光学窗口用蓝宝石晶体中子辐照的热致发光效应研究

合集下载

蓝宝石介绍

蓝宝石介绍

蓝宝石介绍常用晶体生长方法:Czochralski Method (柴氏拉晶法,又称为提拉法):Pull from the melt.Kyropoulos Method (凯氏长晶法,又称为泡生法): Dip and turn.温度梯度法(TGT法)EFG Method (导模法,Edge Defined Film-fed Growth): Pull through die.热交换法(Heat Exchange Method,HEM)垂直水平温度梯度冷却法(Vertical Horiaontal Gradient Freezing,VHGF): 韩国Sapphire Technology Company (STC)技术。

ES2-GSA长晶法:美国Rubicon Technology Inc.技术。

由于钨钼具有耐高温、低污染等特性,被广泛用来做蓝宝石长晶炉的热场部件,包括钨坩埚/钼坩埚、发热体、钨筒、隔热屏、支撑、底座、籽晶杆、坩埚盖等。

发热体采用鸟笼结构钨发热体或者钨网发热体,有利于提供均匀稳定的温场。

化学式Al2O3相对分子质量101.96性状白色结晶性粉末。

无臭。

无味。

质极硬。

易吸潮而不潮解。

溶于浓硫酸,缓慢溶于碱液中形成氢氧化物,几乎不溶于水及非极性有机溶剂。

相对密度(d204)4.0。

熔点约2000℃。

用途1. 红宝石、蓝宝石的主成份皆为氧化铝,因为其它杂质而呈现不同的色泽。

红宝石含有氧化铬而呈红色,蓝宝石则含有氧化铁和氧化钛而呈蓝色。

2. 在铝矿的主成份铁铝氧石中,氧化铝的含量最高。

工业上,铁铝氧石经由Bayer process纯化为氧化铝,再由Hall-Heroult process转变为铝金属。

3. 氧化铝是金属铝在空气中不易被腐蚀的原因。

纯净的金属铝极易与空气中的氧气反应,生成一层致密的氧化铝薄膜覆盖在暴露于空气中铝表面。

这层氧化铝薄膜能防止铝被继续氧化。

这层氧化物薄膜的厚度和性质都能通过一种称为阳极处理(阳极防腐)的处理过程得到加强。

CsPbBr3_纳米晶电子辐照效应研究

CsPbBr3_纳米晶电子辐照效应研究

文章编号 2097-1842(2024)01-0178-09CsPbBr 3纳米晶电子辐照效应研究张博文1,韩 丹1 *,薛梦芸2,曹荣幸1,李红霞1,曾祥华1,薛玉雄1 *(1. 扬州大学 电气与能源动力工程学院, 江苏 扬州 225000;2. 扬州大学 物理与科学技术学院, 江苏 扬州 225002)摘要:钙钛矿材料具有优异的光学性能和较高的载流子迁移率,成为空间太阳能电池领域极具竞争力的材料。

然而空间粒子辐照容易改变材料结构和光学性能,导致其性能下降。

为了探究电子辐照对CsPbBr 3材料结构与光学特性的影响规律,本文开展了CsPbBr 3材料电子辐照实验,利用高分辨透射电子显微镜表征CsPbBr 3纳米晶微观形貌,并通过X 射线衍射分析和X 射线光电子能谱分析进一步探究晶体结构的变化趋势。

研究发现:电子辐照后CsPbBr 3纳米晶形貌变得粗糙,尺寸明显减小,并且纳米晶在高剂量电子辐照下变得紧凑,形成纳米团簇。

其次,通过稳态紫外-可见吸收光谱图与光致发光谱图表征CsPbBr 3材料的光学性能,并利用第一性原理计算分析辐照后晶格膨胀带来的带隙变化。

研究证明电子辐照后纳米晶颜色加深,影响钙钛矿的透光率,进而增强了样品对光的吸收性能,同时电子辐照能够分解CsPb-Br 3纳米晶,特别是高剂量辐照后其光致发光性能降低了53.7%~78.6%。

