2020年高中数学 圆柱 圆锥 圆台和球教案 北师大版必修2

合集下载

《圆柱、圆锥、圆台、球的表面积和体积》教案、导学案、课后作业

《圆柱、圆锥、圆台、球的表面积和体积》教案、导学案、课后作业

《8.3.2圆柱、圆锥、圆台、球的表面积和体积》教案【教材分析】本节是在学生已从圆柱、圆锥、圆台、球的结构特征和直观图两个方面认识了旋转体的基础上,进一步从度量的角度认识圆柱、圆锥、圆台、球,主要包括表面积和体积.【教学目标与核心素养】课程目标1.通过对圆柱、圆锥、圆台、球的研究,掌握圆柱、圆锥、圆台、球的表面积和体积计算公式.2.能运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.数学学科素养1.数学抽象:圆柱、圆锥、圆台、球的表面积与体积公式;2.数学运算:求旋转体及组合体的表面积或体积;3.数学建模:数形结合,运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.【教学重点和难点】重点:掌握圆柱、圆锥、圆台、球的表面积和体积计算公式和应用;难点:圆台的体积公式的理解.【教学过程】一、情景导入前面已经学习了三种多面体的表面积与体积公式,那么如何求圆柱、圆锥、圆台、球的表面积与体积公式?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本116-119页,思考并完成以下问题1.圆柱、圆锥、圆台、的侧面积、底面积、表面积公式各是什么?2.圆柱、圆锥、圆台的体积公式各是什么?3.球的表面积与体积公式各式什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究(一)圆柱、圆锥、圆台的表面积(二)棱柱、棱锥、棱台的表面积1.棱柱:柱体的底面面积为S,高为h,则V=Sh.2.棱锥:锥体的底面面积为S,高为h,则V=13 Sh.3.棱台:台体的上、下底面面积分别为S′、S,高为h,则V=13(S′+S′S+S)h.(三) 球的体积公式与表面积公式1.球的体积公式V=43πR3 (其中R为球的半径).2.球的表面积公式S=4πR2.四、典例分析、举一反三题型一圆柱、圆锥、圆台的表面积例1 若一个圆锥的轴截面是边长为4 cm的等边三角形,则这个圆锥的侧面积为________cm2,表面积为________cm2.【答案】8π12π.【解析】如图所示,∵轴截面是边长为4 cm的等边三角形,∴OB=2 cm,PB=4 cm,∴圆锥的侧面积S侧=π×2×4=8π (cm2),表面积S表=8π+π×22=12π (cm2).解题技巧(求旋转体表面积注意事项)旋转体中,求面积应注意侧面展开图,上下面圆的周长是展开图的弧长.圆台通常还要还原为圆锥.跟踪训练一1.圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为( )A.81π B.100πC.168π D.169π【答案】C【解析】选C 先画轴截面,再利用上、下底面半径和高的比求解.圆台的轴截面如图所示,设上底面半径为r,下底面半径为R,则它的母线长为l==5r=10,所以r=2,R=8.故S侧=π(R+r)l=π(8+2)×10=100π,S表=S侧+πr2+πR2=100π+4π+64π=168π.题型二圆柱、圆锥、圆台的体积例2 如图,某种浮标由两个半球和一个圆柱黏合而成,半球的直径是0.3m,圆柱高0.6m 如果在浮标表面涂一层防水漆,每平方米需要0.5kg 涂料,那么给1000个这样的浮标涂防水漆需要多少涂料?(π取3.14)【答案】423.9kg【解析】一个浮标的表面积是,所以给1000个这样的浮标涂防水漆约需涂料. 解题技巧(求几何体积的常用方法) (1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的几何体即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等.(4)分割法:将几何体分割成易求解的几部分,分别求体积. 跟踪训练二1.如图,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,求该几何体的体积.【答案】10π.【解析】用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.()2220.150.640.150.8478m ππ⨯⨯+⨯=0.84780.51000423.9(kg)⨯⨯=2. 梯形ABCD中,AD∥BC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD内过点C作l⊥BC,以l为轴将梯形ABCD旋转一周,求旋转体的表面积和体积.【答案】见解析【解析】由题意知以l为轴将梯形ABCD旋转一周后形成的几何体为圆柱中挖去一个倒置的且与圆柱等高的圆锥,如图所示.在梯形ABCD中,∠ABC=90°,AD∥BC,AD=a,BC=2a,∠DCB=60°,∴CD=BC-ADcos60°=2a,AB=CD sin60°=3a,∴DD′=AA′-2AD=2BC-2AD=2a,∴DO=12DD′=a.由上述计算知,圆柱的母线长为3a,底面半径为2a;圆锥的母线长为2a,底面半径为a.∴圆柱的侧面积S1=2π·2a·3a=43πa2,圆锥的侧面积S2=π·a·2a =2πa2,圆柱的底面积S3=π(2a)2=4πa2,圆锥的底面积S4=πa2,∴组合体上底面面积S5=S3-S4=3πa2,∴旋转体的表面积S=S1+S2+S3+S5=(43+9)πa2.又由题意知形成的几何体的体积为圆柱的体积减去圆锥的体积,且V柱=π·(2a)2·3a=43πa3,V锥=13·π·a2·3a=33πa3.∴旋转体的体积V=V柱-V锥=43πa3-33πa3=1133πa3.题型三 球的表面积与体积例3 如图,圆柱的底面直径和高都等于球的直径,求球与圆柱的体积之比.【答案】【解析】 设球的半径为R ,则圆柱的底面半径为R ,高为2R .球的体积,圆柱的体积,.例4 平面α截球O 的球面所得圆的半径为1.球心O 到平面α的距离为2,则此球的体积为( )A.6π B.43π C .46π D.63π 【答案】B【解析】如图,设截面圆的圆心为O ′,M 为截面圆上任一点,则OO ′=2,O ′M =1.∴OM =(2)2+1= 3. 即球的半径为 3.∴V =43π(3)3=43π.解题技巧(与球有关问题的注意事项)1.正方体的内切球233143V R π=23222V R R R ππ=⋅=123342::233V V R R ππ∴==球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r1=a2,过在一个平面上的四个切点作截面如图(1).2.球与正方体的各条棱相切球与正方体的各条棱相切于各棱的中点,过球心作正方体的对角面有r2=√2a2,如图(2).3.长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为a,b,c,则过球心作长方体的对角面有球的半径为r3=√a2+b2+c22,如图(3).4.正方体的外接球正方体棱长a与外接球半径R的关系为2R=3a. 5.正四面体的外接球正四面体的棱长a与外接球半径R的关系为:2R=62a.6、有关球的截面问题常画出过球心的截面圆,将问题转化为平面中圆的有关问题解决.跟踪训练三1、将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为( )A.4π3B.2π3C.3π2D.π6【解析】由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为2,故半径为1,其体积是V 球=43×π×13=4π3. 2.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2C.113πa 2 D .5πa 2 【答案】B.【解析】选B 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a .如图,P 为三棱柱上底面的中心,O 为球心,易知AP =23×32a =33a ,OP=12a ,所以球的半径R =OA 满足R 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫12a 2=712a 2,故S 球=4πR 2=73πa 2. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本119页练习,119页习题8.3的剩余题.本节课的重点是掌握圆柱、圆锥、圆台、球的表面积和体积计算公式和应用,通过本节课的例题及练习,学生基本掌握.须注意的是:①求面积时看清求的是侧面积,还是底面积,还是表面积;②对本节课的难点的理解类比棱台与棱锥、棱锥的联系;③解决实际问题时先抽象出几何图形,再利用相关公式解决.《8.3.2圆柱、圆锥、圆台、球的表面积和体积》导学案【学习目标】知识目标1.通过对圆柱、圆锥、圆台、球的研究,掌握圆柱、圆锥、圆台、球的表面积和体积计算公式.2.能运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.核心素养1.数学抽象:圆柱、圆锥、圆台、球的表面积与体积公式;2.数学运算:求旋转体及组合体的表面积或体积;3.数学建模:数形结合,运用圆柱、圆锥、圆台、球的表面积和体积公式进行计算和解决有关实际问题.【学习重点】:掌握圆柱、圆锥、圆台、球的表面积和体积计算公式和应用;【学习难点】:圆台的体积公式的理解.【学习过程】一、预习导入阅读课本116-119页,填写。

