高考数学专题 古典概型[理科]
高考数学 17.2 古典概型与几何概型
17、概率17.2 古典概型与几何概型【知识网络】1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率。
2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。
【典型例题】[例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( )A .49B .29C .23D .13(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ( )A .61B .365 C .121 D .21 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 2与81cm 2之间的概率为()A .56B .12C .13D .16(4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3S”的概率为 .(5)任意投掷两枚骰子,出现点数相同的概率为 .[例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。
[例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.[例4]抛掷骰子,是大家非常熟悉的日常游戏了.某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.方案1:总点数是几就送礼券几十元.方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.【课内练习】1. 某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组中去,则这3名同学恰好有2人安排在同一个小组的概率是 ()A .15 B .524C .1081D .512 2. 盒中有1个红球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是红球的概率为P 1,第8个人摸出红球的概率是P 8,则()A .P 8=18P 1B .P 8=45P 1 C .P 8=P 1 D .P 8=0 3. 如图,A 、B 、C 、D 、E 、F 是圆O 的六个等分点,则转盘指针不落在阴影部分的概率为( )A .12 B .13C .23D .144. 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为()A .12B .13C .14D .235. 一次有奖销售中,购满100元商品得1张奖卷,多购多得.每1000张卷为一个开奖单位,设特等奖1个,一等奖5个,二等奖100个.则任摸一张奖卷中奖的概率为 .6. 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随意填写两个答案,则两个答案都选错的概率为 . 7. 在圆心角为150°的扇形AOB 中,过圆心O 作射线交AB 于P ,则同时满足:∠AOP ≥45°且∠BOP ≥75°的概率为 .8. 某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在该招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.(1)共有多少个基本事件?(2)小曹能乘上上等车的概率为多少?9.设A 为圆周上一定点,在圆周上等可能的任取一点P 与A 连结,第3题图倍的概率.10.正面体ABCD的体积为V,P是正四面体ABCD的内部的点.①设“V P-ABC≥14V”的事件为X,求概率P(X);②设“V P-ABC≥14V且V P-BCD≥14V”的事件为Y,求概率P(Y).17、概率17.2 古典概型与几何概型A 组1. 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为 ( )A .2π B .2ππ- C D .4π2. 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为 ( )A .12B .13C .14D .163. 已知椭圆22221x y a b+=(a >b >0)及内部面积为S=πab ,A 1,A 2是长轴的两个顶点,B 1,B 2是短轴的两个顶点,点P 是椭圆及内部的点,下列命题正确的个数是 ( ) ①△PA 1A 2为钝角三角形的概率为1; ②△PB 1B 2为直角三角形的概率为0;③△PB 1B 2为钝角三角形的概率为ba ;④△PA 1A 2为钝角三角形的概率为ba ;⑤△PB 1B 2为锐角三角形的概率为a ba-。
高二数学必修3知识点整理:古典概型
【导语】以下是⽆忧考为⼤家推荐的有关⾼⼆数学必修3知识点整理:古典概型,如果觉得很不错,欢迎点评和分享~感谢你的阅读与⽀持! 古典概型的基本概念 1.基本事件:在⼀次试验中可能出现的每⼀个基本结果称为基本事件; 2.等可能基本事件:若在⼀次试验中,每个基本事件发⽣的可能性都相同,则称这些基本事件为等可能基本事件; 3.古典概型:满⾜以下两个条件的随机试验的概率模型称为古典概型①所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等; 4.古典概型的概率:如果⼀次试验的等可能基本事件共有n个,那么每⼀个等可能基本事件发⽣的概率都是 1,如果某个事件A包含了其中m个等可能基本事件,那么事件A发⽣的概率为nP(A)?m.n 知识点⼀:古典概型的基本概念 *例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?思路分析: 题意分析:本试题考查⼀次试验中⽤列举法列出所有基本事件的结果,⽽画树状图是列举法的基本⽅法. 解题思路:为了了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来.或者利⽤树状图将它们之间的关系列出来.解答过程:解法⼀:所求的基本事件共有6个: A?{a,b},B?{a,c},C?{a,d}D?{b,c},E?{b,d},F?{c,d} 解法⼆:树状图 解题后的思考:⽤树状图求解⼀次试验中的基本事件数⽐较直观、形象,可做到不重不漏.掌握列举法,学会⽤数形结合、分类讨论的思想解决概率的计算问题. **例2:(1)向⼀个圆⾯内随机地投射⼀个点,如该点落在圆内任意⼀点都是等可能的,你认为这是古典概型吗?为什么? (2)如图,某同学随机地向⼀靶⼼射击,这⼀试验的结果只有有限个:命中10环、命中9环??命中5环和不中环.你认为这是古典概型吗?为什么? 思路分析: 题意分析:本题考查古典概型的概念.应明确什么是古典概型及其应具备什么样的条件.解题思路:结合古典概型的两个基本特征可进⾏判定解决.解答过程: 答:(1)不是古典概型,因为试验的所有可能结果是圆⾯内所有的点,试验的所有可能结果数是⽆限的,虽然每⼀个试验结果出现的“可能性相同”,但这个试验不满⾜古典概型的第⼀个条件. (2)不是古典概型,因为试验的所有可能结果只有7个,⽽命中10环、命中9环??命中5环和不中环的出现不是等可能的,即不满⾜古典概型的第⼆个条件. 解题后的思考:判定是不是古典概型,主要看两个⽅⾯,⼀是实验结果是不是有限的;另⼀个就是每个事件是不是等可能的. ***例3:单选题是标准化考试中常⽤的题型,⼀般是从A,B,C,D四个选项中选择⼀个正确答案.如果考⽣掌握了考查的内容,他可以选择正确的答案.假设考⽣不会做,他随机的选择⼀个答案,问他答对的概率是多少?思路分析: 题意分析:本题考查古典概型概率的求解运算. 解题思路:解本题的关键,即讨论这个问题什么情况下可以看成古典概型.如果考⽣掌握了全部或部分考查内容,这都不满⾜古典概型的第2个条件——等可能性,因此,只有在假定考⽣不会做,随机地选择了⼀个答案的情况下,才可将此问题看作古典概型. 解答过程:这是⼀个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考⽣随机地选择⼀个答案是选择A,B,C,D的可能性是相等的.从⽽由古典概型的概率计算公式得: P(答对\答对所包含的基本事件的个数1==0.25 基本事件的总数4解题后的思考:运⽤古典概型的概率公式求概率时,⼀定要先判定该试题是不是古典概型,然后明确试验的总的基本事件数,和事件A发⽣的基本事件数,再借助于概率公式运算.⼩结:本知识点的例题主要考查对古典概型及其概率概念的基本理解.把握古典概型的两个特征是解决概率问题的第⼀个关键点;理解⼀次试验中的所有基本事件数,和事件A发⽣的基本事件数,是解决概率问题的第⼆个关键点. 知识点⼆:古典概型的运⽤ *例4:同时掷两个骰⼦,计算:(1)⼀共有多少种不同的结果? (2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少? (4)为什么要把两个骰⼦标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?思路分析: 题意分析:本题考查了古典概型的基本运算问题. 解题思路:先分析“同时掷两个骰⼦的所有事件数”,然后分析事件A:向上的点数之和为5的基本事件数,最后结合概率公式运算.同时可以运⽤举⼀反三的思想⾃⾏设问、解答. 解答过程: 解:(1)掷⼀个骰⼦的结果有6种,我们把两个骰⼦标上记号1,2以便区分,由于1号骰⼦的结果都可与2号骰⼦的任意⼀个结果配对,我们⽤⼀个“有序实数对”来表⽰组成同时掷两个骰⼦的⼀个结果(如表),其中第⼀个数表⽰掷1号骰⼦的结果,第⼆个数表⽰掷2号骰⼦的结果.(可由列表法得到)1号骰⼦2号骰⼦1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2) (4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5) (5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)123456由表中可知同时掷两个骰⼦的结果共有36种.(2)在上⾯的结果中,向上的点数之和为5的结果有4种,分别为:(1,4),(2,3),(3,2),(4,1) (3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得 P(A)=A所包含的基本事件的个数41== 基本事件的总数369(4)如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别.这时,所有可能的结果将是: (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5) (5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),则所求的概率为 P(A)=A所包含的基本事件的个数2= 基本事件的总数21这就需要我们考察两种解法是否满⾜古典概型的要求了.可以通过展⽰两个不同的骰⼦所抛掷出来的点,感受第⼆种⽅法构造的基本事件不是等可能事件. 解题后的思考:考查同学们运⽤古典概型的概率计算公式时应注意验证所构造的基本事件是否满⾜古典概型的第⼆个条件. 对于同时抛掷的问题,我们要将骰⼦编号,因为这样就能反映出所有的情况,不⾄于把(1,2)和(2,1)看作相同的情况,保证基本事件的等可能性.我们也可将此试验通过先后抛掷来解决,这样就有顺序了,则基本事件的出现也是等可能的. **例5:从含有两件正品a1,a2和⼀件次品b1的三件产品中,每次任取⼀件,每次取出后不放回,连续取两次,求取出的两件产品中恰有⼀件次品的概率.思路分析: 题意分析:本题考查的是不放回抽样的古典概型概率的运⽤ 解题思路:⾸先注意到该题中取出的过程是有顺序的.同时明⽩⼀次试验指的是“不放回的,连续的取两次”. 先列举出试验中的所有基本事件数,然后求事件A的基本事件数,利⽤概率公式求解.解答过程: 解法1:每次取出⼀个,取后不放回地连续取两次,其⼀切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中⼩括号内左边的字母表⽰第1次取出的产品,右边的字母表⽰第2次取出的产品. ⽤A表⽰“取出的两件中,恰好有⼀件次品”这⼀事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]事件A由4个基本事件组成,因⽽P(A)= 42=63解法2:可以看作不放回3次⽆顺序抽样,先按抽取顺序(x,y)记录结果,则x有3种可能,y有2种可能,但(x,y),(y,x)是相同的,所以试验的所有结果有3×2÷2=3种,按同样的⽅法,事件B包含的基本事件个数为2×1÷1=2,因此P(B)= 23解题后的思考:关于不放回抽样,计算基本事件的个数时,既可以看作是有顺序的,也可以看作是⽆顺序的,其结果是⼀样的,但⽆论选择哪⼀种⽅式,观察的⾓度必须⼀致,否则会导致错误. ***例6:从含有两件正品a1,a2和⼀件次品b1的三件产品中,每次任取⼀件,每次取出后放回,连续取两次,求取出的两件产品中恰有⼀件次品的概率.思路分析: 题意分析:本题考查放回抽样的概率问题. 解题思路:⾸先注意到该题中取出的过程是有顺序的.同时明⽩⼀次试验指的是“有放回的,连续的取两次”. 解答过程:每次取出⼀个后放回,连续取两次,其⼀切可能的结果组成的基本事件有9个,即 (a1,a1),(a1,a2)和(a1,b1)(a2,a1),(a2,b1)和(a2,a2)(b1,a1),(b1,a2)和(b1,b1) 其中⼩括号内左边的字母表⽰第1次取出的产品,右边的字母表⽰第2次取出的产品.⽤A表⽰“取出的两件中,恰好有⼀件次品”这⼀事件,则A=[(b1,a1),(b1,a2),(a2,b1),(a1,b1)]事件A由4个基本事件组成,因此P(A)= 4.9解题后的思考:对于有放回抽样的概率问题我们要理解每次取的时候,总数是不变的,且同⼀个体可被重复抽取,同时,在求基本事件数时,要做到不重不漏.⼩结: (1)古典概型概率的计算公式是⾮常重要的⼀个公式,要深刻体会古典概型的概念及其概率公式的运⽤,为我们学好概率奠定基础. (2)体会求解不放回和有放回概率的题型. 知识点三:随机数产⽣的⽅法及随机模拟试验的步骤 **例7:某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?思路分析: 题意分析:本题考查的是近似计算⾮古典概型的概率. 解题思路:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能⽤古典概型的概率公式计算,我们⽤计算机或计算器做模拟试验可以模拟投篮命中的概率为40%.