本文研究结果为钙钛矿纳米晶空间辐射损伤机理及应用研究提供了数据支撑。

关 键 词:CsPbBr 3钙钛矿;电子辐照;晶体结构;光学性能中图分类号:O76;O43 文献标志码:A doi :10.37188/CO.2023-0044Effect of electron irradiation on CsPbBr 3 perovskite nanocrystalZHANG Bo-wen 1,HAN Dan 1 *,XUE Meng-yun 2,CAO Rong-xing 1,LI Hong-xia 1,ZENG Xiang-hua 1,XUE Yu-xiong 1 *(1. College of Electrical , Energy and Power Engineering , Yangzhou University , Yangzhou 225000, China ;2. College of Physics Science and Technology , Yangzhou University , Yangzhou 225002, China )* Corresponding author ,E-mail : ***********.cn ; *************.cnAbstract : With excellent optical properties and high carrier mobility, perovskite materials have become highly competitive materials in the field of space solar cells. However, space particle irradiation can change the structure and optical properties of materials, leading to a rapid degradation of device performance. In or-der to investigate the influence of electron irradiation on the structure and optical properties of CsPbBr 3 nano-收稿日期:2023-03-15;修订日期:2023-04-04基金项目:国家自然科学基金资助(No. 12004329);强脉冲辐射环境模拟与效应国家重点实验室开放基金(No. SK-LIPR2115);空间环境材料行为及评价技术国家级重点实验室基金(No. WDZC-HGD-2022-11)Supported by National Natural Science Foundation of China (No.12004329); Open Project of State Key Labor-atory of Intense Pulsed Radiation Simulation and Effect (No. SKLIPR2115); Foundation of National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environment (No. WDZC-HGD-2022-11)第 17 卷 第 1 期中国光学(中英文)Vol. 17 No. 12024年1月Chinese OpticsJan. 2024crystals, we conducted electron irradiation experiments on CsPbBr3 materials, characterized the microscopic morphology of CsPbBr3 nanocrystals by high-resolution transmission electron microscopy. Moreover, we in-vestigated the variation trend of crystal structure by X-ray diffraction analysis and X-ray photoelectron spec-troscopy analysis. The results revealed electron irradiation caused the CsPbBr3 nanocrystals to become rough and significantly decrease in size. The nanocrystal became compact and formed nanocluster under high-dose electron irradiation. Furthermore, the optical properties of CsPbBr3 materials were characterized using steady-state UV-Vis absorption spectra and photoluminescence spectra. The analysis of lattice expansion-in-duced bandgap changes after irradiation was performed using first principles calculations. It is demonstrated that electron irradiation deepened the color of nanocrystals and affected the light transmittance of CsPbBr3 nanocrystalline, thereby enhancing the optical absorption performance of the samples. However, electron ir-radiation also led to the decomposition of CsPbBr3 nanocrystals, resulting in a significant reduction in lumin-escence intensity of the CsPbBr3 by 53.7%−78.6% after high-dose irradiation. These findings provide valu-able data support for the study of spatial radiation damage mechanisms and the application of perovskite nanocrystals.Key words: CsPbBr3 perovskite;electron radiation;crystal structure;optical properties1 引 言卤素钙钛矿材料具有优异的光学性能、可调带隙、优异的载流子迁移率等优势[1]。

徐军光电产业中的蓝宝石晶体-大连2012年9月

徐军光电产业中的蓝宝石晶体-大连2012年9月
发展高功率LED白光照明技术的关键之一
提高器件的量子效率
非极性的意义---极性薄膜的缺点
c-GaN薄膜 自发极化 压电效应 量子阱中能 带发生畸变 电子空穴辐射 复合几率降低 严重影响 发光效率
C面GaN有源层,非中心对称晶体结构 静电场来源:自发极化和压电效应
解决办法:M面和a面GaN中无极化
2012年7月11日,韩国首尔半导体日前 发布非极性(Non-polar)技术LED芯 c plane(0001) 片‘nPola’ ,可在和现有LED芯片同 r plane(1 102) 等面积的情况下亮度(亮度,并非为业 内所传的发光效率)大幅提高至500lm。 n plane(1123)
1990
2005
2010
2015
2020
LED用蓝宝石需求总量分析
2012年全球MOCVD为2744台,蓝宝石衬底市场规模约为7亿美元/年,图 形化后14亿美元/年。当前大部分公司还是以2英寸衬底为主,一些公司使 用3-4英寸衬底,5-6英寸衬底的制造也已经开始起步。 2015年全球MOCVD为5000台,蓝宝石衬底市场规模约为14亿美元/年,图 形化后28亿美元/年。
(b) 生长方向为[1120]
所有生长方法均很难直接生长c向 蓝宝石晶体
样品的测试与分析(导模法片子)
其力学性能,11# 和10# 是失效的,8#和4#达到要求(窗口材料)
Sample / Test Name Bending Stress Bending Load Breaking Stress Sample 11# 1158.800 Mpa 420.258 N Sample 10# 1340.126 Mpa 465.019 N Sample 8# 6540.331 Mpa 2371.960 N Sample 4# 10904.58 Mpa 3954.731 N

热交换法生长蓝宝

热交换法生长蓝宝


随着氦气流量的增大,带走的热量增多,导致 晶体降低,由于监测点的温度保持不变,晶体与熔 体中温度梯度逐渐增大。氮气流量增大速率发生突 变时,晶体的生长速率也会突变,生长速率的突变 将会导致杂质分凝系数发生起伏,使得杂质在生长 的不同阶段分布不均匀,晶体中出现生长条纹。 氦 气流量的增大,热交换器散热能力增强,要使监测 点的温度不变,加热器的功率必然上升。

