三极管的三种工作状态

合集下载

简述三极管的三种工作状态

简述三极管的三种工作状态

简述三极管的三种工作状态
一、饱和状态
饱和状态是指三极管的输入电流大于输出电流的状态。

在饱和状态下,三极管的基极电压为正,使得基极与发射极之间的PN结正向偏置,导致电流大量流过集电极和发射极之间的PN结,使得三极管处于导通状态。

饱和状态下,三极管的放大倍数较小,输出电流较大,且输出电压与输入电压之间的线性关系不太明显。

二、截止状态
截止状态是指三极管的输入电流小于输出电流的状态。

在截止状态下,三极管的基极电压为负,使得基极与发射极之间的PN结反向偏置,导致电流无法流过集电极和发射极之间的PN结,使得三极管处于截止状态。

截止状态下,三极管的放大倍数为0,输出电流为0,且输出电压与输入电压之间的线性关系不成立。

三、放大状态
放大状态是指三极管的输入电流与输出电流之间的比例关系较大的状态。

在放大状态下,三极管的基极电压为正,使得基极与发射极之间的PN结正向偏置,导致电流流过集电极和发射极之间的PN结,使得三极管处于导通状态。

放大状态下,三极管的放大倍数较大,输出电流较小,且输出电压与输入电压之间存在线性关系。

总结:
三极管的三种工作状态分别是饱和状态、截止状态和放大状态。

饱和状态下,输入电流大于输出电流,三极管导通;截止状态下,输入电流小于输出电流,三极管截止;放大状态下,输入电流与输出电流之间存在较大的比例关系,三极管放大。

三种工作状态在电子电路中具有不同的应用,能够实现信号放大、开关控制等功能。

掌握三极管的工作原理和工作状态对于电子工程师来说是非常重要的基础知识,能够帮助他们设计和调试电子电路,实现各种功能需求。

8050三极管工作原理

8050三极管工作原理

8050三极管工作原理
三极管(也称为晶体管)是一种半导体器件,常用于放大电流和开关电路中。

它由三个相互连接的区域组成:发射极(Emitter)、基极(Base)和集电极(Collector)。

三极管工作原理如下:
1. 静态工作状态:当基极与发射极之间没有电压时,三极管处于关闭状态。

在此情况下,发射极-基极结和集电极-基极结都
处于反向偏置,没有电流流过。

这时三极管相当于一个关闭的开关。

2. 放大状态:当基极与发射极之间施加足够的正向电压时,发射极-基极结正向偏置。

这会导致发射极的电子注入到基极中,并进一步注入到集电极。

这样就形成了一个电子流,从而产生了电流放大效应。

三极管在这种状态下可以将一个较小的电流输入转化为一个较大的电流输出。

3. 开关状态:当基极与发射极之间施加足够的正向电压时,发射极-基极结正向偏置,三极管处于导通状态。

在此状态下,
三极管相当于一个打开的开关,允许电流流过。

需要注意的是,三极管的工作原理还受到其工作状态和连接方式的影响。

例如,三极管可以作为共射极放大器、共基极放大器或共集电极放大器进行连接,从而实现不同的放大和开关功能。

3极管的三种工作状态

3极管的三种工作状态

3极管的三种工作状态引言三极管(transistor)是一种重要的电子元件,广泛应用于各种电子设备中。

它是一种半导体器件,由三个区域组成:发射区、基区和集电区。

三极管的工作状态可以分为三种:放大状态、截止状态和饱和状态。

本文将详细介绍三极管的三种工作状态及其特点。

1. 放大状态放大状态是三极管最常见的工作状态之一。

在放大状态下,三极管被用作信号放大器,将输入的弱信号放大到合适的幅度。

放大状态下的三极管可以分为NPN型和PNP型两种。

1.1 NPN型三极管的放大状态NPN型三极管中,发射区掺杂为N型半导体,基区掺杂为P型半导体,集电区掺杂为N型半导体。

在放大状态下,NPN型三极管的工作原理如下:1.电流流向:当输入信号施加到基极时,基极电流(IB)会引起发射极电流(IE)的变化,进而控制集电极电流(IC)的变化。