圆柱圆锥圆台和球学案设计

圆柱圆锥圆台和球学案设计

§1.1.3圆柱、圆锥、圆台和球预习案.预习目标(1)理解圆柱、圆锥、圆台和球及其有关概念的形成过程,理解球面距离的概念(2)知道圆柱、圆锥、圆台和球的截面图形(3)通过对圆柱、圆锥、圆台和球的研究培养空间想象力及知识的自我生成和发展能力。

2、素材准备:卡纸(或白纸)、固体胶1、我爱观察生活中有大量的几何体是由柱、锥、台、球等基本几何体组合而成的,这些几何体叫做组合体,观察以下组合体有哪些几何体组成,你发现了哪些不同于棱柱、棱锥、棱台的几何体?想一想你用的水杯、教室的水桶、你爱吃的冰激凌、你喜欢的足球,它们各象什么样的几何体?2、我爱动手:根据你以前所学习的圆柱、圆锥、圆台和球的有关知识,圆柱、圆锥的侧面展开图分别是__________________,自己动手围成圆柱、圆锥,并指明它们的底面,侧面,高,母线。

想一想怎样用圆锥得到圆台。

3、我爱动脑:几何体圆柱、圆锥、圆台和球还可以通过什么方式得到?自制如图所示图形并按要求旋转,观察得到的几何体,回答以下内容:1.圆柱圆锥圆台和球分别是什么平面图形绕谁旋转得到的?总结他们的生成性定义。

2.在球面上,两点之间的最短距离,就是经过这两点的大圆在这两点间的一段_______的长度,这个弧长叫做两点的__________.3.在球的经线与纬线中有哪些是球的大圆?哪些是小圆?4.试画出这几种几何体并标出母线,高,底面,侧面,球体中标出球心与半径。

:请同学们仔细观察下列几何体,结合它们的生成过程,说说他们的共同特点.1.下列说法中正确的是()A. 圆台是直角梯形绕其一边旋转而成的B. 圆锥是直角三角形绕其一边旋转而成的C. 圆柱不是旋转体D. 圆台可以看作是平行底面的平面截一个圆锥而得到的2.以下几何体分别是由那些简单几何体构成的?3.给出下列命题:(1)圆柱的底面是圆;(2)经过圆柱任何两条母线的截面是一个矩形;(3)连接圆柱上下底面圆周上两点的线段是圆柱的母线;(4)圆柱的任意两条母线互相平行。

8.3.2圆柱、圆锥、圆台、球的表面积和体积+教学案

8.3.2圆柱、圆锥、圆台、球的表面积和体积+教学案

8.3简单几何体的表面积与体积8.3.2 圆柱、圆锥、圆台、球的表面积与体积教学目标1. 了解圆柱、圆锥、圆台、球的表面积的求法2. 了解圆柱、圆锥、圆台、球的表面积计算公式,解决有关的实际问题 教学重点:圆柱、圆锥、圆台、球的表面积公式和体积公式 教学难点:球的体积公式的推导 教学过程:一、 导入新课,板书课题上节课我们学习了棱柱、棱锥、棱台的表面积和体积的求法,那么这节课我们学习圆柱、圆锥、圆台、球的表面积和体积的求法。

【圆柱、圆锥、圆台、球的表面积与体积】 二、 出示目标,明确任务1. 了解圆柱、圆锥、圆台的表面积的求法2. 了解圆柱、圆锥、圆台的体积的求法3. 了解球的表面积和体积的求法 三、 学生自学,独立思考(打开课本阅读116页-119页内容,限时5分钟) 1.找出你阅读内容中的知识点 2.找出你阅读内容中的重点3.找出你阅读内容中的困惑点、疑难问题 四、自学指导,紧扣教材自学指导一(阅读课本116页 至117页 归纳,限时5 分钟) 1.完成下列表格圆柱底面积: 侧面积:表面积: 圆锥底面积: 侧面积:表面积:圆台底面积: 侧面积:表面积:自学指导二(阅读课本117页 至119页 例4,限时5分钟) 1.球的表面积公式S =_______(R 为球的半径). 2.球的体积公式V =__________. 3. 阅读例3,完成以下几个问题(1)浮标可看成由________和_________组合而成; (2)1个浮标的表面积为:___________. 1000个浮标的表面积为:_________.则1000个浮标涂防水漆需要多少涂料:_______. 4. 阅读例4,完成以下几个问题已知,圆柱的底面直径和高都等于球的直径2R , (1) 球的体积为:________; (2) 圆柱的体积为:________;(3) 球与圆柱的体积之比为:________;五、 自学展示,精讲点拨1.学生口头回答自学指导问题,教师点拨并板书(答案见PPT )2.书面检测:课本119页练习1题 精讲点拨 自学指导1 1. 略2. 观察所给出的体积公式,得出棱柱、棱锥、棱台,它们之间的关系。

高中数学必修2 1.1.3圆柱、圆锥、圆台和球

高中数学必修2  1.1.3圆柱、圆锥、圆台和球

1.1.3圆柱、圆锥、圆台和球学习目标1. 能概述圆柱、圆锥、圆台台体、球的结构特征;2.能在几何体中进行相关的简单运算;3. 能描述一些简单组合体的结构.学法指导自学教材P11~ P12,弄清楚圆柱、圆锥、圆台的结构特征探究1:圆柱的结构特征问题:观察下面的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗?1;以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体,叫做旋转轴叫做圆柱的;垂直于轴的边旋转而成的圆面叫做圆柱的;平行于轴的边旋转而成的曲面叫做圆柱的;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的,如图所示:圆柱用表示它的轴的字母表示,图中的圆柱可表示为OO .探究2:圆锥的结构特征问题:下图的实物是一个圆锥,与圆柱一样也是平面图形旋转而成的. 仿照圆柱的有关定义,你能定义什么是圆锥以及圆锥的轴、底面、侧面、母线吗?试在旁边的图中标出来.新知2:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫圆锥.圆锥也用表示它的轴的字母表示.棱锥与圆锥统称为锥体.探究3:圆台的结构特征问题:下图中的物体叫做圆台,也是旋转体.它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台,圆台还可以怎样得到呢?新知3;直角梯形以垂直于底边的腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫圆台(frustum of a cone).用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分也是圆台.圆台和圆柱、圆锥一样,也有轴、底面、侧面、母线,请你在上图中标出它们,并把圆台用字母表示出来. 棱台与圆台统称为台体.反思:结合结构特征,从变化的角度思考,圆台、圆柱、圆锥三者之间有什么关系?探究4:球的结构特征问题:球也是旋转体,怎么得到的?新知4:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体(solid sphere),简称球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径;球通常用表示球心的字母O表示,如球O.探究5:简单组合体的结构特征问题:矿泉水塑料瓶由哪些几何体构成?灯管呢?新知5:由具有柱、锥、台、球等简单几何体组合而成的几何体叫简单组合体.现实生活中的物体大多是简单组合体.简单组合体的构成有两种方式:由简单几何体拼接而成;由简单几何体截去或挖去一部分而成.※典型例题例将下列几何体按结构特征分类填空:⑴集装箱⑵运油车的油罐⑶排球⑷羽毛球⑸魔方⑹金字塔⑺三棱镜⑻滤纸卷成的漏斗⑼量筒⑽量杯⑾地球⑿一桶方便面⒀一个四棱锥形的建筑物被飓风挂走了一个顶,剩下的上底面与地面平行;①棱柱结构特征的有________________________;②棱锥结构特征的有________________________;③圆柱结构特征的有________________________;④圆锥结构特征的有________________________;⑤棱台结构特征的有________________________;⑥圆台结构特征的有________________________;⑦球的结构特征的有________________________;⑧简单组合体______________________________.※动手试试'',剩下的几何体是什么?截去的几何体是什练.如图,长方体被截去一部分,其中EH‖A D么?三、总结提升※学习小结1. 圆柱、圆锥、圆台、球的几何特征及有关概念;2. 简单组合体的结构特征.※知识拓展圆柱、圆锥的轴截面:过圆柱或圆锥轴的平面与圆柱或圆锥相交得到的平面形状,通常圆柱的轴截面是矩形,圆锥的轴截面是三角形.学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. Rt ABC∆三边长分别为3、4、5,绕着其中一边旋转得到圆锥,对所有可能描述不对的是().A.是底面半径3的圆锥B.是底面半径为4的圆锥C.是底面半径5的圆锥D.是母线长为5的圆锥2. 下列命题中正确的是().A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个平行截面间的几何体是旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线3. 一个球内有一内接长方体,其长、宽、高分别为5、4、3,则球的直径为().A. B.4. 已知,ABCD为等腰梯形,两底边为AB,CD.且AB>CD,绕AB所在的直线旋转一周所得的几何体中是由、、的几何体构成的组合体.5. 圆锥母线长为R__________.课后作业1.如图,是由等腰梯形、矩形、半圆、倒形三角对接形成的轴对称平面图形,若将180后形成一个组合体,下面它绕轴旋转0说法不正确的是___________A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴l对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点,则球心到截面的距离为多少?2. 用一个平面截半径为25cm的球,截面面积是249cm。