解答过程: 我们通过设计模拟试验的⽅法来解决问题,利⽤计算机或计算器可以⽣产0到9之间的取整数值的随机数. 我们⽤1,2,3,4表⽰投中,⽤5,6,7,8,9,0表⽰未投中,这样可以体现投中的概率是40%.因为是投篮三次,所以每三个随机数作为⼀组. 例如:产⽣20组随机数: 812,932,569,683,271,989,730,537,925,488907,113,966,191,431,257,393,027,556,458 这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表⽰恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为解题后的思考: (1)利⽤计算机或计算器做随机模拟试验,可以解决⾮古典概型的概率的求解问题.(2)对于上述试验,如果亲⼿做⼤量重复试验的话,花费的时间太多,因此利⽤计算机或计算器做随机模拟试验可以⼤⼤节省时间. (3)随机函数(RANDBETWEEN)(a,b)产⽣从整数a到整数b的取整数值的随机数. ⼩结:能够简单的体会模拟试验求解⾮古典概型概率的⽅法和步骤.⾼考对这部分内容不作更多的要求,了解即可.5=25%.20 【同步练习题】 1.(2014•惠州调研)⼀个袋中装有2个红球和2个⽩球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同⾊的概率为()A.12;B.13;C.14;D.25 答案:A[把红球标记为红1、红2,⽩球标记为⽩1、⽩2,本试验的基本事件共有16个,其中2个球同⾊的事件有8个:红1,红1,红1、红2,红2、红1,红2、红2,⽩1、⽩1,⽩1、⽩2,⽩2、⽩1,⽩2、⽩2,故所求概率为P=816=12.] 2.(2013•江西⾼考)集合A={2,3},B={1,2,3},从A,B中各任意取⼀个数,则这两数之和等于4的概率是 ()A.23B.12C.13D.16 答案:C[从A,B中各任取⼀个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中两个数之和为4的有(2,2),(3,1),故所求概率为26=13.故选C.] 3.(2014•宿州质检)⼀颗质地均匀的正⽅体骰⼦,其六个⾯上的点数分别为1、2、3、4、5、6,将这⼀颗骰⼦连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为()A.112B.118C.136D.7108 答案:A[基本事件总数为6×6×6,事件“三次点数依次成等差数列”包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P=186×6×6=112.] 4.(2013•安徽⾼考)若某公司从五位⼤学毕业⽣甲、⼄、丙、丁、戊中录⽤三⼈,这五⼈被录⽤的机会均等,则甲或⼄被录⽤的概率为 ()A.23B.25C.35D.910 答案:D[五⼈录⽤三⼈共有10种不同⽅式,分别为:{丙,丁,戊},{⼄,丁,戊},{⼄,丙,戊},{⼄,丙,丁},{甲,丁,戊},{甲,丙,戊},{甲,丙,丁},{甲,⼄,戊},{甲,⼄,丁},{甲,⼄,丙}. 其中含甲或⼄的情况有9种,故选D.] 5.(理)(2014•安徽⽰范⾼中联考)在棱长分别为1,2,3的长⽅体上随机选取两个相异顶点,若每个顶点被选取的概率相同,则选到两个顶点的距离⼤于3的概率为()A.47B.37C.27D.314 答案:B[从8个顶点中任取两点有C28=28种取法,其线段长分别为1,2,3,5,10,13,14.①其中12条棱长度都⼩于等于3;②其中4条,棱长为1,2的⾯对⾓线长度为5<3;故长度⼤于3的有28-12-4=12,故两点距离⼤于3的概率为12C28=37,故选B.]。
高考数学3.2古典概型专题2
高考数学3.2古典概型专题22020.031,某射手射击一次,命中的环数可能为0,1,2,…10共11种,设事件A :“命中环数大于8”,事件B :“命中环数大于5”,事件C :“命中环数小于4”,事件D :“命中环数小于6”,由事件A 、B 、C 、D 中,互斥事件有 ( )A. 1对B. 2对C. 3对D.4对2,设,A B 为两个事件,且()3.0=A P ,则当( )时一定有()7.0=B PA. A 与B 互斥B. A 与B 对立 C. B A ⊆ D. A 不包含B3,在200件产品中,192有件一级品,8件二级品,则下列事件: ①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,其中不是一级品的件数小于100, 其中 是必然事件; 是不可能事件; 是随机事件.4,对飞机连续射击两次,每次发射一枚炮弹,设A=﹛两次都击中﹜,B=﹛两次都没击中﹜,C=﹛恰有一次击中﹜,D=﹛至少有一次击中﹜,其中彼此互斥的事_____________________,互为对立事件的是__________________。
5,从1,2,3,4,5五个数字中,任意有放回地连续抽取三个数字,则三个数字完全不同的概率是_________.6,掷两个面上分别记有数字1至6的正方体玩具,设事件A 为“点数之和恰好为6”,则A 所基本事件个数为 ( )A. 2个B. 3个C. 4个D. 5个7,从1,2,3,…,9这9个数字中任取2个数字,(1)2个数字都是奇数的概率为_________;(2)2个数字之和为偶数的概率为_________.8,口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( )A. 0.42B. 0.28C. 0.3D. 0.7答案1, D2, B 对立事件3, ③,④; ②; ①4, A与B, A与C,B与D; B与D 5, 25126, D7, (1)185 (2)948, C 1(0.420.28)0.3-+=。
高考数学(理)总复习讲义:古典概型与几何概型
第五节古典概型与几何概型扇霾歳議■基础——在批注中理解透 (单纯识记无意楚,深刻理解提能力)1. 古典概型(1) 古典概型的特征:①有限性:在一次试验中,可能出现的结果是有限的,即只有有限个不同的基本事件;②等可能性:每个基本事件出现的可能性是相等的一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征一一有限性和等可能性.(2) 古典概型的概率计算的基本步骤:①判断本次试验的结果是否是等可能的,设出所求的事件为 A ;②分别计算基本事件的总数n和所求的事件A所包含的基本事件个数m;③利用古典概型的概率公式P(A) = m,求出事件A的概率.(1)概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型(2) 几何概型的基本特点:①试验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等.(3) 计算公式:构成事件A的区域长度(面积或体积)P(A)=试验的全部结果所构成的区域长度面积或体积*几何概型应用中的关注点1关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.2确定基本事件时一定要选准度量,注意基本事件的等可能性[小题查验基础]、判断题(对的打“V” ,错的打“X” )(1)与面积有关的几何概型的概率与几何图形的形状有关.()(2)几何概型与古典概型中的基本事件发生的可能性都是相等的,其基本事件个数都有 限.()(3) 掷一枚硬币两次,出现“两个正面” “一正一反” “两个反面”,这三个事件是等可能事件.()A 中基本事件构成集合 A ,所有的基本事件构成集合I ,则事件A 的概率为詈f .(答案:(1)X (2)X 二、选填题C. i解析:选D 一枚硬币连掷2次可能出现(正,正卜(反,反)、(正,反)、(反,正)四种 2 1情况,只有一次出现正面的情况有两种,故P =4=-.2.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的, 超过2分钟的概率是()1.一枚硬币连掷2次, 只有 次出现正面的概率为()解析:选C 试验的全部结果构成的区域长度为 5,所求事件的区域长度为2,故所求2概率为P =-.53.已知四边形 ABCD 为长方形,AB = 2, BC = 1, O 为AB 的中点,在长方形 ABCD 内随机取一点,取到的点到 0的距离大于1的概率为( n A・n nB _ n n D /I —n解析:选B 如图,依题意可知所求概率为图中阴影部分与长方形的 2 — nS 阴影2n面积比,即所求概率P = S—= -=1—nS 长方形ABCD 2 4 4.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是 (4)在古典概型中,如果事件 Dl则他候车时间不解析:两数之和等于5有两种情况(1,4)和(2,3),总的基本事件有(1,2), (1,3), (1,4), (1,5), 2 1(2,3), (2,4), (2,5), (3,4), (3,5), (4,5),共 10 种,故所求概率P =命=5.5.袋中有形状、大小都相同的 4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为答案:5 在细解明规律(题目千变总有报,梳干理枝究其本)考点一古典概型[师生共研过关][典例精析](1)(2018全国卷n )我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果 哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如 30= 7+ 23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )(2)(2019武汉调研)将一枚质地均匀的骰子投掷两次, 得到的点数依次记为a 和b ,则方程ax 2 + bx + 1= 0有实数解的概率是()1 B.1[解析](1)不超过30的所有素数为 2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个 不同的数,共有C% = 45种情况,而和为30的有7+ 23,11 + 19,13+ 17这3种情况,所以所 3 1求概率P =—=—.45 15K a < 6, a € N *,⑵投掷骰子两次,所得的点数 a 和b 满足的关系为* 所以a 和b 的b < 6, b € N ,组合有36种.若方程ax 2+ bx + 1 = 0有实数解, 贝U △= b 2-4a >0,所以 b 2>4a.解析:A.7_ 36C. 19 36P = 1-56.1 1取1,2,3,4 ;当b= 5 时,a 可取1,2,3,4,5,6 ;当b= 6 时,a 可取1,2,3,4,5,6.1911满足条件的组合有19种,则方程ax2+ bx +1=0有实数解的概率P =两[答案]⑴c(2)C[解题技法]1.古典概型的概率求解步骤3.将A , B , C , D 这4名同学从左至右随机地排成一排,则“ A 与B 相邻且A 与C 之间恰好有1名同学”的概率是()(1)求出所有基本事件的个数n.(2)求出事件A 包含的所有基本事件的个数m.⑶代入公式2.基本事件个数的确定方法(1)列举法:此法适合于基本事件个数较少的古典概型(2)列表法:此法适合于从多个元素中选定两个元素的试验,也可看成坐标法 (3)树状图法:树状图是进行列举的一种常用方法,适用于有顺序的问题及较复杂问题 中基本事件数的探求.(4)运用排列组合知识计算.1.(20佃益阳、 减函数的概率是( [过关训练]湘潭调研)已知 a € { — 2,0,1,2,3}, b € {3,5},则函数 f(x)= (a 2— 2)e x + b 为3A — A.103B.3 1 %若函数 f(x)= (a 2— 2)e x + b 为减函数,则 a 2— 2v 0, 又 a € { — 2,0,1,2,3},故只有a = 0, a = 1满足题意,又b € {3,5},所以函数f(x)= (a 2— 2)e x + b 为减函数的概率是解析:选C2.从分别标有1,2,…,9的9张卡片中不放回地随机抽取 2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是4 B.4C "57 D.7解析:选C 由题意得,所求概率 5 X 4X 2 5 P= 9X 8 = 9.f (x )的图象与 x 轴有公共点的概率等于(2 A — A.15C .3[解析]11 D •亦•/ f(x) =— x 2+ mx + m 的图象与 x 轴有公共点,二 △= m 2+ 4m > 0,「. m < — 4或m >0,二在[—6,9]内取一个实数 m ,函数f (x )的图象与 x 轴有公共点的概率 P = 琴貴严”故选D. [答案]D类型(二)与面积有关的几何概型[例2] (1)(2018潍坊模拟)如图,六边形ABCDEF 是一个正六边形,2 C.23 DQ(2)(2019洛阳联考)如图,圆O : x 2 + y 2= n 内的正弦曲线 y = sin x 与 x 轴围成的区域记为 M (图中阴影部分),随机往圆O 内投一个点 A ,则点 A 落在区域M 内的概率是(A. nn4 B.~3 nC . nnD . nn[解析](1)设正六边形的中心为点 O , BD 与AC 交于点G , BC = 1,2 2 2BGC = 120° 在厶 BCG 中,由余弦定理得 1= BG + BG — 2BG cos 120°则 BG = CG ,/得 BG = ~33, 所1 1 \[3 V 3 "T 3 \[3 1以 S A BCG = 2XBG X BG X sin 120° = 寸 X 寸X 寸=材,因为 S 六边形 ABCDEF = S A BOC X 6 = ?1 1 %%解析:选B A , B , C , D 4名同学排成一排有 A 4= 24种排法.当A , C 之间是B 时, 4 + 2 1 D 时,有2种排法,所以所求概率P =吒-=£24 4考点二几何概型[全析考法过关[考法全析]类型(一)与长度有关的几何概型(2019濮阳模拟)在[—6,9]内任取一个实数 m ,设f (x ) = — x 2+ mx + m ,则函数有2X 2 = 4种排法,当A , C 之间是 [例1]x 1X 1 x Sin 60。
高中数学高考73第十二章 概率、随机变量及其分布 12 1 事件与概率、古典概型
由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为 3 000元和4 000元, 所以其概率为P(A)+P(B)=0.15+0.12=0.27.
