电路理论基础第三版 答案 陈希有

合集下载

电路理论教程答案陈希有

电路理论教程答案陈希有

电路理论教程答案陈希有【篇一:《电路理论基础》(第三版陈希有)习题答案第一章】电路电流的参考方向是从a指向b。

当时间t2s时电流从a流向b,与参考方向相同,电流为正值;当t2s时电流从b流向a,与参考方向相反,电流为负值。

所以电流i的数学表达式为2a t?2s? i??-3at?2s ?答案1.2解:当t?0时u(0)?(5?9e0)v??4v0其真实极性与参考方向相反,即b为高电位端,a为低电位端;当t??时u(?)?(5?9e??)v?5v0其真实极性与参考方向相同,即a为高电位端,b为低电位端。

答案1.3解:(a)元件a电压和电流为关联参考方向。

元件a消耗的功率为pa?uaia则ua?pa10w??5v ia2a真实方向与参考方向相同。

(b) 元件b电压和电流为关联参考方向。

元件b消耗的功率为pb?ubib则ib?pb?10w1a ub10v真实方向与参考方向相反。

(c) 元件c电压和电流为非关联参考方向。

元件c发出的功率为pc?ucic则uc?pc?10w10v ic1a真实方向与参考方向相反。

答案1.4解:对节点列kcl方程节点③: i4?2a?3a?0,得i4?2a?3a=5a节点④: ?i3?i4?8a?0,得i3??i4?8a?3a节点①: ?i2?i3?1a?0,得i2?i3?1a?4a节点⑤: ?i1?i2?3a?8a?0,得i1?i2?3a?8a??1a若只求i2,可做闭合面如图(b)所示,对其列kcl方程,得 i28a-3a+1a-2a0解得i2?8a?3a?1a?2a?4a答案1.5解:如下图所示(1)由kcl方程得节点①:i1??2a?1a??3a节点②:i4?i1?1a??2a节点③:i3?i4?1a??1a节点④:i2??1a?i3?0若已知电流减少一个,不能求出全部未知电流。

(2)由kvl方程得回路l1:u14?u12?u23?u34?19v回路l2:u15?u14?u45?19v-7v=12v回路l3:u52?u51?u12??12v+5v=-7v回路l4:u53?u54?u43?7v?8v??1v若已知支路电压减少一个,不能求出全部未知电压。

《电路理论基础》(第三版陈希有)习题答案第十章

《电路理论基础》(第三版陈希有)习题答案第十章

i答案10.1解:t ::: 0时,电容处于开路,故u C (0 _) = 10mA 2k 「- 20V 由换路定律得:u C (0 .) +(0”20V换路后一瞬间,两电阻为串联,总电压为 u C (0 )。

所以再由节点①的KCL 方程得:i C (0 ) =10mA -i 1(0 .)二(10-5)mA =5mA答案10.2解:t :::0时电容处于开路,电感处于短路,3门电阻与61电阻相并联,所以45V6i(0J3A ,L(0Ji(0」= 2A(5+8 + 6 3)0 6+36+3u C (0J =8 i(0J = 24V 由换路定律得:U C (0 ) 7C (0J =24V ,匚(0.) “L (0_)=2A由KVL 得开关电压:u(0 ) --U c (0 ) 8 匚(0 .)=(-24 8 2)V 8V答案10.3解:t ::: 0时电容处于开路,i =0 ,受控源源电压4i =0 ,所以U C (0 J =U C (0」=U 1(0」61.5V = 0.6V(9 6尸等效电阻i i (0 )=%(0 .) (2 2)k 」=5mA(b)所示。

R 段「4i (6 3)i容i时间常数二 R C 二 0 ・1st 0后电路为零输入响应,故电容电压为:u C (t)二 u C (0 ,)e~ =0.6e A0°V6“电阻电压为:“⑴工―6门 i 6门 ^C-dUc ^0.72e 10t V (t 0)dt答案10.43解:t :::0时电感处于短路,故L(0J= 39A=3A ,由换路定律得:6 + 3i L (0^i L (0J=3A求等效电阻的电路如图(b)所示。

等效电阻R 「6 •色卫=8」,时间常数.二L/R =0.5s6+3t 0后电路为零输入响应,故电感电流为i L (t) =i L (0 .)e^^ =3e 2t A (t _o ) 电感电压._2tu ,(t)二 L 匕二-24e V (t .0)dt31电阻电流为U 36C 汽L +U 1小2八i 3 2e A33「3「31电阻消耗的能量为:W3°= f 30i ;dt = f12/dt =12[-0.25ed=3W答案10.5解:由换路定律得i L (0.) “L (0」=0,达到稳态时电感处于短路,故LG) =20/4=5A求等效电阻的电路如图(b)所示。

电路理论基础第三版第十三章答案 陈希有

电路理论基础第三版第十三章答案 陈希有

答案13.3解:(1) 由公式l t I B I Tt =,已知连支电流,可求得树支电流A 1595111011010654321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡i i i i i i (2) 由公式t t U B U -=l ,已知树支电压,可求得连支电压V 321321100111110654⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡u u u (3) 由矩阵B 画出各基本回路,如图(a)~(c)所示。

将各基本回路综合在一起得题中所求线图,如图13.3(d)所示。

(a)(b)(c)(d)答案13.6解:由关联矩阵A 画出网络图,如图题13.6所示,由图写出基本割集矩阵如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=011101110101110001C图题13.6答案13.7解:由Tt l C B -=得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=0011011011101101t B , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==1011010001100010111000011101]|[t lB B B 由B 矩阵画出各基本回路,如图(a )~(d)所示。

将各基本回路综合在一起得题中所求线图,如图13.7(e )所示。

图题13.76(a)(b)(c)(d)(e)答案13.8解:由Tt l B C -=得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=101011111011100l C , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------==1011010001110010110100011100]|[tl C C C 答案13.9解:由基本回路矩阵可知:支路1、2、3为连支,4、5、6为树支,已知树支电压,可以求出全部连支电压。