高中数学北师大版2019必修第二册教案简单旋转体——球、圆柱、圆锥和圆台

高中数学北师大版2019必修第二册教案简单旋转体——球、圆柱、圆锥和圆台

简单旋转体——球、圆柱、圆锥和圆台【教学目标】1.了解圆柱、圆锥、圆台、球的定义。

2.掌握圆柱、圆锥、圆台、球的结构特征。

3.能够根据圆柱、圆锥、圆台、球的结构特征识别和区分几何体。

【教学重难点】1.掌握圆柱、圆锥、圆台、球的结构特征。

2.会作旋转体的轴截面,并利用轴截面解决问题。

【教学过程】一、基础铺垫所围成的旋转体形成的面所围成的旋转体3.圆台的结构特征用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做球体,简称球二、新知探究1.旋转体的结构特征【例1】判断下列各命题是否正确(1)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;(2)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(3)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(4)到定点的距离等于定长的点的集合是球。

[解](1)错。

由圆柱母线的定义知,圆柱的母线应平行于轴。

(2)错。

直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示。

(3)正确。

(4)错。

应为球面。

【教师小结】(1)圆柱、圆锥、圆台和球都是一个平面图形绕其特定边(弦)旋转而成的几何体,必须准确认识各旋转体对旋转轴的具体要求。

(2)只有理解了各旋转体的生成过程,才能明确由此产生的母线、轴、底面等概念,进而判断与这些概念有关的命题的正误。

2.旋转体中的计算[探究问题](1)圆柱、圆锥、圆台平行于底面的截面是什么样的图形?[提示]圆面。

(2)圆柱、圆锥、圆台过轴的截面是什么样的图形?[提示]分别为矩形、等腰三角形、等腰梯形。

(3)经过圆台的任意两条母线作截面,截面是什么图形?[提示]因为圆台可以看成是圆锥被平行于底面的平面所截得到的几何体,所以任意两条母线长度均相等,且延长后相交,故经过这两条母线的截面是以这两条母线为腰的等腰梯形。

(4)球的截面是什么?[提示]球的截面均是圆面,球面被经过球心的平面截得的圆叫做大圆,被不经过球心的平面截得的圆叫做球的小圆。

1.1.3圆柱、圆锥、圆台和球2

1.1.3圆柱、圆锥、圆台和球2

课题 1.1.3圆柱、圆锥、圆台和球(2)课型主备人李冬旭上课教师李冬旭上课时间学习目标圆柱、圆锥、圆台和球定义圆柱、圆锥、圆台和球的性质母线顶点教学重点了解圆柱、圆锥、圆台和球教学难点圆柱、圆锥、圆台和球中的一些计算教师准备教学过程时间分配集备修正3.圆台及相关概念1.定义:以直角梯形的一条直角边所在的直线为旋转轴,将直角梯形旋转一周而形成的曲面所围成的几何体叫做圆台。

2.相关概念:(1)圆台的轴:旋转轴叫做圆台的轴;(2)圆台的高:在轴上的这条边(或它的长度)叫做圆台的高;(3)圆台的底面:垂直于轴的边旋转而成的圆面叫做圆台的底面;(4)圆台的侧面:不垂直于轴的边旋转而成的曲面叫做圆台的侧面;(5)圆台的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆台的母线。

3.圆台的表示方法:用表示它的轴的字母表示,如圆台OO1。

圆台是如何得到的?它有什么性质?1.圆台是由直角梯形以垂直于底边的腰所在的直线为旋转轴旋转而成的曲面所围成的几何体。

2.圆台可以看作是由等腰梯形绕其底边的中线旋转得到的,另外圆台也可以看作是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分。

3.圆台具有以下性质:(1)圆台的底面是两个半径不等的圆,两圆所在的平面互相平行又都和轴垂直;(2)平行于底面的截面是圆;(3)通过轴的各个截面是轴截面,各轴截面是全等的等腰梯形,如梯形AA1B1B。

(4)任意两条母线(它们延长后会相交)确定的平面,截圆台所得的截面是等腰梯形,如梯形AA1C1C。

(5)母线都相等,各母线延长后都相交于一点。

研习点4.球及相关概念:1.定义:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球。

另外将圆绕直径旋转180°度得到的几何体也是球。

2.相关概念:(1)球面:球面可以看作一个半圆绕着它的直径所在的直线旋转一周形成的曲面,也可以看作空间中到一个定点的距离等于定长的点的集合;(2)球心:形成球的半圆的圆心叫做球心;(3)半径:连接球面上一点和球心的线段叫球的半径;1’5x5’(4)直径:连接球面上的两点且通过球心的线段叫球的直径;3.球的表示方法:用表示球心的字母表示,如球O.4.球的截面性质:(1)球的截面是圆面,球面被经过球心的平面截得的圆叫做球的大圆,被不经过球心的平面截得的圆叫做球的小圆;(2)球心和截面圆心的连线垂直于截面;(3)22r R d=-(其中r为截面圆半径,R为球的半径,d为球心O 到截面圆的距离,即O到截面圆心O1的距离;5.球面距离:在球面上,两点之间的最短距离就是经过两点的大圆在这两点间的一段劣弧的长度。

高中数学必修2教案全套(完整资料).doc

高中数学必修2教案全套(完整资料).doc

【最新整理,下载后即可编辑】第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。

教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。

根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

高中数学必修二 8 3 2 圆柱、圆锥、圆台、球的表面积和体积 导学案

高中数学必修二  8 3 2 圆柱、圆锥、圆台、球的表面积和体积 导学案

8.3.2 圆柱、圆锥、圆台、球的表面积和体积1.通过对圆柱、圆锥、圆台的研究,掌握圆柱、圆锥、圆台、球的表面积与体积的求法;2.会求与圆柱、圆锥、圆台、球有关的组合体的表面积与体积;3.会用球的体积与表面积公式解决实际问题;4.会解决球的切、接问题.1.教学重点:圆柱、圆锥、圆台、球的表面积与体积;2.教学难点:与圆柱、圆锥、圆台、球有关的组合体的表面积与体积会解决球的切、接问题。

1.圆柱、圆锥、圆台的表面积2.圆柱、圆锥、圆台的体积公式V圆柱=(r是底面半径,h是高),V圆锥=(r是底面半径,h是高),V圆台=(r′、r分别是上、下底面半径,h是高).3.球的表面积设球的半径为R,则球的表面积S=,即球的表面积等于它的大圆面积的倍.4.球的体积设球的半径为R ,则球的体积V = 3.一、探索新知思考1:圆柱的展开图是什么?怎么求它的表面积?思考2:圆锥的展开图是什么?怎么求它的表面积?思考3:参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么 ,它的表面积是什么?思考4:圆柱、圆锥、圆台三者的表面积公式之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?思考5:根据圆台的特征,如何求圆台的体积?思考6:圆柱、圆锥、圆台的体积公式之间有什么关系?结合棱柱、棱锥、棱台的体积公式,你能将它们统一成柱体、锥体、台体的体积公式吗?柱体、椎体、台体的体积公式之间又有什么关系?1.球的表面积公式:24S R π=球(R 为球的半径)例1.如图,某种浮标由两个半球和一个圆柱黏合而成,半球的直径是0.3m ,圆柱高0.6m ,如果在浮标表面涂一层防水漆,每平方米需要0.5kg 涂料,那么给1000个这样的浮标涂防水漆需要多少涂料?思考7:在小学,我们学习了圆的面积公式,你记得是如何求得的吗?类比这种方法,你能由球的表面积公式推导出球的体积吗?例2.如图,圆柱的底面直径和高都等于球的直径,求球与圆柱的体积之比。