这种电流放大的作用使得输入信号能够被放大。

2.放大倍数:NPN型三极管的放大倍数由集电极电流和基极电流的比值(IC/IB)决定。

一般来说,NPN型三极管的放大倍数较高,可以达到几十到几百倍。

3.特点:放大状态下的NPN型三极管具有低输入阻抗、高输出阻抗、大电流放大倍数等特点。

1.2 PNP型三极管的放大状态PNP型三极管中,发射区掺杂为P型半导体,基区掺杂为N型半导体,集电区掺杂为P型半导体。

PNP型三极管的放大状态与NPN型三极管类似,但电流的流向相反。

1.电流流向:当输入信号施加到基极时,基极电流(IB)会引起发射极电流(IE)的变化,进而控制集电极电流(IC)的变化。

这种电流放大的作用使得输入信号能够被放大。

2.放大倍数:PNP型三极管的放大倍数由集电极电流和基极电流的比值(IC/IB)决定。

一般来说,PNP型三极管的放大倍数较高,可以达到几十到几百倍。

3.特点:放大状态下的PNP型三极管具有低输入阻抗、高输出阻抗、大电流放大倍数等特点。

2. 截止状态截止状态是三极管的一种工作状态,也称为关断状态。

三极管npn的工作原理

三极管npn的工作原理

三极管npn的工作原理
NPN三极管是一种常用的双极型晶体管,在电子器件中应用广泛。

它由三个掺杂不同类型的半导体材料构成,分别是N 区(负电荷载流子区)、P区(正电荷载流子区)和N区(负电荷载流子区)。

NPN三极管的工作原理如下:
1. 开关状态:当无外加电压时,NPN三极管处于关闭状态,没有电流流过。

此时,基区没有电流通过,无法使集电极和发射极之间产生足够的电压来放大输入信号。

2. 放大状态:当在基极和发射极之间施加一个电压时,基区会形成电流,这个电流也称为基电流。

当基电流足够大时,它会将NPN三极管推至工作状态,这时集电极和发射极之间存在较大的电压差,从而形成放大效应。

通过调节基电流的大小,可以调整NPN三极管的放大倍数。

具体工作过程如下:
1. 输入:将输入信号(例如电压或电流)加到基极,通过控制基电流的大小来控制NPN三极管的放大倍数。

2. 放大:当正向偏置电压(例如外加电压)施加到集电极和发射极之间时,电子从发射极流向基极,同时由于浓度差异,少数载流子空穴从基极进入集电极,形成电流放大效应。

3. 输出:输出信号从集电极取出。

总之,NPN三极管的工作原理是基于控制基电流从而控制集电极和发射极之间的电压差,以实现信号放大的效果。

深入探讨三极管的三种工作状态

深入探讨三极管的三种工作状态

深入探讨三极管的三种工作状态 三极管有放大、饱和、截止三种工作状态。

放大电路中的三极管是否处于放大状态或处于何种工作状态,是一个难点。

只要深刻理解三极管三种工作状态的特点,分析电路中三极管处于何种工作状态就会容易得多,下面结合例题来进行分析。

一、三种工作状态的特点1.三极管饱和状态下的特点要使三极管处于饱和状态,必须基极电流足够大,即I B ≥I BS 。

三极管在饱和时,集电极与发射极间的饱和电压(U CES )很小,根据三极管输出电压与输出电流关系式U CE =E C -I C R C ,所以I BS =I CS /β=E C -U CES /βR C ≈E C /βR C 。

三极管饱和时,基极电流很大,对硅管来说,发射结的饱和压降U BES =0.7V (锗管U BES =-0.3V ),而U CES =0.3V ,可见,U BE >0,U BC >0,也就是说,发射结和集电结均为正偏。

三极管饱和后,C 、E 间的饱和电阻R CE =U CES /I CS ,U CES 很小,I CS 最大,故饱和电阻R CES 很小。

所以说三极管饱和后G 、E 间视为短路,饱和状态的NPN 型三极管等效电路如图1a 所示。

2.三极管截止状态下的特点要使三极管处于截止状态,必须基极电流I B =0,此时集电极I C =I CEO ≈0(I CEO 为穿透电流,极小),根据三极管输出电压与输出电流关系式U CE =E C -I C R C ,集电极与发射极间的电压U CE ≈E C 。

三极管截止时,基极电流I B =0,而集电极与发射极间的电压U CE ≈E CO 可见,U BE ≤0,U BC <0,也就是说,发射结和集电结均为反偏。

三极管截止后,C 、E 间的截止电阻R CE =U CE /I C ,U CES 很大,等于电源电压,I CS 极小,C 、E 间电阻R CE 很大,所以,三极管截止后C 、E 间视为开路,截止状态的NPN 型三极管等效电路如图1b 。

