd 重合,则在t πω=时刻,导体杆上的感应电动势e =( ),方向由( )。
电磁场与电磁波复习题(含答案)
电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。
散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。
2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。
当S 点P 时,存在极限环量密度。
⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。
4.⽮量的旋度在直⾓坐标系下的表达式。
5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。
梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。
9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。
电磁场与电磁波复习试卷答案
《电磁场与电磁波》试题(1)参考答案二、简答题 (每小题5分,共20分)11.答:意义:随时间变化的磁场可以产生电场。
(3分)其积分形式为:S d t Bl d E C S⋅∂∂-=⋅⎰⎰ (2分) 12.答:在静电场中,在给定的边界条件下,拉普拉斯方程或泊松方程的解是唯一的,这一定理称为唯一性定理。
(3分)它的意义:给出了定解的充要条件:既满足方程又满足边界条件的解是正确的。
13.答:电磁波包络或能量的传播速度称为群速。
(3分)群速g v 与相速p v 的关系式为: ωωd dvv v v pp pg -=1 (2分)14.答:位移电流:tDJ d ∂∂=位移电流产生磁效应代表了变化的电场能够产生磁场,使麦克斯韦能够预言电磁场以波的形式传播,为现代通信打下理论基础。
三、计算题 (每小题10 分,共30分)15.按要求完成下列题目(1)判断矢量函数y x e xz ey B ˆˆ2+-= 是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。
解:(1)根据散度的表达式zB y B x B B zy x ∂∂+∂∂+∂∂=⋅∇ (3分) 将矢量函数B代入,显然有0=⋅∇B(1分)故:该矢量函数为某区域的磁通量密度。
(1分) (2)电流分布为:()[]分)(分)(分)(1ˆ2ˆ120ˆˆˆ2102z x z y x ez y e x xzy z yx e e e BJ ++-=-∂∂∂∂∂∂=⨯∇=μμ16.矢量z y x e ˆe ˆe ˆA 32-+=,z y x e e e B ˆˆ3ˆ5--= ,求 (1)B A+ (2)B A⋅解:(1)z y x e ˆe ˆeˆB A 427--=+(5分) (2)103310=+-=⋅B A(5分) 17.在无源的自由空间中,电场强度复矢量的表达式为 ()jkz y x e E e E eE --=004ˆ3ˆ(1) 试写出其时间表达式; (2) 说明电磁波的传播方向;解:(1)该电场的时间表达式为:()()tj eE t z E ωRe ,= (3分)()()()kz t E e E et z E y x --=ωcos 4ˆ3ˆ,00(2分) (2)由于相位因子为jkze-,其等相位面在xoy 平面,传播方向为z 轴方向。
浙江大学 春夏学期《电磁场与电磁波》期末考试试卷及答案
z015.02103 mW / m2
(3)透射波
E2 x0Em2e j2z x01.21510e j1.66z x012.15e j1.66zmV / m
5
H2
1 2
z0
x0 Em2e j2z
1 238.44
y
012.15e
j1.66
z
y0 51103 e j1.66zmA / m
A.都是连续的 B. 不连续的;连续的 C. 连续的;不连续的 D.都不连续
8. z=0 是空气( 0 )与介质( 2 30 )的分界面,若已知空气中的电场强度 E1 3x0 3z0 , 则介质中的电场强度应为(C)。
A. E2 3x0 9z0
B. E2 x0 3z0
D. 实数部分代表传导电流的贡献,它引起电磁波功率的耗散;虚数部分是位移电流的贡献,
它不能引起能量耗散。
5. 有关天线增益和天线方向性的描述,不正确的是(B)
A.天线增益考虑了天线材料中的欧姆损耗,而天线方向性则没有;
B.天线增益是馈入天线电磁信号的放大倍数,方向性是指波束的指向方向;
C.方向图主瓣越窄,副瓣越小,天线方向性就越大,天线增益也越高
浙江大学 20 16 –20 17 学年 春夏 学期
《 电磁场与电磁波 》课程期末考试试卷
电磁波与电磁场期末复习题(试题+答案)
电磁波与电磁场期末复习题(试题+答案)电磁波与电磁场期末试题一、填空题(20分)1.旋度矢量的散度恒等与零,梯度矢量的旋度恒等与零。
2.在理想导体与介质分界面上,法线矢量n r由理想导体2指向介质1,则磁场满足的边界条件:01=?B n ρρ,s J H n =?1ρρ。
3.在静电场中,导体表面的电荷密度σ与导体外的电位函数?满足的关系式n ??=?εσ-。
4.极化介质体积内的束缚电荷密度σ与极化强度P 之间的关系式为P ?-?=σ。
5.在解析法求解静态场的边值问题中,分离变量法是求解拉普拉斯方程的最基本方法;在某些特定情况下,还可用镜像法求拉普拉斯方程的特解。
6.若密绕的线圈匝数为N ,则产生的磁通为单匝时的N 倍,其自感为单匝的2N 倍。
7.麦克斯韦关于位移电流的假说反映出变化的电场要产生磁场。
8.表征时变场中电磁能量的守恒关系是坡印廷定理。
