函数·典型例题分析
函数及其图像典型例题
函数及其图像典型例题例1、已知点()p x y ,的坐标满足方程x y ++-=120,则点p 在( )A .第一象限B .第二象限C .第三象限D .第四象限分析:这道题首先考察了平面内点的坐标,在各象限内的横纵坐标的特点,其次是绝对值,算术平方根,互为相反数的性质与概念的理解。
由x y ++-=120,可知:x y =-=12,,所以点()p x y ,,在第二象限,应选(B )。
例2、已知点M m -⎛⎝ ⎫⎭⎪123,关于原点对称的点在第一象限,那么m 的取值范围是 ;分析:这道题考查对称点的特点,关于原点对称的点,它们的横纵坐标互为相反数,与点M关于原点对称的点在第一象限,说明点M 在第三象限,则30m <,,即m <0例3、求函数自变量的取值范围 (1)函数y xx =--532自变量x 的取值范围是 ;(2)函数y x x =++-25自变量x 的取值范围是 ;分析:由解析式给出的函数表达式,自变量x 的取值范围应使解析式有意义,即二次根式的被开方式要大于等于零,分式的分母不能等于零,等。
解:(1) 50320235-≥->⎧⎨⎩∴<<x x x(2) x x x +≥-≥⎧⎨⎩∴-≤≤205025例4、平行四边形相邻的两边长是x y ,,它的周长是30,则y 关于x 的函数关系式是 。
解:平行四边形对边相等,所以周长为2230x y +=,得到x y +=15,则y 关于x 的函数关系式为:()y x x =-+<<15015例5、已知,如图,正方形ABCD 中,E 是BC 边上的点,F 是CD 边上的点,且AE =AF ,AB =4,设三角形AEF 的面积为y ,EC 为x ,求y 与x 之间的函数关系式,并在直角坐标系中画出这个函数的图象。
简解: ABCD AB AD B D 是正方形,,∴=∠=∠=∠Rtx FC EC CD BC DF BE ADF ABE AF AE ==∴==∆≅∆∴=,,,, 且 BE DF x ==-4则正方形S S S S AEF ABE CEF ∆∆∆∆=--2即()y x x =-⨯⨯⨯--1621244122整理合并为:y x x =-+1242,因为E 点在BC 上,F 是CD 上的点,当E 与C 点重合时三角形AEF 不存在,所以x 的取值范围是()04<≤x (图象略)例6、已知:y -1与x 成正比例,当x =2时,y =9那么y 与x 之间的函数关系是 。
初二关于函数的10题典型例题
初二关于函数的10题典型例题初二数学中关于函数的典型例题有很多,下面列举了其中的10题,并进行了解答。
1. 已知函数 f(x) = 2x + 1,求 f(3) 的值。
解答:将 x 替换为 3,计算得 f(3) = 2 * 3 + 1 = 7。
2. 已知函数 g(x) = x^2 + 3x,求 g(-2) 的值。
解答:将 x 替换为 -2,计算得 g(-2) = (-2)^2 + 3 * (-2) = 4 - 6 = -2。
3. 已知函数 h(x) = 4x^3 + 2x^2 + x,求 h(0) 的值。
解答:将 x 替换为 0,计算得 h(0) = 4 * 0^3 + 2 * 0^2 + 0 = 0。
4. 已知函数 f(x) = 3x - 2,求 f(1/2) 的值。
解答:将 x 替换为 1/2,计算得 f(1/2) = 3 * (1/2) - 2 = 1/2 - 2 = -3/2。
5. 已知函数 g(x) = 2x + 3,求使得 g(x) = 7 的 x 的值。
解答:将 g(x) = 7,解方程得 2x + 3 = 7,即 2x = 4,x = 2。
6. 已知函数 h(x) = 5x^2 + 4x + 1,求使得 h(x) = 0 的 x 的值。
解答:将 h(x) = 0,解方程得 5x^2 + 4x + 1 = 0,该方程可以因式分解为 (5x + 1)(x + 1) = 0,得到 x = -1 或 x = -1/5。
7. 已知函数 f(x) = 2x^2 + 5x + 3,求 f(-1) 的值。
解答:将 x 替换为 -1,计算得 f(-1) = 2 * (-1)^2 + 5 * (-1) + 3 = 2 - 5 + 3 = 0。
8. 已知函数 g(x) = 3x^2 + 2x + 1,求 g(2) 的值。
解答:将 x 替换为 2,计算得 g(2) = 3 * 2^2 + 2 * 2 + 1 = 12 + 4 + 1 = 17。
高三数学 函数的单调性和最值典型例题解析之一
高三数学函数的单调性和最值典型例题解析1.由二次函数的值域和对数函数的单调性,求得()f x 的最小值,解不等式112log 48a a ⎛⎫≥+ ⎪⎝⎭,可得所求范围. 【详解】(1)由2040x a a x ->⎧⎨->⎩可得24a x a <<,则()f x 的定义域为()2,4a a ,()log (2)log (4)log (2)(4)a a a f x x a a x x a a x =-+-=--22log (3)a x a a ⎡⎤=--+⎣⎦,当1a >时,()f x 的增区间为()2,3a a ,减区间为()3,4a a .证明:设()22()3g x x a a =--+,()g x 的增区间为(),3a -∞,减区间为()3,a +∞,当1a >时,设1223a x x a <<<,可得()()12g x g x <,()()12log log []a a g x g x <⎡⎤⎣⎦,即()()12f x f x <,可得()f x 在()2,3a a 递增;设1234a x x a <<<,可得()()12g x g x >,()()12log log []a a g x g x >⎡⎤⎣⎦, 即()()12f x f x >,可得()f x 在()3,4a a 递减.(2)由01a <<,()2223x a a a --+≤,可得2()log 2a f x a ≥=,所以112log 48a a ⎛⎫≥+ ⎪⎝⎭,即为211048a a --≤,解得102a <≤,即a 的取值范围是10,2⎛⎤⎥⎝⎦.2. 已知定义域为R 的函数12()12xxf x -=+. (1)试判断函数12()12xxf x -=+在R 上的单调性,并用函数单调性的定义证明;(2)若对于任意t ∈R ,不等式22(2)()0f t t f t k -+-<恒成立,求实数k 的取值范围. 【答案】(1)函数()f x 在R 上单调递减,证明见解析;(2)1,2⎛⎫-∞- ⎪⎝⎭.【详解】(1)函数12()12xx f x -=+在R 上单调递减.证明如下:任取12,x x ∈R ,且12x x <,122112*********(22)()()1212(12)(12)x x x x x x x x f x f x ----=-=++++,因为12x x <,所以1222x x <,1120x +>,2120x +>,即12()()f x f x >,故函数12()12xxf x -=+在R 上单调递减. (2)因为1221()()1221x x x x f x f x -----===-++,故12()12xxf x -=+为奇函数,所以222(2)()()f t t f t k f k t -<--=-, 由(1)知,函数()f x 在R 上单调递减,故222t t k t ->-,即2220t t k -->对于任意t ∈R 恒成立,所以222k t t <-,令()222g t t t =-,则()min k g t <,因为()22111222222g t t t t ⎛⎫=-=--≥- ⎪⎝⎭,所以()min 12g t =-,所以12k <-,即实数k 的取值范围是1,2⎛⎫-∞- ⎪⎝⎭.3.下列函数中是偶函数,且在区间(0,1)上单调递增的是() A .22y x =-B .2y x=C .1||||y x x =+D .2||x y x =【答案】AD 【详解】A ,因为()()()2222f x x x f x -=--=-=,22y x =-是偶函数,在区间(0,1)上为增函数,符合题意;B ,因为()()22x x f x f x =--=--=,2y x=是奇函数,且在区间(0,1)上为减函数,不符合题意; C ,因为()()11||||||||f x x x f x x x -=-+=+=-,1||(0)||y x x x =+≠是偶函数,当(0,1)x ∈时,1y x x=+单调递减,不符合题意;D ,因为()()22||||x x f x f x x x -===-,2(0)||x y x x =≠是偶函数,且在区间(0,1)上为增函数,符合题意. 故选:AD4.定义在[1,1]-上的奇函数()f x ,对任意,0m n ≠时,恒有()()0f m f n m n+>+.(1)比较1()2f 与1()3f 大小;(2)判断()f x 在[1,1]-上的单调性,并用定义证明;(3)若810a x -+>对满足不等式11()(2)024f x f x -+-<的任意x 恒成立,求a 的取值范围. 