高中数学必修二 8 1 基本几何图形(第2课时)圆柱、圆锥、圆台、球 教学设计

高中数学必修二  8 1 基本几何图形(第2课时)圆柱、圆锥、圆台、球 教学设计

8.1 基本几何图形第2课时 圆柱、圆锥、圆台、球本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A 版)第八章《立体几何初步》,本节课是第2课时,本节课主要学习圆柱、圆锥、圆台、球的定义及其结构特征、简单组合体的结构特征。

教材首先让学生观察现实世界中实物的图片,引导学生将观察到的实物进行归纳、分类抽象、概括,得出圆柱、圆锥、圆台、球的结构特征,在此基础上给出由它们组合而成的简单几何体的结构特征.空间几何体是新课程立体几何部分的起始课程,它在土木建筑、机械设计、航海测绘等大量实际问题中都有广泛的应用,新课程从对空间几何体的整体观察入手,再研究组成空间几何体的点、直线和平面.这种安排降低了立体几何学习入门难的门槛,强调几何直观,淡化几何论证,可以激发学生学习立体几何的兴趣。

1.教学重点:圆柱、圆锥、圆台、球的结构特征,简单组合体的结构特征;2.教学难点:简单组合体的结构特征,简单组合体的两种基本构成形式.多媒体一、复习回顾,温故知新 学生回答下列问题 1.棱柱定义及其特征; 2.棱锥定义及其特征; 3.棱台定义及其特征; 4.旋转体定义。

二、探索新知思考1:一个矩形绕着一条边所在直线旋转一周,可得什么图形? 1.圆柱定义: 以矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体叫做圆柱. 在圆柱的形成中,旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,平行于轴的边都叫做圆柱侧面的母线.圆柱的表示:用表示它的轴的字母表示。

如:O O 圆柱。

思考2:一个直角三角形绕着一条直角边所在直线旋转一周,可得什么图形?2.圆锥定义: 以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的几何体叫做圆锥.思考3:请你仿照圆柱中轴、底面、侧面、母线的定义,给出圆锥的轴、底面、侧面、母线的定义,并在图中标出。

高中数学必修2第一章第三节《空间几何体的表面积与体积》全套教案

高中数学必修2第一章第三节《空间几何体的表面积与体积》全套教案

空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积【教学目标】(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。

(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。

(3)培养学生空间想象能力和思维能力。

【教学重点难点】【教学重点】:柱体、锥体、台体的表面积和体积计算【教学难点】:台体体积公式的推导【学前准备】:多媒体,预习例题(3)初中时,我们已经学习了计算特殊的柱体——正方体、长方体以及圆柱的体积公式:如图,把正方体截去四个角,得到一个体比2a和积此圆柱的底面在圆锥的底面上,圆柱的高等于圆锥底面半径,且圆柱的全面积:圆锥的底面积3:2=.)求圆锥母线与底面多成的角的正切值;(2)圆锥的侧面积参考答案:1. B 2. C 3. 1 , 3 4. A 5. B 6. B 7. 1:3 3a π或32aπ9.已知圆锥有一个内接圆柱此圆柱的底面在圆锥的底面上,圆柱. 三棱锥的外接球问题【教学目标】⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识。

⑵能运用球的面积和体积公式灵活解决实际问题。

⑶培养学生的空间思维能力和空间想象能力。

【教学重难点】【教学重点】:引导学生了解推导球的体积和面积公式所运用的基本思想方法。

【教学难点】:推导体积和面积公式中空间想象能力的形成。

【学前准备】:多媒体,预习例题4:如图是一个空间几何体的三视图,则该几何体的外接球的表面积为.类型四:一条测棱垂直底面,底面为非直角三角形的四面体的外接球问题5已知点A,B,C,D,四点在同一个球面上,DA⊥平面ABC,DA=AB=AC=3,∠ABC=60,则球半径是类型五:正三棱锥的外接球问题6:已知正三棱锥底面边长为1,侧棱长为2,求外接球半径。

高中数学 第一章 立体几何初步 1.1.2 圆柱、圆锥和圆台数学教案

高中数学 第一章 立体几何初步 1.1.2 圆柱、圆锥和圆台数学教案

1.1.2 圆柱、圆锥、圆台和球【教学目标】1.了解旋转的定义和特点;2.借助于旋转掌握圆柱、圆锥、圆台和球的概念,明确其各自相应的基本图形和性质;3.理解旋转体的概念。

【教学重点】理解圆柱、圆锥、圆台和球的概念的生成过程。

【教学难点】组合体的分割。

【过程方法】利用实物模型、计算机软件观察空间图形、认识圆柱、圆锥、圆台、球、旋转体及其简单组合体的结构特征,并能找出它们之间的联系,确立正确的认识问题的世界观。

【教学过程】一、导入新课:下面的几何体与多面体不同,仔细观察这些几何体,他们有什么共同特点或生成规律?1.旋转旋转是指将一个图形上所有点绕着一个固定点或一条固定直线转过相同的角度。

2.圆柱、圆锥、圆台的定义将矩形、直角三角形、直角梯形分别绕着它的一边、一条直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥和圆台,这条直线叫做轴(旋转轴),垂直于轴的边旋转而成的圆面叫做底面,不垂直于轴的边旋转而成的曲面叫做侧面,无论旋转到什么位置,这条边都叫做母线。

3.圆柱、圆锥、圆台的结构特征(1)圆柱①圆柱的轴通过上、下底面的圆心,并且垂直于底面;②圆柱的母线长都相等,并且等于圆柱的高;③平行于圆柱底面的平面截圆柱所得的截面是与底面相等的圆;④经过圆柱轴的平面截圆柱所得的截面是全等的矩形。

这样的截面称为圆柱轴截面。

(2)圆锥①圆锥的轴过顶点和下底面的圆心,并且垂直于底面;②圆锥的母线长都相等,并且相交于一点;③平行于圆锥底面的平面截圆锥所得的截面是圆面;④经过圆锥的轴的平面截圆锥所得的截面是全等的等腰三角形。

这样的截面称为圆锥轴截面。

(3)圆台①圆台的轴通过上、下底面的圆心,并且垂直于底面;②圆台的所有母线长都相等;③平行于圆台底面的平面截圆台所得的截面是圆面;④经过圆台轴的平面截圆台所得的截面是全等的等腰梯形。

这样的截面称为圆台轴截面。

(4)圆柱、圆锥、圆台的画法4.球的定义半圆绕着它的直径所在的直线旋转一周而形成的几何体叫做球,亦称球体;半圆弧旋转而形成的曲面叫做球面。

2019-2020学年北师大版必修二 圆柱圆锥圆台球的结构特征简单组合体的结构特征 课件(29张)

2019-2020学年北师大版必修二       圆柱圆锥圆台球的结构特征简单组合体的结构特征  课件(29张)

探究一
探究二
探究三
探究四
������变式训练 3������本例中若圆台的上底半径为 1 cm,其他条件不变,试
求圆台的高.
解:∵圆台的上底半径为 1 cm, ∴下底半径为 4 cm.
如图,在 Rt△A'HA 中,
A'H= ������������'2-������������2
= 92-32
=6√2(cm). 即圆台的高为 6√2 cm.
圆台与棱台统称为台体 (1)圆台有无数条母线,它们相等,且延长后相交于一点; (2)平行于底面的截面是圆; (3)过轴的截面是全等的等腰梯形; (4)过任意两条母线的截面是等腰梯形
1
2
3
4
5
名师点拨
圆柱、圆锥、圆台之间的关系 圆柱、圆锥、圆台的形状不同,它们之间既有区别又有联系,并且在一 定条件下可以相互转化.当圆台的下底面保持不变,而上底面越来越大时,圆 台就越来越接近于圆柱,当上底面增大到与下底面相同时,圆台转化为圆柱; 当圆台的上底面越来越小时,圆台就越来越接近于圆锥,当上底面收缩为一 个点时,圆台就转化为圆锥了.
故蚂蚁爬行的最短距离为 2√1 + π2.
探究一
探究二
探究三
探究四
������变式训练 ������ 4 若本例中蚂蚁围绕圆柱转两圈,如图,则它爬行的最
短距离是多少?
解:可把圆柱展开两次,如图,则 AB'即为所求.
∵AB=2,BB'=2×2π×1=4π,
∴AB'= ������������2 + ������������'2 = √4 + 16π2=2√1 + 4π2.