9.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为谐振腔。
10.写出下列两种情况下,介电常数为ε的均匀无界媒质中电场强度的量值随距离r 的变化规律:带电金属球(带电荷量为Q )E = 24r Qπε;无限长线电荷(电荷线密度为λ)E =r2。
11.电介质的极性分子在无外电场作用下,所有正、负电荷的作用中心不相重合,而形成电偶极子,但由于电偶极矩方向不规则,电偶极矩的矢量和为零。
在外电场作用下,极性分子的电矩发生转向,使电偶极矩的矢量和不再为零,而产生极化。
12.根据场的唯一性定理在静态场的边值问题中,只要满足给定的边界条件,则泊松方程或拉普拉斯方程的解是唯一的。
二、判断题(每空2分,共10分)1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。
(×)2.一个点电荷Q 放在球形高斯面中心处。
如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。
(×)3.在线性磁介质中,由IL ψ=的关系可知,电感系数不仅与导线的几何尺寸、材料特性有关,还与通过线圈的电流有关。
电磁场与电磁波期末考试复习试题4套(部分含答案)
电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量 , 。
2.对于矢量A ,若 ,则=+•y x a y x a x )(2 ,=⨯x z a y a x 2 。
3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ,矢量B A ⋅= 。
4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为 ,P1到P2的距离矢量为 。
5.已知球坐标系中单位矢量 。
6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为 。
7.点电荷q 在自由空间任一点r 处电场强度为 。
8.静电场中导体内的电场为 ,电场强度与电位函数的关系为 。
9.高斯散度定理的积分式为 ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。
10.已知任意一个矢量场A ,则其旋度的散度为 。
11.真空中静电场的基本方程的微分形式为 、 、 。
12.分析恒定磁场时,在无界真空中,两个基本场变量为 ,它们之间的关系为 。
13.斯托克斯定理为 ,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。
14.任意一个标量场u ,则其梯度的旋度为 。
15.对于某一矢量 ,它的散度定义式为 ,用哈密顿算子表示为 。
16.介质中静电场的基本方程的积分式为 , , 。
17.介质中恒定磁场的基本方程的微分形式为 、 、 。
18.介质中恒定磁场的基本方程的积分式为 , , 。
19.静电场中两种介质分界面的边界条件是 , 。
20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为 ,位置位于 ;如果一个点电荷置于两平行导体中间,则此点电荷有 镜像电荷。
21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为 。
22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ,位置位于 ;当点电荷q 向无限远处运动时,其镜像电荷向 运动。
电磁场与电磁波复习题(含答案)
电磁场与电磁波复习题 一、填空题1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。
散度与通量的关系是矢量场中任意一点处通量对体积的变化率。
2、 散度在直角坐标系的表达式 z A y A x A z yxA A ∂∂∂∂∂∂++=⋅∇= div ;散度在圆柱坐标系下的表达;3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。
当S 点P 时,存在极限环量密度。
二者的关系n dS dC e A ⋅=rot ;旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。
4.矢量的旋度在直角坐标系下的表达式。
5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。
梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达式 ; 7、直角坐标系下方向导数u ∂的数学表达式是cos cos cos l αβγ∂∂∂∂∂∂∂∂uuuu=++xyz ,梯度的表达式x y z G e e e grad x y z φφφφφ∂∂∂=++=∇=∂∂∂;8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。
9、麦克斯韦方程组的积分形式分别为0()s l s s l s D dS Q B E dl dS t B dS D H dl J dS t ⋅=∂⋅=-⋅∂=∂=+⋅∂⎰⎰⎰⎰⎰⎰其物理描述分别为10、麦克斯韦方程组的微分形式分别为20E /E /tB 0B //tB c J E ρεε∇⋅=∇⨯=-∂∂∇⋅=∇⨯=+∂∂其物理意义分别为 11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场, 一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。