三极管的三种状态ppt

三极管的三种状态ppt
三极管状态的转换
截止到放大
截止状态
当三极管基极无电流输入时,集 电极和发射极之间无电流流通,
三极管截止。
放大状态
当基极有电流输入时,集电极和发 射极之间开始有电流流通,三极管 进入放大状态。
转换过程
当基极电流从0开始逐渐增加时,集 电极电流逐渐增加,但发射极电流 先增加后减小,最终达到稳定状态。
放大到饱和
应用
音频放大
三极管在音频放大器中广泛应用 ,用于将微弱的音频信号放大到 足够的功率以驱动扬声器发声。
信号放大
在各种电子设备和系统中,三极 管常用于信号的放大和处理,以 实现电路的信号传输和控制功能 。
03
饱和状态
定义
• 饱和状态:当三极管基极电流足够大,使得集电极电流不再随 基极电流的增大而增大,而是保持一定值或略有下降的状态。
集电极电压
集电极电压是三极管正常工作的必要条件之一。在放大状态 下,集电极电压应大于基极电压,以维持三极管的放大作用 。
如果集电极电压过低,会导致三极管无法正常放大信号;如 果集电极电压过高,则可能烧毁三极管。因此,在使用三极 管时,应确保其集电极电压在合适的范围内。
THANKS FOR WATCHING
基极电流过小或过大,都可能导致三 极管无法正常工作。过小的基极电流 可能导致三极管无法被有效控制,过 大的基极电流则可能烧毁三极管。
集电极电流
集电极电流是三极管在放大状态下最重要的输出信号。集电极电流的大小直接反 映了输入信号的强弱和方向。
集电极电流的大小受基极电流的控制,且随着基极电流的变化而变化。在一定范 围内,集电极电流与基极电流成正比。
三极管的三种状态
目录
• 截止状态 • 放大状态 • 饱和状态 • 三极管状态的转换 • 三极管状态的影响因素

三极管的导通饱和截止

三极管的导通饱和截止

三极管有放大、饱和、截止三种工作状态,放大电路中的三极管是否处于放大状态或处于何种工作状态,对于学生是一个难点。

笔者在长期的教学实践中发现,只要深刻理解三极管三种工作状态的特点,分析电路中三极管处于何种工作状态就会容易得多,下面结合例题来进行分析。

一、三种工作状态的特点1.三极管饱和状态下的特点要使三极管处于饱和状态,必须基极电流足够大,即Is≥IBs。

三极管在饱和时,集电极与发射极间的饱和电压(Uces)很小,根据三极管输出电压与输出电流关系式Uce=Ec-IcRc,所以三极管饱和后,C、E间的饱和电阻RcEs=UcEs/Ics,UcEs很小,Ics最大,故饱和电阻RcEs很小。

所以说三极管饱和后C、E问视为短路,饱和状态的NPN型三极管等效电路如图1a所示。

2.三极管截止状态下的特点三极管截止后,C、E间的截止电阻Rce=UcE/Ic,UcEs很大,等于电源电压,Ics极小,C、E间电阻RcE很大,所以,三极管截止后C、E间视为开路,截止状态的NPN型三极管等效电路如图1b。

3.三极管放大状态下的特点要使三极管处于放大状态,基极电流必须为:0<IB<IBs。

三极管在放大状态时,IB与Ic成唯一对应关系。

当IB增大时,Ic也增大,并且IB增大一倍,Ic也增大一倍。

所以,Ic 主要受IB控制而变化,且Ic的变化比IB的变化大得多,即集电极电流Ic=β×IB。

三极管三种工作状态的特点如附表所示。

二、确定电路中三极管的工作状态下面利用三极管三种工作状态的特点和等效电路来分析实际电路中三极管的工作状态。

例题:图2所示放大电路中,已,其中R.为输入耦合电容在该位置的等效阻抗。

问:1.当输入信号最大值为+730mV,最小值为-730mV时,能否经该电路顺利放大?2.当β=150时,该电路能?否起到正常放大作用分析:当向三极管的基极输入正极性信号时,其基极电流会增大,容易进入饱和状态:当向三极管的基极输入负极性信号时,其基极电流会减小,容易进入截止状态。

