专题06圆的有关动点综合问题-2018届突破中考数学压轴题讲义(原卷版)
圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总
题型五--圆的相关证明与计算(复习讲义)【考点总结|典例分析】考点01圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.考点02垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.考点03圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.考点04圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.考点05与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r ⇔点在⊙O 外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r考点06切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.考点07三角形与圆1.三角形外接圆外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.1.如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=()A.48︒B.24︒C.22︒D.21︒2.如图,A,B,C 是半径为1的⊙O 上的三个点,若,∠CAB=30°,则∠ABC 的度数为()A.95°B.100°C.105°D.110°3.如图,AB 是⊙O 的直径,AC,BC 是⊙O 的弦,若20A ∠=︒,则B Ð的度数为()A.70°B.90°C.40°D.60°4.如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是()A.3B.C.4D.25.如图,已知在⊙O 中, AB BCCD ==,OC 与AD 相交于点E.求证:(1)AD∥BC(2)四边形BCDE 为菱形.6.如图,A,B 是O 上两点,且AB OA =,连接OB 并延长到点C,使BC OB =,连接AC.(1)求证:AC 是O 的切线.(2)点D,E 分别是AC,OA 的中点,DE 所在直线交O 于点F,G,4OA =,求GF 的长.7.如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E,若2EDC ABC S S = ,求tan BAC ∠的值.8.如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.9.如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.10.如图,已知点C 是以AB 为直径的圆上一点,D 是AB 延长线上一点,过点D 作BD 的垂线交AC 的延长线于点E ,连结CD ,且CD ED =.(1)求证:CD 是O 的切线;(2)若tan 2DCE ∠=,1BD =,求O 的半径.11.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC,CE⊥AB 于点E,D 是直径AB 延长线上一点,且∠BCE=∠BCD.(1)求证:CD 是⊙O 的切线;(2)若AD=8,BE CE=12,求CD的长.12.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.13.如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O 交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.=CD =DB ,连接AD,过点D作14.如图,AB为⊙O的直径,C、D为⊙O上的两个点,ACDE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.15.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.16.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC 平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=3,求⊙O的半径.17.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若⊙O的半径为5,BC=16,求DE的长.。
2018中考数学压轴题专题复习_圆的综合
