离散数学图论课件
合集下载
离散数学_图论123页PPT
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END
Hale Waihona Puke 离散数学_图论1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
《离散数学图论》课件
最短路径问题
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径
离散数学-图论基础
结点的次数
2020/1/17
问题1:是否存在这种情况:25个人中,由于意见不同,每 个人恰好与其他5个人意见一致?
在建立一个图模型时,一个基本问题是决定这个图是什么 —— 什么是结点?什么是边? 在这个问题里,我们用结点表示对象——人; 边通常表示两个结点间的关系——表示2个人意见一致。 也就是说,意见一致的2个人(结点)间存在一条边。
第七章 图论基础
Graphs
第一节 图的基本概念
2020/1/17
一个图G定义为一个三元组:G=<V, E, Φ>
V —— 非空有限集合,V中的元素称为结点 (node)或 顶点(vertex)
E —— 有限集合(可以为空),E中的元素称为边(edge)
Φ —— 从E到V的有序对或无序对的关联映射
以v为起始结点的弧的条数,称为出度(out-degree) (引出次数),记为d+(v)
以v为终结点的弧的条数,称为入度(in-degree)
(引入次数),记为d-(v)
v3
v的出度和入度的和,称为v的度数(degree)
(次数),记为d(v) = d+(v) + d-(v)
v1 (a) v2
结点的次数
(associative mapping)
v3
v3
v3
v1 (a) v2
v1
v2
(b)
v1
v2
(c)
图的基本概念
2020/1/17
图G=<V, E, Φ>中的每条边都与图中的无序对或有序对联系
若边e E 与无序对结点[va, vb]相联系,即Φ(e)= [va, vb] (va, vb V)则称e是无向边(或边、棱)
离散数学图论路与连通PPT课件
第18页/共26页
7.2.3 图的连通度
定义7-2.4 设无向图G =<V,E>是连通图,若有结点集V1V,使图 G中删除了 V1的所有结点后,所得到的子图是不连通图,而删除了V1的任何真子集后,所
得到的子图仍是连通图,则称V1是G的一个点割集(cut-set of nodes) 。
k(G)=min{|V1|| 是G的点割集} 称为图G的点连通度(nodeconnectivity) 。
现对G的每一条边e=(u1,u2),若u1,u2都在 V1上 ,则存 在两条 路P1与P2分别 连接u与 u1和u与u2, 且P1、 P2的长 度均为 偶数, 闭路P1∪P2∪ {e}的 长度为 奇数, 则不难 看出G中 有一条 长为奇 数的圈 ,矛盾 。同样 u1和u2不能同 时含在 V2中。 故e的 两个端 点分别 在V1和 V2中。 因此G是二分 图。
G 定理7.2.1 非平凡图 是二分图当且仅当 中不含长为奇数的回路。
G
证明 必要性是明显的。
充分性:不妨设G中每一对顶点之间有路连接(否则
只需考虑G的每个每一对顶点之间有路连接的极大子
图)。任取G的一个顶点u,由G的假设,对G的每个顶
点v,在G中存在u-v路。现利用u对G的顶点进行分类。
设
第24页/共26页
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路 简单通路 复杂通路
7.2.1 路
例1、(2)
图(2)中过 v2 的回路 (从 v2 到 v2 )有:
第7页/共26页
1 v2e4v4e3v3e2v2
长度3
2 v2e5v5e6v4e3v3e2v2
长度4
3 v2e4v4e3v3e2v2e5v5e6v4e3v3e2v2 长度7
7.2.3 图的连通度
定义7-2.4 设无向图G =<V,E>是连通图,若有结点集V1V,使图 G中删除了 V1的所有结点后,所得到的子图是不连通图,而删除了V1的任何真子集后,所
得到的子图仍是连通图,则称V1是G的一个点割集(cut-set of nodes) 。
k(G)=min{|V1|| 是G的点割集} 称为图G的点连通度(nodeconnectivity) 。