三极管饱和区、放大区和截止区的理解方法图解

三极管饱和区、放大区和截止区的理解方法图解

三极管饱和区、放大区和截止区的理解方法图解三极管的三种状态三极管的三种状态也叫三个工作区域,即:截止区、放大区和饱和区。

(1)、截止区:三极管工作在截止状态,当发射结电压Ube小于0.6—0.7V的导通电压,发射结没有导通集电结处于反向偏置,没有放大作用。

(2)、放大区:三极管的发射极加正向电压,集电极加反向电压导通后,Ib控制Ic,Ic与Ib近似于线性关系,在基极加上一个小信号电流,引起集电极大的信号电流输出。

(3)、饱和区:当三极管的集电结电流IC增大到一定程度时,再增大Ib,Ic也不会增大,超出了放大区,进入了饱和区。

饱和时,Ic最大,集电极和发射之间的内阻最小,电压Uce只有0.1V~0.3V,Uce《Ube,发射结和集电结均处于正向电压。

三极管没有放大作用,集电极和发射极相当于短路,常与截止配合于开关电路。

作为电子初学者来说,模拟电路非常重要,模拟电路的三极管的应用是重中之重,能正确理解三极管的放大区、饱和区、截止区是理解三极管的标志。

很多初学者都会认为三极管是两个 PN 结的简单凑合,如下图:这种想法是错误的,两个二极管的组合不能形成一个三极管,我们以 NPN 型三极管为例,如下图:两个PN 结共用了一个P 区(也称基区),基区做得极薄,只有几微米到几十微米,正是靠着它把两个PN 结有机地结合成一个不可分割的整体,它们之间存在着相互联系和相互影响,使三极管完全不同于两个单独的PN 结的特性。

三极管在外加电压的作用下,形成基极电流、集电极电流和发射极电流,成为电流放大器件。

三极管的电流放大作用与其物理结构有关,三极管内部进行的物理过程是十分复杂的,初学者暂时不必去深入探讨。

从应用的角度来讲,可以把三极管看作是一个电流分配器。

一个三极管制成后,它的三个电流之间的比例关系就大体上确定了,如下图所示:β 和α 称为三极管的电流分配系数,其中β 值大家比较熟悉,都管它叫电流放大系数。

三个电流中,有一个电流发生变化,另外两个电流也会随着按比例地变化。

三极管的导通饱和截止

三极管的导通饱和截止

三极管有放大、饱和、截止三种工作状态,放大电路中的三极管是否处于放大状态或处于何种工作状态,对于学生是一个难点。

笔者在长期的教学实践中发现,只要深刻理解三极管三种工作状态的特点,分析电路中三极管处于何种工作状态就会容易得多,下面结合例题来进行分析。

一、三种工作状态的特点1.三极管饱和状态下的特点要使三极管处于饱和状态,必须基极电流足够大,即Is≥IBs。

三极管在饱和时,集电极与发射极间的饱和电压(Uces)很小,根据三极管输出电压与输出电流关系式Uce=Ec-IcRc,所以三极管饱和后,C、E间的饱和电阻RcEs=UcEs/Ics,UcEs很小,Ics最大,故饱和电阻RcEs很小。

所以说三极管饱和后C、E问视为短路,饱和状态的NPN型三极管等效电路如图1a所示。

2.三极管截止状态下的特点三极管截止后,C、E间的截止电阻Rce=UcE/Ic,UcEs很大,等于电源电压,Ics极小,C、E 间电阻RcE很大,所以,三极管截止后C、E间视为开路,截止状态的NPN型三极管等效电路如图1b。

3.三极管放大状态下的特点要使三极管处于放大状态,基极电流必须为:0<IB<IBs。

三极管在放大状态时,IB与Ic成唯一对应关系。

当IB增大时,Ic也增大,并且IB增大一倍,Ic也增大一倍。

所以,Ic 主要受IB控制而变化,且Ic的变化比IB的变化大得多,即集电极电流Ic=β×IB。

三极管三种工作状态的特点如附表所示。

二、确定电路中三极管的工作状态下面利用三极管三种工作状态的特点和等效电路来分析实际电路中三极管的工作状态。

例题:图2所示放大电路中,已,其中R.为输入耦合电容在该位置的等效阻抗。

问:1.当输入信号最大值为+730mV,最小值为-730mV时,能否经该电路顺利放大?2.当β=150时,该电路能否起到正常放大作用?分析:当向三极管的基极输入正极性信号时,其基极电流会增大,容易进入饱和状态:当向三极管的基极输入负极性信号时,其基极电流会减小,容易进入截止状态。