【答案】(1)11()()23f f >;(2)函数()f x 在[1,1]-上为单调递增函数,证明见解析;(3)4a >. 【解析】试题解析:(1)利用作差法,即可比较1()2f 与1()3f 大小;(2)利用单调性定义证明步骤,即可得出结论;(3)先确定x 的范围,再分离参数求最值,即可求a 的取值范围.试题解析:(1)第一步,由()()0f m f n m n+>+得出031213121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f :∵11()023+-≠,031213121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f , ∵03121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f , 第二步,由奇偶性得出结论: ∵11()()23f f >--∵11()()23f f >. (2)第一步,取值、作差: 任取12[1,1]x x ∈-,且12x x <,21212121212121()()()()()()()()()f x f x f x f x f x f x x x x x x x x x -+--=-=--+-.第二步,判断符号:∵2121()()0()f x f x x x +->+-,210x x ->,∵21()()0f x f x ->,第三步,下结论:∵函数()f x 在[1,1]-上为单调递增函数. (3)4a >.考点:函数奇偶性与单调性的综合问题. 5.已知函数()21xf x x =+. (1)判断并证明函数()f x 的奇偶性;(2)判断当()1,1x ∈-时函数()f x 的单调性,并用定义证明; (3)若()f x 定义域为()1,1-,解不等式()()210f x f x -+<. 【答案】(1)奇函数(2)增函数(3)1{|0}3x x <<【解析】试题解析:(1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x ,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。
第三章 函数的概念与性质典型易错题集(解析版)
第三章 函数的概念与性质典型易错题集易错点1.忽视定义域表示的是谁的范围【典型例题1】(2022·黑龙江让胡路·大庆中学高一月考)已知函数()y f x =的定义域为[)1,2-,则函数()2y f x =+的定义域为( )A .[]3,0-B .[)1,4C .[)3,0-D .(]1,4【错解D 】因为函数()y f x =的定义域为[)1,2-,即12x -≤<,对于()2y f x =+有124x ≤+<。
点评:本题错解在于将()y f x =中的“x ”与()2y f x =+中的“x ”当成同一个量,其次就是没有理解函数定义域的定义,表示的是“x ”的取值范围,本题错解反而求()2y f x =+中2x +的取值范围当做定义域。
【正解】C 【详解】因为函数()y f x =的定义域为[)1,2-, 所以122x -≤+<,解得30x -≤< 所以函数(2)y f x =+的定义域为[)3,0-. 故选:C.易错点2.解不等式问题时忽略讨论最高项系数是否为0【典型例题2】(2022·黑龙江让胡路·大庆中学高一月考)若函数()f x =的定义域为R ,则实数m 的取值范围是( ) A .()0,4 B .[)0,4C .[]0,4D .(](),04,-∞+∞【错解A 】函数的定义域为R ,即不等式224mx mx ++>0的解集为R2416004m m m m >⎧⇒<<⎨⎩∆=-<点评:在解不等式问题时,本题错解漏了考虑最高项系数为0的情况,在解不等式问题时,需要特别注意最高项系数为0的情况。
【正解】B 【详解】函数的定义域为R ,即不等式224mx mx ++>0的解集为R(1)当0m =时,得到40>,显然不等式的解集为R ;(2)当0m <时,二次函数224y mx mx =++开口向下,函数值y 不恒大于0,故解集为R 不可能. (3)当0m >时,二次函数224y mx max =++开口向上,由不等式的解集为R , 得到二次函数与x 轴没有交点,即24160m m ∆=-<,即(4)0m m -<,解得04m <<; 综上,a 的取值范围为[)0,4 故选:B易错点3.忽视函数的定义域【典型例题3】(2022·全国高一单元测试)若1)f x =+()f x 的解析式为( ) A .2()f x x x =-B .2()(0)f x x x x =+≥C .()2()1f x x x x =-≥D .2()f x x x =+【错解A 】1)f x =+1t =,则2(1)x t =-, ∴22()(1)1f t t t t t =-+-=-,, ∴函数()f x 的解析式为2()f x x x =-.点评:本题错解在换元时没有考虑变量的取值范围,换元必换范围。
初中数学《一次函数的图像》典型例题及答案解析
【答案】B
【解析】
由图表可知,苹果在下落过程中,越来越快,每秒之间速度增加依次为5、15、25、35、45等等,所以观察备选答案B错误.故选B.
15.下表是弹簧挂重后的总长度L(cm)与所挂物体重量x(kg)之间的几个对应值,则可以推测L与x之间的关系式是()
【解析】
【分析】
设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
【详解】
分三种情况:
①当P在AB边上时,如图1,
设菱形的高为h,
y= AP•h,
∵AP随x的增大而增大,h不变,
∴y随x的增大而增大,
故选项C不正确;
初中数学《一次函数的图像》典型例题及答案解析
1.在某次试验中,测得两个变量m和v之间的4组对应数据如下表:
m
1
2
3
4
v
0.01
2.9
8.03
15.1
则m与v之间的关系最接近于下列各关系式中的( )
A.v=2m-1B.v=m2-1C.v=3m-3D.v=m+1
【答案】B
【解析】
【分析】
一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.
D.随着时间的变化,步行离家的距离变化慢,搭轻轨的距离变化快,符合题意,故D正确;
故选:D.
【点睛】
本题考查的是函数图像,熟练掌握图像是解题的关键.
9.函数y= 的图象为( )
A. B.
C. D.
【答案】D
【解析】
【分析】
分x 0和x 两种情况去掉绝对值符号,再根据解析式进行分析即可。
函数的定义域与值域求法典型例题(解析版)
专题13:函数的定义域与值域求法典型例题(解析版)函数定义域的常见其一、已知函数解析式型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。
例1、求函数yx 2 2x 15的定义域。
x 3 82 x 5或x3 x 2x 15 0解:要使函数有意义,则必须满足即 x 5且x 11 x 3 8 0解得x 5或x 3且x 11即函数的定义域为x x 5或x 3且x 11 。
二、抽象函数型抽象函数是指没有给出解析式的函数,不能用常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的定义域,一般有两种情况。
(一)已知f (x )的定义域,求f g (x ) 的定义域。
其解法是:已知f (x )的定义域是[a ,b ]求f g (x ) 的定义域是解a g (x ) b ,即为所求的定义域。
例2、已知f (x )的定义域为[ 2,2],求f (x 1)的定义域。
2解: 2 x 2, 2 x 1 2,解得 3 x 23即函数f (x 1)的定义域为x 3 x 3(二)已知fg (x ) 的定义域,求f (x )的定义域。
2其解法是:已知f g (x ) 的定义域是[a ,b ]求f (x )的定义域的方法是:a x b ,求g (x )的值域,即所求f (x )的定义域。
例3、已知f (2x 1)的定义域为[1,2],求f (x )的定义域。
解: 1 x 2, 2 2x 4, 3 2x 1 5。
即函数f (x )的定义域是x |3 x 5 。
三、逆向思维型即已知所给函数的定义域求解析式中参数的取值范围。
特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。
例4、已知函数ymx 2 6mx m 8的定义域为R 求实数m 的取值范围。
22分析:函数的定义域为R ,表明mx 6mx m 8 0,使一切x R 都成立,由x 项的系数是m ,所以应分m 0或m 0进行讨论。
指数函数典型例题详细解析