高中数学 1.1 空间几何体 1.1.3 圆柱、圆锥、圆台和球教案 新人教B版必修2

高中数学 1.1 空间几何体 1.1.3 圆柱、圆锥、圆台和球教案 新人教B版必修2

1.1.3 圆柱、圆锥、圆台和球示范教案整体设计教学分析本节教材展示大量几何体的实物、模型、图片等,让学生感受圆柱、圆锥、圆台和球的结构特征,从整体上认识空间几何体,再深入细节认识,更符合学生的认知规律.值得注意的是:由于没有点、直线、平面的有关知识,所以本节的学习不能建立在严格的逻辑推理的基础上,这与以往的教材有较大的区别,教师在教学中要充分注意到这一点.本节教学尽量使用信息技术等手段,向学生展示更多具有典型几何结构特征的空间物体,增强学生的感受.三维目标1.掌握圆柱、圆锥、圆台和球的结构特征,学会观察、分析图形,提高空间想象能力和几何直观能力.2.能够描述现实生活中简单物体的结构,学会建立几何模型研究空间图形,培养数学建模的思想.重点难点教学重点:了解圆柱、圆锥、圆台和球的结构特征.教学难点:归纳圆柱、圆锥、圆台和球的结构特征.课时安排1课时教学过程导入新课设计 1.在小学和初中,我们已经接触到了圆柱、圆锥、圆台和球,那么这些几何体有什么特征性质呢?教师点出课题.设计 2.从古至今,各个国家的建筑物都有各自的特色,古有埃及的金字塔,现有各城市大厦的旋转酒吧、旋转餐厅,上海东方明珠塔上的两个球形建筑等.它们都是独具匠心、整体协调的建筑物,是建筑师们集体智慧的结晶.今天我们如何从数学的角度来看待这些建筑物呢?教师点出课题.推进新课新知探究提出问题(1)观察下图所示的几何体,分别是圆柱、圆锥、圆台,那么圆柱、圆锥、圆台有什么结构特征呢?(2)阅读教材,给出几何体的轴、高、底面、侧面、母线的定义.讨论结果:(1)通过观察可以看出,圆柱、圆锥和圆台可以分别看作以矩形的一边、直角三角形的一直角边、直角梯形中垂直于底边的腰所在的直线为旋转轴,将矩形、直角三角形、直角梯形分别旋转一周而形成的曲面所围成的几何体(如下图).(2)旋转轴叫做所围成的几何体的轴;在轴上的这条边(或它的长度)叫做这个几何体的高;垂直于轴的边旋转而成的圆面叫做这个几何体的底面;不垂直于轴的边旋转而成的曲面叫做这个几何体的侧面,无论旋转到什么位置,这条边都叫做侧面的母线.如上图中,直线O′O,SO是轴,线段O′O,SO是高,A′A,SA是母线.提出问题球是大家非常熟悉的几何体,那么球集合具有什么特征性质呢?阅读教材,给出球心、球的半径和直径的定义?球的截面是什么形状?具有什么性质?阅读教材,什么叫球面上的两点距离?讨论结果:(1)让我们做一个实验:一个半圆绕着它的直径所在的直线旋转一周,研究半圆运动的轨迹是怎样的空间图形.通过观察可以发现,球面可以看作一个半圆绕着它的直径所在的直线旋转一周所形成的曲面,球面围成的几何体,叫做球(如下图).(2)形成球的半圆的圆心叫球心;连结球面上一点和球心的线段叫球的半径;连结球面上两点且通过球心的线段叫球的直径.如下图中点O为球心,OA为球的半径,AB为球O的直径.一个球用表示它的球心的字母来表示,例如球O.球面也可以看作空间中到一个定点的距离等于定长的点的集合.(3)用一个平面α去截半径为R的球O(下图),不妨设平面α水平放置且不过球心,OO′为平面α的垂线,并与平面α交于点O′,OO′=d,则对于平面α与球面的交线上任意一点P,都有O′P=R2-d2,是一个定值.这说明截面与球面的交线是在平面α内,并且到定点O′的距离等于定长的点的集合.因此平面α截球面所得到的交线是以O′为圆心,以r=R2-d2(R是球的半径)为半径的一个圆.也就是说,截面是一个圆面(圆及其内部).如果平面α过球心,则d=0,r=R.截面是半径等于球的半径的一个圆面.球面被经过球心的平面截得的圆叫做球的大圆;被不经过球心的平面截得的圆叫做球的小圆.当我们把地球看作一个球时,经线就是球面上从北极到南极的半个大圆;赤道是一个大圆,其余的纬线都是小圆(如左下图).(4)在球面上,两点之间的最短距离,就是经过这两点的大圆在这两点间的一段劣弧的长度.事实上,人们把这个弧长叫做两点的球面距离.例如,右上图中劣弧PQ的长度就是P,Q两点的球面距离.飞机、轮船都是尽可能地以大圆弧(劣弧)为航线航行的.提出问题阅读教材,给出组合体的定义.讨论结果:我们观察周围的物体,除了柱、锥、台、球等基本几何体外,还有大量的几何体是由柱、锥、台、球等基本几何体组合而成的.这些几何体叫做组合体.如下图所展示的机械可以看成是由一些基本几何体构成的组合体.对组合体可以通过把它们分解为一些基本几何体来研究.应用示例思路1例1用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1∶4,截去的圆锥的母线长是3 cm,求圆台的母线长(下图).解:设圆台的母线长为y ,截得的圆锥底面与原圆锥底面半径分别是x,4x ,根据相似三角形的性质,得33+y =x4x,解此方程得y =9. 因此,圆台的母线长为9 cm.点评:解决本题的关键是利用截面三角形来解决问题.圆锥的母线、高、底面半径构成直角三角形.变式训练1.(2008 湖北,理3)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3 B.82π3 C .82π D.32π3解析:设球半径为R ,截面小圆的半径为r ,则πr 2=π=1.又R 2=12+r 2=2,∴R=2.∴V=43πR 3=82π3.答案:B2.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线 与轴的夹角是45°,求这个圆台的高、母线长和底面半径. 分析:这类题目应该选取轴截面研究几何关系. 解:圆台的轴截面如下图,设圆台上、下底面半径分别为x cm 和3x cm ,延长AA 1交OO 1的延长线于S. 在Rt△SOA 中,∠ASO=45°, 则∠SAO=45°. 所以SO =AO =3x. 所以OO 1=2x.又12(6x +2x)·2x=392, 解得x =7(负值舍去),所以圆台的高OO 1=14 cm ,母线长l =2OO 1=14 2 cm ,而底面半径分别为7 cm 和21 cm.答:圆台的高14 cm ,母线长14 2 cm ,底面半径分别为7 cm 和21 cm.例2我国首都北京靠近北纬40°.求北纬40°纬线的长度(单位:km,地球半径约为6 370 km,结果保留四位有效数字).解:如下图,设A是北纬40°圈上的一点,AK是它的半径,所以OK⊥AK.设c是北纬40°的纬线长,因为∠AOB=∠OAK=40°,所以c=2π·AK=2π·OA·cos∠OAK=2π·OA·cos40°≈2×3.141 6×6 370×0.766 0≈3.066×104(km).即北纬40°的纬线长约为3.066×104 km.点评:赤道是地球的大圆,纬线(东西方向)是地球的小圆.变式训练1.圆心到球的截面距离d=3 cm,截面圆的半径r=4 cm,则球的半径R=________ cm.解析:截面半径、球的半径、球心到截面距离构成直角三角形,则R2=d2+r2,即R2=32+42=25,∴R=5.答案:52.(2008 四川高考,8)(理)设M、N是球O半径OP上的两点,且NP=MN=OM,分别过N、M、O作垂直于OP的平面,截球面得三个圆,则这三个圆的面积之比为( ) A.3∶5∶6 B.3∶6∶8C.5∶7∶9 D.5∶8∶9(文)设M是球O半径OP的中点,分别过M、O作垂直于OP的平面,截球面得两个圆,则这两个圆的面积比值为( )A.14B.12C.23D.34解析:(理)设过N、M、O且垂直于OP的三个圆的半径分别为r1,r2,R,则r1=R2-232=53R,r2=R2-132=223R.∴三个圆的面积比等于它们的半径平方之比,即(53R)2∶(223R)2∶R2=5∶8∶9.(文)如下图所示,∵M为OP中点,∴OM=R 2.∴MA=OA 2-OM 2=R 2-R 22=32R. ∴小圆面积S 1=π·(32R)2,大圆面积S 2=πR 2. ∴两圆面积比为S 1S 2=34.答案:(理)D (文)D思路2例3说出下列几何体的主要结构特征:解:(1)由圆锥与圆台构成的组合体. (2)由棱锥和四棱柱构成的组合体.点评:本题主要考查组合体的结构特点以及简单几何体的判断方法. 变式训练1. (2008 浙江高考,理14)如左下图,已知球O 的面上四点A 、B 、C 、D ,DA⊥平面ABC ,AB⊥BC,DA =AB =BC =3,则球O 的体积等于________.解析:如右上图,据题意可知,球O 即棱长为3的正方体外接球,其半径r =32+32+322=32,V =43πr 3=92π. 答案:92π2.下图所示是某单位公章,这个几何体是由简单几何体中的________组成的. 答案:半球、圆柱、圆台知能训练1.下图所示几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得.现用一个竖直的平面去截这个几何体,则所截得的图形可能是( )A .(1)(2)B .(1)(3)C .(1)(4)D .(1)(5) 答案:D2.将一个边长分别是2 cm 和5 cm 、两邻边夹角为60°的平行四边形绕其5 cm 边上的高所在直线旋转一周形成的几何体是(写出一种情况)________.答案:高为3,两底半径分别为4,5的圆台 拓展提升1. (2008 陕西高考,文8)长方体ABCD-A 1B 1C 1D 1的各顶点都在半径为1的球面上,其中AB∶AD∶AA 1=2∶1∶3,则A ,B 两点的球面距离为( )A.π4B.π3C.π2D.2π3解析:由题意知,长方体内接于球,此时具有两个性质: ①长方体的体对角线为球体的直径(由题意,直径为2); ②长方体的中心就是球心O.先由性质①:BD 1=AB 2+AD 2+AA 21=2,再结合条件“AB∶AD∶AA 1=2∶1∶3”,可设AB =2k ,AD =k ,AA 1=3k ,所以有4k 2+k 2+3k 2=2,解得k =22(负值舍去).因此AB =2,AD =22. 再由性质②:O 是球心同时也是BD 1的中点, ∴OB=12BD 1=OA =1,而OA 2+OB 2=AB 2,∴∠AOB=90°.再由球面距离的定义,AB 的球面距离就是扇形AOB 的劣弧长. 由弧长公式可得AB =90×π×1180=π2.∴AB 的球面距离为π2.答案:C 课堂小结 本节课学习了:1.圆柱、圆锥、圆台和球的结构特征; 2.组合体的构成. 作业本节P 13练习A 4,5题;P 16练习A 2题.设计感想本节课的教学设计,重点突出了学生的“自主性”和“探究性”.因此在实际教学中,应注意多留给学生思考的时间,不要直接给出结论.备课资料知识总结:1.棱柱、棱锥、棱台的结构特征比较,如下表所示:3.简单几何体的分类:简单几何体⎩⎪⎪⎨⎪⎪⎧ 简单多面体⎩⎪⎨⎪⎧棱柱棱锥棱台简单旋转体⎩⎪⎨⎪⎧圆柱圆锥圆台球。