=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321u u u V 628V 1264110111101t t ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-=U B U l 连支电流等于连支电压除以相应支路的电阻。

电路理论基础(哈尔滨工业大学陈希有第3版) 第1章-第5章

电路理论基础(哈尔滨工业大学陈希有第3版) 第1章-第5章

a 电位: 任选一点p作为电位参考点,电路中某点与参考点之间的电压称为该点的电 位,用 表示。有了电位的概念,两点之间的电压便等于这两点的电位之差。
uab Ec dl
a A
(a)
a A
(b)
u ab
u ba
A
(c)
a uA

b
b
b
电压参考方向的表示法
一个元件上的电压和电流的参考方向取成相同的,并称为关联参考方向。

2 基尔霍夫电流定律
基尔霍夫电流定律(Kirchhoff's Current Law,简称KCL)表述为:在集中 参数电路中,任一时刻流出(或流入)任一节点的支路电流代数和等于零, 即
i
k
0
( ik 表示第 k 条支路电流)
规定: ik 参考方向为流出节点时, ik 前面 取“+”号; 流入节点时, ik 前面取“-”号。
i1
A
i2
1、在集中参数电路中,任一时刻流出(或流入) 任一闭合边界 S 的支路电流代数和等于零。
KCL的其它表述
2、任一时刻,流出任一节点(或闭合边界)电 流的代数和等于流入该节点电流的代数和。
根据右图,列写KCL方程 1)基本表述方 式——对节点
3 i3

S
4 i4 i6 7 i7 ③
节点① :
① u1 1
u
电压降
= u电压升
6 ③ u6 l1 5 u5 l2 7 u7 ⑤ 基尔霍夫电压定律示例
u2
l3 ②
2
说明:平面电路网孔上的KVL方程是一组独立方程。设电路有b个支路n个节 点,可以证明:平面电路的网孔数即独立KVL方程的个数等于b-(n-1)。当然 取网孔列方程只是获得独立KVL方程的充分条件,而不是必要条件。

《电路理论基础》(第三版_陈希有)习题答案第七章

《电路理论基础》(第三版_陈希有)习题答案第七章

答案7.1解:设星形联接电源电路如图(a)所示,对称星形联接的三相电源线电压有效值倍,相位上超前前序相电压30︒。

即AB 3030)V=538.67cos()V u t t ωω=-︒+︒BC 538.67cos(120)V u t ω=-︒CA 538.67cos(240)V u t ω=-︒各相电压和线电压的相量图可表达如图(b)所示。

AB CN(a)&U &(b)U-&答案7.2解:题给三个相电压虽相位彼此相差120o ,但幅值不同,属于非对称三相电压,须按KVL 计算线电压。

设AN 127V U =& BN 127240V=(-63.5-j110)V U =∠︒& CN135120V=(-67.5+j116.9)V U =∠︒& 则ABANBNBC BN CN CA CN AN(190.5j 110)V 22030V (4j226.9)V 226.989V (194.5j 116.9)V 226.9149V UU U U U U U U U =-=+=∠︒=-=-=∠-︒=-=-+=∠︒&&&&&&&&& 即线电压有效值分别为220V ,226.9V ,226.9V 。

答案7.3设负载线电流分别为A B C i i i 、、,由KCL 可得A B C0I I I =&&&++。

又A B C 10A I I I ===,则A B C i i i 、、的相位彼此相差120︒,符合电流对称条件,即线电流是对称的。

但相电流不一定对称。

例如,若在三角形负载回路存在环流0I &(例如,按三角形联接的三相变压器),则负载相电流不再对称,因为CA CA 0BC BC 0AB AB ',','I I I I I I I I I &&&&&&&&&+=+=+=不满足对称条件。

电路理论基础孙立山陈希有主编第3章习题答案详解

电路理论基础孙立山陈希有主编第3章习题答案详解

教材习题3答案部分(P73)答案略 答案解:(a ) 本题考虑到电桥平衡,再利用叠加定理,计算非常简单。

(1)3V 电压源单独作用,如图(a-1)、(a-2)所示。

(a-1)(a-2)由图(a-2)可得'3V1A 148348I ==⨯Ω+Ω+由分流公式得:''182A 483I I Ω=-⨯=-Ω+Ω(2)1A 电流源单独作用,如图(a-3)所示。

(a-3)考虑到电桥平衡,"0I =,在由分流公式得:"1131A A 134I =-⨯=-+ (3)叠加:'"1A I I I =+= '"11117/12A I I I =+=-2111 2.007W P I Ω=⨯=(b )(1)4V 电压源单独作用,如图(b-1)所示。

'I '由图(b-1)可得,'24V2V (2+2)U Ω⨯==Ω'136A I U =-=- ''21'5A I I I =+=-(2)2A 电流源单独作用,如图(b-2)所示。

(b-2)''222A=2V 22U ⨯=Ω⨯+ "''2311A 2I I =⨯= 对节点②列KCL 方程得,"""1132A 4A I U I +==对节点③列KCL 方程得,"""230I I U ++=解得"5A I =(3) 叠加'"1116A 4A=10A I I I =+=---'"5A 5A=10A I I I =+=---2111100W P I Ω=⨯Ω=答案略答案略答案解 :利用叠加定理,含源电阻网络中的电源分为一组,其作用为'I ,如图(b)所示。