《电磁场与电磁波》期末复习题及答案
《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
电磁场与电磁波 期末考试复习题
3、电介质极化后,其内部存在 A. 自由正电荷 C. 自由正负电荷
B. 自由负电荷 D. 电偶极子 A )保持连续.
4、在两种导电介质的分界面处,电场强度的( A. 切向分量 B. 幅值 C. 法向分量
D. 所有分量
5、介电常数为 ε 的介质区域中,静电荷的体密度为 ρ,已知这些电荷产生的电 场为 E(x,y,z),而 D(x,y,z)=εE(x,y,z)。下面的表达式中正确的是( C ) 。 A. ▽·D=0 C. ▽·D=ρ 6、介质的极化程度取决于:( A. 静电场 B. 外加电场 B. ▽·E=ρ/ε0 D. ▽×D=ρ D )。 D. 外加电场和极化电场之和 C )倍。
12、 在两种介质的分界面上, 若分界面上存在传导电流, 则边界条件为( A. Ht不连续,Bn不连续
B
B. Ht不连续,Bn连续
B
C. Ht连续,Bn不连续
B
D. Ht连续,Bn连续
B
13、磁介质中的磁场强度由( A.自由电流 C.磁化电流
D
)产生.
B.束缚电流 D.自由电流和束缚电流共同 )倍。
B. R = −1, T = 0 D. R = 0, T = 0
二、填空题 (每空 2 分,共 20 分) u v r u v r r 1、对于矢量 A ,若 A = a x Ax + a y Ay + a z Az , r r r r r 则: a z × a x = a y ; a x × a x = 0
S
∫ E ⋅ dl = 0
l
v
v
13、在无源理想介质中
Jc=
0
,ρ=
0
14、在理想介质中电位的泊松方程 ∇ 2ϕ = −
电磁场与波期末考试试题3套含答案(大学期末复习资料)
莆田学院期末考试试卷 (A )卷2011 — 2012 学年第 一 学期课程名称: 电磁场与波 适用年级/专业: 09/电信 试卷类别 开卷( ) 闭卷(√) 学历层次 本科 考试用时 120分钟《.考生注意:答案要全部抄到答题纸上,做在试卷上不给分.........................》.一、填空题(每空2分,共30分)1.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ① ,矢量B A ⋅= ② 。
2.高斯散度定理的积分式为 ① ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。
3.已知任意一个矢量场A ,则其旋度的散度为 ① 。
4.介质中恒定磁场的基本方程的积分式为 ① , ② , ③ 。
5.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ① ,位置位于 ② ;当点电荷q 向无限远处运动时,其镜像电荷向 ③ 运动。
6.标量场2),,(x xyz z y x +=ψ通过点P(1,1,2)的梯度为① 。
7.引入位移电流的概念后,麦克斯韦对安培环路定律做了修正,其修正后的微分式是 ① ,其物理含义是: ② 。
8.自由空间传播的电磁波,其磁场强度)sin(z t H a H m y βω-=,则此电磁波的传播方向是 ① ,磁场强度复数形式为 ② 。
二、单项选择题(每小题2分,共20分)1.自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为 。
A .)ln(1aaD C -=πε B. )ln(201aa D C -=πε C. )ln(2101a a D C -=πε2.如果某一点的电场强度为零,则该点的电位为 。
A.一定为零 B.不一定为零 C.为无穷大3.真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为 。
中南大学2021年《电磁场与电磁波》期末考试试题及答案