②在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆 中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000 元的概率. 解 设C表示事件“投保车辆中新司机获赔4 000元”, 由已知,可得样本车辆中车主为新司机的有0.1×1 000=100(辆), 而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆), 所以样本车辆中新司机车主获赔金额为 4 000 元的频率为12040=0.24, 由频率估计概率得P(C)=0.24.
6.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相 1
等,那么每一个基本事件的概率都是_n_;如果某个事件A包括的结果有m个, m
那么事件A的概率P(A)=_n_.
7.古典概型的概率公式
A包含的基本事件的个数 P(A)=_____基__本__事__件__的__总__数______.
最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40]
天数
2
16
36
25
7
4
以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
Байду номын сангаас
解 这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格 数据知,
1234567
高三数学古典概型试题答案及解析
高三数学古典概型试题答案及解析1.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【答案】A【解析】由题意知本题是一个古典概型,试验发生包含的事件数是种结果,满足条件得事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到,故选A.【考点】古典概型及其概率计算公式.2.甲、乙两人玩一种游戏;在装有质地、大小完全相同,编号分别为1,2,3,4,5,6六个球的口袋中,甲先模出一个球,记下编号,放回后乙再模一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(1)求甲赢且编号和为8的事件发生的概率;(2)这种游戏规则公平吗?试说明理由.【答案】(1);(2)这种游戏规则是公平的.【解析】(1)设“两个编号和为8”为事件A,计算甲、乙两人取出的数字等可能的结果数,事件A包含的基本事件为(2,6),(3,5),(4,4),(5,3),(6,2)共5个,按古典概型概率的计算公式计算;(2)首先按古典概型计算两人分别获胜的概率,通过比较大小,作出结论.所以这种游戏规则是公平的.试题解析:(1)设“两个编号和为8”为事件A,则事件A包含的基本事件为(2,6),(3,5),(4,4),(5,3),(6,2)共5个,又甲、乙两人取出的数字共有6×6=36(个)等可能的结果,故 6分(2)这种游戏规则是公平的. 7分设甲胜为事件B,乙胜为事件C,则甲胜即两编号和为偶数所包含的基本事件数有18个:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)所以甲胜的概率,乙胜的概率= 11分所以这种游戏规则是公平的. 12分【考点】古典概型概率的计算.3.(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。
新高考 核心考点与题型 概率 第2讲 古典概型 - 解析
第2讲 古典概型【考情考向分析】全国卷对古典概型每年都会考查,主要考查实际背景的可能事件,通常与互斥事件、对立事件一起考查.在高考中单独命题时,通常以选择题、填空题形式出现,属于中低档题;与统计等知识结合在一起考查时,以解答题形式出现,属中档题。
知 识 梳 理1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 具有以下两个特征(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.如从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率.(2)每一个试验结果出现的可能性相同.如向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=m n .4.古典概型的概率公式P (A )=事件A 包含的可能结果数试验的所有可能结果数.[微点提醒]概率的一般加法公式P (A ∪B )=P (A )+P (B )-P (A ∩B )中,易忽视只有当A ∩B =∪, 即A ,B 互斥时,P (A ∪B )=P (A )+P (B ),此时P (A ∩B )=0.考点一 基本事件及古典概型的判断【例1】 袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型? (2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解(1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型. (2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为511,同理可知摸到黑球、红球的可能性均为311,显然这三个基本事件出现的可能性不相等,故以颜色为划分基本事件的依据的概率模型不是古典概型. 规律方法 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同.(3)排列组合法:在求一些较复杂的基本事件个数时,可利用排列或组合的知识.【变式】 甲、乙两人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽1张. (1)写出甲、乙抽到牌的所有情况.(2)甲、乙约定,若甲抽到的牌的数字比乙大,则甲胜,否则乙胜,你认为此游戏是否公平?为什么? 解 (1)设(i ,j )表示(甲抽到的牌的数字,乙抽到的牌的数字),则甲、乙二人抽到的牌的所有情况(方片4用4′表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种.(2)由(1)可知甲抽到的牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种情况,∪甲胜的概率p =512,∪512≠12,∪此游戏不公平.考点二 简单的古典概型的概率【例2】 (1)两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为( ) A.12B.14C.13D.16(2)设袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,则取出此2球所得分数之和为3分的概率为________.解析 (1)两名同学分3本不同的书,基本事件有(0,3),(1a ,2),(1b ,2),(1c ,2),(2,1a ),(2,1b ),(2,1c ),(3,0),共8个,其中一人没有分到书,另一人分到3本书的基本事件有2个,∪一人没有分到书,另一人分得3本书的概率p =28=14.(2)袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,基本事件总数n =6×6=36,取出此2球所得分数之和为3分,包含第一次抽到红球,第二次抽到黄球或者第一次抽到黄球,第二次抽到红球,基本事件个数m =2×3+3×2=12,所以取出此2球所得分数之和为3分的概率p =m n =1236=13.规律方法 计算古典概型事件的概率可分三步:(1)计算基本事件总个数n ;(2)计算事件A 所包含的基本事件的个数m ;(3)代入公式求出概率p .【变式1】 同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( ) A.13B.12C.23D.56【变式2】用1,2,3,4,5组成无重复数字的五位数, 若用a 1,a 2,a 3,a 4,a 5分别表示五位数的万位、千位、百位、十位、个位数字,则出现a 1<a 2<a 3>a 4>a 5的五位数的概率为________.解析 (1)从四首歌中任选两首共有C 24=6种选法,不选取《爱你一万年》的方法有C 23=3种,故所求的概率为p =36=12.(2)用1,2,3,4,5组成无重复数字的五位数,基本事件总数n =A 55,用a 1,a 2,a 3,a 4,a 5分别表示五位数的万位、千位、百位、十位、个位数字,出现a 1<a 2<a 3>a 4>a 5的五位数有:12543,13542,23541,34521,24531,14532,共6个,∪出现a 1<a 2<a 3>a 4>a 5的五位数的概率p =6A 55=120.考点三 古典概型的交汇问题多维探究角度1 古典概型与平面向量的交汇【例1】 设平面向量a =(m ,1),b =(2,n ),其中m ,n ∪{1,2,3,4},记“a ∪(a -b )”为事件A ,则事件A 发生的概率为( ) A.18B.14C.13D.12解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ∪(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∪{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.角度2 古典概型与解析几何的交汇【例2】 将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为________.解析 依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有6×6=36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即满足2aa 2+b2≤2,即a ≤b 的数组(a ,b )有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率为2136=712.角度3 古典概型与函数的交汇【例3】 已知函数f (x )=13x 3+ax 2+b 2x +1,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( ) A.79B.13C.59D.23解析 f ′(x )=x 2+2ax +b 2,由题意知f ′(x )=0有两个不等实根,即Δ=4(a 2-b 2)>0,∪a >b ,有序数对(a ,b )所有结果为3×3=9种,其中满足a >b 有(1,0),(2,0),(3,0),(2,1),(3,1),(3,2)共6种,故所求概率p =69=23.角度4 古典概型与统计的交汇【例4】某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(注:分组区间为[60,70),[70,80),[80,90),[90,100])(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?(2)在(1)中所述的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.解 (1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45. (2)因为样本容量与总体中的个体数的比是530+45=115,所以样本中包含的男生人数为30×115=2,女生人数为45×115=3.则从5人中任意选取2人共有C 25=10种,抽取的2人中没有一名男生有C 23=3种,则至少有一名男生有C 25-C 23=7种.故至少有一名男生的概率为p =710,即选取的2人中至少有一名男生的概率为710. 规律方法 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【变式】 已知某中学高三理科班学生的数学与物理的水平测试成绩抽样统计如下表:若抽取学生n 人,成绩分为A (优秀),B (良好),C (及格)三个等级,设x ,y 分别表示数学成绩与物理成绩,例如:表中物理成绩为A 等级的共有14+40+10=64人,数学成绩为B 等级且物理成绩为C 等级的共有8人.已知x 与y 均为A 等级的概率是0.07.(1)设在该样本中,数学成绩的优秀率是30%,求a ,b 的值;(2)已知a ≥7,b ≥6,求数学成绩为A 等级的人数比C 等级的人数多的概率. (1)由题意知14n=0.07,解得n =200,∪14+a +28200×100%=30%,解得a =18,易知a +b =30,所以b =12.(2)由14+a +28>10+b +34得a >b +2,又a +b =30且a ≥7,b ≥6,则(a ,b )的所有可能结果为(7,23),(8,22),(9,21),…,(24,6),共18种,而a >b +2的可能结果为(17,13),(18,12),…,(24,6),共8种,则所求概率p =818=49.基础巩固题组 (建议用时:40分钟)一、选择题1.集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23B.12C.13D.16解析 从A ,B 中任意取一个数,共有C 12·C 13=6种情形,两数和等于4的情形只有(2,2),(3,1)两种,∪p =26=13. 2.设m ,n ∪{0,1,2,3,4},向量a =(-1,-2),b =(m ,n ),则a ∪b 的概率为( ) A.225B.325C.320D.15解析 a ∪b ∪-2m =-n ∪2m =n ,所以⎩⎪⎨⎪⎧m =0,n =0或⎩⎪⎨⎪⎧m =1,n =2或⎩⎪⎨⎪⎧m =2,n =4,因此概率为35×5=325.3.某同学先后投掷一枚骰子两次,第一次向上的点数记为x ,第二次向上的点数记为y ,在平面直角坐标系xOy 中,以(x ,y )为坐标的点在直线2x -y =1上的概率为( ) A.112B.19C.536D.16解析 先后投掷一枚骰子两次,共有6×6=36种结果,满足题意的结果有3种,即(1,1),(2,3),(3,5),所以所求概率为336=112.4.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( ) A.13B.14C.15D.16解析 分别用A ,B ,C 表示齐王的上、中、下等马,用a ,b ,c 表示田忌的上、中、下等马,现从双方的马匹中随机选一匹进行一场比赛有Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc 共9场比赛,其中田忌马获胜的有Ba ,Ca ,Cb 共3场比赛,所以田忌马获胜的概率为13.5.