高中数学必修二圆柱、圆锥、圆台和球(3)公开课教案课件教案课件

高中数学必修二圆柱、圆锥、圆台和球(3)公开课教案课件教案课件

圆柱、圆锥、圆台和球(1)教学目标:1、圆柱、圆锥、圆台概念,2、掌握圆柱、圆锥、圆台的性质教学重点:掌握圆柱、圆锥、圆台的性质教学过程:一、基本概念(播放陶艺的主要制作过程.)(抓取实物照片),思考:这个几何体的外部曲面是如何形成的?几何体是如何形成的?旋转面可看作一条曲线绕一条定直线旋转一周所形成的轨迹,这条定直线叫做旋转轴,简称轴.这条曲线叫做旋转面的母线.封闭的旋转面所围成的几何体叫做旋转体.旋转体也可以看作是由一封闭的平面图形包括其内部绕一条定直线旋转一周所形成的轨迹.请学生思考:圆柱、圆锥、圆台可由什么平面图形如何运动而成?定义1:(线动成面,面围成体)圆柱、圆锥、圆台可以分别看作以矩形的一边、直角三角形的一直角边、直角梯形中垂直于底边的腰所在的直线为旋转轴,将矩形、直角三角形、直角梯形分别旋转一周形成的曲面所围成的几何体.旋转轴叫做所围成的几何体的轴;在轴上的这条边的长度叫做这个几何体的高;垂直于轴的边旋转而成的圆面叫做这个几何体的底面;不垂直于轴的边旋转而成的曲面叫做这个几何体的侧面;无论旋转到什么位置,这条边都叫做侧面的母线.定义2:(面动成体)以矩形的一边所在的直线为旋转轴将矩形及其内部旋转一周所形成的轨迹叫做圆柱;以直角三角形的一直角边所在的直线为旋转轴将直角三角形及其内部旋转一周所形成的轨迹叫做圆锥;以直角梯形的一直角边所在的直线为旋转轴将直角梯形及其内部旋转一周所形成的轨迹叫做圆台.圆柱、圆锥、圆台之间有何关系?(教师演示,学生观察总结)①平行于底面截圆锥可以得到圆台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.②圆台的上底变大可以得到圆柱;③圆台的上底变小可以得到圆锥.让学生举出一些圆柱、圆锥、圆台的实例,以及其他旋转体的实例.让学生思考:如图,一个半圆面绕其直径所在直线旋转一周所形成的几何体是什么?一个圆面绕一条直线旋转一周形成的几何体是什么?二、主要性质定义有关线轴直线OO'直线SO直线OO'母线AA'SA AA'有关面底面圆圆圆平行于底的截面圆圆圆轴截面全等的矩形全等的等腰三角形全等的等腰梯形任意两母线确定的截面侧面及展开图clS=侧lr⋅=π2clS21=侧lr⋅=πlccS)'(21+=侧lrr⋅+=)'(π三、巩固练习1.下列命题中的真命题是()(A)以直角三角形的一边为轴旋转所得的旋转体是圆锥;(B)以直角梯形的一腰为轴旋转所得的旋转体是圆台;(C)圆柱、圆锥、圆台的底面都是圆;(D)圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径.2.判断下列命题是否正确?①平行于圆锥某一母线的截面是等腰三角形;②平行于圆台某一母线的截面是等腰梯形;③过圆锥顶点的截面是等腰三角形;④过圆台上底面中心的截面是等腰梯形.3.长为4,宽为3的矩形绕其一边所在直线旋转一周所得圆柱的侧面积为_________.4.若圆锥的侧面展开图是一个半圆面,则圆锥的母线与轴的夹角的大小为_________.5.(P 13例1)用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1 :4,截去的圆锥的母线长是3cm ,球圆台的母线长.解:设圆台的母线为l ,截得的圆锥底面与原圆锥底面半径分别是r ,r 4,根据相似三角形的性质得 r r l 433=+,解得9=l . 所以,圆台的母线长为9cm.小结:a) 圆柱、圆锥、圆台可以分别看作以矩形的一边、直角三角形的一直角边、直角梯形中垂直于底边的腰所在的直线为旋转轴,将矩形、直角三角形、直角梯形分别旋转一周形成的曲面所围成的几何体b) 以矩形的一边所在的直线为旋转轴将矩形及其内部旋转一周所形成的轨迹叫做圆柱;以直角三角形的一直角边所在的直线为旋转轴将直角三角形及其内部旋转一周所形成的轨迹叫做圆锥;以直角梯形的一直角边所在的直线为旋转轴将直角梯形及其内部旋转一周所形成的轨迹叫做圆台.c) 圆柱、圆锥、圆台的性质课后作业:略下课啦,咱们来听个小故事吧:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。