热交换法生长蓝宝石原理和应用

热交换法是生长大尺寸蓝宝石的较成熟的商业 化方法之一本文通过数值模拟研究蓝宝石晶体生长 过程中热交换器中氮气流量的变化对温场的影响.结 果表明晶体生长过程中固液界为近弧面:随氮气流t 增大.晶体熔体的温度下降,温度梯度场大:加热器 的功率缓慢土升.根据模拟的结果进行蓝宝石的生长 实验,采用热交换法生长出大尺寸蓝宝石晶体 ( 100mm ).其断面的生长条纹的形状与模拟结果吻 合良好.表明模拟结果与得出的结论是可信的.
在热交换法生长蓝宝石晶体过程中,保持监测 点温度恒定,针对热交换器中氮气流量的增大对晶 体生长过程中的温场进行模拟与实验研究,得出以 下结论: 1晶体生长过程中,氦气从坩锅中带走热量,晶 体是以近弧面的固液界面向外而推进形成的。 2氦气流量增大,晶体、熔体中的温度下降,温 度梯度分别增大。 3晶体生长过程中,在监测点温度不变条件下, 加热器的功率随着氦气流量的增大而缓慢上升。


控制点温度不变条件下,实验中加热器的功率随氮气流 量的增大而缓慢上升,变化趋势同模拟结果,但比模拟值稍 许偏大。 在本热交换炉中,生长出透明度较高的蓝宝石晶体。 晶体样品直径200mm,高76mm,其断面不同部位透明度稍 有差异,有可见的生长条纹,整个晶体按透明度的差异可分 为4个区,各区之间有明显的生长条纹。生长条纹将晶体分 为4个生长区域,I区对应于氦气流量增速为每小时1L/min的 生长阶段,II区对应于氦气流量增速为每小时2L/min的生长 阶段,III区对应于氦气流量增速为每小时3L/min的生长阶段, N区对应于降温生长阶段,各生长区的分界线对应于由氮气 流量增速突变引起的生长速率的突变。生长条纹与模拟结果 的吻合说明模拟结果是可信的。

蓝宝石晶体

蓝宝石晶体

蓝宝石晶体微提拉旋转泡生法制备蓝宝石晶体及LED衬底材料研究报告(2010-11-01 11:26:30)转载标签:美国蓝宝石晶体热交换器碳化硅十年陈股香股票分类:潜龙出水钬斺敌股池微提拉旋转泡生法制备蓝宝石晶体及LED衬底材料研究报告一、行业背景:未来高亮度照明LED的市场将非常广阔LED是发光二极管的简称(Light-Emitting-Diode),是由化合物半导体材料制成的发光器件。

其发光的基本原理是利用LED内原天职离两真个电子和空*,在外加正向电压后相互结合时将电能转化成光能,能量以光的形式开释出来。

LED是一种节能环保、寿命长和多用途的环保光源,其能耗仅为白炽灯的10%,荧光灯的50%。

LED作为一种照明光源的普及将能能够明显降低电力消耗,减少二氧化碳排放。

中国事世界上光电子技术研究发展速度最快的国家之一,随着中国"国家半导体照明工程"的启动实施,目前中国的一些研究机构和企业大大加快了产业化的步伐,美国、欧洲和日本等发达国家都积极支持LED产业的发展,出台产业支持政策。

从"十一五"计划开始,我国政府将把半导体照明工程作为一个重大工程进行推动。

国内企业大多数从事LED下游的封装和应用,所需芯片、关键设备和技术大部分得从境外进口。

手机背光源的普及推动全球LED产业快速发展;从2008年起,笔记本电脑屏幕和电视屏幕采用LED逐渐普及,是全球LED产业新的发展动力;未来高亮度照明LED的市场非常广阔其中景观照明是最大的细分市场,背光源和显示屏次之。

通过发光方式的转变,LED将电能直接转化为光能,能量转化效率大大高于白炽灯和荧光灯。

中国绿色照明工程促进项目办公室的专项调查显示,我国照明用电每年在3000亿度以上,如由LED取代,可节省1/3的照明用电,相当于总投资规模超过2000亿元的三峡工程的全年发电量。

LED作为一种照明光源的普及将能能够明显降低电力消耗,减少二氧化碳排放。

热交换法生长蓝宝石

热交换法生长蓝宝石

摘要蓝宝石具有一些列优异的光学、力学、热学性能,是理想的红外窗口材料之一。

也是氮化镓外延生长最常用的沉底材料之一。

但蓝宝石晶体生长实验成本高、周期长,只靠郑家实验频率获得理想的生长工艺,已不能满足蓝宝石向着更高质量、更大尺寸方向发展的需求。

引入晶体生长数值模拟技术,可以有效的减少试验次数。

节省成本。

采用热交换发生长老宝石晶体,一句晶体生长理论,对生长系统进行合理近似,建立晶体生长数值分析模型,并引入晶体生长模拟软件CryMas,通过优化网格划分精度及选择气体对流方程迭代次数等手段,最终使得模拟结果与实验结果一致。

本文通过多种介质的对比,结合热交换法生长蓝宝石的具体特点,确定氦气为优选的热交换介质;研究了进气温度对热交换效率的影响,发现热交换效率随进气温度身高而单调降低;控制点温度从2345K升高到2370K的过程中,热交换效率几乎不变;热交换效率随进气口与出气口面积比Sin/Sout及进气口距离热交换器顶端的距离D的变化关系是非常单调的,确定了优选的工艺参数。