指数函数典型例题详细解析指数函数·例题解析第一课时例1:求下列函数的定义域与值域:1) $y=\frac{3}{2-x}$解:定义域为$x\in R$且$x\neq 2$,值域为$y>0$且$y\neq1$。
2) $y=2x+2-1$解:由$2^{\frac{x+2}{2}-1}\geq 0$,得定义域为$x\geq -2$,值域为$|y|\geq 0$。
3) $y=3-3x-1$解:由$3-3^{\frac{x-1}{2}}\geq 0$,得定义域为$x\leq 2$,由$3-3^{\frac{x-1}{2}}<3$,得值域为$y<3$。
1.指数函数$y=a^x$($a>0$且$a\neq 1$)的定义域是$R$,值域是$(0,+\infty)$。
2.求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为$0$③形如$a^0$,($a\neq 0$)3.求函数的值域:①利用函数$y=a^x$单调性②函数的有界性($x^2\geq 0;a^x>0$)③换元法。
例如:$y=4x+\frac{6}{2x-8}$($1\leq x\leq 2$),先换元,再利用二次函数图象与性质(注意新元的范围)。
例2:指数函数$y=a^x$,$y=b^x$,$y=c^x$,$y=d^x$的图像如图2.6-2所示,则$a$、$b$、$c$、$d$、$1$之间的大小关系是?解:选$(c)$,在$x$轴上任取一点$(x,0)$,则得$b<a<1<d<c$。
例3:比较大小:1)$2$、$3^2$、$5^4$、$8^8$、$9^{16}$的大小关系是:$2<3^2<5^4<8^8<9^{16}$。
2)$\frac{0.6}{4}-\frac{5}{13}-2$,$2$的大小关系是:$\frac{0.6}{4}-\frac{5}{13}-2<2$。
函数的单调性典型例题精析
2.3.1 函数的单调性·例题解析【例1】求下列函数的增区间与减区间(1)y =|x 2+2x -3|(2)y (3)y ==xx x x x 2221123-----+||解 (1)令f(x)=x 2+2x -3=(x +1)2-4.先作出f(x)的图像,保留其在x 轴及x 轴上方部分,把它在x 轴下方的图像翻到x 轴就得到y =|x 2+2x -3|的图像,如图2.3-1所示.由图像易得:递增区间是[-3,-1],[1,+∞)递减区间是(-∞,-3],[-1,1](2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间. 解 当x -1≥0且x -1≠1时,得x ≥1且x ≠2,则函数y =-x . 当x -1<0且x -1≠-1时,得x <1且x ≠0时,则函数y =x -2. ∴增区间是(-∞,0)和(0,1)减区间是[1,2)和(2,+∞)(3)解:由-x 2-2x +3≥0,得-3≤x ≤1.令u ==g(x)=-x 2-2x +3=-(x +1)2+4.在x ∈[-3,-1]上是在x∈[-1,1]上是. 而=在≥上是增函数.y u 0u∴函数y 的增区间是[-3,-1],减区间是[-1,1].【例2】函数f(x)=ax 2-(3a -1)x +a 2在[-1,+∞]上是增函数,求实数a 的取值范围.解 当a =0时,f(x)=x 在区间[1,+∞)上是增函数.当≠时,对称轴=,若>时,由>≤,得<≤.a 0x a 0a 0 3a 10a 131212a aa--⎧⎨⎪⎩⎪ 若a <0时,无解.∴a 的取值范围是0≤a ≤1.【例3】已知二次函数y =f(x)(x ∈R )的图像是一条开口向下且对称轴为x =3的抛物线,试比较大小:(1)f(6)与f(4)(2)f(2)f(15)与解 (1)∵y =f(x)的图像开口向下,且对称轴是x =3,∴x ≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4)(2)x 3f(2)f(4)34f(x)x 3∵对称轴=,∴=,而<<,函数在≥15 时为减函数.∴>,即>.f(15)f(4)f(15)f(2)【例4】判断函数=≠在区间-,上的单调性.f(x)(a 0)(11)ax x 21- 解 任取两个值x 1、x 2∈(-1,1),且x 1<x 2.∵-=∵-<<<,+>,->,-<,-<.∴>f(x )f(x )1x x 1x x 10x x 0x 10x 10012121221a x x x x x x x x x x x x ()()()()()()()()12211222121212211222111111+---+---当a >0时,f(x)在(-1,1)上是减函数.当a <0时,f(x)在(-1,1)上是增函数.【例5】利用函数单调性定义证明函数f(x)=-x 3+1在(-∞,+∞)上是减函数.证 取任意两个值x 1,x 2∈(-∞,+∞)且x 1<x 2.∵-=-++这里有三种证法:当<时,++=+->当≥时,++>f(x )f(x )(x x )(x x x x )()x x 0x x x x (x x )x x 0x x 0x x x x 02112221212121212221221212121222证法一又∵x 1-x 2<0,∴f(x 2)<f(x 1)故f(x)在(-∞,+∞)上是减函数.证法二()x x x x (x x )x x x x 0x x 0x 0x 0x x x x x x 012122212222122122112121222∵++=++,这里+与不会同时为,否则若+=且=,则=这与<矛盾,∴++>.12341212得f(x)在(-∞,+∞)上是减函数.证法三()t x x x x x 4x 3x 00x 0x 0t x 03x 0t 0x x x x 0f(x )f(x )f(x)(22121212121212221222121221令=++,其判别式Δ=-=-≤,若Δ=时,则=,那么≠,∴=>,若Δ=-<,则>,即++>,从而<,∴在-∞,+∞上是减函数.)【例6】讨论函数=+的单调性,并画出它的大致图像.f(x)x 1x解 定义域为(-∞,0)∪(0,+∞),任取定义域内两个值x 1、x 2,且x 1<x 2.∵-=-,又-<,f(x )f(x )(x x )x x x x 012121112x x 221 ∴当0<x 1<x 2≤1或-1≤x 1<x 2<0时,有x 1x 2-1<0,x 1x 2>0,f(x 1)>f(x 2)∴f(x)在(0,1],[-1,0)上为减函数.当1≤x 1<x 2或x 1<x 2≤-1时,有x 1x 2-1>0,x 1x 2>0,f(x 1)>f(x 2),∴f(x)在(-∞,-1],[1,+∞)上为增函数.根据上面讨论的单调区间的结果,又x >0时,f(x)min =f(1)=2,当x <0时,f(x)max =f(-1)=-2.由上述的单调区间及最值可大致画出=+的图像如图.-.y x 2321x说明 1°要掌握利用单调性比较两个数的大小.2°注意对参数的讨论(如例4).3°在证明函数的单调性时,要灵活运用配方法、判别式法及讨论方法等.(如例5)4°例6是分层讨论,要逐步培养.。
高三函数定义域典型例题解析
函数定义域典型例题解析1.函数的定义域是( ) A . B . C . D .【答案】C【解析】由题意得10,10,0,x x x ->⎧⎪+>⎨⎪≠⎩解得10x -<<或01x <<.所以原函数的定义域为(1,0)(0,1)-.故选:C.2.设函数的定义域为A ,函数的定义域为B ,则A ∩B 等于( ) A . B . C . D .【答案】C【解析】函数y {}2160x x -≥,即{}44A x x =-≤≤,函数ln(1)y x =-的定义域为{}10x x ->,则{}1B x x =<, 所以{}41A B x x ⋂=-≤<, 故选:C.3.函数12log (1tan )y x =-的定义域为( )A .,,24k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭B .2,2,24k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭C .,,42k k k Z ππππ⎛⎫++∈⎪⎝⎭D .2,2,42k k k Z ππππ⎛⎫++∈⎪⎝⎭【答案】A 【解析】函数12log (1tan )y x =-有意义,则()1tan 02x x k k Z ππ->⎧⎪⎨≠+∈⎪⎩, 解得()24k x k k Z ππππ-+<<+∈,1y x=[1,0)(0,1)-[1,0)(0,1]-⋃(1,0)(0,1)-(1,0)(0,1]-⋃y =ln(1)y x =-(1,4)(1,4][4,1)-(4,1)-所以函数的定义域为,,24k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭.故选:A3.求函数的定义域.【答案】当1a >时,函数的定义域为{|0}x x >;当01a <<时,函数的定义域为{|0}x x <. 