现对G的每一条边e=(u1,u2),若u1,u2都在 V1上 ,则存 在两条 路P1与P2分别 连接u与 u1和u与u2, 且P1、 P2的长 度均为 偶数, 闭路P1∪P2∪ {e}的 长度为 奇数, 则不难 看出G中 有一条 长为奇 数的圈 ,矛盾 。同样 u1和u2不能同 时含在 V2中。 故e的 两个端 点分别 在V1和 V2中。 因此G是二分 图。
G 定理7.2.1 非平凡图 是二分图当且仅当 中不含长为奇数的回路。
G
证明 必要性是明显的。
充分性:不妨设G中每一对顶点之间有路连接(否则
只需考虑G的每个每一对顶点之间有路连接的极大子
图)。任取G的一个顶点u,由G的假设,对G的每个顶
点v,在G中存在u-v路。现利用u对G的顶点进行分类。
设
第24页/共26页
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路 简单通路 复杂通路
7.2.1 路
例1、(2)
图(2)中过 v2 的回路 (从 v2 到 v2 )有:
第7页/共26页
1 v2e4v4e3v3e2v2
长度3
2 v2e5v5e6v4e3v3e2v2
长度4
3 v2e4v4e3v3e2v2e5v5e6v4e3v3e2v2 长度7
图论离散数学离散数学第四版清华出版社PPT课件
12/19/2020
28
b
e1
e4
a
e2
d
e5
e3
c
e5, e1, e2, e3, e4是简单通路,不是基本通路, 因为c, a, b, c, d, b中b, c均出现了两次。但c,
d, b, c是基本通路,也是基本回路。
12/19/2020
29
[定理] 在一个n阶图中,若从顶点u到v (uv)
❖ 起始状态是“人狼羊菜”,结束状态是“空”。
❖ 问题的解:找到一条从起始状态到结束状态的 尽可能短的通路。
12/19/2020
26
“巧渡河”问题的解
❖ 注意:在“人狼羊菜”的16种组合中允 许出现的只有10种。
人羊狼菜 人狼菜 人羊狼 人羊菜 人羊
狼菜
狼
12/19/2020
菜
羊
空(成功)
27
[定义] 简单通路(Simple Path)
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。
在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
12/19/2020
30
[定义] 连通性(connectivity)
设G=<V,E>,若从vi到vj存在一条通 路,则称vi到vj连通(connective)或可达。
说明:对无向图而言,若vi到vj可达,则 vj到vi也可达。对有向图而言则未必。
离散数学教学图论【共58张PPT】
一 、图的基本概念
• 邻接和关联 • 无向图和有向图 • 零图和平凡图 • 简单图 • 完全图(无向完全图和有向完全图) • 有环图
一 、图的基本概念
• 有限图和无限图 设图G为< V,E,Ψ>
(l)当V和E为有限集时,称G为有限图,否则称G为无限图。 (2)当ΨG为单射时,称G为单图;当ΨG为非单射时,称G为重图,又称满足
二、生成树
1、生成树定义:
若无向图的一个生成子图T是树,则称T 为G的生 成树,T中的边称为树枝,E(G)-E(T)称为树T 的补,其中的每一边称为树T 的弦。
在任何图中,结点v的度(degree)d(v)是v所关联边的数目。
第三节 生成树、最短路径和关键路径 由结点a和它所有的后代导的子图,称为T的子树.
∴ T连通且具有m=n-1的图
{e5,e4,e8} , {e7,e6,e5,e2,e4} 第四节 欧拉图和哈密顿图
第四节 特殊图(欧拉图和哈密顿图等)
第五节 树、二叉树和哈夫曼树
离散数学教学图论
(优选 欧拉图和哈密顿图
(3)2=>3 ∴W(T)≤W(T1) ∴W(ei+1)≥W(f) 二. 哈密顿图的由来—周游世界问题:
第二节 图的矩阵表示 第四节 欧拉图和哈密顿图
证明:若G中一个边割集和一生成 树无公共边,则表示该边割集所分离的结点不在生成树中,这导致与生成树的定义矛盾。 哈密顿图的由来—周游世界问题: c)对新图向下旋转45度。 ei之后将取f而不是ei+1
为该顶点的度,列之和一定为2. • 有向图的关联矩阵 ----- 以节点数为行,边数为列.节点与边无关系,为0,有关系,则起点为1,
终点为-1;列之和一定为0,每行绝对值之和等于该节点的度数;其 中1的个数为该节点的出度,-1的个数为对应节点的入度;所有元 素的和为0,1的个数等于-1的个数,都等于边数m.