三极管三种工作状态特点分析及判断

三极管三种工作状态特点分析及判断

三极管三种工作状态特点分析及判断三极管有放大、饱和、截止三种工作状态,放大电路中的三极管是否处于放大状态或处于何种工作状态,对于学生是一个难点。

笔者在长期的教学实践中发现,只要深刻理解三极管三种工作状态的特点,分析电路中三极管处于何种工作状态就会容易得多,下面结合例题来进行分析。

一、三种工作状态的特点1.三极管饱和状态下的特点要使三极管处于饱和状态,必须基极电流足够大,即IB≥IBS。

三极管在饱和时,集电极与发射极间的饱和电压(UCES)很小,根据三极管输出电压与输出电流关系式UCE=EC-ICRC,所以IBS=ICS/β=EC-UCES/β≈EC/βRC。

三极管饱和时,基极电流很大,对硅管来说,发射结的饱和压降UBES=0.7V(锗管UBES=-0.3V),而UCES=0.3V,可见,UBE>0,UBC>0,也就是说,发射结和集电结均为正偏。

三极管饱和后,C、E 间的饱和电阻RCE=UCES/ICS,UCES 很小,ICS 最大,故饱和电阻RCES很小。

所以说三极管饱和后G、E 间视为短路,饱和状态的NPN 型三极管等效电路如图1a 所示。

2.三极管截止状态下的特点要使三极管处于截止状态,必须基极电流IB=0,此时集电极IC=ICEO≈0(ICEO 为穿透电流,极小),根据三极管输出电压与输出电流关系式UCE=EC-ICRC,集电极与发射极间的电压UCE≈EC。

三极管截止时,基极电流IB=0,而集电极与发射极间的电压UCE≈ECO 可见,UBE≤0,UBC0,UBC二、确定电路中三极管的工作状态下面利用三极管三种工作状态的特点和等效电路来分析实际电路中三极管的工作状态。