(课堂设计)2020高中数学 1.1.3 圆柱、圆锥、圆台和球学案 新人教B版必修2

(课堂设计)2020高中数学 1.1.3 圆柱、圆锥、圆台和球学案 新人教B版必修2

1.1.3 圆柱、圆锥、圆台和球自主学习学习目标1.在复习圆柱、圆锥概念的基础上了解圆台和球的概念,并认识由这些几何体组成的简单组合体.2.会用旋转的方法定义圆柱、圆锥、圆台和球.会用集合的观点定义球.3.理解这几种几何体的轴截面的概念和它在解决几何体时的重要作用,提高动手操作能力.自学导引1.圆柱、圆锥、圆台(1)________、________、________可以看作分别以矩形的一边、直角三角形的一直角边、直角梯形中垂直于底边的腰所在的直线为旋转轴,将矩形、直角三角形、直角梯形分别旋转一周而形成的曲面所围成的几何体.(2)旋转轴叫做所围成的几何体的______;在轴上的这条边(或它的长度)叫做这个几何体的______;垂直于轴的边旋转而成的圆面叫做这个几何体的________;不垂直于轴的边旋转而成的曲面叫做这个几何体的________,无论旋转到什么位置,这条边都叫做侧面的________.2.球(1)球面可以看作一个半圆绕着__________所在的直线旋转一周所形成的曲面,球面围成的几何体,叫做______.(2)球面也可以看作空间中到一个定点的距离等于______的点的集合.(3)球面被经过球心的平面截得的圆叫做球的________;被不经过球心的平面截得的圆叫做球的________.(4)在球面上,两点之间的最短距离,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的____________.3.组合体由柱、锥、台、球等基本几何体组合而成的几何体叫做______.对点讲练知识点一圆柱、圆锥、圆台的有关概念例1下列命题中正确的是( )A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线点评此类题应以圆柱、圆锥、圆台的定义为基础进行判断,同时要结合各种旋转体的结构特征,详细地分析,不可粗心大意.此类题在做的时候容易只注意到旋转的问题,而忽视了以什么为旋转轴的问题,旋转轴不同则得到的旋转体也是不同的.变式训练1 下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是( )A.①②B.②③C.①③D.②④知识点二旋转体中有关元素的计算问题例2圆台侧面的母线长为2a,母线与轴的夹角为30°,一个底面的半径是另一个底面半径的2倍.求两底面的半径与两底面面积之和.点评解有关圆台的基本元素问题,一般要画出圆台的轴截面或将圆台还原为圆锥,有关元素之间的关系就体现出来了.变式训练2 已知圆锥的底面半径为r,高为h,正方体ABCD—A1B1C1D1内接于圆锥,求这个长方体的棱长.知识点三球中有关元素的计算问题例3球面上有M、N两点,在过M、N的球的大圆上,MN的度数为90°,在过点M、N的球的小圆上,MN的度数120°,又点M、N两点间的距离为 3 cm,求球心与小圆圆心的距离为多少?变式训练3 设地球的半径为R,在北纬45°圈上有两个点A、B,A在西经40°,B在东经50°,求A、B两点间纬线圈的弧长及球面距离.1.在解圆台问题时,常将圆台转化为圆锥问题,即化台为锥.2.圆锥的母线、底面半径、高构成直角三角形,圆台的母线、高、上、下底面半径构成直角梯形.解圆锥、圆台问题时,常归结为解此直角三角形或直角梯形.3.小圆的圆心与球心连线垂直于该小圆所在平面.课时作业一、选择题1.图①②③中的图形折叠后的图形分别是( )A.圆柱、圆锥、棱柱B.圆柱、圆锥、棱锥C.圆台、球、棱锥D.圆台、圆锥、棱柱2.下列命题中不正确的是( )A.用平行于圆锥底面的平面截圆锥,截面与底面之间的部分是圆台B.过球面上两个不同的点,只能作一个大圆C.以直角梯形垂直于底的腰所在的直线为旋转轴,另一腰和两底边旋转一周所围成的几何体是圆台D.圆柱、圆锥、圆台的底面都是圆面3.圆柱的轴截面(经过圆柱的轴所作的截面)是边长为5 cm的正方形ABCD,则圆柱侧面上从A到C的最短距离为( )A.10 cm B.52π2+4 cmC.5 2 cm D.5π2+1 cm4.底面半径为2且底面水平放置的圆锥被过高的中点平行于底面的平面所截,则截得的截面圆的面积为( )A.π B.2πC.3π D.4π5.下图是由哪个平面图形旋转得到的( )题号 1 2 3 4 5答案二、填空题6.圆台上、下底面面积分别为25π cm2、64π cm2,高为12 cm,这个圆台的母线长为________cm.7.用不过球心O的平面截球O,截面是一个球的小圆O1,若球的半径为4 cm,球心O 与小圆圆心O1的距离为2 cm,则小圆半径为________cm.8.下列命题中:①用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫棱台;②棱台的各侧棱延长后一定相交于一点;③圆台可以看作直角梯形绕与底边垂直的腰所在直线旋转而成的;④半圆绕其直径所在直线旋转一周形成球.正确命题的序号为________.三、解答题9.一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2,求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.10.一个圆锥的底面半径为4,高为12,在其中有一个高为x的内接圆柱.(1)用x表示圆柱的轴截面面积S;(2)当x为何值时,S最大.【答案解析】自学导引1.(1)圆柱圆锥圆台(2)轴高底面侧面母线2.(1)它的直径球(2)定长(3)大圆小圆(4)球面距离3.组合体对点讲练例1 C [A错误,应为直角三角形绕其一条直角边旋转得到的旋转体是圆锥.若绕其斜边旋转得到的是两个圆锥构成的一个组合体.B错误,没有说明这两个平行截面的位置关系,当这两个平行截面与底面平行时正确,其他情况则是错误的.D错误,通过圆台侧面上一点,只有一条母线.]变式训练1 D [由母线的定义知②④正确,所以选D.]例2解设圆台上底面半径为r,则下底面半径为2r,如图所示,∠ASO=30°,在Rt△SO′A′中,r SA′=sin 30°, ∴SA′=2r.在Rt△SOA 中,2rSA=sin 30°,∴SA=4r.又SA -SA′=AA′,即4r -2r =2a ,∴r=a.∴S=S 1+S 2=πr 2+π(2r)2=5πr 2=5πa 2.∴圆台上底面半径为a ,下底面半径为2a ,两底面面积之和为5πa 2. 变式训练2 解过内接正方体的一组对棱作圆锥的轴截面,如图所示.设圆锥内接正方体的棱长为x ,则在轴截面中,正方体的对角面A 1ACC 1的一组邻边的长分别为x 和2x.∵△VA 1C 1∽△VMN,∴2x 2r =h -x h. ∴2hx =2rh -2rx ,∴x=2rh2r +2h .即圆锥内接正方体的棱长为2rh2r +2h.例3 解 取MN 的中点P ,连接OP 、O 1P ,由已知∠MON=90°,∠MO 1N =120°, 又OM =ON ,O 1M =O 1N , 可求OP =32,O 1P =12. ∴OO′=22. 变式训练3 解设45°纬线圈的中心为O 1,地球中心为O ,如图所示, 则∠AO 1B =40°+50°=90°.∵O 1O⊥圆O 1所在平面, ∴OO 1⊥O 1A ,OO 1⊥O 1B.∵点A ,B 在北纬45°圈上, ∴∠OBO 1=∠OAO 1=45°. ∴O 1A =O 1B =OA·cos 45°=22R. 在Rt△AO 1B 中,∵AO 1=BO 1,∴AB=2AO 1, ∴△AOB 为等边三角形,∴∠AOB=60°. ∴A,B 两点间纬线圈的弧长为 l 1=90π180·22R =24πR,A ,B 两点间球面距离为l 2=60πR 180=πR3. 课时作业1.B 2.B 3.B 4.A[设截面圆半径为r ,由相似三角形的知识可知r 2=12,所以r =1,所以S =πr 2=π.] 5.A6.317 7.2 3 8.①②③ 9.解(1)圆台的轴截面是等腰梯形 ABCD(如图).由已知可得上底半径O 1A =2 cm ,下底半径OB =5 cm. 又因为腰长为12 cm ,所以高为AM = 122-5-22=315 (cm).(2)设截得此圆台的圆锥的母线长为l , 则由△SAO 1∽△SBO 可得l -12l =25,∴l=20 cm.即截得此圆台的圆锥的母线长为20 cm. 10.解 根据圆柱和圆锥的图形特征可作出它们的轴截面图(如图所示),设圆柱的底面半径为r ,则由三角形相似的性质可知 12-x 12=r4, 解得:r =4-x 3.(1)圆柱的轴截面面积为S =2r·x=2·⎝ ⎛⎭⎪⎫4-x 3·x=-23x 2+8x ,x∈(0,12); (2)∵S=-23x 2+8x ,x∈(0,12),∴S=-23(x 2-12x)=-23(x -6)2+24,x∈(0,12),∴当x =6时,S 最大为24.。