将一个骰子连续掷3次,它落地时向上的点数依次成等差数列的概率为( ) A.112B.19C.115D.118解析 一个骰子连续掷3次,落地时向上的点数可能出现的组合数为63=216种.落地时向上的点数依次成等差数列,当向上点数若不同,则为(1,2,3),(1,3,5),(2,3,4),(2,4,6),(3,4,5),(4,5,6),共有2×6=12种情况;当向上点数相同,共有6种情况.故落地时向上的点数依次成等差数列的概率为12+6216=112. 二、填空题6.小明忘记了微信登录密码的后两位,只记得最后一位是字母A ,a ,B ,b 中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是________.解析 小明输入密码后两位的所有情况有C 14·C 13=12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是112. 7.若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________.解析 m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∪基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∪椭圆x 2m +y 22=1的焦距为整数的概率p =36=12.8.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为________.解析 甲同学从四种水果中选两种,选法种数有C 24,乙同学的选法种数为C 24,则两同学的选法种数为C 24·C 24,两同学各自所选水果相同的选法种数为C 24,由古典概型概率计算公式可得,甲、乙两同学各自所选的两种水果相同的概率为p =C 24C 24C 24=16.三、解答题9.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. 解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x -=8+8+9+104=354,s 2=14×⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116.(2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.10.某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,求参赛女生人数不少于2人的概率.解 (1)由题意,参加集训的男、女生各有6名.参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100,因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100.(2)设“参赛的4人中女生不少于2人”为事件A ,记“参赛女生有2人”为事件B ,“参赛女生有3人”为事件C .则P (B )=C 23C 23C 46=35,P (C )=C 33C 13C 46=15.由互斥事件的概率加法公式,得P (A )=P (B )+P (C )=35+15=45,故所求事件的概率为45.能力提升题组 (建议用时:20分钟)11.已知函数f (x )=12ax 2+bx +1,其中a ∪{2,4},b ∪{1,3},从f (x )中随机抽取1个,则它在(-∞,-1]上是减函数的概率为( ) A.12B.34C.16D.0解析 f (x )共有四种等可能基本事件即(a ,b )取(2,1),(2,3),(4,1),(4,3),记事件A 为f (x )在(-∞,-1]上是减函数,由条件知f (x )是开口向上的函数,对称轴是x =-ba ≥-1,事件A 共有三种(2,1),(4,1),(4,3)等可能基本事件,所以P (A )=34.12.甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领取的钱数不少于其他任何人)的概率是( ) A.34B.13C.310D.25解析 6元分成整数元有3份, 可能性有(1,1,4),(1,2,3),(2,2,2),第一个分法有3种,第二个分法有6种,第三个分法有1种,其中符合“最佳手气”的有4种,故概率为410=25.13.从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是__________.解析 从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换,基本事件总数为n =C 23·C 23=9,从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,第一次调换后,对调后的位置关系有三种:甲丙乙、乙甲丙、丙乙甲,第二次调换后甲在乙的左边对应的关系有:丙甲乙、甲乙丙;丙甲乙、甲乙丙;甲丙乙、丙甲乙,∪经过两次这样的调换后,甲在乙的左边包含的基本事件个数m =6,∪经过这样的调换后,甲在乙左边的概率:p =m n =69=23.14.某快递公司收取快递费用的标准如下:质量不超过1 kg 的包裹收费10元;质量超过1 kg 的包裹,除1 kg 收费10元之外,超过1 kg 的部分,每1 kg(不足1 kg ,按1 kg 计算)需再收5元. 该公司对近60天, 每天揽件数量统计如下表:(1)某人打算将A (0.3 kg),B (1.8 kg),C (1.5 kg)三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过30元的概率;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过150件,工资100元,目前前台有工作人员3人,那么公司将前台工作人员裁员1人对提高公司利润是否更有利? 解 (1)由题意,寄出方式有以下三种可能:所有3种可能中,有1种可能快递费未超过30元,根据古典概型概率计算公式,所求概率为13.(2)由题目中的天数得出频率,如下:若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:故公司每日利润为260×5-3×100=1 000(元);若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:故公司每日利润为235×5-2×100=975(元).综上,公司将前台工作人员裁员1人对提高公司利润不利.。
高三理科数学第一轮复习§12.5:古典概型
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
解析
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
解析
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
解析
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
解析
解析பைடு நூலகம்
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
解析
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
解析
第十二章:计数原理、概率、 随机变量及其分布 §12.5:古典概型
高考数学一轮总复习课件:古典概型
坤卦,所以两卦的六个爻中恰有一个阳爻的基本事件有3×1=
3(个),所以两卦的六个爻中恰有一个阳爻的概率P=
3 C82
=
3 28
.故
选B.
(4)盒中装着标有数字1,2,3,4的卡片各2张,从盒中任意 抽取3张,每张卡片被抽出的可能性相等,求:
①抽出的3张卡片上最大的数字是4的概率; ②抽出的3张中有2张卡片上的数字是3的概率; ③抽出的3张卡片上的数字互不相同的概率.
72,则从所有的这些音序中随机抽出一个音序,这个音序中 宫、羽不相邻的概率为p=mn =17220=35.故选C.
授人以渔
题型一 古典概型的计算(微专题)
微专题1:列举法 例1 (1)已知集合M={-1,0,1,2},从集合M中有放回 地任取两元素x,y作为点P的坐标. ①写出这个试验的所有基本事件,并求出基本事件的个 数; ②求点P落在坐标轴上的概率; ③求点P落在圆x2+y2=4内的概率.
标”,其所有可能的结果所组成的基本事件如下表所示.
y
-1
0
1
2
x
-1
(-1,-1) (-1,0) (-1,1) (-1,2)
0
(0,-1)
(0,0)
1
(1,-1)
(1,0)
2
(2,-1)
(2,0)
共有16个基本事件.
(0,1) (1,1) (2,1)
(0,2) (1,2) (2,2)
②用A表示事件“点P落在坐标轴上”, 则A={(-1,0),(0,-1),(0,0),(0,1),(0,2),(1,0), (2,0)},事件A由7个基本事件组成, 所以P(A)=176,所以点P落在坐标轴上的概率为176. ③用B表示事件“点P落在圆x2+y2=4内”, 则B={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0, 1),(1,-1),(1,0),(1,1)},事件B由9个基本事件组成, 所以P(B)=196,所以点P落在圆x2+y2=4内的概率为196. 【答案】 ①基本事件见解析,个数为16 ②176 ③196
高中数学高考总复习---古典概型与几何概型知识讲解及考点梳理
1.如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为
2.将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被 取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域 中的点,这样的概率模型就可以用几何概型来求解。
位数字也即确定.故共有 6×1=6 种不同的结果,即概率为
.
(2)两个玩具的数字之和共有 2,3,4,5,6,7,8,9,10,11,12 共 11 种不同结果.
从中可以看出,出现 12 的只有一种情况,概率为 .出现数字之和为 6 的共有(1,5),(2,
4),(3,3),(4,2),(5,1)五种情况,所以其概率为 . 【总结升华】使用枚举法要注意排列的方法,做到不漏不重.
(3)应用公式
求值。
5.古典概型中求基本事件数的方法: (1)穷举法; (2)树形图; (3)排列组合法。利用排列组合知识中的分类计数原理和分步计数原理,必须做到不 重复不遗漏。 知识点二、几何概型 1. 定义: 事件 A 理解为区域Ω的某一子区域 A,A 的概率只与子区域 A 的几何度量(长度、面积 或体积)成正比,而与 A 的位置和形状无关。满足以上条件的试验称为几何概型。 2.几何概型的两个特点: (1)无限性,即在一次试验中基本事件的个数是无限的; (2)等可能性,即每一个基本事件发生的可能性是均等的。 3.几何概型的概率计算公式: 随机事件 A 的概率可以用“事件 A 包含的基本事件所占的图形面积(体积、长度)”与 “试验的基本事件所占总面积(体积、长度)”之比来表示。
举一反三: 【变式】某校要从艺术节活动中所产生的 4 名书法比赛一等奖的同学和 2 名绘画比赛一等 奖的同学中选出 2 名志愿者,参加广州亚运会的服务工作。求:(1)选出的 2 名志愿者都 是获得书法比赛一等奖的同学的概率;(2)选出的 2 名志愿者中 1 名是获得书法比赛一等 奖,另 1 名是获得绘画比赛一等奖的同学的概率. 【解析】把 4 名获书法比赛一等奖的同学编号为 1,2,3,4 . 2 名获绘画比赛一等奖的同 学编号为 5,6.
高中数学古典概型-典型例题
古典概型-典型例题规律发现【例1】口袋里装有100个球,其中有1个白球和99个黑球,这些球除颜色外完全相同.100个人依次从中摸出一球,求第81个人摸到白球的概率.分析:只考虑第81个人摸球的情况.此法不难理解,因为每个人摸到白球的概率都相等,有100个球,而白球只有1个.解:只考虑第81个人摸球的情况.他可能摸到100个球中的任何一个,这100个球出现的可能性相同,且第81个人摸到白球的可能结果只有1种,因此第81个人摸到白球的概率为1001. 【例2】100个人依次抓阄决定1件奖品的归属,求最后一个人中奖的概率.分析:这是日常生活中常见的问题,中奖与否与先抓后抓没有关系,每个人中奖与不中奖的概率都相同.解:只考虑最后一个人抓阄的情况,他可能抓到100个阄中的任何一个,而他摸到有奖的阄的结果只有一种,因此,最后一个人中奖的概率为1001. 【例3】从含有两件正品a 、b 和一件次品c 的3件产品中每次任取一件,连续取两次,求取出的两件产品中恰有一件是次品的概率.(1)每次取出不放回; (2)每次取出后放回.分析:问题的关键在于一种是不放回试验,一种是放回试验.不放回试验,取一件少一件;而放回试验,取一件后,再取一件时情况不变.通过列出所有基本事件解答比较直观易懂.(1)解法一:每次取出后不放回的所有可能结果有(a ,b ),(a ,c ),(b ,a ),(b ,c ),(c ,a ),(c ,b ),其中小括号内左边字母表示第一次取出的产品,右边字母表示第二次取出的产品,共有6个基本事件.其中有一件次品的事件有(a ,c ),(b ,c ),(c ,a ),(c ,b ),共4个基本事件.因此,每次取出后不放回,取出的两件产品中恰有一件次品的概率为3264 . 解法二:取出的两件产品中有一件次品,至于是第一次取出,还是第二次取出可不必考虑,则所有可能结果有(a ,b ),(a ,c ),(b ,c ),共3个基本事件;而恰有一件次品的基本事件有(a ,c ),(b ,c ),共2个.因此结果与解法一相同.(2)解:这是放回试验,第一次被取出的产品,第二次也可能被取出,由于最后关心的是两件产品中有一件次品,因此必须考虑顺序,则所有可能结果有(a ,a ),(a ,b ),(a ,c ),(b ,a ),(b ,b ),(b ,c ),(c ,a ),(c ,b ),(c ,c ),共9个基本事件,其中恰有一件次品的基本事件有(a ,c ),(b ,c ),(c ,a ),(c ,b ),共4若用前3种解法相当烦琐,而用解法4的方法问题则迎刃而解,且比较直观.这是古典概型,每个人中奖的概率相同,与第几个开始抓没有关系.建立概率模型,写出所有的基本事件,再写出某事件所含有的基本事件,问题就比较容易解答.