例题:图2 所示放大电路中,已知EC=12V,β=50,Ri=1kΩ,Rb=220kΩ,Rc=2kΩ,。

三极管的四种工作状态

三极管的四种工作状态

三极管的四种工作状态
三极管有四种工作状态,分别是截止状态、饱和状态、放大状态和截止饱和状态。

首先,让我们来谈谈截止状态。

当三极管的基极电压低于某个阈值时,三极管处于截止状态。

在这种状态下,集电极和发射极之间的电流非常小,可以近似看作是断路状态。

三极管在截止状态下的特点是电流增益非常低,几乎可以忽略不计。

其次,是饱和状态。

当三极管的基极电压高于某个阈值时,三极管会进入饱和状态。

在饱和状态下,三极管的集电极和发射极之间的电流达到最大值,且基极和发射极之间的电压也非常小。

在这种状态下,三极管可以被看作是一个闭合的开关,能够提供最大的电流放大作用。

第三种状态是放大状态。

在放大状态下,三极管的工作处于截止状态和饱和状态之间。

此时,三极管能够提供一定程度的电流放大作用,但并没有达到饱和状态下的最大放大效果。

放大状态是三极管在实际电路中经常工作的状态,用来实现信号放大的功能。

最后,是截止饱和状态。

在某些特殊的情况下,三极管可能同
时处于截止状态和饱和状态,这种状态被称为截止饱和状态。

在截
止饱和状态下,三极管的集电极和发射极之间的电流非常小,同时
基极和发射极之间的电压也很小。

这种状态在一些特定的电路设计
中可能会有所应用。

总的来说,三极管的四种工作状态分别是截止状态、饱和状态、放大状态和截止饱和状态。

这些状态在实际电路设计和应用中起着
重要的作用,了解它们的特性对于合理设计和使用电子电路非常重要。

3极管的三种工作状态判断例题及解析

3极管的三种工作状态判断例题及解析

3极管的三种工作状态判断例题及解析
三极管有三个工作状态:截止状态、放大状态和饱和状态。

以下是一些判断三极管工作状态的例题及解析:
例题1:
题目:已知某晶体管处于放大状态,测得其三个电极的电位分别为6V、9V 和,则9V电位的电极应为()。

A. 基极
B. 集电极
C. 发射极
解析:根据三极管放大电路的特点,基极电位处于两个集电极电位之间,且基极电位比发射极电位高左右。

根据给定的电位值,可以判断出6V为发射极电位,为基极电位,剩下的9V则为集电极电位。

因此,正确答案是B. 集电极。

例题2:
题目:已知某晶体管处于饱和状态,测得其三个电极的电位分别为、和,则电位的电极应为()。

A. 基极
B. 集电极
C. 发射极
解析:根据三极管饱和状态的特点,基极电位与集电极电位接近或相等,且均高于发射极电位。

根据给定的电位值,可以判断出为发射极电位,为基极电位,剩下的则为集电极电位。

因此,正确答案是B. 集电极。

例题3:
题目:已知某晶体管处于截止状态,测得其三个电极的电位分别为5V、0V 和5V,则0V电位的电极应为()。

A. 基极
B. 集电极
C. 发射极
解析:根据三极管截止状态的特点,基极电位和集电极电位均为高电位,而发射极电位为低电位。

根据给定的电位值,可以判断出5V为两个集电极电位中的一个,而另一个5V则为基极电位,剩下的0V则为发射极电位。

因此,正确答案是C. 发射极。

pnp三极管的工作状态

pnp三极管的工作状态

pnp三极管的工作状态
PNP三极管有三种工作状态:截止状态、放大状态和饱和状态。

1. 截止状态(Cut-off):当基极电流为零时,PNP三极管处于截止状态。

此时,集电极和基极之间的连接断开,不存在电流流动。

在截止状态下,集电极和基极之间具有最大的电阻,称为开路状态。

2. 放大状态(Active):当基极电流大于零而集电极和发射极之间的电压小于集电极和基极之间的电压时,PNP三极管处于放大状态。

此时,发射极和集电极之间形成一个反向偏置的二极管,允许电流流动。

在放大状态下,输入信号会引起输出信号的放大。

3. 饱和状态(Saturation):当基极电流大于零而集电极和发射极之间的电压大于集电极和基极之间的电压时,PNP三极管处于饱和状态。

此时,发射极和集电极之间形成一个正向偏置的二极管,电流允许流动。

在饱和状态下,PNP三极管充分导通,其集电极电流最大。

三极管的三种工作状态

三极管的三种工作状态

三极管的三种工作状态(总结在最后部分)三极管的三种工作状态是非常重要的,是无线电基础的基础。

对此我是这样理解的。

我编了一句顺口溜:发正集反是放大;全正饱和全反截。

就是说不管是PNP型三极管还是NPN型三极管,只要其发射结是正向偏置而集电结是反向偏置那么该三极管就工作在放大状态;而当其发射结和集电结都是正向偏置时该三极管就工作在饱和状态;而当其发射结和集电结都处于反向偏置时该三极管就工作在截止状态。

任何三极管都是由两个PN结组合而成的,PN结实际就是一个二极管,我们知道二极管具有单向导电性,就是说如果P极电压高于N极电压(这叫正向偏置)电流可以从二极管的P极流向N极,而当N极电压高于P极电压(这叫反向偏置)电流不能从N极流向P极。

PNP型三极管就是基极为N极,集电极和发射极均为P极的三极管;那么只要发射极电压高于基极电压(即发射结为正向偏置),同时基极电压又高于集电极电压(即集电结为反向偏置),则该三极管工作在放大状态。

而当发射极电压高于基极电压(即发射结为正向偏置),同时集电极电压也高于基极电压(即集电结也为正向偏置),则该三极管工作在饱和状态。

而当发射极电压低于基极电压(即发射结为反向偏置),同时集电极电压也小于基极电压(即集电结为反向偏置),则该三极管工作在截止状态。

NPN型三极管就是基极为P极,集电极和发射极均为N极的三极管,按上述原理当:Ve<Vb<Vc(即发射结正偏集电结反偏)时三极管工作在放大状态;Vb>Ve且 Vb>Vc(即发射结和集电结均处于正偏)时三极管工作在饱和状态;Ve>Vb且Vc>Vb(即发射结和集电结均处于反偏)时三极管工作在截止状态; 三极管的三种工作状态(放大、截止、饱和); 放大电路的静态、动态;直流通路、交流通路; 截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。

