离散数学图论课件

合集下载

离散数学_图论123页PPT

离散数学_图论123页PPT

16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END
Hale Waihona Puke 离散数学_图论1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴

《离散数学图论》课件

《离散数学图论》课件
最短路径问题
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径

离散数学-图论基础

离散数学-图论基础

结点的次数
2020/1/17
问题1:是否存在这种情况:25个人中,由于意见不同,每 个人恰好与其他5个人意见一致?
在建立一个图模型时,一个基本问题是决定这个图是什么 —— 什么是结点?什么是边? 在这个问题里,我们用结点表示对象——人; 边通常表示两个结点间的关系——表示2个人意见一致。 也就是说,意见一致的2个人(结点)间存在一条边。
第七章 图论基础
Graphs
第一节 图的基本概念
2020/1/17
一个图G定义为一个三元组:G=<V, E, Φ>
V —— 非空有限集合,V中的元素称为结点 (node)或 顶点(vertex)
E —— 有限集合(可以为空),E中的元素称为边(edge)
Φ —— 从E到V的有序对或无序对的关联映射
以v为起始结点的弧的条数,称为出度(out-degree) (引出次数),记为d+(v)
以v为终结点的弧的条数,称为入度(in-degree)
(引入次数),记为d-(v)
v3
v的出度和入度的和,称为v的度数(degree)
(次数),记为d(v) = d+(v) + d-(v)
v1 (a) v2
结点的次数
(associative mapping)
v3
v3
v3
v1 (a) v2
v1
v2
(b)
v1
v2
(c)
图的基本概念
2020/1/17
图G=<V, E, Φ>中的每条边都与图中的无序对或有序对联系
若边e E 与无序对结点[va, vb]相联系,即Φ(e)= [va, vb] (va, vb V)则称e是无向边(或边、棱)

离散数学图论路与连通PPT课件

离散数学图论路与连通PPT课件
第18页/共26页
7.2.3 图的连通度
定义7-2.4 设无向图G =<V,E>是连通图,若有结点集V1V,使图 G中删除了 V1的所有结点后,所得到的子图是不连通图,而删除了V1的任何真子集后,所
得到的子图仍是连通图,则称V1是G的一个点割集(cut-set of nodes) 。
k(G)=min{|V1|| 是G的点割集} 称为图G的点连通度(nodeconnectivity) 。
现对G的每一条边e=(u1,u2),若u1,u2都在 V1上 ,则存 在两条 路P1与P2分别 连接u与 u1和u与u2, 且P1、 P2的长 度均为 偶数, 闭路P1∪P2∪ {e}的 长度为 奇数, 则不难 看出G中 有一条 长为奇 数的圈 ,矛盾 。同样 u1和u2不能同 时含在 V2中。 故e的 两个端 点分别 在V1和 V2中。 因此G是二分 图。
G 定理7.2.1 非平凡图 是二分图当且仅当 中不含长为奇数的回路。
G
证明 必要性是明显的。
充分性:不妨设G中每一对顶点之间有路连接(否则
只需考虑G的每个每一对顶点之间有路连接的极大子
图)。任取G的一个顶点u,由G的假设,对G的每个顶
点v,在G中存在u-v路。现利用u对G的顶点进行分类。

第24页/共26页
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路 简单通路 复杂通路
7.2.1 路
例1、(2)
图(2)中过 v2 的回路 (从 v2 到 v2 )有:
第7页/共26页
1 v2e4v4e3v3e2v2
长度3
2 v2e5v5e6v4e3v3e2v2
长度4
3 v2e4v4e3v3e2v2e5v5e6v4e3v3e2v2 长度7

图论离散数学离散数学第四版清华出版社PPT课件

图论离散数学离散数学第四版清华出版社PPT课件

12/19/2020
28
b
e1
e4
a
e2
d
e5
e3
c
e5, e1, e2, e3, e4是简单通路,不是基本通路, 因为c, a, b, c, d, b中b, c均出现了两次。但c,
d, b, c是基本通路,也是基本回路。
12/19/2020
29
[定理] 在一个n阶图中,若从顶点u到v (uv)
❖ 起始状态是“人狼羊菜”,结束状态是“空”。
❖ 问题的解:找到一条从起始状态到结束状态的 尽可能短的通路。
12/19/2020
26
“巧渡河”问题的解
❖ 注意:在“人狼羊菜”的16种组合中允 许出现的只有10种。
人羊狼菜 人狼菜 人羊狼 人羊菜 人羊
狼菜