S I 为一组,其单独作用的结果I '' 与S I 成比例,即:"S I kI =,如图(c)所示。

电路理论基础(陈希有)课后题答案

电路理论基础(陈希有)课后题答案

答案11.1解: (1)2020001e 1e 1e e )()(-ssdt s stdt t t s F stst stst =-=+-==∞-∞-∞-∞----⎰⎰ε (2)20)(20)(00)(1e)(1e 1e e )(e )(-ααααεααα+=+-=+++-==∞+-∞+-∞-∞-----⎰⎰s s dts s t dt t t s F ts t s st st t答案11.2解:)/1(//1)(1τττ+=+-=s s A s A s A s F 由拉氏变换的微分、线性和积分性质得:)/1(/)()()/(]/)([)()]0()([)(22111112ττ+++=++=++-=-s s A c bs as s F s c b as s s F c s bF f s sF a s F答案11.3解:设25)}({)(11+==s t f s F L ,52)}({)(22+==s t f L s F 则)5)(2(10)()(21++=s s s F s F)(1t f 与)(2t f 的卷积为)e e (310]e 31[e 10e e 10e 2e 5)(*)(520350350)(5221t t t tt ttt d d t f t f --------=⨯==⨯=⎰⎰ξξξξξξ对上式取拉氏变换得:)5)(2(10)5121(310)}(*)({21++=+-+=s s s s t f t f L 由此验证)()()}(*)({2121s F s F t f t f =L 。

答案11.4解:(a)6512)(2+++=s s s s F 3221+++=s A s A3|31221-=++=-=s s s A , 3|31221-=++=-=s s s A 所以t t s s t f 321e 5e 3}3523{)(---+-=+++-=L(b))2)(1(795)(23+++++=s s s s s s F 212)2)(1(3221+++++=+++++=s A s A s s s s s 2|2311=++=-=s s s A 1|1321-=++=-=s s s A 所以t t t t s s s L t f 21e e 2)(2)(}21122{)(----++'=+-++++=δδ (c)623)(2++=s s s F 22)5()1(5)5/3(++⨯=s 查表得)5sin(e 53)(t t f t-=答案11.5解:(a) 由运算电路(略)求得端口等效运算阻抗为:11262241)3/(142)]3/(14[21)(22i ++++=++++=s s ss s s s s s Z , 112611430)(22++++=s s s s s Z i (b) 画出运算电路如图11.5(c)所示U )(2s __在端口加电流,列写节点电压方程如下⎩⎨⎧-==++-=-+)2()]()([3)(3)()]5.0/(11[)()1()()()()1(2122s U s U s U s U s s U s I s U s U s由式(2)解得)(144)(2s U s ss U ⨯+=代入式(1)得)()()1221(s I s U s ss =+-+所以1212)(2i +++=s s s s Y答案11.6解:运算电路如图11.6(b)所示。

电路理论基础(哈尔滨工业大学陈希有第3版)13共44页文档

电路理论基础(哈尔滨工业大学陈希有第3版)13共44页文档
2
5 3
6 ② 1
两个子图


4
3
2
6

(a)
③①
4

6

(b)
有向图:图中的所有支路都指定了方向,则称为有向图;反之为无向图
回 路: 从图中某一节点出发,经过若干支路和节点(均只许经过一次)又 回到出发节点所形成的闭合路径称为回路。 割 集: 连通图的割集是一组支路集合,并且满足:
(1)如果移去包含在此集合中的全部支路(保留支路的两个端点),则 此图变成两个分离的部分。
单树支割集
4
5
3
4
5
3
c1
1
2
6
c2 1
2
6
1
(a)
(b)
(c)
基本割集:每取一个树支作一个单树支图割基本集割,集称为基本割集。
基本割集的方向规定为所含树支的方向。
基本割集的性质 图中3个基本割集 KCL方程是(独立):
c1
i1i5i6 0
c 2 i2i4i5i60
1 3 . 1 网 络 的 图 树
基本要求:掌握网络的图、子图、连通图、割集和树等概念。
1 网络的图
图( graph) :由“点” 和“线”组成。 • “点”也称为节点或顶点(vertex),“线”也称为支路或
边(edge)。 • 图通常用符号G来表示。
图 (a) 电路只含二端元件,对应的图如图 (b)所示。
用点表示王宫,用线表示王宫间的 道路,便抽象成图。问题变成该图 是否为平面图?
4 四色定理
四色问题:只须4种不同颜色,就能使平面地图上任何两个相 邻的国家的颜色不同。
图论问题:用点表示国家,用边表示国家直接相邻。证明只 须4种颜色就可使所有相邻顶点具有不同颜色。

《电路理论基础》(第三版陈希有)习题答案

《电路理论基础》(第三版陈希有)习题答案

答案2.1解:本题练习分流、分压公式。

设电压、电流参考方向如图所示。

(a) 由分流公式得:23A 2A 23I R Ω⨯==Ω+解得75R =Ω(b) 由分压公式得:3V 2V 23R U R ⨯==Ω+解得47R =Ω答案2.2解:电路等效如图(b)所示。

20k Ω1U +-20k Ω(b)+_U图中等效电阻(13)520(13)k //5k k k 1359R +⨯=+ΩΩ=Ω=Ω++由分流公式得:220mA 2mA 20k RI R =⨯=+Ω电压220k 40V U I =Ω⨯=再对图(a)使用分压公式得:13==30V 1+3U U ⨯答案2.3解:设2R 与5k Ω的并联等效电阻为2325k 5k R R R ⨯Ω=+Ω(1)由已知条件得如下联立方程:32113130.05(2) 40k (3)eqR U UR R R R R ⎧==⎪+⎨⎪=+=Ω⎩由方程(2)、(3)解得138k R =Ω 32k R =Ω再将3R 代入(1)式得210k 3R =Ω答案2.4解:由并联电路分流公式,得1820mA 8mA (128)I Ω=⨯=+Ω2620mA 12mA (46)I Ω=⨯=+Ω由节点①的KCL 得128mA 12mA 4mA I I I =-=-=-答案2.5解:首先将电路化简成图(b)。