模拟了热交换器中气流量增大引起温场的变化过程,晶体和熔体中温度降低,温度梯度增大固液界面以近弧面的形式向前推进;结合生长系统的具体特点喝本实验室条件,确定了优选的保温材料;模拟了坩埚在加热器中的位置,对坩埚中温场的影响,确定了优选的坩埚位置;坩埚长径比增大,干活中温度梯度喝固液界面凸度变小;圆筒形加热器的长径比对蓝宝石生长过程中温度梯度和固液界面凸度影响较大。

长径比的增大,有利于得到较小的温度梯度和固液界面凸度;圆筒形加热器小角度(≤4°)倾斜对坩埚中温场无明显影响;热交换法蓝宝石晶体生长过程中难以避免地因异质形核出现多晶,因蓝宝石晶体热膨胀系数不匹配而相互挤压,导致晶体开裂。

为此,将热交换器至于干过的上方,表面固液界面和生长的晶体与坩埚壁接触。

模拟了相应的晶体生长过程,发现随气流量增大,晶体自籽晶处开始生长,在扩肩、等径生长过程中,晶体与熔体中的温度降低,温度梯度增大;通过改变坩埚在加热器中的位置,有效地避免了锅边结晶和锅底结晶,获得了合适的温场;对比了热交换器在不同位置时的生长特点,发现热交换器在坩埚上方时,能有效避免开裂问题。

蓝宝石晶体介绍

蓝宝石晶体介绍

蓝宝石介绍蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构.它常被应用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性.因此被大量用在光学元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。

目前超高亮度白/蓝光LED的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温的要求,使得蓝宝石晶片成为制作白/蓝/绿光LED的关键材料.2、蓝宝石晶体的生长方法常用的有两种:1:柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。

于是熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单晶。

晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一轴对称的单晶晶锭.2:凯氏长晶法(Kyropoulos method),简称KY法,大陆称之为泡生法.其原理与柴氏拉晶法(Czochralskimethod)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(SeedCrystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇.蓝宝石基片的原材料是晶棒,晶棒由蓝宝石晶体加工而成.广大外延片厂家使用的蓝宝石基片分为三种:1:C-Plane蓝宝石基板这是广大厂家普遍使用的供GaN生长的蓝宝石基板面.这主要是因为蓝宝石晶体沿C轴生长的工艺成熟、成本相对较低、物化性能稳定,在C面进行磊晶的技术成熟稳定.2:R-Plane或M-Plane蓝宝石基板主要用来生长非极性/半极性面GaN外延薄膜,以提高发光效率.通常在蓝宝石基板上制备的GaN外延膜是沿c轴生长的,而c轴是GaN的极性轴,导致GaN基器件有源层量子阱中出现很强的内建电场,发光效率会因此降低,发展非极性面GaN外延,克服这一物理现象,使发光效率提高。

蓝宝石的生长方法

蓝宝石的生长方法
长,晶体生长速率快;5)可根据实际需要,采用一定尺寸和形状(如:柱状、盘状或其它特殊形状)的坩埚,可生长出与坩埚形状相仿的单晶。热交换法的主要缺点:1)钼坩埚与蓝宝石单晶的热膨胀系数不一致,使得坩埚边缘处易产生热应力,即生长出的蓝宝石单晶外部易开裂;2)如果晶体生长速率过大,则易形成过冷结构,从而导致晶体中出现气泡、杂质坑及散射中心等缺陷。因此,必须精确控制氦气流速来控制晶体生长速率,设备
2010年7月7日,元鸿(山东)光电材料有限公司成功生产出第一炉89.5 kg的蓝宝石单晶,其尺寸属国内最大[21]。
2005年,韩杰才等[22]在对泡生法和提拉法改进的基础上发明了用于生长大尺寸蓝宝石单晶的方法:冷心放肩微量提拉(sapphire growth technique withmicro-pulling and shoulder-expanding at cooled center,SAPMAC)法。SAPMAC法的原理示意图及其生长的蓝宝石单晶见图6[23–24]。
热交换法
热交换法(heat exchanger method,HEM)[8]最早于1967年由美国陆军原料研究实验室的FredSchmid和Dennis Viechnicki发明,其原理示意图及其生长的蓝宝石单晶,见图7[26]。
热交换法是生长大尺寸、高质量蓝宝石最成熟的方法之一,其晶体生长方向有a轴、m轴或r轴,通常采用a轴方向[17]。梯度单晶炉是一种改装的真空石墨电阻炉(见图7a),即在真空石墨电阻炉底部插入钨钼制成的热交换器,并保证整个炉内真空密封[27]。热交换法的实质在于控制温度让熔体直接在坩埚内凝固生长单晶,其特点是依靠氦气在热交换器内的循环带走热量而使蓝宝石单晶生长[26–28]。氦气循环带热过程为:氦气从热交换器低端的中心管内向上流进,到达热交换器顶端(即坩埚底部与热交换器接触的部分)吸收坩埚底部的热量,然后在中心管外且热交换器内(热交换器是由2个同心管相套而成)区域向下从热交换器的低端流出。所用坩埚的材料是根据生长单晶材料性质决定,热交换法生 长蓝宝石单晶一般选用钼坩埚。其操作和生长过程