每次摸出一球是有顺序的,(a ,b )与(b ,a )不同.可不考虑顺序,即(a ,b )与(b ,a )可认为相同.结果(a ,a )在第(1)题不可能出现,由于是放回试验,在第(2)题中就有了可能.个基本事件.因此每次取出后放回,取出的两件产品中恰有一件次品的概率为94. 互斥事件规律发现【例1】从一箱产品中随机地抽取一件产品,设事件A =“抽到的一等品”,事件B =“抽到的二等品”,事件C =“抽到的三等品”,且已知P (A )=0.7,P (B )=0.1,P (C )=0.05.求下列事件的概率. (1)事件D =“抽到的是一等品或二等品”; (2)事件E =“抽到的是二等品或三等品”. 分析:事件A 、B 、C 彼此互斥,且D =A +C ,E =B +C .解:(1)∵D =A +C ,且事件A 和C 互斥,P (A )=0.7,P (C )=0.05, ∴P (D )=P (A +C )=P (A )+P (C )=0.7+0.05=0.75. (2)∵事件E =B +C ,且事件B 和C 互斥,P (B )=0.1,P (C )=0.05,∴P (E )=P (B +C )=P (B )+P (C )=0.1+0.05=0.15. 【例2】某学校成立数学、英语、音乐3个课外兴趣小组,3个小组分别有39、32、33个成员,一些成员参加了不止1个小组,具体情况如右图所示.随机选取1个成员:(1)他至少参加2个小组的概率为多少? (2)他只参加1个小组的概率是多少?分析:至少参加2个小组是指参加2个小组或3个小组,其反面是只参加1个小组.解:设事件A =“只参加英语小组”,B =“只参加音乐小组”,C =“只参加数学小组”,D =“只参加英语、音乐小组”,E =“只参加英语、数学小组”,F =“只参加音乐、数学小组”,G =“参加了英语、音乐、数学3个小组”.(1)设事件M =“他至少参加2个小组”,则M =D +E +F +G . ∵3个小组共有60人,且P (D )=607,P (E )=6011,P (F )=6010,P (G )=608, ∴P (M )=P (D +E +F +G )=P (D )+P (E )+P (F )+P (G )=6.0603660860106011607==+++. (2)设事件N =“他参加不超过2个小组”,则N =“他参加3个小组”=G .∴P (N )=1-P (N )=1-P (G )=1-1513608=. 【例3】小明的自行车用的是密码锁,密码锁的四位数码由4个数字2、4、6、8按一定顺序构成.小明不小心忘记了密码中4个数字的顺序,试问:随机地输入由2、4、6、8组成的一个四位数,不能打开锁的概率是多少?分析:密码只有1个,由2、4、6、8能组成多少个不同的四位利用互斥事件有一个发生的概率计算公式,首先确定是否是互斥事件.英语 音乐数学6881010117首先确定某个事件由哪些互斥事件组成,或确定它的对立事件,然后求出各事件的概率.把整个事件彻底分解,所求事件中有几个互斥事件则一目了然.也可用M 的对立事件M 求,即P (M )=1-P (M ).用对立事件求比较简单.“打开锁”与“打不开锁”是对立事件,因此可用“打开锁”的概率表示“打不开锁”的概率.也可直接求P (A )=2423.数呢?用树状图分析知有4×3×2=24(个).解:设事件A =“由2、4、6、8组成的四位数不是开锁密码”,而由2、4、6、8组成的所有四位数有4×3×2=24个,且P (A )=241. ∴P (A )=1-P (A )=1-241=2423,即小明随机地输入由2、4、6、8组成的一个四位数,不能打开锁的概率为2423.【例4】班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等.指定3个男生和2个女生来参与,把5个人分别编号为1、2、3、4、5,其中1、2、3号是男生,4、5号是女生.将每个人的编号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.(1)为了取出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率;(2)为了取出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求:①独唱和朗诵是由同一个人表演的概率;②取出的2人不全是男生的概率.分析:为了得到从5张卡片中连续抽取2张的所有结果,利用树状图列出,所有情况直观显现,有助于下面问题的解决.在第(2)题中也可用树状图表示,由于它是放回抽取,也可用有序数组的方式一一列举出.解:(1)首先利用树状图列举所有可能结果如下:1112222333344455555,,,,. 由图可看出所有可能结果数为20.每个结果出现的可能性相同,属古典概型.方法一:设A 1=“2人中恰有1人是女生”,A 2=“2人都是女生”,A =“2人不全是男生”,则A =A 1+A 2.由树状图易知P (A 1)=2012,P (A 2)=202,且A 1与A 2是互斥事件, ∴P (A )=P (A 1+A 2)=P (A 1)+P (A 2)=2012+202=107=0.7,即连续抽取2张卡片,取出的2人不全是男生的概率为0.7.方法二:设事件A =“2人不全是男生”,则A =“2人全是男生”,且P (A )=206=0.3. ∴P (A )=1-P (A )=1-0.3=0.7,即连续抽取2张卡片,取出的2个不全是男生的概率为0.7.方法三:不考虑抽取的顺序,即(a ,b )与(b ,a )相同,则要认真阅读题目内容,明确题目的条件和要求,这是解题的关键第一步. 有多少种不同抽法,可用树状图表示.利用树状图进行列举是常用的方法.也可用有序数组列举:(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),共20个.通过A 的对立事件A 求P (A ).最后考虑的是结果,可不考虑顺序.所有可能结果有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种.易知这也属于古典概型.设事件A =“2人不全是男生”,则A =“2人全是男生”,且P (A )=103=0.3. ∴P (A )=1-P (A )=1-0.3=0.7,即连续抽取2张卡片,取出的2人不全是男生的概率为0.7.(2)利用有序数组的方式列出所有结果为(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1), (4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25种.①设事件A =“独唱和朗诵由同一个人表演”,则P (A )=255=0.2,即独唱和朗诵由同一个人表演的概率为0.2.②设事件A =“有放回抽取,取出的两人不全是男生”,则A =“有放回抽取,取出的两人全是男生”,且P (A )=259, ∴P (A )=1-P (A )=1-259=0.64,即有放回地抽取2张卡片,取出的2人不全是男生的概率为0.64.【例5】10件产品中有两件次品,任取两件检验,求下列事件的概率(不放回抽取).(1)至少有1件是次品; (2)最多有1件是次品.分析:可用树状图列出所有结果,从正面回答,不如从反面解决快捷.解:由树状图可知,共有90种可能结果.(1)设事件A =“至少有1件是次品”,则A =“没有次品”,且P (A )=9056. ∴P (A )=1-P (A )=1-45179056=,即至少有1件是次品的概率为4517. (2)设事件A =“最多有1件是次品”,则A =“2件都是次品”,且P (A )=902. ∴P (A )=1-P (A )=1-4544902=,即最多有1件是次品的概率为4544. 这是放回抽取,也可用树状图,如112345也可从正面直接解答,A 中含有两个互斥事件:“2人是一名男生和一名女生”和“2人都是女生”.列树状图要列10组,每组中有9个结果,共90个结果,通过想象可解决问题.也可从不考虑顺序的角度求解.。
高考数学第十章计数原理、概率、随机变量及其分布10.5古典概型理高三全册数学
=0不经过第四象限的概率为( A )
2
1
A.9
B.3
4
1
C.9
D.4
2021/12/12
第二十八页,共四十六页。
【解析】 (1)有序数对(m,n)的所有可能结果为(1,1),
(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),
(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.由a⊥(a-b), 得m2-2m+1-n=0,即n=(m-1)2,由于m,n∈{1,2,3,4},故
(1)试验的基本事件; (2)事件“出现点数之和大于3”包含的基本事件; (3)事件“出现点数相等”包含的基本事件.
2021/12/12
第十九页,共四十六页。
解:(1)这个试验的基本事件为 (1,1)(1,2)(1,3),(1,4), (2,1)(2,2)(2,3),(2,4), (3,1)(3,2)(3,3),(3,4), (4,1)(4,2)(4,3),(4,4). (2)事件“出现点数之和大于3”包含的基本事件为(1,3), (1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1), (4,2),(4,3),(4,4). (3)事件“出现点数相等”包含的基本事件为(1,1),(2,2), (3,3),(4,4).
2021/12/12
第二十一页,共四十六页。
【解】 (1)由题意,参加集训的男、女生各有6名.参赛学
生全从B中学抽取(等价于A中学没有学生入选代表队)的概率为
C33C34 C36C36
=
1 100
,因此,A中学至少有1名学生入选代表队的概率为1
【恒心】高考数学(理科)一轮复习突破课件011002-古典概型
规律方法
(1)一是本题易把(2,4)和(4,2),(1,2) 则 C 表示“点(x,y)在圆 x2+y2=15 上或圆的外部”. 和(2,1)看成同一个基本事件,造成 又事件 C 包含基本事件: 计算错误.二是当所求事件情况较 (1,1),(1,2),(1,3),(2,1),(2,2),(2,3),复杂时,一般要分类计算,即用互 (3,1),(3,2)共有 8 个. 斥事件的概率加法公式或考虑用 8 2 ∴P(C)= = , 36 9 对立事件求解. (2) 当所求事件含有 “ 至少 ”“ 至 2 7 从而 P( C )=1-P(C)=1- = . 9 9 多”或分类情况较多时,通常考虑 用对立事件的概率公式 P(A)=1- 7 2 2 ∴点(x,y)在圆 x +y =15 上或圆外部的概率为 . 9 P( A )求解.
解 从 6 道题中任取 2 道有 n=C2 6=15(种)取法. 则 A 发生共有 m=C2 4=6 种结果.
规律方法
(1)记“所取的 2 道题都是甲类题”为事件 A有关古典 6 2 本事件数. ∴所求事件概率 P(A)= = = . n 15 5 (1)基本事件总数较少时, (2)记“所取的 2 道题不是同一类题”事件为用列举法把所有基本事件 B, 1 一一列出时,要做到不重 事件 B 包含的基本事件有 C1 4C2=8(种), 复、不遗漏,可借助“树 8 则事件 B 的概率为 P(B)= . 状图”列举.(2)注意区分 15 排列与组合,以及计数原 理的正确使用.
解
由题意,先后掷 2 次,向上的点数(x,y)共有
n=6×6=36 种等可能结果,为古典概型. (1)记“两数中至少有一个奇数”为事件 B, 则事件 B 与“两数均为偶数”为对立事件,记为 B .
高考数学复习:古典概型与几何概型
又满足椭圆xm2+y22=1
的焦距为整数的
m
的取值有
1,3,11,共有
3
个,∴椭圆x2+ m
y22=1 的焦距为整数的概率 p=36=12.
答案
(1)A
1 (2)2
21
基础知识诊断
考点聚焦突破
@《创新设计》
规律方法 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用 古典概型的有关知识解决,一般步骤为: (1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.
17
基础知识诊断
考点聚焦突破
@《创新设计》
【训练1】 (1)(2020·深圳一模)两名同学分3本不同的书,则其中一人没有分到书,另
一人分得3本书的概率为( )
1
1
1
1
A.2
B.4
C.3
D.6
(2)(2019·南昌一模)2021 年广东新高考将实行 3+1+2 模式,即语文、数学、外语必
选,物理、历史二选一,政治、地理、化学、生物四选二,共有 12 种选课模式.今
2.几何概型 (1)几何概型的定义 如果每个事件发生的概率只与构成该事件区域的__长__度__(面__积__或__体__积__)__成比例,那么 称这样的概率模型为几何概率模型,简称几何概型. (2)几何概型的两个基本特点
无限多个
等可能性
4
基础知识诊断
考点聚焦突破
@《创新设计》
(3)几何概型的概率公式 P(A)=试验的构全成部事结件果A所的构区成域的长区度域(长面度积(或面体积积或)体积). [常用结论与微点提醒] 1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与 树状图法. 2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B= , 即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0. 3.几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的.
高考数学复习《概率 古典概型》
1. 理解古典概型及其概率计算公式; 2. 会计算一些随机事件所含的基本事件数及事件发生的概率.
1. 基本事件的特点 (1)任何两个基本事件都是 互斥 的. (2)任何事件(除不可能事件外)都可以表示成 基本事件 的和. 2. 古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典概型: (1)试验中所有可能出现的基本事件 只有有限个; (2)每个基本事件出现的可能性 相等 . 3. 古典概型的概率公式
方法二:“至少有一个5点或6点”的对立事件是“没有5点或6点”,如上表, “没有5点或6点”包含16个基本事件,没有5点或6点的概率为P=3166=49,
故至少有一个5点或6点的概率为 1-49=59.
【考情分析】 从近两年的高考试题来看,古典概型是高考的热点,可在选择题、填空题中 单独考查,也可在解答题中与统计或随机变量的分布列一起考查,属容易或 中档题,以考查基本概念、基本运算为主. 预计2012年高考中,古典概型仍然是考查的重点,同时应注意古典概型与统 计、离散型随机变量结合命题.