图 题2.5120Ω(a)(b)图中1(140100)240R =+Ω=Ω2(200160)120270360(200160)120R ⎡⎤+⨯=+Ω=Ω⎢⎥++⎣⎦ 由并联电路分流公式得211210A 6A R I R R =⨯=+及21104A I I =-=再由图(a)得321201A 360120I I =⨯=+由KVL 得,3131200100400V U U U I I =-=-=-答案2.6xRx(a-1)图2.6解:(a )设R 和r 为1级,则图题2.6(a)为2级再加x R 。

《电路理论基础》(第三版 陈希有)习题答案第六章

《电路理论基础》(第三版 陈希有)习题答案第六章

答案6.22解:对图(a)电路做戴维南等效,如图(b)所示。

OC U inZ (b)i j 1/(j )Z L C ωω=+ (1)SOC j I U Cω=(2) 由图(b)可知,当i 0Z =时,电阻两端电压U 与电阻R 无关,始终等于OC (0)U R ≠。

由式(1)解得1/100rad/s ω== 将式(3)代入式(2)得OC 1100A 1090V j100rad/s 0.01FU U ==∠︒⨯=∠-︒⨯90V u t ω=-()答案6.23解:先对图(a)电路ab 端左侧电路作戴维南等效,如图(b)所示。

U iZ (b)令32000rad/s 210H 4L X L ω-==⨯⨯=Ω得等效阻抗i 4j48//8//j42(1j)4j4Z Ω⨯Ω=ΩΩΩ==+ΩΩ+Ω由OCi 1j U i Z R Cω=++知,欲使电流i 有效值为最大,电容的量值须使回路阻抗虚部为零,即:012]j 1Im[=-=++CC R Z i ωω 等效后电路如图(b)所示。

解得1250μF 2C ω==答案6.24解:应用分压公式,输出电压o U 可表示为o n1n 2U U U =-i i 1j 12j U C U R Cωω=-⨯+ i i i j 121j 2(j 1)U U CR U CR CR ωωω-=-=++ 当 0=R , o U 超前于i U 180;当 1R Cω=,o U 超前于i U ︒90;当 ∞→R , o U 与i U 同相位。

即当R 由零变到无穷时,o U 超前于i U 相位差从180到0变化。

答案6.25解:图示电路负载等效导纳为22221j j()j ()()R LY C C R L R L R L ωωωωωω=+=+-+++ (1) 22222222222)()(21)()(C L R LC L R L C L R R Yωωωωωωω++-=⎥⎥⎦⎤⎢⎢⎣⎡+-+⎥⎥⎦⎤⎢⎢⎣⎡+= (2) 由式(2)可见:当)2/(12LC =ω时,Y C ω=与R 无关,电流有效值CU U Y I ω==不随R 改变。

电路理论基础课后答案(哈工大陈希有)第3章

电路理论基础课后答案(哈工大陈希有)第3章

答案3.1解:应用置换定理,将电阻R 支路用0.5A I =电流源代替,电路如图电流源代替,电路如图(b)(b)(b)所示。

所示。

所示。

I2W 4-+UW1W 5.4V6W 3(b)0.5A ①②对电路列节点电压方程:对电路列节点电压方程:1212(1)0.5A 44n n I U U +W ´-=-W W12116V (1)3 4.5 4.5n n U U -+W ++´=W W W0.5A I = 解得解得11V n U = 则12n U R I==W 答案3.2解:解:(a )本题考虑到电桥平衡,再利用叠加定理,计算非常简单。

(1)3V 电压源单独作用电压源单独作用,,如图如图(a-1)(a-1)(a-1)、、(a-2)(a-2)所示。

所示。

所示。

W 2W 6W 1W3W)3/1(V3'I '1I 8W4WW)3/1(V3'I '1I (a-1)(a-2)由图由图(a-2)(a-2)(a-2)可得可得可得'3V 1A 148348I ==´W +W + 由分流公式得:由分流公式得:''182A 483I IW =-´=-W +W (2)1A 电流源单独作用,如图电流源单独作用,如图(a-3)(a-3)(a-3)所示。

所示。

所示。

(a-3)W 2W 6W 1W3W)3/1("I "1IA1考虑到电桥平衡,考虑到电桥平衡, "0I =, 在由分流公式得:在由分流公式得: "1131A A 134I =-´=-+ (3)叠加:)叠加:'"1A I I I =+='"11117/12A I I I =+=-2111 2.007WP I W =´=(b )(1)4V 电压源单独作用,如图电压源单独作用,如图(b-1)(b-1)(b-1)所示。

电路理论教程答案陈希有

电路理论教程答案陈希有

电路理论教程答案陈希有【篇一:《电路理论基础》(第三版陈希有)习题答案第一章】电路电流的参考方向是从a指向b。

当时间t2s时电流从a流向b,与参考方向相同,电流为正值;当t2s时电流从b流向a,与参考方向相反,电流为负值。

所以电流i的数学表达式为2a t?2s? i??-3at?2s ?答案1.2解:当t?0时u(0)?(5?9e0)v??4v0其真实极性与参考方向相反,即b为高电位端,a为低电位端;当t??时u(?)?(5?9e??)v?5v0其真实极性与参考方向相同,即a为高电位端,b为低电位端。

答案1.3解:(a)元件a电压和电流为关联参考方向。

元件a消耗的功率为pa?uaia则ua?pa10w??5v ia2a真实方向与参考方向相同。

(b) 元件b电压和电流为关联参考方向。

元件b消耗的功率为pb?ubib则ib?pb?10w1a ub10v真实方向与参考方向相反。

(c) 元件c电压和电流为非关联参考方向。

元件c发出的功率为pc?ucic则uc?pc?10w10v ic1a真实方向与参考方向相反。

答案1.4解:对节点列kcl方程节点③: i4?2a?3a?0,得i4?2a?3a=5a节点④: ?i3?i4?8a?0,得i3??i4?8a?3a节点①: ?i2?i3?1a?0,得i2?i3?1a?4a节点⑤: ?i1?i2?3a?8a?0,得i1?i2?3a?8a??1a若只求i2,可做闭合面如图(b)所示,对其列kcl方程,得 i28a-3a+1a-2a0解得i2?8a?3a?1a?2a?4a答案1.5解:如下图所示(1)由kcl方程得节点①:i1??2a?1a??3a节点②:i4?i1?1a??2a节点③:i3?i4?1a??1a节点④:i2??1a?i3?0若已知电流减少一个,不能求出全部未知电流。