12/19/2020


空(成功)
27
[定义] 简单通路(Simple Path)
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。
在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
12/19/2020
30
[定义] 连通性(connectivity)
设G=<V,E>,若从vi到vj存在一条通 路,则称vi到vj连通(connective)或可达。
说明:对无向图而言,若vi到vj可达,则 vj到vi也可达。对有向图而言则未必。

离散数学教学图论【共58张PPT】

离散数学教学图论【共58张PPT】

一 、图的基本概念
• 邻接和关联 • 无向图和有向图 • 零图和平凡图 • 简单图 • 完全图(无向完全图和有向完全图) • 有环图
一 、图的基本概念
• 有限图和无限图 设图G为< V,E,Ψ>
(l)当V和E为有限集时,称G为有限图,否则称G为无限图。 (2)当ΨG为单射时,称G为单图;当ΨG为非单射时,称G为重图,又称满足
二、生成树
1、生成树定义:
若无向图的一个生成子图T是树,则称T 为G的生 成树,T中的边称为树枝,E(G)-E(T)称为树T 的补,其中的每一边称为树T 的弦。
在任何图中,结点v的度(degree)d(v)是v所关联边的数目。
第三节 生成树、最短路径和关键路径 由结点a和它所有的后代导的子图,称为T的子树.
∴ T连通且具有m=n-1的图
{e5,e4,e8} , {e7,e6,e5,e2,e4} 第四节 欧拉图和哈密顿图
第四节 特殊图(欧拉图和哈密顿图等)
第五节 树、二叉树和哈夫曼树
离散数学教学图论
(优选 欧拉图和哈密顿图
(3)2=>3 ∴W(T)≤W(T1) ∴W(ei+1)≥W(f) 二. 哈密顿图的由来—周游世界问题:
第二节 图的矩阵表示 第四节 欧拉图和哈密顿图
证明:若G中一个边割集和一生成 树无公共边,则表示该边割集所分离的结点不在生成树中,这导致与生成树的定义矛盾。 哈密顿图的由来—周游世界问题: c)对新图向下旋转45度。 ei之后将取f而不是ei+1
为该顶点的度,列之和一定为2. • 有向图的关联矩阵 ----- 以节点数为行,边数为列.节点与边无关系,为0,有关系,则起点为1,
终点为-1;列之和一定为0,每行绝对值之和等于该节点的度数;其 中1的个数为该节点的出度,-1的个数为对应节点的入度;所有元 素的和为0,1的个数等于-1的个数,都等于边数m.

离散数学——图论 ppt课件

离散数学——图论  ppt课件

ppt课件
11
哥尼斯堡七桥问题
把四块陆地用点来表示,桥用点与点连线表 示。
ppt课件
12
欧拉将问题转化为:任何一点出发,是否存在通过 每条边一次且仅一次又回到出发点的路?欧拉的结 论是不存在这样的路。显然,问题的结果并不重要, 最为重要的是欧拉解决这个问题的中间步骤,即抽 象为图的形式来分析这个问题 。
因此,尽管本教材介绍的是较为基础的图论内容, 但阅读理解与完成习题是学习图论必不可少的步骤。
ppt课件
8
图是人们日常生活中常见的一种信息载体, 其突出的特点是直观、形象。图论,顾名思 义是运用数学手段研究图的性质的理论,但 这里的图不是平面坐标系中的函数,而是由 一些点和连接这些点的线组成的结构 。
P(G)表示连通分支的个数。连通图的连通 分支只有一个。
ppt课件
40
练习题---图的连通性问题
1.若图G是不连通的,则补图是连通的。 提示:直接证法。
根据图的不连通,假设至少有两个连通分 支;任取G中两点,证明这两点是可达的。
ppt课件
41
2.设G是有n个结点的简单图,且 |E|>(n-1)(n-2)/2,则G是连通图。
33
§8.2通路、回路与连通性
定义:通路与回路 设有向图G=<V,E>,考虑G中一条边的序列
(vi1,vi2,…, vik),称这种边的序列为图的通路。 Vi1、vik分别为起点、终点。通路中边的条数称
为通路的长度。 若通路的起点和终点相同,则称为回路。
ppt课件
34
简单通路、基本通路
简单通路:通路中没有重复的边。 基本通路:通路中没有重复的点。 简单回路和基本回路。 基本通路一定是简单通路,但反之简单通路