【解析】要使原式有意义需要满足10x a ->,即01x a a >= 当1a >时,xy a =是R 上的增函数,所以0x >; 当01a <<时,x y a =是R 上的减函数,所以0x <; 综上所述,当1a >时,函数的定义域为{|0}x x >;当01a <<时,函数的定义域为{|0}x x <.4.若函数()f x =R ,则实数a 取值范围是( )A .[]2,2- B .()2,+∞ C .(),2-∞ D .()2,2- 【答案】A【解析】由于函数()f x =的定义域为R ,所以210x ax ++≥在R 上恒成立,即方程21=0x ax ++至多有一个解,所以240a ∆=-≤,解得22a -≤≤,则实数a 取值范围是[]2,2-.故选A .5.已知函数f (x )=的定义域是R ,则实数a 的取值范围是( ) A .012≤<-a B .012<<-a C .31>a D .31≤a 【答案】A【解析】函数()f x =的定义域为R ,只需分母不为0即可,所以0a =或()2430a a a ≠∆=-⨯-<⎧⎨⎩,可得120a -<≤,故选A . 6.已知函数的定义域为,若有定义,则实数的取值范围是( ) A .B .C .D .log (1)(01)xa y a a a =->≠且31323-+-ax ax x ()f x []1,0-()()()g x f x a f x a =+--a 1,02⎡⎤-⎢⎥⎣⎦11,2⎡⎤--⎢⎥⎣⎦10,2⎡⎤⎢⎥⎣⎦11,22⎡⎤-⎢⎥⎣⎦【答案】D【解析】由题意可得1010x a x a -≤+≤⎧⎨-≤-≤⎩,解得11a x aa x a --≤≤-⎧⎨-≤≤⎩.因为()g x 有定义,所以当0a <时,由1a a --≤,得102a -≤<;当0a >时,由1a a -≤-,得102a <≤; 当0a =时,10x -≤≤,恒成立. 综上,实数a 的取值范围是11,22⎡⎤-⎢⎥⎣⎦.故选:D .7.已知函数()f x =()11f x x -+的定义域为( )A .(),1-∞B .(),1-∞-C .()(),11,0-∞--D .()(),11,1-∞--【答案】D【解析】令24x x >,即21x <,解得0x <.若()11f x x -+有意义,则10,10x x -<⎧⎨+≠⎩,即()(),11,1x ∈-∞-⋃-.故选:D.8.已知函数的定义域是,则函数的定义域是_______. 【答案】(]1,2【解析】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+,1y x x =-在[)1,+∞上单调递增,10x x∴-≥,10111x x∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.9.用长为的铁丝编成下部为矩形,上部为半圆形的框架(如图所示).若矩形底边长为,求此框架围成的面积与关于的函数解析式,并求出它的定义域.22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭[)1,+∞()y f x =L 2x y x【答案】242y x Lx π+=-+,函数的定义域为 【解析】如图,设,则= ,于是22L x xAD π--=,因此22222L x x x y x ππ--=⨯+,即242y x Lx π+=-+,再由题得20202x L x x π>⎧⎪⎨-->⎪⎩,解之得02L x π<<+,所以函数解析式是242y x Lx π+=-+,函数的定义域是 . 1.设函数的定义域A ,函数的定义域为B ,则A B ⋂=(A )(1,2) (B ) (C )(-2,1) (D )[-2,1)【答案】D2.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x【答案】D【解析】 y =10lg x =x ,定义域与值域均为(0,+∞),只有选项D 满足题意. 3. 函数1)(log 1)(22-=x x f 的定义域为( )A .)21,0(B .),2(+∞C .),2()21,0(+∞D .),2[]21,0(+∞【答案】C(0,)2L π+2AB x =CD x π(0,)2Lπ+【解析】由已知得22(log )10,x ->即2log 1x >或2log -1x <,解得2x >或102x <<,故选C . 4.函数的定义域是( )(A) (B) (C) (D)【答案】D【解析】由解得或,故选D .5.函数的定义域为( )A .B .C .D .【答案】.【解析】由函数的表达式可知,函数的定义域应满足条件:,解之得,即函数的定义域为,故应选.6.函数1()=ln 1f x x x ++的定义域是__________. 【答案】(0,)+∞【解析】要使得函数1()ln 1f x x x =++有意义,则100x x +≠⎧⎨>⎩,即0x >,∴定义域为(0,)+∞. 【专家解读】本题考查了分式函数、对数函数定义域的求法,考查数学运算学科素养.7.已知函数()(0,1)xf x a b a a =+>≠ 的定义域和值域都是[]1,0-,则a b += .【答案】32-【解析】若1a >,则()f x 在[]1,0-上为增函数,所以1110a b b -⎧+=-⎨+=⎩,此方程组无解;若01a <<,则()f x 在[]1,0-上为减函数,所以1011a b b -⎧+=⎨+=-⎩,解得122a b ⎧=⎪⎨⎪=-⎩,所以32a b +=-.8.函数y =的定义域是 ▲ .22(x)log (x 2x 3)f [3,1](3,1)(,3][1,)-∞-+∞(,3)(1,)-∞-+∞0)1)(3(0322>-+⇒>-+x x x x 3-<x 1>x 256()lg 3x x f x x -+-(2,3)(2,4](2,3)(3,4](1,3)(3,6]-C ()y f x =()f x 2564||0,03x x x x -+-≥>-22,2,3x x x -≤≤>≠()f x (2,3)(3,4]C【答案】[1,7]-【解析】由题意得到关于x 的不等式,解不等式可得函数的定义域.由已知得2760x x +-≥,即2670x x --≤,解得17x -≤≤,故函数的定义域为[1,7]-. 9.函数的定义域为( ) A . B . C . D .【答案】D【解析】要使函数有意义,只需21020x x x -≠⎧⎨->⎩,解得102x x ≠⎧⎨<<⎩,即函数定义域为{|01x x <<或12}x <<.故选D.10.设函数y =A ,函数12x y -=的值域为B ,则A B =( )A .()0,1B .(]0,1 C .()1,1- D .[]1,1-【答案】A【解析】函数定义域满足:210x ->,即11x -<<,所以{}11A x x =-<<, 函数12x y -=的值域{}0B y y =>,所以()0,1AB =,故选:A. 11.函数) A . B . C . D .【答案】C【解析】欲使函数有意义,则0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,即012x x x >⎧⎪≠⎨⎪≤⎩,解得()(]0,11,2x ∈⋃,故选:C .12.设函数y =A ,函数ln(3)y x =-的定义域为B ,则A B =( )A .(,3)-∞B .(8,3)--C .{3}D .[3,3)-【答案】D()()221log 21f x x x x =+--()1,2()(),02,-∞+∞()(),11,2-∞()()0,11,21()lg f x x=+(0,2](0,2)(0,1)(1,2]⋃(,2]-∞【解析】由题意,对于函数y =290x -≥,解得33x -≤≤,即[]3,3A =-; 对于函数ln(3)y x =-,30x ->,解得3x <,即(),3B =-∞, 所以AB =[3,3)-.故选:D.13.已知等腰三角形的周长为,底边长是腰长的函数,则函数的定义域为( ) A . B .C .D .【答案】A【解析】由题设有402y x =-,由4020402x x x x ->⎧⎨+>-⎩得1020x <<,故选A.14.函数2()lg 2x f x x +⎛⎫= ⎪-⎝⎭的定义域为( )A .[1,2]B .[2,)+∞C .[1,2)D .(1,2]【答案】C【解析】解:根据函数()f x 解析式,有(2)(2)00ln 0x x x x +->⎧⎪>⎨⎪⎩,解得[1,2)x ∈,所以函数()f x 的定义域为[1,2)x ∈,故选:C.15.若函数()f x =R ,则实数m 取值范围是( )A .[0,8)B .(8,)+∞C .(0,8)D .(,0)(8,)-∞⋃+∞ 【答案】A【解析】∵函数f (x )的定义域为R ,∴不等式mx 2-mx +2>0的解集为R , ①m =0时,2>0恒成立,满足题意; ②m ≠0时,则280m m m ⎧⎨=-<⎩>,解得0<m <8. 