(2)由kvl方程得回路l1:u14?u12?u23?u34?19v回路l2:u15?u14?u45?19v-7v=12v回路l3:u52?u51?u12??12v+5v=-7v回路l4:u53?u54?u43?7v?8v??1v若已知支路电压减少一个,不能求出全部未知电压。

电路理论基础课后答案(哈工大陈希有)第11章

电路理论基础课后答案(哈工大陈希有)第11章

电路理论基础课后答案(哈工大陈希有)第11章题11.1 根据定义求和的象函数。

解: (1)(2)题11.2设求的象函数。

解:由拉氏变换的微分、线性和积分性质得:题11.3设(t 为纯数)。

分别求对应象函数、、,验证卷积定理。

解:设 , 则与的卷积为)()(t t t f ε=)(e )(t t t f atε-=2020001e 1e 1e e )()(-ss dt s s t dt t t s F stst st st=-=+-==∞-∞-∞-∞----⎰⎰ε20)(20)(00)(1e )(1e 1e e )(e )(-ααααεααα+=+-=+++-==∞+-∞+-∞-∞-----⎰⎰s s dt s s t dt t t s F t s t s st st t ξξετd f c t bf tt f a t f f t A t f t t )()(d )(d )(,0)0(),()e 1()(011121/1⎰-++==-=--)(2t f )(2s F )/1(//1)(1τττ+=+-=s s A s A s A s F )/1(/)()()/(]/)([)()]0()([)(22111112ττ+++=++=++-=-s s A c bs as s F s c b as s s F c s bF f s sF a s F )()()(,e 2)(,e 5)(215221t f t f t f t f t f tt *===--)(1s F )(2s F )(s F 25)}({)(11+==s t f s F L 52)}({)(22+==s t f L s F )5)(2(10)()(21++=s s s F s F )(1t f )(2t f对上式取拉氏变换得:由此验证。

题11.4求下列函数的原函数。

(a) (b)(c)解:(a), 所以(b)所以)e e (310]e 31[e 10e e 10e 2e 5)(*)(520350350)(5221tt t tt ttt d d t f t f --------=⨯==⨯=⎰⎰ξξξξξξ)5)(2(10)5121(310)}(*)({21++=+-+=s s s s t f t f L )()()}(*)({2121s F s F t f t f =L 6512)(2+++=s s s s F)2)(1(795)(23+++++=s s s s s s F 623)(2++=s s s F 6512)(2+++=s s s s F 3221+++=s A s A 3|31221-=++=-=s s s A 3|31221-=++=-=s s s A tt s s t f 321e 5e 3}3523{)(---+-=+++-=L )2)(1(795)(23+++++=s s s s s s F 212)2)(1(3221+++++=+++++=s A s A s s s s s 2|2311=++=-=s s s A 1|1321-=++=-=s s s A tt t t s s s L t f 21e e 2)(2)(}21122{)(----++'=+-++++=δδ(c)查表得题11.5分别求图示(a)、(b)电路的等效运算阻抗或等效运算导纳。

电路理论基础(陈希有)课后题答案

电路理论基础(陈希有)课后题答案

答案12.1解:分别对节点①和右边回路列KCL 与KVL 方程:Cq u u i i qi C L L R C C /===--==ψ将各元件方程代入上式得非线性状态方程:C q C q f f q/)/()(21=--=ψψ方程中不明显含有时间变量t ,因此是自治的。

答案12.2解:分别对节点①、②列KCL 方程: 节点①:=1i 321S 1/)(R u u i q--= 节点②:=2i 423212//)(R u R u u q--= 将)(),(222111q f u q f u == 代入上述方程,整理得状态方程:⎩⎨⎧+-=++-=)/())((/)(/)(/)(4343223112S 3223111R R R R q f R q f q i R q f R q f q答案12.3解:分别对节点①列KCL 方程和图示回路列KVL 方程得:⎩⎨⎧-=-=(2)(1) /323321u u R u i qS ψ 3u 为非状态变量,须消去。

由节点①的KCL 方程得:0413332432=-++-=++-R u u R u i i i i 解得)/()]()([)/()(433224114332413R R R f R q f R R R i R u u ++=++=ψ 将)(111q f u =、)(222ψf i = 及3u 代入式(1)、(2)整理得:⎩⎨⎧++-+-=+++-=Su R R R R f R R R q f R R R f R R q f q)/()()/()()/()()/()(4343224331124332243111ψψψ 答案12.4解:由KVL 列出电路的微分方程:=L u )(sin )(d d 3t R u Ri tS ωβψαψ+-=+-= 前向欧拉法迭代公式:)](sin )([31k k k k t R h ωβψαψψ+-+=+后向欧拉法迭代公式:)](sin )([1311++++-+=k k k k t R h ωβψαψψ梯形法迭代公式:)](sin )()(sin )([5.013131++++-+-+=k k k k k k t R t R h ωβψαωβψαψψ答案12.5解:由图(a)得:tu C u U t C t u Ci R R C R d d )(d dd d S -=-== (1) 由式(1)可知,当0>R i 时,0d d <t u R ,R u 单调减小;当0<R i 时,0d d >tuR ,R u 单调增加。

陈希有电路理论教程答案

陈希有电路理论教程答案

陈希有电路理论教程答案【篇一:电路理论基础课后答案(哈工大陈希有)第12章】图题12.1解:分别对节点①和右边回路列kcl与kvl方程:?iq?ir?ilc?c??u???u?q/clc将各元件方程代入上式得非线性状态方程:??q?f(?)?f(q/c)12???q/c方程中不明显含有时间变量t,因此是自治的。