一、 填空题(本题40分,每空2分)1.在一般状态下,产生电场的”源”除了静止的电荷还有 __________,产生磁场的”源”出了电流还有 ____________2.在良导体中,电磁波只存在于导体的表面的现象称为____________现象,透入深度表征电磁场的__________程度。
3 在外电场的作用下均匀各项同性电介质中的极化强度为P 时,则束缚体电荷密度为__________,面束缚电荷为__________.4 在导体表面上的电荷密度σ与导体外的电位函数ϕ有_________关系.5 在理想介质(εμ,)中传播的均匀平面电磁波电场强度的相位与磁场强度的相位_________(相同或不同) ,电磁波电场与磁场的振幅相差一个因子_____.6 .镜像法是在研究区域_____(外或内),用一些假象的电荷代替场问题的边界感应电荷的效应,此假象电荷称为_________电荷.7. 在导电媒质中传播的电磁波为_______波,其的传播速度(相速)随________改变.8. 在两种不同的磁介质的分界面上场量B 在法向_________(连续或变化),在切向________(连续或变化).9.亥姆霍兹方程是__________场的波动方程,10.在电导率为γ,介电常数为ε的损耗媒质传播角频率为ω的均匀平面电磁波在______条件下为良导体,其电场强度的相位与磁场强度的相位相差_________.11.麦克斯韦方程组反映了_____________和_____________的关系。
12.在自由空间(z<0)内+z 轴方向传播的均匀平面波,垂直入射到0=z 处的导体平面上,导体的电导率 61.7m /MS ,r μ=1, 自由空间E 波的频率MHz f 5.1=,则正切损耗c δtan =______在该频率下导电媒质视为________导体,衰减系数α=__________,相位系数β=__________.13.在自由空间中,一列平面波的相位系数0.524rad/m 0=β,当该波进入到理想电介质后,其相位系数变为m rad /1.81=β,设r μ=1,则理想电介质r ε=________,传播速度v=______.二,证明题:(10分)1.一个半径为a 的接地导体球在与球心O 相距1d 的1P 点有一点电荷1q ,如图1所示,试证明导体上的感应电荷对球外的等效镜像电荷在距球心O 122d a d =处,电量为:112q d a q -=。
电磁波期末考试题集及答案详解
电磁场与电磁波练习1、 一半径为a 的均匀带电圆环,电荷总量为q ,求圆环轴线上离环中心o 点为z 处的电场强度E 。
解:(1)如图所示,环上任一点电荷元dq 在P 点产生的场强为204RdqE d πε=由对称性可知,整个圆环在P 点产生的场强只有z 分量,即()23220204cos z a zdq Rz R r dq E d E d z +===πεπεθ 积分得到()()()()2322023220232202322042444za qza za z dlza z dq za z E lz +=+=+=+=⎰⎰πεππελλπεπε2、 半径为a 的圆面上均匀带电,电荷面密度为δ,试求:(1)轴线上离圆心为z 处的场强,(2)在保持δ不变的情况下,当0→a 和∞→a 时结果如何?(3)在保持总电荷δπ2a q =不变的情况下,当0→a 和∞→a 时结果如何?解:(1)如图所示,在圆环上任取一半径为r 的圆环,它所带的电荷量为δπdr dq 2=由习题2.1的结果可知该回环在轴线上P 点处的场强为()()23222322024zrrdrz zr zdq E d +=+=εδπε则整个均匀带电圆面在轴线上P 点出产生的场强为()⎪⎪⎭⎫⎝⎛+-=+=⎰220023220122z a zzr rdr z E a z εδεδ (2)若δ不变,当0→a 时,则0)11(20=-=εδz E ; 当∞→a ,则002)01(2εδεδ=-=z E(3)若保持δπ2a q =不变,当0→a 时,此带电圆面可视为一点电荷。