蓝宝石晶体介绍

蓝宝石晶体介绍

蓝宝石晶体介绍1、蓝宝石晶体介绍' N- Q* y+ R5 P* C 蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构.它常被应用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性.因此被大量用在光学元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。

目前超高亮度白/蓝光LED的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温的要求,使得蓝宝石晶片成为制作白/蓝/绿光LED的关键材料.4 C% ?) j9 V0 |. W2 B% y5 w2 [0 H1 f' f9 h. z7 s2、蓝宝石晶体的生长方法常用的有两种:2 c: c7 }" N: x0 H3 ~ 1:柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。

于是熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单晶。

晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一轴对称的单晶晶锭. 2 p/ f1 ?8 x5 J0 {9 T3 @' k2:凯氏长晶法(Kyropoulos method),简称KY法,大陆称之为泡生法.其原理与柴氏拉晶法(Czochralskime thod)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(SeedCrystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇.. J+ K6 Y% m$ ~0 m0 f4 c5 v, k. h- U2 O: ` c ; h- h6 w# N0 U+ l, N2 h5 J6 E# l' G7 k蓝宝石基片的原材料是晶棒,晶棒由蓝宝石晶体加工而成# h5 `% W5 a! _1 I7 a( H[淘股吧]C7 _7 b( @+ f( C7 W n 广大外延片厂家使用的蓝宝石基片分为三种:, p, O, N* ^2 K# N2 M - O5 I2 h S2 q2 h6 ?: x1:C-Plane蓝宝石基板5 c, H( p6 J0 @3 T这是广大厂家普遍使用的供GaN生长的蓝宝石基板面.这主要是因为蓝宝石晶体沿C轴生长的工艺成熟、成本相对较低、物化性能稳定,在C面进行磊晶的技术成熟稳定.3 i) D2 I) m6 C) [" e0 m9 N, D) D5 a 2:R-Plane或M-Plane蓝宝石基板3 q0 P8 l! W7 U$ ~2 B1 ~2 s 主要用来生长非极性/半极性面GaN外延薄膜,以提高发光效率.通常在蓝宝石基板上制备的GaN外延膜是沿c轴生长的,而c轴是GaN的极性轴,导致GaN基器件有源层量子阱中出现很强的内建电场,发光效率会因此降低,发展非极性面GaN外延,克服这一物理现象,使发光效率提高。

蓝宝石介绍

蓝宝石介绍
内部文件V1.0
目录
➢1 ➢2 ➢3 ➢4
蓝宝石的介绍 蓝宝石晶体主要用途 蓝宝石的制造过程 蓝宝石的市场分析
蓝宝石的介绍
蓝宝石是一种氧化铝(Al2O3)的单晶,又称为刚玉,就颜色而言, 单纯的氧化铝结晶是呈现透明无色的,在自然界中当蓝宝石在生长时, 晶体内含有钛离子(Ti3+)与铁离子(Fe3+)时,会使晶体呈现蓝色,蓝宝 石由此得名。蓝宝石由三个氧原子和两个铝原子以共价键型式结合而成, 其晶体结构为六方晶格结构。它常被应用的切面有A-Plane,C-Plane及RPlane.由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都 具有很好的透光性.因此被大量用在光学元件、红外装置、高强度镭射镜 片材料及光罩材料上,它具有耐高温、抗腐蚀、高硬度(莫氏硬度为9, 仅次于钻石)、高耐磨、高透光性、熔点高(2045℃)等特点,它是一 种相当难加工的材料,因此常被用来作为光电元件的材料。目前超高亮 度白/蓝光LED的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶 品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶 Al2O3 )C面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时 符合GaN 磊晶制程中耐高温的要求,使得蓝宝石晶片成为 制作白/蓝/绿光LED的关键材料。
民用航天、军工用蓝宝石
图1 光电跟踪系统蓝宝石窗口
透波窗口、整 流罩、光电窗 口、护板、陀 螺、耐磨轴承 等部件。
图2 蓝宝石晶体的整流罩应用
军用光学蓝宝石
图3 战斗机光电吊舱
图4 潜基光电设备——潜艇光电桅杆
军用光电设备,如:光电吊舱 、光电跟踪仪、 红外警戒系统 、潜舰光电桅杆等 。
民用蓝宝石领域
炉内保温系统剖面图

蓝宝石晶体介绍

蓝宝石晶体介绍

蓝宝石晶体介绍1、蓝宝石晶体介绍' N- Q* y+ R5 P* C 蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构.它常被应用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性.因此被大量用在光学元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。

目前超高亮度白/蓝光LED的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温的要求,使得蓝宝石晶片成为制作白/蓝/绿光LED的关键材料.4 C% ?) j9 V0 |. W2 B% y5 w2 [0 H1 f' f9 h. z7 s2、蓝宝石晶体的生长方法常用的有两种:2 c: c7 }" N: x0 H3 ~ 1:柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。