题12.2图示电路,设u,列出状态方程。

?f(q),u?f(q)111222r图题12.2r4解:分别对节点①、②列kcl方程:节点①:??i?(u?u)/ri1?q 1s123节点②:??(u?u)/r?u/ri2?q 212324将u?f(q),u?f(q)111222代入上述方程,整理得状态方程:?q??f(q)/r?f(q)/r?i?1113223s??q?f(q)/r?f(q)(r?r)/(rr)2113223434?题12.322出电路的状态方程。

uu1解:分别对节点①列kcl方程和图示回路列kvl方程得:图题12.3?qiu (1)?1?2?3/r3????u?u(2)?2s3u3为非状态变量,须消去。

由节点①的kcl方程得:u?u3u31?i?i?i??i?0 2342rr34解得u?(u?ri)r/(r?r)?[f(q)?rf()]r/(r?r) 314233411422334将?及u3代入式(1)、(2)整理得:?q??f(q)/(r?r)?f()r/(r?r)?1113422334????f(q)r/(r?r)?f()rr/(r?r)?u211334223434s????题12.4,试分别写出用前向欧拉法、后向欧拉法和梯形法计算响?sin(?t) us图题12.4l解:由kvl列出电路的微分方程:ul?d???ri?u??)??sin(?t) sdt前向欧拉法迭代公式:????h[?)??sin(?t)]k?1kkk后向欧拉法迭代公式:????h[?)??sin(?t)]k?1kk?1k?1梯形法迭代公式:????0.5[)??(?t))??sin(?t)]k?1kkkk?1k?1题12.5?1f,u(0)?7v,u?10v电路及非线性电阻的电压电流关系如图所示。

电路理论基础(陈希有)课后题答案

电路理论基础(陈希有)课后题答案

答案15.1解: 波阻抗Ω500400102003c =⨯==++i u Z终端反射系数133c 2c 22=+-=Z R Z R N故负载承受的电压V k 15.24610200)1331(32222=⨯⨯+=+=++u N u u 答案15.2解:终端反射系数31c c 2=+-=Z Z Z Z N L L始端反射系数1cS cS 1-=+-=Z Z Z Z N这是一个多次反射过程,反射过程如图题15.2所示。

其中v l t d /= 当vlt 20<<时,反射波未达到始端,只有入射波。

mA 30500V 15c 11=Ω===+Z u i i 当vlt v l 42<<时,反射波到达始端, mA 101010302121=--=+-=+++i N N i N i i 当vlt v l 64<<时 ,始端电流为: mA 67.1631031010103022212212121=++--=+-+-=+++++i N N i N N i N N i N i i 达到稳态时mA 15)(211==∞R u i 所以⎪⎩⎪⎨⎧<<<<<<=v l t l/v v l t l/v v l t t i /64 16.67mA /42 10mA /20 mA30)(1 mA 15)(211==∞R u i图题15.2答案15.3解:波从始端传到中点所用的时间为:μs 10s 1010310325831==⨯⨯==-v l t (1)当μs 100<<t 时,入射波从始端发出,尚未到达中点所以 0)(=t i 。

(2)μs 30μs 10<<t 时,入射波已经过中点,但在终端所产生的反射波还没有到达中点。

A 2.0600600240)(c S S 1=+=+==+Z R U i t i(3) μs 60μs 30<<t 时,在终端所产生的反射波已经过中点,并于μs 40=t 时 刻到达始端。

电路理论基础(哈尔滨工业大学陈希有第3版)5

电路理论基础(哈尔滨工业大学陈希有第3版)5

1 i( )d CN
t

t
i ( )d

t
i ( )d

i
串联等效电容的倒数等 于各电容的倒数之和。 如图5.5(b)所示。
1 1 1 1 Ceq C1 C2 CN
u
Ceq
图5.5(b) 等效电容
为了得到电容值较大电容,可将若干电容并联起来使用,如图5.6(a)所示。
i
uL
di 0.11.5V 0.15V dt p ui (0.225t 0.45)W
3A
(b)
t
0
u
0 .15 V
2s
4s
6s
(4) t 6s :
1 wm Li 2 (0.1125t 2 0.45t 0.45) J 2
(c)
t
0
0.15V
p
电压、功率及能量均为零。 各时段的电压、功率及能量的变化规 律如右图 (c)、(d)、(e)所示。 小结:本题可见,电流源的端电压决定于 外电路,即决定于电感。而电感电压与电 流的变化率成正比。因而当 2s t 4s 时, 虽然电流最大,电压却为零。
i
5A
i
C
u
0
3s
t
7s
2A
(a) 图 5.8(a)
电容电压计算如下
(1) 0 t 3s :i 5A>0 ,电容充电
1 u u (0) C