综上得,实数m 的取值范围是[0,8),故选A .16.函数的定义域是__________. 【答案】[)1,4- 【解析】()()lg 4f x x =-,40cm ()y cm ()x cm ()10,20()0,10()5,10[)5,10()()lg 4f x x -1040x x +≥⎧∴⎨->⎩,解得14x -≤<,故函数的定义域为[)1,4-. 故答案为:[)1,4-.17.函数的定义域为______.【答案】(1,0)(0,2]-⋃;【解析】由题意,函数()f x =有意义,则满足2401011x x x ⎧-≥⎪+>⎨⎪+≠⎩,解得12x -<≤且0x ≠,所以函数()f x 的定义域为(1,0)(0,2]-⋃.18.函数()lg 2cos 21y x =-的定义域是______. 【答案】553,,,36666ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪⎢⎥⎣⎭⎝⎭⎝⎦【解析】因为()lg 2cos 21y x =-,所以2902cos 210x x ⎧-≥⎨->⎩,所以331cos 22x x -≤≤⎧⎪⎨>⎪⎩,所以33,66x k x k k Z ππππ-≤≤⎧⎪⎨-<<+∈⎪⎩,解得536x π-≤<-或66x ππ-<<或536x π<≤. 故答案为:553,,,36666ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪⎢⎥⎣⎭⎝⎭⎝⎦19.函数_____. 【答案】(0,1]【解析】依题意知,函数有意义,则需1020x x -≥⎧⎨>⎩,解得01x <≤,故定义域为(0,1].20.(2021·贵州省思南中学高三一模(理))函数的定义域为________. 【答案】(4,1]-【解析】由题意,要使函数()ln(4)f x x +有意义,则满足44040x x ⎧-≥⎨+>⎩,()f x ()ln(2)f x x =+()ln(4)f x x +解得41x -<≤,即函数()f x 的定义域为(4,1]-.21.如果几个函数的定义域相同、值域也相同,但解析式不同,称这几个函数为“同域函数”. 试写出y =“同域函数”的解析式为____________.【答案】23xy =-,[]1,2x ∈(答案不唯一)【解析】由1020x x -≥⎧⎨-≥⎩得:12x ≤≤ y ∴=[]1,2又y =∴值域为[]1,1-y ∴=的一个“同域函数”为23x y =-,[]1,2x ∈故答案为:23xy =-,[]1,2x ∈(答案不唯一)22.已知函数(21)f x -的定义域为(1,2)-,则函数(23)f x -的定义域为________. 【答案】15,33⎛⎫- ⎪⎝⎭【解析】因为(21)f x -的定义域为(1,2)-,即12x -<<。
《反函数典型例题精析》
《反函数_典型例题精析》反函数是指在函数关系中,将自变量和因变量的角色互换,从而得到一个新的函数关系。
它是函数关系的逆运算,用于解决一些特定的问题。
下面将通过几个典型的例题来对反函数进行精析。
例题1:已知函数y = 2x + 3,求它的反函数。
解析:要求反函数,需要将自变量和因变量的角色互换。
首先将原函数中的自变量x换成y,因变量y换成x:x = 2y + 3。
然后解方程,将y表示出来:y = (x - 3) / 2。
所以,原函数的反函数为f^(-1)(x) = (x - 3) / 2。
例题2:已知函数f(x) = x^2,求它的反函数。
解析:同样地,需要将自变量和因变量的角色互换。
将原函数中的自变量x换成y,因变量y换成x:x = y^2。
然后解方程,将y表示出来。
但是,由于原函数f(x) = x^2不是一一对应的函数,即存在多个x对应同一个y的情况,所以它没有反函数。
例题3:已知函数f(x) = e^x,求它的反函数。
解析:同样地,需要将自变量和因变量的角色互换。
将原函数中的自变量x换成y,因变量y换成x:x = e^y。
然后解方程,将y表示出来:y = ln(x)。
所以,原函数的反函数为f^(-1)(x) = ln(x)。
通过以上例题的分析可以看出,反函数的求解过程主要是将原函数中的自变量和因变量互换,然后解方程将因变量表示出来。
需要注意的是,反函数存在的条件是原函数必须是一一对应的函数,即每个自变量对应唯一的因变量。
如果原函数不是一一对应的函数,则不存在反函数。
反函数在实际问题中有着重要的应用,例如在金融领域中,可以利用反函数来解决利率计算、贷款计算等问题;在物理学中,可以利用反函数来解决速度、加速度等问题。
因此,熟练掌握反函数的求解方法对于解决实际问题具有重要意义。
总结起来,反函数是函数关系的逆运算,通过将自变量和因变量的角色互换,得到一个新的函数关系。
反函数的求解过程主要是将原函数中的自变量和因变量互换,然后解方程将因变量表示出来。
函数的单调性·典型例题精析
2.3.1 函数的单调性·例题解析【例1】求下列函数的增区间与减区间(1)y =|x 2+2x -3|(2)y (3)y ==x x x x x 2221123-----+||解 (1)令f(x)=x 2+2x -3=(x +1)2-4.先作出f(x)的图像,保留其在x 轴及x 轴上方部分,把它在x 轴下方的图像翻到x 轴就得到y =|x 2+2x -3|的图像,如图2.3-1所示.由图像易得:递增区间是[-3,-1],[1,+∞)递减区间是(-∞,-3],[-1,1](2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间. 解 当x -1≥0且x -1≠1时,得x ≥1且x ≠2,则函数y =-x . 当x -1<0且x -1≠-1时,得x <1且x ≠0时,则函数y =x -2. ∴增区间是(-∞,0)和(0,1)减区间是[1,2)和(2,+∞)(3)解:由-x 2-2x +3≥0,得-3≤x ≤1.令u ==g(x)=-x 2-2x +3=-(x +1)2+4.在x ∈[-3,-1]上是在x ∈[-1,1]上是. 而=在≥上是增函数.y u 0u∴函数y 的增区间是[-3,-1],减区间是[-1,1].【例2】函数f(x)=ax 2-(3a -1)x +a 2在[-1,+∞]上是增函数,求实数a 的取值范围.解 当a =0时,f(x)=x 在区间[1,+∞)上是增函数.当≠时,对称轴=,若>时,由>≤,得<≤.a 0x a 0a 0 3a 10a 131212a aa--⎧⎨⎪⎩⎪若a <0时,无解.∴a 的取值范围是0≤a ≤1.【例3】已知二次函数y =f(x)(x ∈R )的图像是一条开口向下且对称轴为x =3的抛物线,试比较大小:(1)f(6)与f(4)(2)f(2)f(15)与解 (1)∵y =f(x)的图像开口向下,且对称轴是x =3,∴x ≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4)(2)x 3f(2)f(4)34f(x)x 3∵对称轴=,∴=,而<<,函数在≥15 时为减函数.∴>,即>.f(15)f(4)f(15)f(2)【例4】判断函数=≠在区间-,上的单调性.f(x)(a 0)(11)ax x 21- 解 任取两个值x 1、x 2∈(-1,1),且x 1<x 2.∵-=∵-<<<,+>,->,-<,-<.∴>f(x )f(x )1x x 1x x 10x x 0x 10x 10012121221a x x x x x x x x x x x x ()()()()()()()()12211222121212211222111111+---+---当a >0时,f(x)在(-1,1)上是减函数.当a <0时,f(x)在(-1,1)上是增函数.【例5】利用函数单调性定义证明函数f(x)=-x 3+1在(-∞,+∞)上是减函数.证 取任意两个值x 1,x 2∈(-∞,+∞)且x 1<x 2.∵-=-++这里有三种证法:当<时,++=+->当≥时,++>f(x )f(x )(x x )(x x x x )()x x 0x x x x (x x )x x 0x x 0x x x x 02112221212121212221221212121222证法一又∵x 1-x 2<0,∴f(x 2)<f(x 1)故f(x)在(-∞,+∞)上是减函数.证法二()x x x x (x x )x x x x 0x x 0x 0x 0x x x x x x 012122212222122122112121222∵++=++,这里+与不会同时为,否则若+=且=,则=这与<矛盾,∴++>.12341212得f(x)在(-∞,+∞)上是减函数.证法三()t x x x x x 4x 3x 00x 0x 0t x 03x 0t 0x x x x 0f(x )f(x )f(x)(22121212121212221222121221令=++,其判别式Δ=-=-≤,若Δ=时,则=,那么≠,∴=>,若Δ=-<,则>,即++>,从而<,∴在-∞,+∞上是减函数.)【例6】讨论函数=+的单调性,并画出它的大致图像.f(x)x 1x解 定义域为(-∞,0)∪(0,+∞),任取定义域内两个值x 1、x 2,且x 1<x 2.∵-=-,又-<,f(x )f(x )(x x )x x x x 012121112x x 221 ∴当0<x 1<x 2≤1或-1≤x 1<x 2<0时,有x 1x 2-1<0,x 1x 2>0,f(x 1)>f(x 2)∴f(x)在(0,1],[-1,0)上为减函数.当1≤x 1<x 2或x 1<x 2≤-1时,有x 1x 2-1>0,x 1x 2>0,f(x 1)>f(x 2),∴f(x)在(-∞,-1],[1,+∞)上为增函数.根据上面讨论的单调区间的结果,又x >0时,f(x)min =f(1)=2,当x <0时,f(x)max =f(-1)=-2.由上述的单调区间及最值可大致画出=+的图像如图.-.y x 2321x说明 1°要掌握利用单调性比较两个数的大小.2°注意对参数的讨论(如例4).3°在证明函数的单调性时,要灵活运用配方法、判别式法及讨论方法等.(如例5)4°例6是分层讨论,要逐步培养.。