于是熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单晶。

晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一轴对称的单晶晶锭. 2 p/ f1 ?8 x5 J0 {9 T3 @' k2:凯氏长晶法(Kyropoulos method),简称KY法,大陆称之为泡生法.其原理与柴氏拉晶法(Czochralskime thod)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(SeedCrystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇.. J+ K6 Y% m$ ~0 m0 f4 c5 v, k. h- U2 O: ` c ; h- h6 w# N0 U+ l, N2 h5 J6 E# l' G7 k蓝宝石基片的原材料是晶棒,晶棒由蓝宝石晶体加工而成# h5 `% W5 a! _1 I7 a( H[淘股吧]C7 _7 b( @+ f( C7 W n 广大外延片厂家使用的蓝宝石基片分为三种:, p, O, N* ^2 K# N2 M - O5 I2 h S2 q2 h6 ?: x1:C-Plane蓝宝石基板5 c, H( p6 J0 @3 T这是广大厂家普遍使用的供GaN生长的蓝宝石基板面.这主要是因为蓝宝石晶体沿C轴生长的工艺成熟、成本相对较低、物化性能稳定,在C面进行磊晶的技术成熟稳定.3 i) D2 I) m6 C) [" e0 m9 N, D) D5 a 2:R-Plane或M-Plane蓝宝石基板3 q0 P8 l! W7 U$ ~2 B1 ~2 s 主要用来生长非极性/半极性面GaN外延薄膜,以提高发光效率.通常在蓝宝石基板上制备的GaN外延膜是沿c轴生长的,而c轴是GaN的极性轴,导致GaN基器件有源层量子阱中出现很强的内建电场,发光效率会因此降低,发展非极性面GaN外延,克服这一物理现象,使发光效率提高。

蓝宝石

蓝宝石

蓝宝石材料的应用
民用半导体照明领域对蓝宝石材料的需求
由于发光效率提高近10倍,寿命是传统灯具的20倍以上 ,兼有绿色、环保等优点,LED(发光二极管)为主要器件 的半导体照明产业在近年内得到了飞快的发展。 用于GaN 基 LED 的衬底材料比较多,而蓝宝石材料常作为LED的衬底材 料。
蓝宝石晶体的应用
①、技术及装备落后。 ②、蓝宝石材料的低成本、高利用率成型及机械加工是 技术瓶颈。 ③、成果转化及规模生产不足。
蓝宝石晶体的制备方法
3、蓝宝石晶体的制备方法
蓝宝石晶体制备概述
目前国际上主流的蓝宝石晶体生长工艺是泡生法、提 拉法、导模法以及热交换法,而泡生法工艺生长的蓝宝石 晶体约占目前市场的70%。低成本、高质量地生长大尺寸 蓝宝石单晶已成为当前面临的迫切任务。总体说来,蓝宝 石晶体生长方式可划分为溶液生长、熔体生长、气相生长 3 种。其中熔体生长方式因具有生长速率快,纯度高和晶 体完整性好等特点,而成为制备大尺寸和特定形状晶体的 最常用的晶体生长方式。
蓝宝石材料的加工方法
蓝宝石整流罩的加工 ①、蓝宝石整流罩的传统加工方法及其现状
传统的加工方法中材料的利用率很低, 而且加工 量很大。蓝宝石高的硬度导致加工成本很高,较经济 的加工方法是成型切割,由传统方法生长3个整流罩 的同尺寸晶锭可加工出7个镶嵌的整流罩, 大大地提高 了晶体的利用率, 同时也大大地减小了加工量。但是, 加工出来的毛坯厚度要大于最终的尺寸, 仍需要可观 的加工量, 如研磨、抛光。而且, 在加工过程中还会引 入额外的表面损伤, 这些表面损伤很难在抛光过程中 消除, 可能导致了最终产品无法满足光学系统的要求。 目前美国晶体系统公司( CSI)仍在使用该加工方法。
国内的研究状况

蓝宝石单晶的生长技术及应用研究进展

蓝宝石单晶的生长技术及应用研究进展

· 880·2011年蓝宝石单晶的生长技术及应用研究进展范志刚1,刘建军1,2,肖昊苏1,张 旺1,关春颖3,苑立波3(1. 哈尔滨工业大学航天学院,哈尔滨 150001;2. 东北石油大学电子科学学院,黑龙江 大庆 163318;3. 哈尔滨工程大学理学院,哈尔滨 150001)摘 要:蓝宝石单晶因其优良的综合性能而成为最重要的中红外光学材料之一,在军民两用中都具有广泛的应用前景。

简述蓝宝石单晶的主要性能;综述蓝宝石单晶的几种重要生长方法及其最新研究成果,并分析了各制备方法的优缺点;介绍了蓝宝石单晶的应用领域及其一些最新成果;最后指出蓝宝石单晶今后的研究重点:(1)改进现有制备工艺及完善近尺寸成型技术;(2)完善蓝宝石单晶的超光滑加工理论及其技术体系。