1 i( )d 30 V 0 0.2F
t
5Ad 30 V 25t
0
t
并且 u(3s) (30 25 3)V 105V
q
u

电路理论基础第三版陈希有第六章答案

电路理论基础第三版陈希有第六章答案

第六章答案6.1解:将2i 和3i 改写为余弦函数的标准形式,即234cos(190)A 4cos(190180)A 4cos(10)A5sin(10)A 5cos(1090)A 5cos(80)Ai t t t i t t t ωωωωωω=-+︒=+︒-︒=+︒=+︒=+︒-︒=-︒电压、电流的有效值为12370.7V, 1.414A 2.828A, 3.54A U I I I ======== 初相位12310,100,10,80u i i i ψψψψ====-相位差111010090u i ϕψψ=-=-=- 11u i u i 与正交,滞后于; 2210100u i ϕψψ=-=︒-︒= u 与2i 同相; 3310(80)90u i ϕψψ=-=︒--︒= u 与3i 正交,u 超前于3i答案6.2()()()().a 10cos(10)V-8b arctg 10233.1V,233.1)V -6-20.8c arctg 20.889.4A,20.8cos(89.4)A 0.2d 30180A,180)A m u t U u t I i t I i t ωωωω=-︒==∠︒=+︒==∠-︒=-︒=∠︒=+︒答案6.3解:(a)利用正弦量的相量表示法的线性性质得:11221,U I n U I n ==- (b)磁通相量通常用最大值表示,利用正弦量的相量表示法的微分性质得:mj m U N ω=Φ (c) 利用正弦量的相量表示法的线性性质与微分性质得:j URI LI ω=+答案6.4解:由KCL 得电流i 的振幅相量m 1m 2m 3mI I I I =++ (2100410580)A =∠︒+∠︒+∠-︒(0.347j 1.97 3.939j0.6950.868j4.924)A =-++++-A 86.265︒-∠=电流i 的瞬时值为5cos(26.86)A i t ω=-︒答案6.5解:电压表和电流表读数为有效值,其比值为阻抗模,即/U I =将已知条件代入,得100V 15A 100V10⎧=⎪⎪=Ω 联立方程,解得13.7mH, 5.08L R ==Ω答案6.6解:(a) RC 串联电路中电阻电压与电容电压相位正交,各电压有效值关系为30V U ===电流i 的有效值为30V 3A 10C C U I I X ====Ω(b)302A 60V C C U X I ==Ω⨯=60V 1.2A 50R U I R ===ΩRC 并联电路中电阻电流与电容电流相位正交,总电流有效值为2.33I A === (c)30130C C C U X I A V ==Ω⨯=由30215C L C L L L U V U U X I I A X ==⇒===Ω并联电容、电感上电流相位相反,总电流为1L C I I I A =-= 电阻电压与电容电压相位正交,总电压为:50U V ===答案6.7解:感抗()3210rad/s 0.1H 200L X L ω==⨯⨯=Ω容抗()()3611100210rad/s 510FC X C ω--=-==-Ω⨯⨯⨯ 图(a)电路的相量模型如图(b)所示。

电路理论基础(陈希有)习题答案第九章

电路理论基础(陈希有)习题答案第九章

2f C 2 C1
所以
C
答案 9.8 解:(1)根据题意,电路发生谐振时,存在下列关系:
1 / LC 10 4 rad/s I U / R 1A U LI 10V L
解得
R 0.1 L 1 mH C 10 F
品质因数 U 10 Q L 100 U 0.1 (2) I (j C ) 10 10 90 V 10 90 V U C 即有 uC 10 2 cos( t 90)V
不随频率变化得 R1 R2 R ,式(1)简化为
1
LC ( jL 1 jC ) 2 R L C R ( jL 1 jC ) R Z ( j ) 2 R LC R L C R( jL 1 jC ) R ( jL 1 jC ) R 由 Z ( j ) 为实数得: LC LC L 2 R , R2 R R C 故当 R1 R2 L C 时端口电流与端口电压的波形相似, 此时 Z ( j ) L C 。 答案 9.4 解: RC 并联的等效阻抗 R / jC R Z RC R 1/ jC 1 jRC Z RC /U H ( j ) U 2 1 jL Z RC R 1 2 R jL(1 jRC ) 1 LC jL / R 幅频特性 1 H ( j ) (1 2 LC ) 2 (L / R) 2
| Z ( j ) |
1 0.7
( )
O 1 2 3 4
/ c
45
1 2 3 (b) 4

O
/ c
90
(c)
答案 9.3 解:等效输入阻抗 R j L R jC Z ( j ) 1 2 R1 j L R2 j C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
Im3 2I
由图可见,控制量和待求电流支路所在回路均只有一个回路电流经过,即
I m2 I , Im1 Ix 。这样上式可整理成
(1
(0.5 1) Ix (0.5 1) I 1 2I 5V 0.5) Ix (0.5 1 2 1) I 3 2I
0
解得
Ix 5A
答案 2.16
联立解得
Il1 1A Il2 5A Il3 10A
所求支路电流
I Il2 Il3 5A
答案 2.15 解:适当选取独立回路使受控电流源只流过一个回路电流,如图所示。
0.5
Im1 1 I x
1
Im2
Im3
2
I
对图示三个回路所列的 KVL 方程分别为
(1
(0.5 1) Im1 (0.5 1) Im2 1 Im3 5V 0.5) Im1 (0.5 1 2 1) Im2 3 Im3
Rx
R
rRx r Rx
解得
Rx (R R2 4Rr ) / 2 因为电阻为正值,所以应保留正的等效电阻, 即
Rx (R R2 4Rr ) / 2
(1)
(b)图(b)为无限长链形电路,所以从11' 和 22 ' 向右看进去的等效电阻均为 Rx ,
故计算 Rx 的等效电路如图(b-1)所示。参照图(a-1)及式(1)得:
答案 2.1
解:本题练习分流、分压公式。设电压、电流参考方向如图所示。
(a) 由分流公式得:
I
2 3A 2 R
2 3
A
解得
R 75 (b) 由分压公式得:
U
R 3V 2 R
2 3
V
解得
R
4 7
答案 2.2 解:电路等效如图(b)所示。
I2
1k
U1
5k
3k
20mA 20k
+
UR
_
I2 20mA
m2
Im
4V 2 U
10V 10V
(1)
8 Im3 2 I U 0
补充方程 Im2 Im3 0.1 A
(2)
将控制量用回路电流来表示:
I Im1 Im2
(3)
将(1)、(2)式代入(3)式,整理得:
30 Im1 20 Im2 6V
220Im1I2m13I5m2
Im2 U 8 Im3
电阻。
答案 2.8 解:(a) (1)将电压源串电阻等效为电流源并电阻,如图(a-1)
+ 4V _ 2
3A
2 6A
I
2
7
(a-1)
(2)将两并联电流源电流相加,两 2 电阻并联等效为1 电阻,2A 电流源与 2 电阻并联等效为 4V 电压源与 2 电阻串联,如图(a-2)
+ 4V _ 2
9A
I
1
7
Im1 Im1
2 Im2 3 (2 4) Im2
Im3 5V
10V
3Im1 (3 5) Im3 5V
联立解得
Im1 2.326A , Im2 1.61A , Im3 1.71A 。 利用回路电流求得支路电流
I Im1 Im2 0.717A
答案 2.14 解:选如图所示独立回路,其中受控电流源只包含在 l3 回路中,其回路电流
I
I 76V 4Ω
76V 4Ω
0.1I 5Ω
0.5I (b-1)
0.6I 5Ω
I
76V