【互动探究】 在本例中,条件不变,求任取1个小正方体,至少有一个面涂色的概率
解析:方法பைடு நூலகம்(间接法):由例题知,表面无色的概率为217,∴至少有一面涂色的概
率是1-217=2276.
方法二(直接法):至少有一面涂色包括3种情况,一面涂色,两面涂色,三面涂色, ∴至少有一面涂色的概率是8+2172+6=2267.
解析:抽出的2张均为红桃的概率为CC221532=117. 答案:117
3. (2010·山东)一个袋中装有四个形状大小完全相同的球,球的编号为 1,2,3,4. (1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率; (2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋 中随机取一个球,该球的编号为n,求n<m+2的概率.
高考数学科学复习创新方案:古典概型
古典概型[课程标准]理解古典概型,能计算古典概型中简单随机事件的概率.1.古典概型一般地,若试验E 具有以下特征:(1)有限性:样本空间的样本点只有01有限个;(2)等可能性:每个样本点发生的可能性02相等.称试验E 为古典概型试验,其数学模型称为古典概率模型,简称古典概型.2.古典概型的概率公式一般地,设试验E 是古典概型,样本空间Ω包含n 个样本点,事件A 包含其中的k 个样本点,则定义事件A 的概率P (A )=03kn.一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,只有同时具备这两个特征的概率模型才是古典概型.正确的判断试验的类型是解决概率问题的关键.1.(人教A 必修第二册10.1.1例3改编)一枚质地均匀的硬币连掷2次,恰好出现1次正面的概率是()A.12B.14C.34D .0答案A解析一枚质地均匀的硬币连掷2次,样本点有(正,正),(正,反),(反,正),(反,反),共4个,而恰有1次出现正面包括(正,反),(反,正),2个,故其概率为24=12.故选A.2.(多选)下列是古典概型的是()A.从6名同学中,选出4人参加数学竞赛,每人被选中的可能性的大小B.同时掷两枚骰子,点数和为7的概率C.近三天中有一天降雨的概率D.10个人站成一排,其中甲、乙相邻的概率答案ABD解析A,B,D是古典概型,因为都具备古典概型的两个特征:有限性和等可能性,而C不具备等可能性,故不是古典概型.故选ABD.3.(2022·新高考Ⅰ卷)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.1 6B.1 3C.1 2D.2 3答案D解析所有取法一共有C27=21种,不互质的有(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7种.故这2个数互质的概率为21-721=2 3.4.中国是发现和研究勾股定理最古老的国家之一,古代数学家称直角三角形中较短的直角边为勾,另一直角边为股,斜边为弦,其三边长组成的一组数据称为勾股数,现从1~15这15个数中随机抽取3个整数,则这三个数为勾股数的概率为()A.1 910B.3 910C.3 455D.4 455答案D解析从这15个数中随机抽取3个整数,所有样本点的个数为C315,其中勾股数为(3,4,5),(6,8,10),(9,12,15),(5,12,13),共4个,所以这三个数为勾股数的概率为P =4C 315=4455.故选D.5.(人教A 必修第二册10.1.3例8改编)将一枚质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.答案19解析根据题意可得样本点共有6×6=36个,点数和为5的样本点有(1,4),(4,1),(2,3),(3,2),共4个,所以向上的点数和为5的概率为436=19.例1(2023·潍坊一中期末)袋子里有6个大小、质地完全相同且带有不同编号的小球,其中有1个红球,2个白球,3个黑球,从中任取2个球.(1)写出样本空间;(2)求取出的两球颜色不同的概率;(3)求取出的两球中至多有一个黑球的概率.解(1)将1个红球记为a ,2个白球记为b 1,b 2,3个黑球记为c 1,c 2,c 3,则样本空间Ω={(a ,b 1),(a ,b 2),(a ,c 1),(a ,c 2),(a ,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3)},共15个样本点.(2)记事件A 为“取出的两球颜色不同”,则两球的颜色可能是1红1白,1红1黑,1白1黑,则A ={(a ,b 1),(a ,b 2),(a ,c 1),(a ,c 2),(a ,c 3),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3)},共11个样本点,所以P (A )=1115.(3)记事件B 为“取出的两球中至多有一个黑球”,则两球的颜色可能是1红1白,1红1黑,1白1黑,2白,则B ={(a ,b 1),(a ,b 2),(a ,c 1),(a ,c 2),(a ,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3)},共12个样本点,所以P (B )=1215=45.1.古典概型的概率求解步骤(1)求出样本空间Ω包含的样本点的个数n;(2)求出事件A包含的样本点的个数m;(3)代入公式P(A)=mn求解.2.样本点个数的确定方法(1)列举法;(2)树状图法;(3)运用排列组合的知识.提醒:在确定样本点时,(x,y)可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同.1.(2023·全国乙卷)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题的概率为()A.5 6B.2 3C.1 2D.1 3答案A解析甲有6种选择,乙也有6种选择,故共有6×6=36种,若甲、乙抽到的主题不同,则共有A26=30种,则其概率为3036=56.故选A.2.一个信箱里装有标号为1,2,3,4的4封大小完全相同的信件,先后随机地选取2封信,根据下列条件,分别求2封信上的数字为不相邻整数的概率.(1)信的选取是无放回的;(2)信的选取是有放回的.解(1)记事件A为“选取的2封信上的数字为相邻整数”.从4封信中无放回地随机选取2封,则试验的样本空间Ω={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)},共12个样本点,这12个样本点出现的可能性是相等的,A={(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)},共6个样本点.由古典概型的概率计算公式知P(A)=612=1 2,故无放回地选取2封信,这2封信上数字为不相邻整数的概率为1-12=1 2.(2)从4封信中有放回地随机选取2封,则试验的样本空间Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)},共16个样本点,这16个样本点出现的可能性是相等的.A={(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)},共6个样本点,且这6个样本点出现的可能性是相等的.由古典概型的概率计算公式知P(A)=616=3 8,故有放回地选取2封信,这2封信上数字为不相邻整数的概率为1-38=5 8.多角度探究突破角度古典概型与平面向量的交汇例2已知向量a=(-2,1),b=(x,y),若x,y分别表示一枚质地均匀的骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求:(1)a·b=-1的概率;(2)a·b<0的概率.解(1)∵向量a=(-2,1),b=(x,y),x,y分别表示一枚质地均匀的骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,∴样本点总数n=6×6=36,∵a·b=-1,∴-2x+y=-1,∴满足a ·b =-1的样本点(x ,y )有(1,1),(2,3),(3,5),共3个,∴a ·b =-1的概率P 1=336=112.(2)∵a ·b <0,∴-2x +y <0,∴满足a ·b <0的样本点(x ,y )有(1,1),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共27个,∴a ·b <0的概率P 2=2736=34.角度古典概型与解析(立体)几何的交汇例3(1)(2022·全国甲卷)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.答案635解析从正方体的8个顶点中任取4个,有n =C 48=70种取法,这4个点在同一个平面的有m =6+6=12种取法,故所求概率P =m n =1270=635.(2)(2024·江苏南通开学考试)设a ,b 是从集合{1,2,3,4,5}中随机选取的数,则直线y =ax +b 与圆x 2+y 2=2有公共点的概率是________.答案1925解析直线y =ax +b 与圆x 2+y 2=2有公共点,等价于|b |a 2+1≤2,即b 2≤2a 2+2,Ω={(a ,b )|a ,b ∈{1,2,3,4,5}},n (Ω)=25,设A ={(a ,b )|b 2≤2a 2+2},当b =1时,a =1,2,3,4,5;当b =2时,a =1,2,3,4,5;当b =3时,a =2,3,4,5;当b =4时,a =3,4,5;当b =5时,a =4,5.故n (A )=19,所以P (A )=n (A )n (Ω)=1925,即直线y =ax +b 与圆x 2+y 2=2有公共点的概率是1925.角度古典概型与函数的交汇例4(1)已知集合M={1,2,3,4},N={(a,b)|a∈M,b∈M},A是集合N中任意一点,O为坐标原点,则直线OA与y=x2+1的图象有公共点的概率是()A.1 2B.1 3C.1 4D.1 8答案C解析易知过点(0,0)与y=x2+1的图象相切的直线为y=2x(斜率小于0的无需考虑),集合N中共有4×4=16个元素,其中使直线OA的斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,故所求的概率为416=14.故选C.(2)(2023·眉山模拟)先后任意地抛一枚质地均匀的正方体骰子两次,所得点分别记为a和b,则函数f(x)=13x3+12ax2+bx存在极值点的概率为()A.13 36B.17 36C.19 36D.23 36答案B解析由题意,得f′(x)=x2+ax+b,若f(x)在R上存在极值点,则f′(x)=0有两个不相等的实数根,所以Δ=a2-4b>0,即a2>4b,当b=1时,a=3,4,5,6,共4种;当b=2时,a=3,4,5,6,共4种;当b=3时,a=4,5,6,共3种;当b=4时,a=5,6,共2种;当b=5时,a=5,6,共2种;当b=6时,a=5,6,共2种,满足条件的(a,b)共有4+4+3+2+2+2=17种情况,总情况有36种,所以函数f(x)在R上存在极值点的概率P=1736.故选B.较复杂的古典概型问题的求解方法解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举样本点,然后利用古典概型的概率计算公式进行计算.1.设平面向量a =(m ,1),b =(2,n ),其中m ,n ∈{1,2,3,4},记“a ⊥(a -b )”为事件A ,则事件A 发生的概率为()A.18B.14C.13D.12答案A解析有序数对(m ,n )的所有的样本点有4×4=16(个).由a ⊥(a -b ),得m 2-2m +1-n =0,即n =(m -1)2,由于m ,n ∈{1,2,3,4},故事件A 包含的样本点为(2,1)和(3,4),共2个,所以P (A )=216=18.2.(2024·邯郸高三开学考试)从正方体的8个顶点和中心中任选4个,则这4个点恰好构成三棱锥的概率为()A.4163B.3863C.23D.57答案D解析从正方体的8个顶点和中心中任取4个,有C 49=126个结果,4个点恰好构成三棱锥分两种情况:①从正方体的8个顶点中取4个点,共有C 48=70个结果,其中四点共面有两种情况:一是四点构成侧面或底面,有6种情况,二是四点构成对角面(如平面AA 1C 1C ),有6种情况.在同一个平面的有6+6=12个,构成的三棱锥有70-12=58个;②从正方体的8个顶点中任取3个,共有C 38=56个结果,其中所取3点与中心共面,则这4个点在同一对角面上,共有6C 34=24个结果,因此,所选3点与中心构成三棱锥有56-24=32个.故从正方体的8个顶点和中心中任选4个,则这4个点恰好构成三棱锥的个数为58+32=90,故所求概率P =90126=57.故选D.3.已知一组抛物线y =12ax 2+bx +1,其中a 为2,4中任取的一个数,b 为1,3,5中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x=1交点处的切线相互平行的概率是________.答案215解析抛物线共有6条,任取两条共C26=15种情况.∵y′=ax+b,∴在与直线x=1交点处的切线斜率为a+b,而a为2,4中任取的一个数,b为1,3,5中任取的一个数,满足a+b相等的抛物线有2对,∴在与直线x=1交点处的切线相互平行的概率为2.15例5(2023·青岛二中期末)青岛二中高一年级的同学们学习完《统计与概率》章节后,统一进行了一次测试,并将所有测试成绩(满分100分)按照[50,60),[60,70),…,[90,100]进行分组,得到如图所示的频率分布直方图,已知图中b=3a.