离散数学图论公开课一等奖优质课大赛微课获奖课件

离散数学图论公开课一等奖优质课大赛微课获奖课件

b
c
g
d
a
h
b
c
g
d h
b
c
g
d
a
h
f (a)
f e
e
(b)
f
(c) 19
第19页
7.1 图基本概念
• (13)生成子图: 假如G子图包含G全部结点,则称 该子图为G生成子图。
• 以下图,(b)、(c)都是(a)生成子图。
(a)
(c)
20
第20页
7.1 图基本概念
(14).定义: 设图G =<V,E>及图G =<V ,E >, 假如存在一一相应映射g: vi→v i且e=(vi,vj)是G 一条边,当且仅当e =(g(vi ),g(vj))是 G 一条边,则称G与G 同构,记作G≌G 。 两个图同构充要条件是: 两个图结点和边分别存在着 一一相应关系,且保持关联关系。
7.1 图基本概念
(1)定义: 一个图G是一个三元组<V(G),E(G), ΦG>, 其 中V(G)为顶点集合, E(G)是边集合,ΦG是从边集E到 结点偶对集合上函数。
讨论定义:
(a) V(G) ={V1,V2,…,Vn}为有限非空集合,
Vi称为结点,简称V是点集。
(b) E(G)={e1,…,em}为有限边集合,ei称为边,每 个ei是连结V中某两个顶点,称E为边集。
(8)入度,出度: 在有向图中,射入一个结点边数称 为该结点入度。由一个结点射出边数称为该结点出 度。 结点出度与入度和是该结点度数。
定理: 在任何有向图中,所有结点入度和等于所有结 点出度之和。
14
第14页
7.1 图基本概念
证: ∵每一条有向边必相应一个入度和出度,若一个结点含 有一个入度或出度,则必关联一条有向边,因此,有向图 中各结点入度和等于边数,各结点出度和也是等于边数, 因此,任何有向图中,入度之和等于出度和。