函数典型例题分析与解答
1 外部函数是指________的函数,它可以在_________中被调用。 【分析】当存储类型选用“extern”时,所定义的函数称为外部函数。外部函数可以在其他编译单位中调用(需要对这个函数进
函数调用的返回值
8 下列函数定义中,正确的是() ①int f(int x,y) ② int *f(int x,int*y) {return(y);} { return(y);} ③ int f( x,*y) ④ void f( int x;) int x, int y; {return(x);} {return;} 【分析】分析备选答案①:形式参数表不正确,两个整型变量应该写成 int x,int y。分析备选答案②:这是一个指针型函数,
行说明)。
【答案】存储类型是“extern”的函数
所有对该函数进行说明过的编译单位
2 假定在同一个编译单位中,函数a()调用了函数b(),则对函数b()不需要说明的情况有下列两种:_____________和 ________________。 【分析】教材中有明确答案(p116)。 【答案】b()函数的定义地点在a()函数定义地点之前 b()函数的数据类型是int或char 3 在函数间传递数据的四种方式中,不能把被调函数的数据带回到主调函数的是() ①值传递 ②地址传递 ③返回值传递 ④全局外部变量
【答案】递归(或间接递归)
6 下列表达式中,不能判断字符型变量ch中的字符是英文字母(是则表达式值为非0、否则表达式值为0)的表达式是() ①ch>='A'&&ch<='Z'::ch>='a'&&h<='z' ② toupper(ch)>='A'&&toupper(ch)<='Z' ③ isalpha( ch) ④ !(isdigit(ch)) 【分析】备选答案①中的逻辑表达式的含义是:当ch中的字符是大写字母或者小写字母时,结果为1,否则结果为0,该答案 不符合题意。备选答案②中使用了系统函数toupper(),该函数功能是将参数对应的字符换成大写字母(如果参数对应的字 符不是英文字母则不改变),答案中的逻辑表达式含义是:转换成大写后如果落在'A'到‘Z'之间则值为1,否则值为0。该答案 也不符合题意。备选答案③中使用了系统函数isalpha(),该函数功能是判断参数对应的字符是否是英文字母,是则返回非 0;否则返回0。显然该答案也不符合题意。只有备选答案④是符合题意的。分析这个答案中的表达式,其中用到了系统函数 isdigit(),该函数的功能是判断参数对应的字符是不是数字字符,是则返回非 0,否则返回 0,该答案中的表达式是“! isdigit(ch)”,即 ch中不是数字字符则返回1,否则返回0,因此,该表达式不能判断ch中是否英文字母,所以本题答案应选 ④。
函数的单调性·典型例题精析
函数的单调性·例题解析1 2.3.】求下列函数的增区间与减区间【例123|2x(1)y=|x-+2x2?x=(2)y|1x?1?|23xx??2(3)y=?224+1).x-+2x-3=(x(1)解令f(x)=轴轴下方的图像翻到x轴及x轴上方部分,把它在x先作出f(x)的图像,保留其在x2 1所示..3-+2x-3|的图像,如图2=就得到y|x 由图像易得:) [1,+∞,-1],递增区间是[-31],[,-1递减区间是(-∞,-3] 分析:先去掉绝对值号,把函数式化简后再考虑求单调区间.(2) .=-xy且x≠2,则函数0≥且x-1≠1时,得x≥1解当x-1 .-2时,则函数y=x1≠-时,得x<1且x≠01当x-<0且x-11) (0,(-∞,0)和∴增区间是)(2,+∞[1,2)和减区间是2 .1≤x≤2x+3≥0,得-(3)解:由-x3-2在x∈[-1,-4.在x∈[3,-1]1]上是+xu令==g(x)=-+-2x3=-(x1)2+上是.而y=u在u≥0上是增函数.∴函数y的增区间是[-3,-1],减区间是[-1,1].22在[-1,+∞a1)x(3a=函数2【例】f(x)ax--+]上是增函数,求实数a的取值范围.上是增函数.,+∞)=0时,f(x)=x在区间[1解当a1?3a,=时,对称轴x当a≠0a2?0 >a ?.1a≤a>0时,由得0<若?1?3a,1≤?a2? 0时,无解.若a<1.∴a的取值范围是0≤a ≤的抛物线,=3=f(x)(x∈R)的图像是一条开口向下且对称轴为x【例3】已知二次函数y 试比较大小:f(4)(1)f(6)与15)(2)f(2)与f(6时,f(x)为减函数,又=3,∴x≥3解(1)∵y=f(x)的图像开口向下,且对称轴是xf(4)f(6)<>4>3,∴3在x≥<15<4,函数f(x)(2)∵对称轴x=3,∴f(2)=f(4),而3时为减函数.∴f(15)>f(4),即f(15)>f(2).ax(a≠0)在区间(-1,1)上的单调性.【例4】判断函数f(x)=2?1x解任取两个值x、x∈(-1,1),且x<x.2121a(xx?1)(x?x)1122=f(x))∵f(x-2212?1x)x?1)((2122∵-1<x<x<1,xx+1>0,x-x>0,x-1<0,x-1<0.11222111(xx?1)(x?x)1212>0∴22?1)(x)(x?121当a>0时,f(x)在(-1,1)上是减函数.当a<0时,f(x)在(-1,1)上是增函数.3+1在(-∞,+∞)上是减函数.x【例5】利用函数单调性定义证明函数f(x)=-证取任意两个值x,x∈(-∞,+∞)且x<x.211222+xx+x))=(x-x)(x这里有三种证法:∵f(x)-f(x11122221222=(x+x)-x+时,0x+xxxx>0x)证法(一当x<212122112122>x0x时,x+x+≥当xx0212121又∵x-x<0,∴f(x)<f(x) 1122 上是减函数.)-∞,+∞(在f(x)故.1312222=(x+x)++xx,这里x+x证法(二)∵x+xx2112122122241与x不会同时为0,否则若x+x=0且x=0,则x=0这与x<x2112122222.x0>矛盾,∴x+xx+2112上是减函数.(-∞,+∞)得f(x)在222223x=-x-4x+x,其判别式Δ(三)令t=x=+xx证法1122111223x =-,若=xΔ>0时,则x=0,那么x≠0,∴t≤0,若Δ=0112222+xx+x>0,从而f(x)<f(x),∴f(x)在(<0,则t>0,即x-∞,121212+∞)上是减函数.1的单调性,并画出它的大致图像.x+【例6】讨论函数f(x)=x解定义域为(-∞,0)∪(0,+∞),任取定义域内两个值x、x,且x<x.2211xx 121∵f(x)-f(x)=(x-x),又x-x<0,221211xx21∴当0<x<x≤1或-1≤x<x<0时,有xx-1<0,xx>0,f(x)>f(x) 2211221112∴f(x)在(0,1],[-1,0)上为减函数.当1≤x<x或x<x≤-1时,有xx-1>0,xx>0,f(x)>f(x),∴f(x)在(-2211112212∞,-1],[1,+∞)上为增函数.根据上面讨论的单调区间的结果,又x>0时,f(x)=f(1)=2,当x<0时,f(x)maxmin=f(-1)=-2.由上述的单调区间及最值可大致1的图像如图2.3+-2.x画出y=x说明1°要掌握利用单调性比较两个数的大小.2°注意对参数的讨论(如例4).3°在证明函数的单调性时,要灵活运用配方法、判别式法及讨论方法等.(如例5)是分层讨论,要逐步培养.6°例4.例题:已知函数f(x)对任意x,y∈R均满足:f(x+y)=f(x)+f(y);f(1)=2;当且仅当x<0时,f(x)<0,求:当-3≤x≤3时,求f(x)的最大值与最小值。
《函数》典型例题