关键词:蓝宝石单晶;提拉法;导模法;热交换法;光学窗口;整流罩中图分类号:O78 文献标志码:A 文章编号:0454–5648(2011)05–0880–12Research Progress on Growth Technique and Application of Sapphire Single CrystalF AN Zhigang 1,LIU Jianjun 1,2,XIAO Haosu 1,ZHANG wang 1,GUAN Chunying 3,YUAN Libo 3(1. School of Astronautics, Harbin Institute of Technology, Harbin 150001; 2. School of Electronic Science, Northeast PetroleumUniversity, Daqing 163318, Heilongjiang; 3. College of Science, Harbin Engineering University, Harbin 150001, China)Abstract: Sapphire single crystal is one of the most important mid-infrared optical materials due to its excellent overall performance in both military and civil applications. This review represents the major properties of sapphire single crystal. The growth methods and recent work on the sapphire single crystal are reviewed. The advantages and disadvantages of different growth methods are analyzed. Recent work on the sapphire single crystal applications is summarized. Further studies on the sapphire single crystal involve: (1) im-provement of growth methods and the near-net-shaping technology, and (2) improvement of the theory and technology system on the ultra-smooth machining for the sapphire single crystal.Key words: sapphire single crystal; Czochralski method; edge defined film fed growth method; heat exchanger method; optical win-dow; dome现代国防科学与技术的不断进步,军事战略与战术的发展变化,使得导弹武器已成为世界多国优先发展和竞相购买的武器装备。

蓝宝石衬底缺点晶格失配和热应力失配

蓝宝石衬底缺点晶格失配和热应力失配

(2)宽的可调谐范围,可达400nm; (3)高功率。如对于全固态可调谐Ti3+:Al2O3激光器,天津大 学和中国科学院物理研究所已分别实现6W(其转换率为22.2%)和 6.44W(其转换率为40.25%)的激光输出。
目前,Ti:Al2O3激光器已实现脉冲、准连续、连续、锁模运转,已涉及激光器研 究领域的各个方面,包括:提高输出功率、扩大调谐范围、压缩线宽、稳频 以及提高光束质量等。 Ti:Al2O3激光器在基础学科(如物理学、生物学和化学)研究方面已取得广泛应用 。因Ti:Al2O3激光器的使用,研究化学反应(如:化学键形成与断裂、分子间 能量传递、分子重新构建等所需的时间范围)超快时间表(ultrafast timescales) 的飞秒化学取得了巨大进展;用于超快脉冲放大及光谱相位控制的设备性能 也得到了很大提高。 Ti:Al2O3激光器还应用于非线性物理、太赫兹产生、时间分辨光谱学、频标计量 学、多光子显微镜及生物医学成像等基础研究方面。 Ti:Al2O3激光器在军事与工程方面也应用广泛。如激光测距、光电干扰、红外对 抗、致盲武器等军事领域,以及激光通信、海洋探测、大气环境监测、激光 手术及微加工等诸多领域。
(4)热力学特性:2050℃左右的熔点,加之优越的化 学、机械及光学特性,使蓝宝石晶体广泛应用于许多苛 刻的加工环境中。 (5)耐磨损性:由于具有很高的硬度和透明度,是蓝宝 石晶体常用于制作耐磨损窗口或其他精密机械零件。 (6)介电性能:有电介质绝缘、恒定的介电常数。 (7)蓝宝石还具有高拉伸强度、抗冲刷性、热导性、显 著的抗热冲击性等性能。
24
8.8×10-6 0.782 77 0.27—0.29 1014 11.5(∥c),9.3(⊥c)
蓝宝石晶胞(R面、A面、C面)

光学材料ppt课件

光学材料ppt课件

5.机械强度和弹性模量好.可以承受较大应力而变形量小:
6.硬度高,表四不易划伤;
玻璃 2.防X射线玻璃 3.防中子玻璃
防辐射光学玻璃
• 光学眼镜玻璃

1.用于制造各种眼镜片的光学玻璃。


2.矫正视力用眼镜玻璃

3.遮阳用眼镜玻璃
4.工业保护目镜玻璃
11
光学晶体的重要性能表现在光谱透过范围和光学色散。虽然玻璃 比人工晶体易于制造而且价格低廉,在可见光区范围内大多采用玻璃 制作光学器件,但在紫外和红外波段,则仍然大量使用各种天然或人 工晶体。晶体的优点是透过长波限较长,折射率和色散的变化大,物 理化学性能多样化,不少晶体的熔点高,热稳定性好,能满足特殊要 求。只有晶体具有双折射性能。
光 学 材 料
12
光学晶体的应用
• 氧化物光学晶体中,金红石在1μm~5 μm范围内的折射率较高,常
用于制作元件窗口或探测器的前置透镜。蓝宝石可以作为从紫外光到
近红外光谱区的各种光学元件、电子绝缘基片以及用于人造卫星及火
箭导弹上的光学屏蔽罩,还可以利用其双折射特性做成滤光片和延迟

器等光学元件。

批量较大的光学仪器中,用于制造光学基板、透镜、隐
形眼镜、有机光导纤维等。已获得应用的光学塑料主要
有透明类塑料
光 学


14
光学塑料的性能
• 折射率发生变化
通常光学塑料的折射率在1.45~1.60。塑料元件的折射率均匀性变
化可维持在±0.0005,但光学塑料的折射率温度系数dn/dt值比相应
玻璃高出5倍到50倍。
• 聚苯乙烯折射率为1.590,价格较低,注射成型性能好。但在近紫外