离散数学PPT【共34张PPT】

离散数学PPT【共34张PPT】
15
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义 一个(n,m)(n2)的简单无向图,若它 为n-1次正则图,则称该(n,m)图为无向简单 完全图,简称完全图,记为Kn。
有向完全图
定理 设无向完全图G有n个顶点,则G有n(n-1)/2条边。
离散数学
12
例:
例:如图 (a)、(b)、(c)、(d)所示,它们分别是无向的简 单完全图K3,K4,K5和有向的简单完全图K3。
离散数学
14
例:
例:在下图中,给出了图G以及它的真子图G’和生成子图 G’’。G’是结点集{v1,v2,v4,v5,v6}的导出子图。
离散数学
15
五、补图
定义 设G=<V,E>为具有n个结点的简单图,从完 全图Kn中删去G中的所有的边而得到的图称为G的 补图(或G的补),记为G 。
定义 G=<V,E>是图,G’=<V’,Ε’>是 G的子图,E”=E-E’,V” 是E”中边所 关联的所有顶点集合,则G”=<V”,E”>称 为G’关于G的相对补图。
离散数学
9
定理
1.在无向图G=<V,E>中,所有结点的度数的总和等于
边数的两倍,即:
deg(v) 2m;
2. 在有向图G=<V,E>中v,V所有结点的出度之和等于所
有结点的入度之和,所有结点的度数的总和等于边数
的两倍,即:
deg (v) deg (v) m,
vV
vV
deg(v) deg (v) deg (v) 2m。
一、图的术语
定义 一个图是一个三元组<V(G),E(G),φG>,简记为G=<V,E>, 其中:
1) V={v1,v2,v3,…,vn}是一个非空集合,vi(i=1,2,3,…,n)称为结 点,简称点,V为结点集;
2) E = {e1,e2,e3,…,em} 是 一 个 有 限 集 , ei(i = 1,2,3,…,m) 称 为 边,E为边集,E中的每个元素都有V中的结点对(有序偶 或无序偶)与之对应。
vV
vV
vV
离散数学
10
定理
定理 在图G=<V,E>中,其V={v1,v2,v3,…,vn},E= {e1,e2,……,em},度数为奇数的结点个数为偶数。
证明 V1={v|vV且deg(v)=奇数},V2={v|vV且 deg(v)=偶数}。显然,V1∩V2=Φ,且V1∪V2=V,于是
离散数学
13
四、子图
定义 设有图G=<V,E>和图G1=<V1,E1>,若G和 G1满足:
若V1V,E1E,则称G1是G的子图,记为G1G; 若G1G,且G1G(即V1V或E1E),则称G1是G的真
子图,记为G1G;
定义 若V1=V,E1E,则称G1是G的生成子图;
定义 若V2V,V2Φ,以V2为结点集,以两个端点均 在V2中的边的全体为边集的G的子图称为V2导出的 子图,简称G的导出子图。
4) 关联于同一个结点的两条边称为邻接边; 5) 图中关联同一个结点的边称为自回路(或环); 6) 图中不与任何结点相邻接的结点称为孤立结点; 7) 仅由孤立结点组成的图称为零图; 8) 仅含一个结点的零图称为平凡图;
离散数学
2
续:
9) 含有n个结点、m条边的图称为(n,m)图; 10) 每条边都是无向边的图称为无向图; 11) 每条边都是有向边的图称为有向图; 12) 有些边是无向边,而另一些是有向边的图称为混合图。 13) 在有向图中,两个结点间(包括结点自身间)若有同始点和同
δ(G)最小度,Δ(G)最大度
定义 在图G=<V,E>中,对任意结点vV,若度数deg(v)为
奇数,ห้องสมุดไป่ตู้称此结点为奇度数结点,若度数deg(v)为偶数,
则称此结点为偶度数结点。
离散数学
8
例:
例: deg(v1)=3,deg+(v1)=2,deg-(v1)=1; deg(v2)=3,deg+(v2)=2,deg-(v2)=1; deg(v3)=5,deg+(v3)=2,deg-(v3)=3; deg(v4)=deg+(v4)=deg-(v4)=0; deg(v5)=1,deg+(v5)=0,deg-(v5)=1;
离散数学
3
例: (a)
例: (b)
(c)
(d)
离散数学
4
例:
例:
(e)
(f)
(g)
(h)
离散数学
5
例:
(i)
例: (j)
(k)
(l)
离散数学
6
例:
(m)
例: (n)
(o)
(p)
离散数学
7
二、度数
定义 在无向图G=<V,E>中,与结点v(vV)关联的边的条 数,称为该结点的度数,记为deg(v);
有: deg(v) deg(v) deg(v) 2m。
vV
vV1
vV2
由于上式中的2m和偶度数结点度数之和均为偶数,因而
奇数的结点个数也为偶数。于是|V1|为偶数(因为V1中的 结点v之deg(v)都为奇数),即奇度数的结点个数为偶数。
离散数学
11
三、完全图
定义 在图G=<V,E>中,若所有结点的度数均有相 同度数d,则称此图为d次正则图。
终点的几条边,则这几条边称为平行边,在无向图中,两个
结点间(包括结点自身间)若有几条边,则这几条边称为平行 边,两结点vi,vj间相互平行的边的条数称为边(vi,vj)或<vi, vj>的重数; 14) 含有平行边的图称为多重图。非多重图称为线图;无自回路 的线图称为简单图。
15) 赋权图G是一个三元组<V,E,g>或四元组<V,E,f,g>,其中,V 是结点集合,E是边的集合,g是从E到非负实数集合的函数。
离散数学
1
图的术语
1) 若边e与结点无序偶(u,v)相对应,则称边e为无向边,记为 e=(u,v),这时称u,v是边e的两个端点;
2) 若边e与结点有序偶<u,v>相对应,则称边e为有向边(或
弧),记为e=<u,v>,这时称u是边e的始点(或弧尾),v是 边e的终点(或弧头),统称为e的端点;
3) 在一个图中,关联结点vi和vj的边e,无论是有向的还是无 向的,均称边e与结点vi和vj相关联,而vi和vj称为邻接点, 否则称为不邻接的;
定义 在有向图G=<V,E>中,以结点v(vV)为始点引出的 边的条数,称为该结点的引出度数,简称出度,记为deg+(v); 以结点v(vV)为终点引入的边的条数,称为该结点的引 入度数,简称入度,记为deg-(v);而结点的出度和入度之 和称为该结点的度数,记为deg(v),即 deg(v)=deg+(v)+deg-(v);
相关文档
最新文档