《函数》典型例题例1 下面变量之间的关系是不是函数关系?为什么?(1)矩形的面积一定,它的长与宽;(2)任意三角形的高与底;(3)矩形的周长与面积;(4)正方形的周长与面积.例2下面的表分别给出了变量x与y之间的对应关系,判断y是x的函数吗?如果不是,说明出理由.例3 判断下列关系是不是函数关系?(1)长方形的宽一定时,其长与面积;(2)等腰三角形的底边长与面积;(3)某人的年龄与身高;(4)关系式| y |=x中的y与x.例4 汽车由北京驶往相距850千米的沈阳,它的平均速度为80千米/小时,求汽车距沈阳的路程S(千米)与行驶时间t(小时)的函数关系式,写出自变量的取值范围.例5 如图,是某个篮球运动员在五场比赛中的得分情况,依据图回答:(1)该运动员第一场球得多少分;(2)哪场球得分比前一场得分少?(3)在五场比赛中最高得分是多少?最低得分是多少?(4)从这五场比赛中的得分情况分析,该运动员的竞技状态怎么样?参考答案例1 解(1)矩形的面积确定时,它的宽取一个值,就有惟一确定的y的值与宽对应,因此这是一个函数关系.(2)当一个三角形的底取一个值时,它的高并不能确定,因此“三角形的高与底”不是函数关系.(3)当矩形的周长是一个确定的值时,由于长、度不能确定,它的面积也不确定,这也不是函数关系.(4)当正方形的周长确定了,它的边长也确定,因此面积也确定,这是函数关系.例2解:(1)y是x的函数;(2)y是x的函数;(3)y不是x的函数,因为对于变量x=1,变量y有1与-1两个值与它对应;(4)y是x的函数说明:对于x的每一个值,y都有唯一的值与它对应.第四个是常数函数它符合函数的定义.例3分析:判断一个关系是不是函数关系,第一要看是不是一个变化过程;第二要看在这个变化过程中,是不是有两个变量;第三要看自变量每取一个确定值,函数是不是都有唯一确定的值与它对应.解:(1)长方形的宽一定时,其长所取的每一个确定的值,面积都有唯一确定的值与它对应,所以长与面积是函数关系.(2)因为三角形的面积受底和高两个因素的影响,当等腰三角形的底取一个定值时,它的面积又受高的影响,不能有唯一确定的值和底相对应,所以底边长与面积不是函数关系.(3)人的任意一个确定的年龄,都有唯一确定的身高与之相对应,所以某人的年龄与身高是函数关系.(4)x每取一个正值,y都有两个值与它对应,所以| y | = x不是函数关系. 说明:年龄与身高的变化不按某种规律,但某人每一个确定的年龄,必有唯一确定的身高和它相对应,因此函数关系是一定的,所以不要以为存在一定比例关系或一定规律,能用解析式表示的才是函数关系.例4 分析:北京距沈阳850千米,汽车距沈阳的路程等于全程减去已行驶的路程,已行驶的路程等于速度乘以时间. 解:85080S t =-0S t ≥⎧⎨≥⎩得850800tt -⎧⎨≥⎩850.8t ∴≤≤于是汽车距沈阳的路程S 与时间t 的函数关系式为85080S t =-,自变量t 的取值范围是850.8t ≤≤例5 解:(1)这个运动员在第一场比赛中得21分. (在场次栏中找到“1”,然后在得分栏中找到相应的得分) (2)第二场球比第一场球得分少,竞技状态趋下.(图形向下) (3)第五场比赛得分最高为36分,第一场比赛得分最低21分.(4)从这五场的比赛得分情况看,该运动员目前的竞技状态是向前发展,其趋势是良好的.(从第二场球之后图形全部向上.)说明:本题考查学生的识图能力。
反函数·典型例题精析
2.4 反函數·例題解析【例1】求下列函數的反函數:(1)y (x )(2)y x 2x 3x (0]2=≠-.=-+,∈-∞,.352112x x -+(3)y (x 0)(4)y x +1(1x 0) (0x 1)=≤.=-≤≤-<≤112x x +⎧⎨⎪⎩⎪ 解 (1)y (x )y y (2y 3)x y 5x y (x )∵=≠-,∴≠,由=得-=--,∴=所求反函数为=≠.35211232352153253232x x x x y y y y -+-++-+- 解 (2)∵y =(x -1)2+2,x ∈(-∞,0]其值域為y ∈[2,+∞),由=-+≤,得-=-,即=-∴反函数为=-,≥.y (x 1)2(x 0)x 1x 1f (x)1(x 2)21y y x ----222解 (3)y (x 0)0y 1y x f (x)(0x 1)1∵=≤,它的值域为<≤,由=得=-,∴反函数为=-<≤.11111122x x y y x x++--- 解 (4)y (1x 0)0y 1f (x)x 1(0x 1)y (0x 1)12由=-≤≤,得值域≤≤,反函数=-≤≤.由=-<≤,x x +-1得值域-≤<,反函数=-≤<,故所求反函数为=-≤≤-≤<.1y 0f (x)(1x 0)y x 1(0x 1) x (1x 0)1222-⎧⎨⎪⎩⎪x【例2】求出下列函數的反函數,並畫出原函數与其反函數的圖像.(1)y 1(2)y 3x 2(x 0)2=-=--≤x -1解 (1)∵已知函數的定義域就是x ≥1,∴值域為y ≥-1,由=-,得反函数=++≥-.函数=-与它的反函数=++的图像如图.-所示.y 1y (x 1)1(x 1)y 1y (x 1)124122x x --11解 (2)由y =-3x 2-2(x ≤0)得值域y ≤-2, 反函数=-≤-.f (x)(x 2)1--+x 23它們的圖像如圖2.4-2所示.【例3】已知函数=≠-,≠.f(x)(x a a )3113x x a ++ (1)求它的反函數;(2)求使f -1(x)=f(x)的實數a 的值.解(1)y x a y(x a)3x 1(y 3)x 1ay y 3设=,∴≠-,∵+=+,-=-,这里≠,31x x a ++若=,则=这与已知≠矛盾,∴=,,即反函数=.y 3a a x f (x)113131313-----ay y ax x (2)f(x)f (x)x 1若=,即=对定义域内一切的值恒成立,-++--3113x x a ax x 令x =0,∴a =-3.或解 由f(x)=f -1(x),那麼函數f(x)與f -1(x)的定義域与值域相同,定義域就是{x|x ≠a,x ∈R },值域y ∈{y|y ≠3,y ∈R },∴-a =3即a =-3.【例4】已知函数==中,、、、均不为零,y f(x)a b c d ax b cx d++ 試求a 、b 、c 、d 滿足什麼條件時,它的反函數仍就是自身.解 f(x)bc ad 0f (x)x 1=+,∵常数函数没有反函数,∴-≠.又=,要使=,对定义域内一切值恒成立,a c bc ad c cx d dx b cx adx b cx a ax b cx d-+-+--+-++-()令x =0,得-a =d,即a +d =0.事實上,當a +d =0時,必有f -1(x)=f(x),因此所求的條件就是bc -ad ≠0,且a +d =0.【例5】設點M(1,2)既在函數f(x)=ax 2+b(x ≥0)的圖像上,又在它的反函數圖像上,(1)求f -1(x),(2)證明f -1(x)在其定義域內就是減函數.解证(1)2a b 14a b a b f(x)x (x 0)(2)y x (x 0)f (x)(x )221由=+=+得=-=,∴=-+≥由=-+≥得反函数=≤.⎧⎨⎩⎧⎨⎪⎪⎩⎪⎪--1373137313737373x 设<≤,∴->-≥,∴>,即>,故在-∞,上是减函数.x x 73x 73x 0f (x )f (x )f (x)(]121211121737337312-----x x x【例6】解法一若函数=,求的值.先求函数=的反函数=,于是==--.f(x)f (2)()f(x)f (x)f (2)532x x x x x x-+-++-+----121212112212111解法(二) 由函數y =f(x)與其反函數y =f -1(x)之間的一一對應關 系,求的值,就是求=时对应的的值,∴令=,得=--,即=--.f (2)f(x)2x 2x 532f (2)53211---+x x 12 【例7】已知∈,且≠,≠.设函数=∈且≠,证明=的图像关于直线=对称.a a 0a 1f(x)(x x )y f(x)y x R R x ax a --111证 y a 0a 1(ay 1)x y 1ay 10y a 1a 1由=,≠,≠,得-=-,如果-=,则=,∴=得=,这与已知≠矛盾,x ax aa x ax ----111111 ∴-≠,故=,∴=,即证得=的反函数就是它本身.ay 10x f (x)f(x)1y ay x ax x ax -------111111因為原函數的圖像與其反函數的圖像關於直線y =x 對稱, ∴函數y =f(x)的圖像關於直線y =x 對稱.。
三角函数典型例题分析