离散数学——图论 ppt课件
ppt课件
11
哥尼斯堡七桥问题
把四块陆地用点来表示,桥用点与点连线表 示。
ppt课件
12
欧拉将问题转化为:任何一点出发,是否存在通过 每条边一次且仅一次又回到出发点的路?欧拉的结 论是不存在这样的路。显然,问题的结果并不重要, 最为重要的是欧拉解决这个问题的中间步骤,即抽 象为图的形式来分析这个问题 。
因此,尽管本教材介绍的是较为基础的图论内容, 但阅读理解与完成习题是学习图论必不可少的步骤。
ppt课件
8
图是人们日常生活中常见的一种信息载体, 其突出的特点是直观、形象。图论,顾名思 义是运用数学手段研究图的性质的理论,但 这里的图不是平面坐标系中的函数,而是由 一些点和连接这些点的线组成的结构 。
P(G)表示连通分支的个数。连通图的连通 分支只有一个。
ppt课件
40
练习题---图的连通性问题
1.若图G是不连通的,则补图是连通的。 提示:直接证法。
根据图的不连通,假设至少有两个连通分 支;任取G中两点,证明这两点是可达的。
ppt课件
41
2.设G是有n个结点的简单图,且 |E|>(n-1)(n-2)/2,则G是连通图。
33
§8.2通路、回路与连通性
定义:通路与回路 设有向图G=<V,E>,考虑G中一条边的序列
(vi1,vi2,…, vik),称这种边的序列为图的通路。 Vi1、vik分别为起点、终点。通路中边的条数称
为通路的长度。 若通路的起点和终点相同,则称为回路。
ppt课件
34
简单通路、基本通路
简单通路:通路中没有重复的边。 基本通路:通路中没有重复的点。 简单回路和基本回路。 基本通路一定是简单通路,但反之简单通路
离散数学图论公开课一等奖优质课大赛微课获奖课件
b
c
g
d
a
h
b
c
g
d h
b
c
g
d
a
h
f (a)
f e
e
(b)
f
(c) 19
第19页
7.1 图基本概念
• (13)生成子图: 假如G子图包含G全部结点,则称 该子图为G生成子图。
• 以下图,(b)、(c)都是(a)生成子图。
(a)
(c)
20
第20页
7.1 图基本概念
(14).定义: 设图G =<V,E>及图G =<V ,E >, 假如存在一一相应映射g: vi→v i且e=(vi,vj)是G 一条边,当且仅当e =(g(vi ),g(vj))是 G 一条边,则称G与G 同构,记作G≌G 。 两个图同构充要条件是: 两个图结点和边分别存在着 一一相应关系,且保持关联关系。
7.1 图基本概念
(1)定义: 一个图G是一个三元组<V(G),E(G), ΦG>, 其 中V(G)为顶点集合, E(G)是边集合,ΦG是从边集E到 结点偶对集合上函数。
讨论定义:
(a) V(G) ={V1,V2,…,Vn}为有限非空集合,
Vi称为结点,简称V是点集。
(b) E(G)={e1,…,em}为有限边集合,ei称为边,每 个ei是连结V中某两个顶点,称E为边集。
(8)入度,出度: 在有向图中,射入一个结点边数称 为该结点入度。由一个结点射出边数称为该结点出 度。 结点出度与入度和是该结点度数。
定理: 在任何有向图中,所有结点入度和等于所有结 点出度之和。
14
第14页
7.1 图基本概念
证: ∵每一条有向边必相应一个入度和出度,若一个结点含 有一个入度或出度,则必关联一条有向边,因此,有向图 中各结点入度和等于边数,各结点出度和也是等于边数, 因此,任何有向图中,入度之和等于出度和。
离散数学PPT【共34张PPT】
15
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义 一个(n,m)(n2)的简单无向图,若它 为n-1次正则图,则称该(n,m)图为无向简单 完全图,简称完全图,记为Kn。
有向完全图
定理 设无向完全图G有n个顶点,则G有n(n-1)/2条边。
离散数学
12
例:
例:如图 (a)、(b)、(c)、(d)所示,它们分别是无向的简 单完全图K3,K4,K5和有向的简单完全图K3。