(1)估计测试成绩的75%分位数和平均分;(2)按照人数比例用分层随机抽样的方法,从成绩在[80,100]内的学生中抽取4人,再从这4人中任选2人,求这2人成绩都在[80,90)内的概率.解(1)由频率分布直方图可知(a+0.015+0.035+b+a)×10=1,即b+2a=0.05,又b=3a,所以a=0.01,b=0.03.前三组的频率之和为0.1+0.15+0.35=0.6<0.75,前四组的频率之和为0.6+0.3=0.9>0.75,则75%分位数m∈[80,90),且m=80+0.75-0.6×10=85.0.9-0.6测试成绩的平均分为x-=55×0.1+65×0.15+75×0.35+85×0.3+95×0.1=76.5.(2)成绩在[80,90)和[90,100]内的人数之比为3∶1,故抽取的4人中成绩在[80,90)内的有3人,设为a,b,c,成绩在[90,100]内的有1人,设为D,再从这4人中任选2人,这2人的所有可能情况为(a,b),(a,c),(a,D),(b,c),(b,D),(c,D),共6种,这2人成绩均在[80,90)内的情况有(a,b),(a,c),(b,c),共3种,故这2人成绩都在[80,90)内的概率为P=36=1 2.求解古典概型与统计交汇问题的思路(1)依据题目的直接描述或频率分布表、频率分布直方图等统计图表给出的信息,提炼出需要的信息.(2)进行统计与古典概型概率的正确计算.第19届亚运会于9月23日至10月8日在杭州举办,某校工会对全校教职工在亚运会期间每天收看比赛转播的时间作了一次调查,得到如下频数分布表:收看时间(单位:小时)[0,1)[1,2)[2,3)[3,4)[4,5)[5,6)收看人数143016282012(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“体育达人”,否则定义为“非体育达人”,请根据频数分布表补全2×2列联表:教职工性别合计男女体育达人4020非体育达人30合计依据小概率值α=0.1的独立性检验,能否以此推断“体育达人”与“性别”有关?(2)在全校“体育达人”中按性别分层随机抽样抽取6名,再从这6名“体育达人”中选取2名做亚运会知识讲座.求选取的这2人恰好是一男一女的概率.附表及公式:α0.150.100.050.0250.0100.0050.001xα 2.072 2.706 3.841 5.024 6.6357.87910.828χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).解(1)由题意得下表:教职工性别合计男女体育达人402060非体育达人303060合计7050120零假设为H0:“体育达人”与“性别”无关.根据列联表中的数据,经计算得到χ2=120×(40×30-20×30)260×60×70×50=247>2.706=x0.1,依据小概率值α=0.1的独立性检验,我们推断H0不成立,即认为“体育达人”与“性别”有关.(2)由题意知抽取的6名“体育达人”中有4名男职工,2名女职工,分别表示为A1,A2,A3,A4,B1,B2,从这6人中选取2人有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共15种情形,满足选取的这2人恰好是一男一女的有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),共8种情形,故从这6名“体育达人”中选取2名做亚运会知识讲座,选取的这2人恰好是一男一女的概率为815.课时作业一、单项选择题1.为了强化安全意识,某校拟在周一至周五的5天中随机选择2天进行紧急疏散演练,则选择的2天恰好是连续2天的概率是()A.25B.35C.310D.15答案A解析由题意,某校拟在周一至周五的5天中随机选择2天进行紧急疏散演练,可得样本点的总数为n =C 25=10,其中选择的2天恰好为连续2天包含的样本点个数为m =4,所以选择的2天恰好是连续2天的概率是P =m n =410=25.故选A.2.(2023·全国甲卷)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.23答案D解析记高一年级2名学生分别为a 1,a 2,高二年级2名学生分别为b 1,b 2,则从这4名学生中随机选2名组织校文艺汇演的基本事件有(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(b 1,b 2),共6个,其中这2名学生来自不同年级的基本事件有(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),共4个,所以这2名学生来自不同年级的概率P =46=23.故选D.3.在2,3,5,6中任选2个不同数字,其乘积能被3整除的概率为()A.16B.17C.13D.56答案D解析在2,3,5,6中任选2个不同数字,基本事件有6个,分别为(2,3),(2,5),(2,6),(3,5),(3,6),(5,6),其乘积能被3整除的基本事件有5个,分别为(2,3),(2,6),(3,5),(3,6),(5,6),则其乘积能被3整除的概率为56.故选D.4.(2024·济南月考)如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从F 出口落出的概率是()A.12B.14C.16D.18答案B解析由题图可知,小球下落的路线有A →B →C →E ,A →B →C →F ,A →B→D →G ,A →B →D →H ,共4种,且每种的概率相等,所以小球从F 出口落出的概率为14.故选B.5.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118答案C解析不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 210=45种方法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种方法,故所求概率为345=115.故选C.6.(2023·嘉兴二模)已知正九边形A 1A 2…A 9,从A 1A 2→,A 2A 3→,…,A 9A 1→中任取两个向量,则它们的数量积是正数的概率为()A.12B.23C.49D.59答案A解析可以和向量A 1A 2→构成数量积的向量有A 2A 3→,…,A 9A 1→,共8个,其中数量积为正数的向量有A 2A 3→,A 3A 4→,A 8A 9→,A 9A 1→,共4个,由对称性可知,任取两个向量,它们的数量积是正数的概率为48=12.故选A.7.(2021·全国甲卷)将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23D.45答案C解析将4个1和2个0安排在6个位置,选择2个位置安排0,共有C 26种排法;将4个1排成一行,把2个0插空,即在5个位置中选2个位置安排0,共有C25种排法.所以2个0不相邻的概率P =C 25C 26=23.故选C.8.(2023·重庆模拟)如图,将正方体沿交于同一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,截取后的剩余部分称为“阿基米德多面体”,它是一个24等边半正多面体.从它的棱中任取两条,则这两条棱所在的直线为异面直线的概率为()A.1023B.1223C.2969D.5069答案B解析当一条直线位于上(或下)底面,另一条不在底面时,有10×8=80对异面直线;当两条直线都位于上、下底面时,有4×2=8对异面直线;当两条直线都不在上、下底面时,有7×8=56对异面直线,所以两条棱所在的直线为异面直线的概率为P =80+8+56C 224=1223.故选B.二、多项选择题9.(2023·白山二模)将A ,B ,C ,D 这4张卡片分给甲、乙、丙、丁4人,每人分得一张卡片,则()A .甲得到A 卡片与乙得到A 卡片为对立事件B .甲得到A 卡片与乙得到A 卡片为互斥但不对立事件C .甲得到A 卡片的概率为14D .甲、乙两人中有人得到A 卡片的概率为12答案BCD解析甲得到A 卡片与乙得到A 卡片不可能同时发生,但可能同时不发生,所以甲得到A 卡片与乙得到A 卡片为互斥但不对立事件,A 不正确,B 正确;甲得到A 卡片的概率为A 33A 44=14,C 正确;甲、乙两人中有人得到A 卡片的概率为C 12A 33A 44=12,D 正确.故选BCD.10.(2023·烟台二中模拟)已知甲袋内有a 个红球,b 个黑球,乙袋内有b 个红球,a个黑球(a,b∈N*),从甲、乙两袋内各随机取出1个球,记事件A=“取出的2个球中恰有1个红球”,B=“取出的2个球都是红球”,C=“取出的2个球都是黑球”,则()A.P(A∪B)≤0.75B.P(A)>P(B)C.P(B)<P(C)D.P(A∪B)=P(A∪C)答案BD解析若取出的2个球为1个红球、1个黑球,其概率P(A)=aa+b ·aa+b+b a+b ·ba+b=a2+b2(a+b)2,若2个球都是红球,其概率P(B)=aa+b·ba+b=ab(a+b)2,若2个球都是黑球,其概率P(C)=ba+b ·aa+b=ab(a+b)2<a2+b2(a+b)2=P(A),且P(B)=P(C),故B正确,C错误;P(A∪B)=P(A)+P(B)=a2+b2(a+b)2+ab(a+b)2=a2+b2+ab a2+b2+2ab =1-aba2+b2+2ab≥1-ab2ab+2ab=34,当且仅当a=b时,等号成立,故A错误;P(A∪B)=P(A)+P(B)=P(A)+P(C)=P(A∪C),D正确.故选BD.11.(2023·重庆模拟)如图,在某城市中,M,N两地之间有整齐的方格形道路网,其中A1,A2,A3,A4是道路网中位于一条对角线上的4个交汇处.今在道路网M,N处的甲、乙两人分别要到N,M处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N,M处为止.则()A.甲从M到达N处的方法有30种B.甲从M经过A2到达N处的方法有9种C.甲、乙两人在A3处相遇的概率为81400D.甲、乙两人不相遇的概率为49100答案BC解析对于A,甲从M到达N处,需要走6步,其中有3步向上走,3步向右走,则甲从M 到达N 处的方法有C 36=20种,A 错误.对于B ,甲经过A 2到达N 处,可分为两步:第一步,甲从M 经过A 2需要走3步,其中1步向右走,2步向上走,有C 13种方法;第二步,甲从A 2到达N 处需要走3步,其中1步向上走,2步向右走,有C 13种方法.所以甲从M 经过A 2到达N 处的方法有C 13C 13=9种,B 正确.对于C ,类似B ,甲经过A 3的方法有C 13C 13=9种,乙经过A 3的方法也有C 13C 13=9种,所以甲、乙两人在A 3处相遇的方法有9×9=81种,则甲、乙两人在A 3处相遇的概率为81C 36C 36=81400,C 正确.对于D ,甲、乙两人沿最短路径行走,只可能在A 1,A 2,A 3,A 4处相遇,若甲、乙两人在A 1处相遇,甲经过A 1处,则甲的前3步必须向上走,乙经过A 1处,则乙的前3步必须向左走,两人在A 1处相遇的走法有1种;若甲、乙两人在A 2处相遇,甲到A 2处,前3步有1步向右走,后3步只有2步向右走,乙到A 2处,前3步有1步向下走,后3步只有2步向下走,所以两人在A 2处相遇的走法有C 23C 13C 23C 13=81种;若甲、乙两人在A 3处相遇,由C 项分析可知,走法有81种;若甲、乙两人在A 4处相遇,甲经过A 4处,则甲的前3步必须向右走,乙经过A 4处,则乙的前3步必须向下走,两人在A 4处相遇的走法有1种,故甲、乙两人相遇的概率为1+81+81+1400=41100,由对立事件的概率知,甲、乙两人不相遇的概率为1-41100=59100,D 错误.故选BC.三、填空题12.(2023·滁州期末)已知点A ,B ,C ,D ,E ,F 均匀分布在圆O 上,从这6个点中任取三个点,则以这三个点为顶点的三角形是等腰三角形的概率为________.答案25解析由题意得所有的情况有ABC ,ABD ,ABE ,ABF ,ACD ,ACE ,ACF ,ADE ,ADF ,AEF ,BCD ,BCE ,BCF ,BDE ,BDF ,BEF ,CDE ,CDF ,CEF ,DEF ,共20种,由图知其中满足题意的有ABC ,BCD ,CDE ,DEF ,AEF ,ABF ,ACE,BDF,共8种,故所求概率为820=2 5.13.一个盒子装有红、白、蓝、绿四种颜色的玻璃球,每种颜色的玻璃球至少有一个.从中随机拿出4个玻璃球,这4个球都是红色的概率为p1,恰好有三个红色和一个白色的概率为p2,恰好有两个红色、一个白色和一个蓝色的概率为p3,四种颜色各一个的概率为p4.若恰好有p1=p2=p3=p4,则这个盒子里玻璃球的个数的最小值为________.答案21解析设红、白、蓝、绿四种颜色的玻璃球数量分别为a,b,c,d.由题意得C4a=C3a C1b=C2a C1b C1c=C1a C1b C1c C1d,则a=4b+3=3c+2=2d+1.经验证,玻璃球的个数的最小值为21,此时a=11,b=2,c=3,d=5.14.一个三位数,百位、十位、个位上的数字依次记为a,b,c(a,b,c互不相同),当且仅当a,b,c中有两个数字的和等于剩下一个数字时,称这个三位数为“等和数”(如358等).现从1,2,3,4这四个数字中任取三个组成无重复数字的三位数,则这个三位数为“等和数”的概率为________.答案12解析从1,2,3,4这四个数字中任取三个数,共有C34=4种不同的取法,其中可构成“等和数”的有(1,2,3),(1,3,4),共2种,故这个三位数为“等和数”的概率为12.四、解答题15.