0.5I 4Ω
(b-2)
(d)
对等效化简后的电路,由 KVL 得 76V 0.5I (4 5)I
(b-3)
I 76V / 9.5 8A
答案 2.9
解:
(a) 此电路为平衡电桥,桥 30Ω电阻上的电流均为零,将其断开或短接不影响
0.2
0.2
1
1 3
2
2
R
2
1
2 4 2 R
(b-1)
(b-2)
在图(b-1)中有一平衡电桥,去掉桥(1/3)Ω的电阻,再等效成图(b-2),易求得
R
0.2
1 2
1 1 4
1 2
1
答案 2.10
解:此题有两种解法。
解法一:由图(a)可以看出,此图存在平衡电桥。可将图(a)化为图(b)或(c)的形式。
20k
(a)
(b)
图中等效电阻
ቤተ መጻሕፍቲ ባይዱ
R
(1
3)k
//
5k
(1 1
3) 5 3 5
k
20 9
k
由分流公式得:
I2
20mA
R
R 20k
2mA
电压
U 20k I2 40V
再对图(a)使用分压公式得:
U1
=
3 1+3
U
=30V
答案 2.3
解:设 R2 与 5k 的并联等效电阻为
R3
R2 R2
5k 5k
网孔 m2 :
R3I3 R4I4 US
网孔 m3 :
R2I2 R3I3 R5I5 rI4
(b)对独立节点列 KCL 方程
节点①: I1 I2 I3 IS 节点②: I2 I3 I4 0
对网孔列 KVL 方程,电流源所在支路的电流是已知的,可少列一个网孔的 KVL
方程。
网孔 m1: R1I1 R2I2 R4I4 US 网孔 m2 : R2I2 R3I3 US
Rx
r
r
Rx
1'
3'
2'
(a)
Rx
7.5 7.5 ......
2' (b)
Rx
r
Rx
1'
(a-1)
图 2.6
解:(a)设 R 和 r 为 1 级,则图题 2.6(a)为 2 级再加 Rx 。将 2 2 端 Rx 用始端
11 Rx 替代,则变为 4 级再加 Rx ,如此替代下去,则变为无穷级。从始端11 看等 效电阻为 Rx ,从 3 3 端看为 1级,也为 Rx , 则图(a)等效为图(a-1)。
10V U
0
Im2 Im3 0.1A
(b) 适当选取独立回路使电流源只流过一个回路电流,如图(b)所示。这样该回
路电流 Im3 便等于电流源 0.1A 。因此减少一个待求的回路电流。对图(b)所示三个回 路所列的 KVL 方程分别为
(10 20)
20 Im1
Im1 20 Im2 (8 15 20) I

50 4(1 )
40 (9 4)
0
得: 7.25
答案 2.17
解:图(a)、(b)为同一电路模型,选取了不同的回路列回路电流方程。
(a) 在图(a)中以网孔作为独立回路。电流源的两端电压 U 是未知的,应将其直
接列入回路电流方程:
(10 20) 20 Im1
Im1 20 I (20 15)
Il1 10I1,并且可以不用列写该回路的 KVL 方程。回路电流方程如下:
4 Il2
12V 10I1
3 2 Il1
5 Il3 6
I1
I
(3
(2 3 5) Il1 (3 5) Il1 (3 4 6
5) 5)
Il Il2
2
5 Il3 0 (5 6) Il3
12V
Il3 10Il1
1 10
Rx 1'
7.5 Rx
(b-1)
Rx (R R2 4Rr ) / 2 代入数据得:
Rx 10
102
4 2
10
7.5
15
所以
Rx 15
答案 2.7 解 (a) 电流源 IS 与电阻 R 串联的一端口,其对外作用,可用电流源 IS 等效代
替,如图(a-1);再将电压源与电阻的串联等效成电流源与电阻的串联,如图(a-2); 将两个并联的电流源电流相加得图最简等效电路(a-3)。
1A
10V
1A 2A
3A
5
5
5
(a-1)
(a-2)
(a-3)
(b) 图(b)中与电压源并联的 5 电阻不影响端口电压、电流。电路的化简过程
如图(b-1)至图(b-3)所示。
10A
50V
5
5
50V 5 50V
5 100V
(b-1)
(b-2)
(b-3)
注释:在最简等效电源中最多含两个元件:电压源与串联电阻或电流源与并联
12mA
由节点①的 KCL 得
I I1 I2 8mA 12mA 4mA
答案 2.5 解:首先将电路化简成图(b)。
I2
270
I2
140
160
10A
I1
U
I3
10A I1
R2
100 U1 200
U
3
120
R1
(a)
图 题2.5
(b)
图中
R1 (140 100) 240
R2
270
(200 (200
160) 160)
120 120
360
由并联电路分流公式得
I1
10A
R2 R1 R2
6A

I2 10 I1 4A
再由图(a)得
I3
I2
120 360 120
1A
由 KVL 得,
U U3 U1 200I 3100I1 400V
答案 2.6
1 R3 R 2
10 2 10
1R
4V 10V m2 8 Im3
2
I
10V
相关文档
最新文档