离散数学
14
例:
例:在下图中,给出了图G以及它的真子图G’和生成子图 G’’。G’是结点集{v1,v2,v4,v5,v6}的导出子图。
离散数学
15
五、补图
定义 设G=<V,E>为具有n个结点的简单图,从完 全图Kn中删去G中的所有的边而得到的图称为G的 补图(或G的补),记为G 。
定义 G=<V,E>是图,G’=<V’,Ε’>是 G的子图,E”=E-E’,V” 是E”中边所 关联的所有顶点集合,则G”=<V”,E”>称 为G’关于G的相对补图。
离散数学
9
定理
1.在无向图G=<V,E>中,所有结点的度数的总和等于
边数的两倍,即:
deg(v) 2m;
2. 在有向图G=<V,E>中v,V所有结点的出度之和等于所
有结点的入度之和,所有结点的度数的总和等于边数
的两倍,即:
deg (v) deg (v) m,
vV
vV
deg(v) deg (v) deg (v) 2m。
一、图的术语
定义 一个图是一个三元组<V(G),E(G),φG>,简记为G=<V,E>, 其中:
1) V={v1,v2,v3,…,vn}是一个非空集合,vi(i=1,2,3,…,n)称为结 点,简称点,V为结点集;
2) E = {e1,e2,e3,…,em} 是 一 个 有 限 集 , ei(i = 1,2,3,…,m) 称 为 边,E为边集,E中的每个元素都有V中的结点对(有序偶 或无序偶)与之对应。
vV
vV
vV
离散数学
10
定理
定理 在图G=<V,E>中,其V={v1,v2,v3,…,vn},E= {e1,e2,……,em},度数为奇数的结点个数为偶数。
证明 V1={v|vV且deg(v)=奇数},V2={v|vV且 deg(v)=偶数}。显然,V1∩V2=Φ,且V1∪V2=V,于是
离散数学
13
四、子图
定义 设有图G=<V,E>和图G1=<V1,E1>,若G和 G1满足:
若V1V,E1E,则称G1是G的子图,记为G1G; 若G1G,且G1G(即V1V或E1E),则称G1是G的真
子图,记为G1G;
定义 若V1=V,E1E,则称G1是G的生成子图;
定义 若V2V,V2Φ,以V2为结点集,以两个端点均 在V2中的边的全体为边集的G的子图称为V2导出的 子图,简称G的导出子图。
4) 关联于同一个结点的两条边称为邻接边; 5) 图中关联同一个结点的边称为自回路(或环); 6) 图中不与任何结点相邻接的结点称为孤立结点; 7) 仅由孤立结点组成的图称为零图; 8) 仅含一个结点的零图称为平凡图;
离散数学
2
续:
9) 含有n个结点、m条边的图称为(n,m)图; 10) 每条边都是无向边的图称为无向图; 11) 每条边都是有向边的图称为有向图; 12) 有些边是无向边,而另一些是有向边的图称为混合图。 13) 在有向图中,两个结点间(包括结点自身间)若有同始点和同
δ(G)最小度,Δ(G)最大度
定义 在图G=<V,E>中,对任意结点vV,若度数deg(v)为
奇数,ห้องสมุดไป่ตู้称此结点为奇度数结点,若度数deg(v)为偶数,
则称此结点为偶度数结点。
离散数学
8
例:
例: deg(v1)=3,deg+(v1)=2,deg-(v1)=1; deg(v2)=3,deg+(v2)=2,deg-(v2)=1; deg(v3)=5,deg+(v3)=2,deg-(v3)=3; deg(v4)=deg+(v4)=deg-(v4)=0; deg(v5)=1,deg+(v5)=0,deg-(v5)=1;
离散数学
3
例: (a)
例: (b)
(c)
(d)
离散数学
4
例:
例:
(e)
(f)
(g)
(h)
离散数学
5
例:
(i)
例: (j)
(k)
(l)
离散数学
6
例:
(m)
例: (n)
(o)
(p)
离散数学
7
二、度数
定义 在无向图G=<V,E>中,与结点v(vV)关联的边的条 数,称为该结点的度数,记为deg(v);