高中数学必修二教案-1.1.3 圆柱、圆锥、圆台和球2-人教B版

高中数学必修二教案-1.1.3 圆柱、圆锥、圆台和球2-人教B版

《1.3.2球的体积和表面积》教学设计一、 教学目标知识目标:1、掌握球的体积公式343V R π=、表面积公式24S R π=. 2、会用球的表面积公式、体积公式解决相关问题,培养学生应用数学的能力. 3、能解决与球的截面有关的计算问题及球的“内接”与“外切”的几何体问题. 能力目标:通过类比、归纳、猜想等合情推理培养学生勇于探索的精神. 提高学生分析、综合、抽象概括等逻辑推理能力情感目标:通过寻求如何研究球的内切与外接的方法,培养学生将数学知识和生活实际相联系的意识,对学生进行“事物具有多面性”的辩证唯物主义思想教育. 二、 教学重点、难点重点:球的体积和表面积的计算公式的应用.难点:解决与球相关的“内接”与“外切”的几何体问题 三、教学方法采用试验探索,启发式的教学方法.教辅手段:圆柱、圆锥、半球容积比实物模型;一盆水;多媒体. 四、教学过程2 球的表面积:(以后讲)11221(3)i i V h S h S h S ≈⋅∆+⋅∆++⋅∆+又∵i h R ≈,且S =12i S S S ∆+∆+++∆∴可得13V R S ≈⋅, 又∵343V R π=,∴13R S ⋅343R π=,∴24S R π=即为球的表面积公式小结:球的体积公式343V R π=、表面积公式24S R π=都是以R 为 自变量的函数。

教师讲解,学生感悟分割、近似、极限等思想渗透微积分思想.应 用 举 例练习1:如果球的体积是36πcm 3,那么它的半径是 .3练习2: 若两个球的体积之比为8:27,那么两个球的表面积之比为( C )(A )8:27 (B )2:3 (C )4:9 (D )2:9 例1 如图,圆柱的底面直径与高都等于球的直径,,求证: (1)球的体积等于圆柱体积的23(2)球的表面积等于圆柱的侧面积. 证明:(1)设球的半径为R ,则圆柱的 底面半径为R ,高为2R.则有V 球=334R π,V 圆柱=πR 2·2R=2πR 3,所以V 球=圆柱V 32.教师引导学生共同完成让学生巩固加深所学内容并灵(2)因为S球=4πR2,S圆柱侧=2πR·2R=4πR2,所以S球=S圆柱侧.变式1:把上一题的圆柱改为正方体,且正方体的棱长为a, 球的半径为多少?变式2:若把球吹大到内切于正方体的棱,且正方体的棱长为a,此时球的半径又为多少?变式3:若球接着吹大到刚好包围整个正方体即球各个顶点都在球面上,且正方体的棱长为a,此时球的半径又为多少?活运用.应用举例例2、如果一个几何体的正视图与侧视图都是全等的长方形,边长分别是4 cm与2 cm,如图所示,俯视图是一个边长为4 cm的正方形.(1)求该几何体的全面积.(2)求该几何体的外接球的体积.解【审题指导】根据本题所给条件中的三视图,判断该几何体的形状与几何体中相关的数量关系,根据这些求该几何体的全面积及其外接球的体积.【规范解答】(1)由题意可知,该几何体是长方体,底面是正方形,边长是4,高是2,………………………3分因此该几何体的全面积是:2×4×4+4×4×2=64 (cm2),图1 图2图3RA 'C 'CAOA 'B 'C 'D 'DC BAO解决此类问题的实质就是根据几何体的相关数据求球的直径或半径,关键是根据“切点”和“接点”,作出轴截面图,把空间问题转化为平面问题来计算.的能力.教师完善,使知识更系统化.作业1、课本P29B12、《世纪金榜》 P16例23、《世纪金榜》P17 基础自主演练64、半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体的边长为 6,求半球的表面积和体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高中数学圆柱圆锥圆台和球教案北师大版必修2
教学过程:
复习引入
1、圆柱、圆锥、圆台,它们分别由矩形、直角三角形、直角梯形旋转而成的。

2、通过篮球、排球、足球等等球体的形象引出课题. 新授
1、球的概念:球也可以由一个平面图形旋转得到。

半圆以它的直径为旋转轴,旋转所成的曲面叫球面。

球面所围成的几何体叫球体,简称球。

指出球心、半径、直径。

值得注意的是:
1)球面与球体是两个不同的概念,我们要注意它们的区别与联系。

2)球面的概念可以用集合的观点来描述。

球面是由点
组成的,球面上的点有什么共同的特点呢?与定点的距
离等于定长的所有点的集合(轨迹)叫球面。

如果点到
球心的距离小于球的半径,这样的点在球的内部.
否则在外部.
3)球的表示:用表示球心的字母表示球,比如,球O.
2、球的截面的性质:用一个平面去截球,得到一个截
面,截面是圆面,把过球心的截面圆叫大圆,不过球心的截面圆叫小圆.
球的截面有什么性质呢?连接球心与截面圆心,连
线OO1与截面圆O1会有什么关系呢?
球心与截面圆心的连线垂直于截面。

设球心到截面的距离为d,截面圆的半径为r,球的
半径为R,则:r=
2 2d R
3、练习一:
判断正误:(对的打√,错的打×)
(1)半圆以其直径为轴旋转所成的曲面叫球。

()
(2)到定点的距离等于定长的所有点的集合叫球。

()
(3)球的小圆的圆心与球心的连线垂直于这个小圆所在平面。

()
(4)经过球面上不同的两点只能作一个大圆。

()
(5)球的半径是5,截面圆的半径为3,则球心到截面圆所在平面的距离为4。

()
4、关于地球的几个概念:地球可以近似的看作一个球体,为了描述地球上某地的地理位置,我们在地球上规定了经线、纬线、南极、北极等概念。

5、球面距离:假如我们要坐飞机从北京到巴西去,选择怎样的航线航程最短呢?我们把球面上过两点的大圆,在这两点之间的劣弧的长叫球面上两点间的球面距离。

因此,飞机、轮船都尽可能以大圆弧为航线航行。

6、例1 我国首都北京靠近北纬40度。

(1)求北纬40°纬线圈的半径约为多少千米。

(2)求北纬40度纬线的长度约为多少千米(地球半径约为6370千米)。

练习二:
1)填空
(1)设球的半径为R,则过球面上任意两点的截面圆中,最
大面积是。

(2)过球的半径的中点,作一个垂直于这条半径的截面,则
这截面圆的半径是球半径的。

(3)在半径为R的球面上有A、B两点,半径OA、OB的夹角
是n°(n<180=,求A、B两点的球面距离。

半圆以它的直径为旋转轴,旋转所成的曲面叫做球面。

球面所围成的几何体叫做球体.
以过球心的平面截球面,截面圆叫大圆。

以不经过球心的平面截球面,截面圆叫小圆.
课后作业:略。

相关文档
最新文档