则204z q E z πε=。
当∞→a 时,0→δ,则0=z E。
3、 有一同轴圆柱导体,其内导体半径为a ,外导体内表面的半径为b ,其间填充介电常数为ε的介质,现将同轴导体充电,使每米长带电荷λ。
试证明储存在每米长同轴导体间的静电能量为a b W ln 42πελ=。
证:在内外导体间介质中的电场为)(2b r a rE <<=πελ沿同轴线单位长度的储能为abdr r e dVE edV D E W ln 422222122πελππελ=⎪⎭⎫ ⎝⎛==•=⎰⎰⎰4、 在介电常数为ε的无限大约均匀介质中,有一半径为a 的带电q 的导体球,求储存在介质中的静电能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
(B )A .0B .-4C .-2D .-513. 一无限长空心铜圆柱体载有电流I ,内外半径分别为R 1和R 2,另一无限长实心铜圆柱体载有电流I ,半径为R2,则在离轴线相同的距离r (r>R2)处(A )。
A .两种载流导体产生的磁场强度大小相同B .空心载流导体产生的磁场强度值较大C .实心载流导体产生的磁场强度值较大14. 当磁感应强度相同时,铁磁物质与非铁磁物质中的磁场能量密度相比(A )。
A .非铁磁物质中的磁场能量密度较大B .铁磁物质中的磁场能量密度较大C .两者相等D .无法判断15. 一般导电媒质的波阻抗(亦称本征阻抗)c η的值是一个。
(C )A .实数B .纯虚数C .复数D .可能为实数也可能为纯虚数16. 静电场在边界形状完全相同的两个区域上满足相同的边界条件,则两个区域中的场分布(A )。
A .一定相同B .一定不相同C .不能断定相同或不相同17. 静电场的唯一性定理是说:(C )。
A .满足给定拉普拉斯方程的电位是唯一的。
B .满足给定泊松方程的电位是唯一的。
C .既满足给定的泊松方程,又满足给定边界条件的电位是唯一的。
18 在匀强电场E 中有一半球面,半径为R ,其电场强度E 与半球面的轴平行,则通过这个半球面的电通量为( A )(A)πR2E ;(B) 2πR2E ;(C) 2πR2E ;(D)πR2E /2。
19一带电+Q 的金属球壳,半径为R ,在距球心2R 处的N 点有一自由电偶极子Pe ,方向垂直ON ,则该电偶极子将( A )(A)转向到该点电场方向;(B)以2R 为半径作圆周运动;(C)沿该点电场E方向平动;(D)先转至E方向,再逆E平动。
20一孤立金属球带电 1.2×10-8C,当电场强度为3×106V·m-1时,空气将被击穿,则金属球的最小半径为( )(A)1.7×10-13m;(B)1.8×10-8m;(C)3.6×10-5m;(D)6.0×10-3m。
0924 一均匀带电球面,若球内电场强度处处为零,则球面上的带电量为σds的面元在球面内产生的电场强度为( D ) (A)处处为零;(B)是常数。
(C)不一定为零;(D)一定不为零;21闭合球面〖WTBX〗S内有一点电荷q,P为球面上一点,S面外A点有一点电荷q′,若将q′移近S面,则( B )(A) S面的总电通量改变而P点场强不变;(B) S面的总电通量不变而P点场强改变;(C) S面的总电通量和P点的场强都不变;(D) S面的总电通量和P点的场强都改变。
22 在点电荷产生的电场中有一块不对称的电介质,这样对以点电荷为球心的球形高斯面( A )(A)高斯定理成立,并可以求出高斯面上各点的E;(B)高斯定理成立,但不能求出高斯面上各点的E;(C)高斯定理不成立;(D)既使电介质对称,高斯定理也不成立。
23点电荷q置于无限大导电平面前距离d处,若将导电平面接地,则导电平面上的总电量为( B )(A) -q/2;(B) -q;(C) -2q;(D) -q/d。
24 在边长为a的正方体中心放一电荷Q,则通过一个侧面的电通量为( C )(A) Q4πε0 (B)4Q4πε0;(C) Q/6ε0;(D)Q8ε0。
二、填空题1. 无限长直导线(沿z轴放置)上通过电流I,则线外任一点磁场强度的大小为_____,方向为____。