有: deg(v) deg(v) deg(v) 2m。
vV
vV1
vV2
由于上式中的2m和偶度数结点度数之和均为偶数,因而
奇数的结点个数也为偶数。于是|V1|为偶数(因为V1中的 结点v之deg(v)都为奇数),即奇度数的结点个数为偶数。
离散数学
11
三、完全图
定义 在图G=<V,E>中,若所有结点的度数均有相 同度数d,则称此图为d次正则图。
终点的几条边,则这几条边称为平行边,在无向图中,两个
结点间(包括结点自身间)若有几条边,则这几条边称为平行 边,两结点vi,vj间相互平行的边的条数称为边(vi,vj)或<vi, vj>的重数; 14) 含有平行边的图称为多重图。非多重图称为线图;无自回路 的线图称为简单图。
15) 赋权图G是一个三元组<V,E,g>或四元组<V,E,f,g>,其中,V 是结点集合,E是边的集合,g是从E到非负实数集合的函数。
离散数学
1
图的术语
1) 若边e与结点无序偶(u,v)相对应,则称边e为无向边,记为 e=(u,v),这时称u,v是边e的两个端点;
2) 若边e与结点有序偶<u,v>相对应,则称边e为有向边(或
弧),记为e=<u,v>,这时称u是边e的始点(或弧尾),v是 边e的终点(或弧头),统称为e的端点;
3) 在一个图中,关联结点vi和vj的边e,无论是有向的还是无 向的,均称边e与结点vi和vj相关联,而vi和vj称为邻接点, 否则称为不邻接的;
定义 在有向图G=<V,E>中,以结点v(vV)为始点引出的 边的条数,称为该结点的引出度数,简称出度,记为deg+(v); 以结点v(vV)为终点引入的边的条数,称为该结点的引 入度数,简称入度,记为deg-(v);而结点的出度和入度之 和称为该结点的度数,记为deg(v),即 deg(v)=deg+(v)+deg-(v);
有向完全图
定理 设无向完全图G有n个顶点,则G有n(n-1)/2条边。
离散数学
12
例:
例:如图 (a)、(b)、(c)、(d)所示,它们分别是无向的简 单完全图K3,K4,K5和有向的简单完全图K3。
离散数学
14
例:
例:在下图中,给出了图G以及它的真子图G’和生成子图 G’’。G’是结点集{v1,v2,v4,v5,v6}的导出子图。
离散数学
15
五、补图
定义 设G=<V,E>为具有n个结点的简单图,从完 全图Kn中删去G中的所有的边而得到的图称为G的 补图(或G的补),记为G 。
定义 G=<V,E>是图,G’=<V’,Ε’>是 G的子图,E”=E-E’,V” 是E”中边所 关联的所有顶点集合,则G”=<V”,E”>称 为G’关于G的相对补图。
离散数学
9
定理
1.在无向图G=<V,E>中,所有结点的度数的总和等于
边数的两倍,即:
deg(v) 2m;
2. 在有向图G=<V,E>中v,V所有结点的出度之和等于所
有结点的入度之和,所有结点的度数的总和等于边数
的两倍,即:
deg (v) deg (v) m,
vV
vV
deg(v) deg (v) deg (v) 2m。
一、图的术语
定义 一个图是一个三元组<V(G),E(G),φG>,简记为G=<V,E>, 其中:
1) V={v1,v2,v3,…,vn}是一个非空集合,vi(i=1,2,3,…,n)称为结 点,简称点,V为结点集;
2) E = {e1,e2,e3,…,em} 是 一 个 有 限 集 , ei(i = 1,2,3,…,m) 称 为 边,E为边集,E中的每个元素都有V中的结点对(有序偶 或无序偶)与之对应。
vV
vV
vV
离散数学
10
定理
定理 在图G=<V,E>中,其V={v1,v2,v3,…,vn},E= {e1,e2,……,em},度数为奇数的结点个数为偶数。
证明 V1={v|vV且deg(v)=奇数},V2={v|vV且 deg(v)=偶数}。显然,V1∩V2=Φ,且V1∪V2=V,于是
离散数学
13