泡生法生长蓝宝石的原理和应用研究

泡生法生长蓝宝石的原理和应用研究

泡生法生长蓝宝石的原理和应用研究摘要:蓝宝石以独特的晶体结构而具有许多优异的性能,比如硬度高、耐磨性化学也稳定和耐热性好等。

本文简要叙述了用于生长高质量蓝宝石晶体的生长技术。

详细介绍了泡生法生长高质量无色蓝宝石的原理、生长工艺和技术要点,讨论了高质量无色蓝宝石应用前景。

关键词:泡生法;蓝宝石;晶体生长;原理;应用1引言20世纪后半叶,单晶技术的发展推动材料科学其他分支的迅速发展--晶体材料,蓝宝石是一种多功能的材料,其原材料便宜、生长过程资源能耗低、无环境污染、生物兼容性较好,有越来越多的研究者去研究和发展[1]。

蓝宝石,α-Al2O3单晶,又称“刚玉”,其莫氏硬度为9;当晶体含有不同微量元素时,就会显示不同颜色。

例如,掺杂Ti4+或Fe2+显现蓝色,掺杂Cr3+显现红色,掺杂Ni3+显现黄色。

蓝宝石高强度、高硬度、高透过率(从0.195~5.5μm 波段均能透过)、耐冲刷、耐腐蚀、耐高温(在接近2000 ℃下仍可工作),在红外军事装置、卫星空间技术、空间飞行器、高强度激光窗口材料、超声波传导元件、微波电子管介质材料及精密仪器轴承等行业得到广泛的应用;蓝宝石独特的晶格结构、优异的力学性能、良好的热力学性能使其成为最理想的发光二极管(LED)半导体,以及大规模集成电路SOI 和SOS及超导纳米结构薄膜的衬底材料[2]。

蓝宝石晶体最早被AugusteVerneuil人为生长出来,并将其扩大到商业化生产[3]。

到今天,蓝宝石的生长已有100多年的历史,市场对蓝宝石的需求量有增无减,这对蓝宝石生长方法也提出了更苛刻的要求。

目前主要的生长方法有:焰熔法、提拉法、泡生法、热交换法、垂直布里奇曼法(VB)等。

只有对这些方法的进一步探索研究,才能推动蓝宝石产业不断进步发展。

2泡生法的原理与工艺2.1原理泡生法(Kyropoulos method)于1926年由Kyropouls发明,经过科研工作者几十年的不断改造和完善,是目前解决晶体提拉法不能生产大晶体的好方法之一[4]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光学窗口用蓝宝石晶体中子辐照的热致发光效应研究 张化宇1,汪桂根1*,左洪波2,张明福2,韩杰才1, 2,赫晓东2
(1.*哈尔滨工业大学深圳研究生院,深圳,518055,;2.哈尔滨工业大学复合
材料与结构研究所,哈尔滨,150080)
wanggghit@
蓝宝石晶体由于其优异的光学特性、良好的机械性能和化学稳定性,是目前最为重要的光学窗口材料之一[1]。

然而光学窗口材料在粒子辐照和受热的共同激发下,易于产生自发辐射,严重影响了光学窗口的成像精度[2]。

本文研究了在实际服役环境下空间飞行器用蓝宝石光学窗口经低剂量、低能量中子辐照后的热致发光行为。

试验中,辐照源采用剂量为7.5×1015~3.8×1017 n/cm2的热中子,并分别测试了蓝宝石晶体在20~500 ℃温度范围下的二维热致光谱(发光强度-温度)和三维热释光谱(发光强度-温度-波长,其中波长范围:300~800 nm)。

通过对二维光谱的高斯拟合,计算了热致发光峰的陷阱深度;并结合三维热释光谱,分析了每个热致发光峰对应的缺陷类型和浓度随辐照剂量的变化。

试验结果表明,辐照前蓝宝石晶体的热释光现象很不明显,说明晶体质量较高;辐照过程中出现的热释光峰温在140~410℃内,尤其出现了200℃左右峰温、波长为330 nm和410nm的显著峰:当热中子辐照剂量为7.5×1015 n/cm2时,晶体中主要产生F色心;剂量增加到7.0×1016n/cm2, 开始出现F+色心,并同时形成F2, F2+ 和F22+色心;而剂量继续增加到3.8×1017 n/cm2时,还会产生F3+色心。

由于中子本身不带电,可以直接与原子核相互作用,其辐照过程是一种间接的电子过程;虽然热中子能量较低,直接碰撞虽然不足以引起晶格原子Al、O 的移位,但可以被原子核捕获;随着辐照剂量的增加,热中子俘获反应过程中产生的γ 和β 反冲能可释放给晶格原子,从而产生电离或激发,乃至造成移位损伤。

参考文献:
【1】 Peter Capper. Bulk Crystal Growth in Electronic, Optical and Optoelectronic Materials [M]. New York: John Wiley & Sons, Inc. 2005. 299-338.
【2】 Valerian Pishchik, Leonid A. Lytvynov, Elena R. Dobrovinskaya. Sapphire [M].
New York:Springer US, 2009. 177-188.
【3】 唐强,张纯祥. 发光学报,2006,27(3):308─312.
153。

相关文档
最新文档