2. 矢量磁位A与磁感应强度B的关系为_____,电流密度J与电场强度E的关系为_____。
3.在理想导体的表面,电场的切向分量等于零。
4.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于0 。
5.如果两个不等于零的矢量的点乘(标量积)等于零,则此两个矢量必然相互垂直。
6.对横电磁波而言,在波的传播方向上电场、磁场分量为0 。
7.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无旋场,因此,它可用磁矢位函数的旋度来表示。
8.静电场中,在给定的边界条件下,拉普拉斯方程或泊松方程的解是唯一的,这一定理称为唯一性定理。
9.在自由空间中电磁波的传播速度为300 000 000 m/s 。
10.麦克斯韦方程是经典电磁场理论的核心。
11.在无源区域中,变化的电场产生磁场,变化的磁场产生电场,使电磁场以波的形式传播出去,即电磁波。
12.在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。
13.电磁场在两种不同媒质分界面上满足的方程称为边界条件。
14.所谓分离变量法,就是将一个多变量函数表示成几个单变量函数乘积的方法。
15.随时间变化的电磁场称为时变场。
16.从场角度来讲,电流是电流密度矢量场的通量。
17 库仑力和万有引力都是与距离的平方成反比的力,从场的角度看库仑力是电荷在电场中受到的力,那么万有引力就是_________受到的力。
18电力线一般并不是点电荷在电场中的运动轨迹,其原因是_________。
19 若高斯面内无净电荷,则高斯面上各点的E _________;若高斯面上各点的E 都为零,则高斯面内的净电荷_________。
20若库仑定律中r 的指数不是2而是n ,则高斯定理_________,因为_________。
21对于两个邻近的均匀带电非导体球_________用高斯定理求场强,对于两个邻近的一个带电一个不带电导体球_________用高斯定理求场强。
(填能或不能)三,判断题。
1位移电流公式t D J d ??=说明位移电流产生磁效应代表了变化的电场能够产生磁场。
(√)2. 磁通连续性原理是指:磁感应强度沿任一闭合曲面的积分等于零,或者是从闭合曲面S 穿出去的通量等于由S 外流入S 内的通量。
(√)3. 当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。
(√)4. 静电场为有势场,故沿任何闭合路径的积分为零;恒定磁场是连续的场,即磁感应强度沿任一闭合曲面的积分等于零(√)5. 静电平衡状态下,带电导体是等位体,导体表面为等位面;导体内部电场强度等于零,在导体表面的电场的法向分量和横向分量都为0。
(×)6. 高斯通量定理是指从封闭面发出的总电通量数值上等于包含在该封闭面内的净正电荷。
(√)7. 由点电荷产生的电场都是静电场。
(×)8. 恒定电流所产生的。
磁场称为恒定磁场。
(√)9.梯度的方向是等值面的切线方向。
(×)10.一般说来,电场和磁场是共存于同一空间的,但在静止和恒定的情况下,电场和磁场可以独立进行分析。
(√)四、计算题1.给定三个矢量A,B 和C 如下:23,x y z A e e e =+- 4,y z B e e =-+ 52x y C e e =- 。
求:(1)A e (A e 表示矢量A 方向上的单位矢量)(2)A B ? 。
(3)A C ? 。
2.自由空间存在静止点电荷,电量为q ,求:1)空间中的电场分布。
2)以半径一米划一个球面,求电场对此球面的通量。
3)写出电场高斯定律的积分形式,与2)的结果比较。
3.两个质量为m=10克,带同种电荷的小球,各用长1.2米的细线悬挂于同一点,平衡时两球相距5.0厘米,试求二小球各带多少电荷?若每个小球以1.0×10-9C ·s -1的变化率失去电荷,试求两球趋近的相对速度?。