三角函数典型例题分析目录0°~360°间的三角函数.典型例题分析 (3)弧度制.典型例题分析 (3)任意角的三角函数.典型例题分析一 (5)任意角的三角函数.典型例题精析二 (7)同角三角函数的基本关系式.典型例题分析 ............................. 诱导公式.典型例题分析............................................. 用单位圆中的线段表示三角函数值.典型例题分析 ....................... 三角公式总表....................................................... 正弦函数、余弦函数的图象和性质.典型例题分析 (28)函数y=Asin(wx+j)的图象·典型例题分析............................... 正切函数、余切函数的图象和性质·典型例题分析 ....................... 已知三角函数值求角·典型例题分析 ................................... 全章小结........................................................... 高考真题选讲.......................................................0°~360°间的三角函数·典型例题分析例1已知角α的终边经过点P(3a,-4a)(a<0,0°≤α≤360°),求解α的四个三角函数.解如图2-2:∵x=3a,y=-4a,a<0例2求315°的四个三角函数.解如图2-3,在315°角的终边上取一点P(x,y)设OP=r,作PM垂直于x轴,垂足是M,可见∠POM=45°注:对于确定的角α,三角函数值的大小与P点在角α的终边上的位置无关,如在315°的角的终边上取点Q(1,-1),计算出的结果是一样的.弧度制·典型例题分析角度与弧度的换算要熟练掌握,见下表.例2将下列各角化成2kπ+α(k∈Z,0≤α<2π)的形式,并确定其所在的象限。
高中函数部分知识点及典型例题分析-1
智立方教育高一函数知识点及典型例题一、函数的概念与表示1、映射(1)映射:设A 、B 是两个集合,如果按照某种映射法则f ,对于集合A 中的任一个元素,在集合B 中都有唯一的元素和它对应,则这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射,记作f :A→B. 注意点:(1)对映射定义的理解.(2)判断一个对应是映射的方法.一对多不是映射,多对一是映射 2、函数构成函数概念的三要素 ①定义域;②对应法则;③值域. 两个函数是同一个函数的条件:三要素有两个相同 例1、例2、}30|{},20|{≤≤=≤≤=y y N x x M 给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有( C )A 、 0个B 、 1个C 、 2个D 、3个由题意知:M={x|0≤x ≤2},N={y|0≤y ≤3},对于图①中,在集合M 中区间(1,2]内的元素没有象,比如f ( 3 2 )的值就不存在,所以图①不符合题意;对于图②中,对于M 中任意一个元素,N 中有唯一元素与之对应,符合函数的对应法则,故②正确; 对于图③中,对于M 中任意一个元素,N 中有唯一元素与之对应,且这种对应是一一对应,故③正确; 对于图④中,集合M 的一个元素对应N 中的两个元素.比如当x=1时,有两个y 值与之对应,不符合函数的定义,故④不正确xxxx1 2 1 1 1 2 2 2 11112 2 2 2 y y yy 3 OOOO二、函数的解析式与定义域1、求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;例1、y =函数的定义域为根号下的数必须为正数,又当底数为大于0小于1的数时,只有当真数大于0小于1时,才能保证根号下的数为正数。
所以让0<4X 的平方-3X<1,解0<4X 的平方-3X 得X<0或3/4<X,解4X 的平方-3X<1得-1/4<X<1,取交集得X 的范围是《-1/4<X<0或3/4<X<1》四.函数的奇偶性1.定义: 设y=f(x),x ∈A ,如果对于任意x ∈A ,都有()()f x f x -=,则称y=f(x)为偶函数.如果对于任意x ∈A ,都有()()f x f x -=-,则称y=f(x)为奇函数.2.性质:①y=f(x)是偶函数⇔y=f(x)的图象关于y 轴对称, y=f(x)是奇函数⇔y=f(x)的图象关于原点对称, ②若函数f(x)的定义域关于原点对称,则f(0)=0 ③奇±奇=奇;偶±偶=偶;奇×奇=偶;偶×偶=偶;奇×偶=奇[两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称] 3.奇偶性的判断①看定义域是否关于原点对称 ②看f(x)与f(-x)的关系例1.已知函数)(x f 是定义在),(∞+∞-上的偶函数. 当)0,(∞-∈x 时,4)(x x x f -=, 则当),0(∞+∈x 时,=)(x f .当x ∈(0,+∞),f(x)=-x-x^4 解:当x ∈(0,+∞),-x ∈(-∞,0),因为当x<0时,f(x)=x-x^4,所以把-x 代入这个式子中得 f(-x)=-x-(-x)^4=-x-x^4,又因为f(x)是偶函数,所以f(-x)=f(x) 于是f(x)=-x-x^4例2、已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(Ⅰ)求,a b 的值;(Ⅱ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.(Ⅰ)因为 f(x)是奇函数,所以f(0)=0,即(b-1)/(a+2)=0 ==>b=1 f(x)=(1-2^x)/(a+2^(x+1)) 又由f (1)= -f (-1)知a=2 (Ⅱ)解由(Ⅰ)知f(x)=(1-2^x)/(2+2^(x+1))=-1/2+1/(2^x+1) ,易知f(x) 在 正负无穷上为减函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数²典型例题分析
例 1 与函数y=x表示相同函数的是 [ ]
则、值域不同,排除C.而
评注判断两个函数是否相同,要看函数的三要素:定义域,值域,对应法则.其中对应法则不能仅仅从解析式上考虑,要分析其对应法则的本质.例2 求下列函数的定义域
(5)设f(x)的定义域为[0,2],求函数f(x+a)+f(x-a)(a>0)的定义域.
∴定义域是空集,函数是虚设的函数
(2)由函数式可得
∴函数的定义域是{x|x=-1},定义域是一个孤立的点(-1,0)的横坐标(3)∵x2-4≠0
∴x≠±2
∴函数定义域为(-∞,-2)∪(-2,+2)∪(2,+∞)
(4)从函数式可知,x应满足的条件为
∴函数的定义域为
(5)∵f(x)定义域为[0,2]
所以f(x+a)+f(x-a)中x应满足
又∵a>0,若2-a≥a,则a≤1
即0<a≤1时,f(x+a)+f(x-a)的定义域为{x|a≤x≤2-a} 当a>1时,x∈
评注求f(x)的定义域就是求使函数f(x)有意义的x的取值范围,定义域表示法有:不等式法,集合法,区间表示法等.
例3 求下列函数的值域
解 (1)由原式可化为
(2)将函数变形,整理可得:
2yx2-4yx+3y-5=0
当y=0时,-5=0不可能,故y≠0
∵x∈R
∴Δ=(-4y)2-4³2y³(3y-5)≥0
即y(y-5)≤0解得0≤y≤5
而y≠0
∴0<y≤5
故函数值域为(0,5]
此二次函数对称轴为t=-1
评注求函数值域方法很多,此例仅以三个方面给出例子.学习时要分析函数式的结构特征,从而确定较简单的求值域的方法.
例4 (1)已知f(x)=x2,g(x)为一次函数,且y随x值增大而增大.若f[g(x)]=4x2-20x+25,求g(x)的解析式
解 (1)∵g(x)为一次函数,且y随x值增大而增大
故可设g(x)=ax+b(a>0)
∵f[g(x)]=4x2-20x+25
∴(ax+b)2=4x2-20x+25
即:a2x2+2abx+b2=4x2-20+25
解得 a=2,b=-5
故g(x)=2x-5
于是有t的象是t2-1,即f(t)=t2-1(t≥1)
故f(x)=x2-1(x≥1)
∴f(x+1)=(x+1)2-1=x2+2x(x≥0)
f(x2)=x4-1(x≤-1或x≥1)
评注对于(1)是用待定系数法求函数的解析式,要根据题意设出函数的形式,再利用恒等式的性质解之.求函数解析式的常用方法还有拼凑法,代换法(如(2)),解方程组等.
例5 如图1-7,灌溉渠的横断面是等腰梯形,底宽及两边坡总长度为a,边坡的倾角为60°.
(1)求横断面积y与底宽x的函数关系式;
评注本题是有关函数的实际问题,其方法是把实际问题用数学的形式表示出来,建立变量之间的函数关系.
例6 设x≥0时,f(x)=2,x<0时,f(x)=1又
解当0<x<1时,x-1<0,x-2<0
当1≤x<2时,x-1≥0,x-2<0
当x≥2时,
g(x)=2
评注分段函数关键是在x的不同条件下计算方法不同,不要认为是三个不同函数.。