图说三极管的三个工作状态

图说三极管的三个工作状态

抛开三极管内部空穴和电子的运动,还是那句话只谈应用不谈原理,希望通过下面的“图解”让初学者对三极管有一个形象的认识。

三极管是一个以b(基极)电流Ib 来驱动流过CE 的电流Ic 的器件,它的工作原理很像一个可控制的阀门。

图1左边细管子里蓝色的小水流冲动杠杆使大水管的阀门开大,就可允许较大红色的水流通过这个阀门。

当蓝色水流越大,也就使大管中红色的水流更大。

如果放大倍数是100,那么当蓝色小水流为1千克/小时,那么就允许大管子流过100千克/小时的水。

三极管的原理也跟这个一样,放大倍数为100 时,当Ib(基极电流)为1mA 时,就允许100mA 的电流通过Ice。

有了这个形象的解释之后,我们再来看一个单片机里常用的电路。

图2我们来分析一下这个电路,如果它的放大倍数是100,基极电压我们不计。

基极电流就是10V&pide;10K=1mA,集电极电流就应该是100mA。

根据欧姆定律,这样Rc上的电压就是0.1A×50Ω=5V。

那么剩下的5V 就吃在了三极管的C、E 极上了。

好!现在我们假如让Rb为1K,那么基极电流就是10V&pide;1K=10mA,这样按照放大倍数100算,Ic就是不是就为1000mA 也就是1A了呢?假如真的为1安,那么Rc上的电压为1A×50Ω=50V。

啊?50V!都超过电源电压了,三极管都成发电机了吗?其实不是这样的。

见下图:图3我们还是用水管内流水来比喻电流,当这个控制电流为10mA 时使主水管上的阀开大到能流过1A 的电流,但是不是就能有1A 的电流流过呢?不是的,因为上面还有个电阻,它就相当于是个固定开度的阀门,它串在这个主水管的上面,当下面那个可控制的阀开度到大于上面那个固定电阻的开度时,水流就不会再增大而是等于通过上面那个固定阀开度的水流了,因此,下面的三极管再开大开度也没有用了。

因此我们可以计算出那个固定电阻的最大电流10V/50Ω=0.2A也就是200mA。

如何快速确定三极管的工作状态三极管的三种工作状态分析判断

如何快速确定三极管的工作状态三极管的三种工作状态分析判断

如何快速确定三极管的工作状态三极管的三种工作状态分析判断如何快速确定三极管的工作状态三极管的三种工作状态分析判断有放大、饱和、截止三种工作状态,放大电路中的三极管是否处于放大状态或处于何种工作状态,对于学生是一个难点。

笔者在长期的教学实践中发现,只要深刻理解三极管三种工作状态的特点,分析电路中三极管处于何种工作状态就会容易得多,下面结合例题来进行分析。

一、三种工作状态的特点1.三极管饱和状态下的特点要使三极管处于饱和状态,必须基极电流足够大,即IB≥IBS。

三极管在饱和时,集电极与发射极间的饱和电压(UCES)很小,根据三极管输出电压与输出电流关系式UCE=EC-ICRC,所以IBS=ICS/β=EC-UCES/β≈EC/βRC。

三极管饱和时,基极电流很大,对硅管来说,发射结的饱和压降UBES=0.7V(锗管UBES=-0.3V),而UCES=0.3V,可见,UBE>0,UBC>0,也就是说,发射结和集电结均为正偏。

三极管饱和后,C、E 间的饱和电阻RCE=UCES/ICS,UCES 很小,ICS 最大,故饱和电阻RCES很小。

所以说三极管饱和后G、E 间视为短路,饱和状态的NPN 型三极管等效电路如图1a 所示。

2.三极管截止状态下的特点要使三极管处于截止状态,必须基极电流IB=0,此时集电极IC=ICEO≈0(ICEO 为穿透电流,极小),根据三极管输出电压与输出电流关系式UCE=EC-ICRC,集电极与发射极间的电压UCE≈EC。

三极管截止时,基极电流IB=0,而集电极与发射极间的电压UCE≈ECO 可见,UBE≤0,UBC1V 以上,UBE>0,UBC二、确定电路中三极管的工作状态下面利用三极管三种工作状态的特点和等效电路来分析实际电路中三极管的工作状态。

例题:图2 所示放大电路中,已知EC=12V,β=50,Ri=1kΩ,Rb=220kΩ,Rc=2kΩ,其中Ri 为输入耦合电容在该位置的等效阻抗。

三极管的三种工作状态

三极管的三种工作状态

三极管的三种工作状态余姚市职成教中心学校陈雅萍三极管内部结构与特点PNP型NPN型NNPPNP给两个PN结分别加合适的偏置电压三极管才可能正常工作!NNP发射结是关键(1)发射结反偏,,ebVV<,0=BI。