(2023·河北高三学业考试)一个袋中有4个大小、质地都相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个,连续取两次.(1)设(i,j)表示先后两次所取到的球,试写出所有可能抽取的结果;(2)求连续两次都取到白球的概率;(3)若取到红球记2分,取到白球记1分,取到黑球记0分,求连续取球两次所得总分数大于2分的概率.解(1)将2个白球分别记作白1,白2,则连续取两次所包含的样本点有(红,红),(红,白1),(红,白2),(红,黑),(白1,红),(白1,白1),(白1,白2),(白1,黑),(白2,红),(白2,白1),(白2,白2),(白2,黑),(黑,红),(黑,白1),(黑,白2),(黑,黑),所以样本点的总数为16.(2)设事件A :“连续取两次都是白球”,则事件A 所包含的样本点有(白1,白1),(白1,白2),(白2,白1),(白2,白2),共4个,所以P (A )=416=14.(3)设事件B :“连续取球两次分数之和为3”,事件C :“连续取球两次分数之和为4”,事件D :“连续取球两次分数之和大于2”,则事件B 与事件C 互斥,则事件B 所包含的样本点有(红,白1),(红,白2),(白1,红),(白2,红),共4个,事件C 所包含的样本点有(红,红),共1个,所以P (B )=416,P (C )=116,所以P (D )=P (B )+P (C )=416+116=516.16.某市甲、乙两所中学的学生组队参加辩论赛,甲中学推荐了3名男生、2名女生,乙中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求甲中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,求参赛女生不少于2人的概率.解(1)由题意,得参加集训的男、女生各有6名,入选代表队的学生全从乙中学抽取(等价于甲中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100,因此甲中学至少有1名学生入选代表队的概率为1-1100=99100.(2)设“参赛的4人中女生不少于2人”为事件A,“参赛女生有2人”为事件B,“参赛女生有3人”为事件C,则P(B)=C23C23C46=35,P(C)=C33C13C46=15.易知事件B与事件C互斥,则由互斥事件的概率加法公式,得P(A)=P(B)+P(C)=35+15=45,故所求事件的概率为45.17.(2023·滨州模拟)法国著名的数学家笛卡儿曾经说过:“阅读优秀的书籍,就是和过去时代中最杰出的人们(书籍的作者)一一进行交谈,也就是和他们传播的优秀思想进行交流,阅读会让精神世界闪光”.某研究机构为了解某地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示.(1)求a;(2)根据频率分布直方图,估计该地年轻人每天阅读时间的中位数(精确到0.1)(单位:分钟);(3)为了进一步了解年轻人的阅读方式,研究机构采用比例分配的分层随机抽样方法从每天阅读时间位于分组[50,60),[60,70)和[80,90)的年轻人中抽取5人,再从中任选3人进行调查,求其中恰好有2人每天阅读时间位于[80,90)的概率.解(1)因为频率分布直方图的所有矩形面积之和为1,所以(0.010+a+0.045+a+0.005)×10=1,解得a=0.020.(2)因为(0.010+0.020)×10=0.3<0.5,(0.010+0.020+0.045)×10=0.75>0.5,则中位数位于[70,80)内,设中位数为x,则0.3+(x-70)×0.045=0.5,解得x≈74.4,所以估计该地年轻人阅读时间的中位数约为74.4分钟.(3)由题意,阅读时间位于[50,60)的人数为100×0.1=10,阅读时间位于[60,70)的人数为100×0.2=20,阅读时间位于[80,90)的人数为100×0.2=20,所以在这三组中按照比例分配的分层随机抽样方法抽取5人的抽样比例为550,=110则抽取的5人中位于[50,60)的有1人,设为a,位于[60,70)的有2人,设为b1,b2,位于[80,90)的有2人,设为c1,c2.则从5人中任选3人,样本空间Ω={(a,b1,b2),(a,b1,c1),(a,b1,c2),(a,b2,c1),(a,b2,c2),(a,c1,c2),(b1,b2,c1),(b1,b2,c2),(b1,c1,c2),(b2,c1,c2)},共10个样本点.设事件A为“恰好有2人每天阅读时间位于[80,90)”,则A={(a,c1,c2),(b1,c1,c2),(b2,c1,c2)},共3个样本点,,所以P(A)=310所以恰好有2人每天阅读时间位于[80,90)的概率为3.1021。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学专题 古典概型[理科]课下练兵场1.某班准备到郊外野营,为此向商店定了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是 ( ) A .一定不会淋雨 B .淋雨的可能性为34C .淋雨的可能性为12D .淋雨的可能性为14解析:基本事件有“下雨帐篷到”“不下雨帐篷到”“下雨帐篷未到”“不下雨帐篷未到”4种情况,而只有“下雨帐篷未到”时会淋雨,故淋雨的可能性为14.答案:D2.有一对酷爱运动的年轻夫妇给他们12个月大的婴儿3块分别写有“20”,“08”和“北京”的字块,如果婴儿能够排成“2008北京”或者“北京2008”,则他们就给婴儿奖励. 假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是 ( ) A.16 B.14 C.13 D.12解析:“20”,“08”,“北京”三字块的排法共有“2008北京”、“20北京08”、“0820北京”、“08北京20”、“北京2008”、“北京0820”6种情况,而得到奖励的情况有2种,故婴儿能得到奖励的概率为26=13.答案:C3.某同学同时掷两颗骰子,得到点数分别为a ,b ,则椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e>32的概率是 ( ) A.118 B.536 C.16 D.13解析:e =1-b 2a 2>32⇒b a <12⇒a >2b ,符合a >2b 的情况有:当b =1时,有a = 3,4,5,6四种情况;当b =2时,有a =5,6两种情况,总共有6种情况.则概率为66×6=16. 答案:C4.连掷两次骰子得到的点数分别为m 和n ,记向量a =(m ,n )与向量b =(1,-1)的夹角为θ,则θ∈(0,π2]的概率是 ( )A.512B.12C.712D.56 解析:cos θ=m -n m 2+n 2·2,∵θ∈(0,π2],∴m ≥n .满足条件m =n 的概率为636=16,m >n 的概率为12×56=512.∴θ∈(0,π2]的概率为16+512=712.答案:C5.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则log 2X Y =1的概率为 ( ) A.16 B.536 C.112 D.12解析:由log 2X Y =1得Y =2X ,满足条件的X 、Y 有3对,而骰子朝上的点数X 、Y 共有6×6=36对, ∴概率为336=112.答案:C6.[理]电子钟一天显示的时间是从00∶00到23∶59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为 ( ) A.1180 B.1288 C.1360 D.1480 解析:电子钟显示时刻可设为AB ∶CD ,其中A =0,1,2,B =0,1,2,3,…,9,C =0,1,2,3,…,5,D =0,1,2,3,…,9. (1)当A =0时,B ,C ,D 可分别为9、5、9一种情况;(2)当A =1时,B ,C ,D 可分别为9、4、9或9、5、8或8、5、9三种情况; (3)当A =2时,不存在.∴符合题意的只有4种, 显示的所有数字和数为: A =0时,10×6×10=600; A =1时,10×6×10=600; A =2时,4×6×10=240. ∴P =41 440=1360. 答案:C[文]已知一组抛物线y =12ax 2+bx +1,其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x =1交点处的切线互相平行的概率是 ( ) A.112 B.760 C.625 D.516解析:抛物线只有4×4=16(条),从中任取两条有120(种)不同取法,∵y ′=ax +b 在x =1处的斜率为a +b .故符合a +b =3,只有0对,a +b =5共有1对,a +b =7有3对,a +b =9有6对,a +b =11有3对,a +b =13只有1对,∴共有14对,P =14120=760. 答案:B 二、填空题7.在5个数字1、2、3、4、5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是________(结果用数值表示). 答案:3108.假设小军、小燕和小明所在的班级共有50名学生,并且这50名学生早上到校先后的可能性相同,则“小燕比小明先到校,小明又比小军先到校”的概率为__________. 解析:将3人排序共包含6个基本事件, 由古典概型得P =16.答案:169.任取一个三位正整数N ,则对数log 2N 是一个正整数的概率是__________.解析:∵26=64,27=128,28=256,29=512,210=1 024, ∴满足条件的正整数只有27,28,29三个,900300答案:1 300三、解答题10.[理]某考生参加一所大学自主招生考试,面试时从一道数学题,两道自然科学类题,三道社科类题中任选两道回答,且该生答对每一道数学、自然科学、社科类试题的概率依次为0.6、0.7、0.8.(1)求该考生恰好抽到两道社科类试题的概率;(2)求该考生抽到的两道题属于不同学科类并且都答对的概率.解:(1)P=C23C26=315=15.(2)该考生抽到一道数学题,一道自然科学类题的概率为P1=C12C26=215;该考生抽到一道数学题,一道社科类试题的概率为P2=C13C26=315;该考生抽到一道自然科学类题,一道社科类试题的概率为P3=C12·C13C26=615.故该考生抽到的两道题属于不同学科类并且都答对的概率为P=215×0.6×0.7+315×0.6×0.8+615×0.7×0.8=0.376.[文]为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.解:(1)总体平均数为16(5+6+7+8+9+10)=7.5.(2)设A表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.从总体中抽取2个个体全部可能的基本结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本结果.事件A包括的基本结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共有7个基本结果.1511.(2010·银川模拟)把一颗骰子投掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,试就方程组⎩⎪⎨⎪⎧ax +by =3,x +2y =2,解答下列各题:(1)求方程组只有一个解的概率; (2)求方程组只有正数解的概率. 解:事件(a ,b )的基本事件有36个.由方程组⎩⎪⎨⎪⎧ ax +by =3,x +2y =2,可得⎩⎪⎨⎪⎧(2a -b )x =6-2b ,(2a -b )y =2a -3.(1)方程组只有一个解,需满足2a -b ≠0,即b ≠2a ,而b =2a 的事件有(1,2),(2,4),(3,6)共3个,所以方程组只有一个解的概率 为P 1=1-336=1112. (2)方程组只有正数解,需2a -b ≠0且 ⎩⎪⎨⎪⎧ x =6-2b 2a -b >0,y =2a -32a -b >0,即 ⎩⎪⎨⎪⎧2a >ba >32b <3或 ⎩⎪⎨⎪⎧2a <b ,a <32,b >3.其包含的事件有13个:(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(3,2),(4,2),(5,2), (6,2),(1,4),(1,5),(1,6). 因此所求的概率为1336.12.已知关于x 的一元二次函数f (x )=ax 2-bx +1,设集合P ={1,2,3},Q ={-1,1,2,3,4,},分别从集合P 和Q 中随机取一个数作为a 和b . (1)求函数y =f (x )有零点的概率;(2)求函数y =f (x )在区间[1,+∞)上是增函数的概率.解:(a ,b )共有(1,-1),(1,1),(1,2),(1,3),(1,4),(2,-1),(2,1),(2,2),(2,3),(2,4),(3,-1),(3,1),(3,2),(3,3),(3,4),15种情况. (1)若函数y =f (x )有零点,则需Δ=b 2-4a ≥0. 有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),6种情况, 所以函数y =f (x )有零点的概率为615=25. (2)若函数y =f (x )在区间[1,+∞)上是增函数,需对称轴x =b2a≤1. 有(1,-1),(1,1),(1,2),(2,-1),(2,1),(2,2),(2,3),(2,4),(3,-1),(3,1),(3,2),(3,3),(3,4),13种情况.13所以函数y=f(x)在区间[1,+∞)上是增函数的概率为15.。