四、子图
定义 设有图G=<V,E>和图G1=<V1,E1>,若G和 G1满足:
若V1V,E1E,则称G1是G的子图,记为G1G; 若G1G,且G1G(即V1V或E1E),则称G1是G的真
子图,记为G1G;
定义 若V1=V,E1E,则称G1是G的生成子图;
定义 若V2V,V2Φ,以V2为结点集,以两个端点均 在V2中的边的全体为边集的G的子图称为V2导出的 子图,简称G的导出子图。
4) 关联于同一个结点的两条边称为邻接边; 5) 图中关联同一个结点的边称为自回路(或环); 6) 图中不与任何结点相邻接的结点称为孤立结点; 7) 仅由孤立结点组成的图称为零图; 8) 仅含一个结点的零图称为平凡图;
离散数学
2
续:
9) 含有n个结点、m条边的图称为(n,m)图; 10) 每条边都是无向边的图称为无向图; 11) 每条边都是有向边的图称为有向图; 12) 有些边是无向边,而另一些是有向边的图称为混合图。 13) 在有向图中,两个结点间(包括结点自身间)若有同始点和同
δ(G)最小度,Δ(G)最大度
定义 在图G=<V,E>中,对任意结点vV,若度数deg(v)为
奇数,ห้องสมุดไป่ตู้称此结点为奇度数结点,若度数deg(v)为偶数,
则称此结点为偶度数结点。
离散数学
8
例:
例: deg(v1)=3,deg+(v1)=2,deg-(v1)=1; deg(v2)=3,deg+(v2)=2,deg-(v2)=1; deg(v3)=5,deg+(v3)=2,deg-(v3)=3; deg(v4)=deg+(v4)=deg-(v4)=0; deg(v5)=1,deg+(v5)=0,deg-(v5)=1;
离散数学
3
例: (a)
例: (b)
(c)
(d)
离散数学
4
例:
例:
(e)
(f)
(g)
(h)
离散数学
5
例:
(i)
例: (j)
(k)
(l)
离散数学
6
例:
(m)
例: (n)
(o)
(p)
离散数学
7
二、度数
定义 在无向图G=<V,E>中,与结点v(vV)关联的边的条 数,称为该结点的度数,记为deg(v);
有: deg(v) deg(v) deg(v) 2m。
vV
vV1
vV2
由于上式中的2m和偶度数结点度数之和均为偶数,因而
奇数的结点个数也为偶数。于是|V1|为偶数(因为V1中的 结点v之deg(v)都为奇数),即奇度数的结点个数为偶数。
离散数学
11
三、完全图
定义 在图G=<V,E>中,若所有结点的度数均有相 同度数d,则称此图为d次正则图。
终点的几条边,则这几条边称为平行边,在无向图中,两个
结点间(包括结点自身间)若有几条边,则这几条边称为平行 边,两结点vi,vj间相互平行的边的条数称为边(vi,vj)或<vi, vj>的重数; 14) 含有平行边的图称为多重图。非多重图称为线图;无自回路 的线图称为简单图。
15) 赋权图G是一个三元组<V,E,g>或四元组<V,E,f,g>,其中,V 是结点集合,E是边的集合,g是从E到非负实数集合的函数。
离散数学
1
图的术语
1) 若边e与结点无序偶(u,v)相对应,则称边e为无向边,记为 e=(u,v),这时称u,v是边e的两个端点;
2) 若边e与结点有序偶<u,v>相对应,则称边e为有向边(或
弧),记为e=<u,v>,这时称u是边e的始点(或弧尾),v是 边e的终点(或弧头),统称为e的端点;
3) 在一个图中,关联结点vi和vj的边e,无论是有向的还是无 向的,均称边e与结点vi和vj相关联,而vi和vj称为邻接点, 否则称为不邻接的;
定义 在有向图G=<V,E>中,以结点v(vV)为始点引出的 边的条数,称为该结点的引出度数,简称出度,记为deg+(v); 以结点v(vV)为终点引入的边的条数,称为该结点的引 入度数,简称入度,记为deg-(v);而结点的出度和入度之 和称为该结点的度数,记为deg(v),即 deg(v)=deg+(v)+deg-(v);