0=CI三极管截止状态,S b S cb ceI B=0I C=0I B=0I C=0NNP发射结是关键(2)发射结正偏,,c b V V <,0≠B I 。

B C βI I =三极管放大状态,I BI C集电结反偏,,e b V V >bceBβI S bI BI C eb c V V V >>N NP发射结是关键(3)发射结正偏,,cVV>b,≠BI,BCβII≠三极管饱和状态。

集电结正偏,,ebVV>I C受U CE控制。

b ceS br ceI B I CI B I CcbebVVVV>>,V CCR ceb V V >态时,三极管处于放大状当b c V V >只要R C 和V CC 取得合适V bbR bVCCR CcV bbR b 双电源供电单电源供电+V ccR cR bI BI C三极管的三种工作状态1.三极管的工作状态2.三极管的工作电压单电源供电NPN型eb V V <eb c V V V >>cb e b V V V V >>,。

3极管的三种工作状态判断方法

3极管的三种工作状态判断方法

3极管的三种工作状态判断方法以3极管的三种工作状态判断方法为标题,本文将从静态工作状态、放大工作状态和截止工作状态三个方面介绍3极管的工作状态判断方法。

一、静态工作状态判断方法在3极管的静态工作状态中,基极-发射结和基极-集电结都处于正向偏置状态。

为了判断3极管是否处于静态工作状态,我们可以通过以下方法进行判断。

1. 电压测量法:通过使用万用表或示波器测量3极管的各个电极之间的电压,当基极-发射结和基极-集电结的电压都为正值时,可以判断3极管处于静态工作状态。

2. 电流测量法:通过使用万用表或示波器测量3极管的各个电极之间的电流,当基极电流、发射极电流和集电极电流都为正值时,可以判断3极管处于静态工作状态。

二、放大工作状态判断方法在3极管的放大工作状态中,基极-发射结处于正向偏置状态,而基极-集电结处于反向偏置状态。

为了判断3极管是否处于放大工作状态,我们可以通过以下方法进行判断。

1. 静态工作点判断法:通过使用示波器观察3极管的输入信号和输出信号波形,当输入信号经过放大后,输出信号的幅度增大,可以判断3极管处于放大工作状态。

2. 直流电流增大判断法:通过改变输入信号的幅度,观察3极管集电极电流的变化情况,当输入信号幅度增大时,集电极电流也相应增大,可以判断3极管处于放大工作状态。

三、截止工作状态判断方法在3极管的截止工作状态中,基极-发射结和基极-集电结都处于反向偏置状态。

为了判断3极管是否处于截止工作状态,我们可以通过以下方法进行判断。

1. 电压测量法:通过使用万用表或示波器测量3极管的各个电极之间的电压,当基极-发射结和基极-集电结的电压都为负值时,可以判断3极管处于截止工作状态。

2. 电流测量法:通过使用万用表或示波器测量3极管的各个电极之间的电流,当基极电流、发射极电流和集电极电流都为零或非常小的值时,可以判断3极管处于截止工作状态。

通过以上方法我们可以准确判断3极管的工作状态。

静态工作状态的判断主要依据电压和电流的测量,放大工作状态的判断主要依据输入信号和输出信号的变化,而截止工作状态的判断主要依据电压和电流的测量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体管的三种工作状态
《一》晶体管正常放大
晶体管工作在放区,输出的波形未出现失真现象. 特征:发射结正向偏置,即Ube》Uon(开启电压),集电结反向偏置,Uce>Ube本实验测得Ic=2mA,Uce=4.7, ,输出的波形如下图所示
《二》晶体管截止失真
晶体管的截止失真是指集电极-发射极之间流过的电流太小,流进晶体管的电流不能正常放大,输出的波形会出现正半周被缩顶的失真现象。

特征:发射结反向向偏置,即Ube《Uon(开启电压),集电结反向偏置,Uce>Ube本实验测得Uce=8.6 , I=0.mA, 失真波形如下图所示
《三》晶体管饱和失真
晶体管集电极-发射极之间的电流过大,晶体管达到零界状态,输出的波形会出现负半周被削平的失真波形。

特征:发射结正向偏置,即Ube》Uon(开启电压),集电结正向偏置,Uce 《Ube测得Uce=0.3V, Ic=3.4mA,波形如下图所示。

相关文档
最新文档