2017 中考专题复习——圆题型一、勾股定理在圆中的应用1、( 2012 成都)如图, AB 是⊙ O 的直径,弦 CD ⊥ AB 于 H ,过 CD 延伸线上一点 E 作⊙ O 的切线交 AB 的延伸线于 F .切点为 G ,连结 AG 交 CD 于 K .( 1)求证: KE=GE ;( 2)若 KG 2 =KD · GE ,试判断 AC 与 EF 的地点关系,并说明原因;( 3) 在( 2)的条件下,若 sinE= 3, AK=2 3 ,求 FG 的长.52、( 2014? 孝感)如图, AB 是⊙O 的直径,点 C 是⊙O 上一点, AD 与过点 C 的切线垂直,垂足为点D ,直线 DC 与 AB 的延伸线订交于点 P ,弦 CE 均分∠ ACB ,交 AB 于点F ,连结 BE .( 1)求证: AC 均分∠ DAB ; ( 2)求证:△ PCF 是等腰三角形;( 3)若 tan ∠ABC= , BE=7 ,求线段 PC 的长.3、( 2015? 黄陂区校级模拟)如图,点P 在 y 轴的正半轴上,⊙P交x轴于B、C两点,以AC 为直角边作等腰Rt△ACD, BD 分别交 y 轴和⊙P 于 E、 F 两点,交连结AC、 FC.(1)求证:∠ ACF=∠ADB;(2)若点 A 到 BD的距离为 m, BF+CF=n,求线段 CD的长;( 3)当⊙P 的大小发生变化而其余条件不变时,的值能否发生变化?若不发生变化,恳求出其值;若发生变化,请说明原因.4、(2013?成都模拟)已知:如图,在半径为 4 的⊙O 中, AB,CD是两条直径,M为 OB的中点,CM的延伸线交⊙O于点E,且EM>MC.连结DE,DE=.(1)求证: AM? MB=EM? MC;(2)求 sin ∠EOB 的值;(3)若 P 是直径 AB延伸线上的点,且 BP=12,求证:直线 PE是⊙O 的切线.5、( 2012? 杭州)如图,AE切⊙O 于点 E, AT 交⊙O 于点 M, N,线段OE交 AT于点 C,OB⊥A T 于点 B,已知∠ EAT=30°,AE=3,MN=2.( 1)求∠ COB的度数;( 2)求⊙O 的半径R;( 3)点 F 在⊙O 上(是劣弧),且EF=5,把△ OBC经过平移、旋转和相像变换后,使它的两个极点分别与点E,F 重合.在 EF 的同一侧,这样的三角形共有多少个?你能在此中找出另一个极点在⊙O 上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△ OBC的周长之比.6、( 2011? 潍坊)如图, AB 是半径 O 的直径, AB=2.射线 AM、 BN 为半圆 O 的切线.在 AM 上取一点 D,连结 BD交半圆于点 C,连结 AC.过 O点作 BC的垂线 OE,垂足为点 E,与 BN 订交于点 F.过 D 点作半圆 O的切线 DP,切点为 P,与 BN订交于点 Q.(1)求证:△ ABC∽△ OFB;(2)当△ ABD与△ BFO的面枳相等时,求 BQ的长;(3)求证:当 D 在 AM上挪动时( A 点除外),点 Q一直是线段 BF的中点.专题二、三角函数在圆中的应用1、( 2014 成都)如图,在⊙O的内接△ ABC中,∠ ACB=90°, AC=2BC,过 C作 AB的垂线l交⊙O 于另一点D,垂足为 E. 设 P 是⌒AC上异于 A,C 的一个动点,射线AP交l于点 F,连结 PC与 PD,PD交 AB 于点 G.(1)求证:△ PAC∽△ PDF;⌒⌒(2)若 AB=5,AP = BP,求 PD的长;( 3)在点 P运动过程中,设AGx ,y,BG tan AFD求 y 与 x 之间的函数关系式. (不要求写出x 的取值范围)tan AFD AE,FE2、( 2012? 襄阳)如图,PB为⊙O 的切线, B 为切点,直线垂线 BA,垂足为点D,交⊙O 于点 A,延伸AO与⊙O 交于点PO交⊙于点 E、 F,过点C,连结 BC, AF.B 作PO的(1)求证:直线 PA为⊙O 的切线;(2)尝试究线段 EF、 OD、 OP之间的等量关系,并加以证明;(3)若 BC=6,tan ∠F= ,求 cos∠ACB的值和线段 PE 的长.3、( 2014? 武侯区校级自主招生)如图,⊙O D, BP交⊙O 于 E, DE交 PC于 F.与直线PC相切于点C,直径AB∥PC, PA交⊙O 于(1)求证: PF2 =EF? FD;(2)当 tan ∠APB= ,tan ∠ABE= , AP= 时,求 PF 的长;(3)在( 2)条件下,连结 BD,判断△ ADB 是什么三角形?并证明你的结论.4、( 2014? 盘锦)如图,△ ABC 中,∠ C=90°,点G是线段 AC 上的一动点(点G 不与 A、 C 重合),以 AG为直径的⊙O 交 AB于点 D,直线 EF 垂直均分 BD,垂足为 F, EF 交 BC于点 E,连结DE.(1)求证: DE 是⊙O 的切线;(2)若 cosA= , AB=8 , AG=2 ,求 BE的长;(3)若 cosA= , AB=8 ,直接写出线段 BE的取值范围.专题三、相像三角形与圆的综合应用1、( 2010)已知:如图,ABC 内接于 e O , AB 为直径,弦 CE? AB于 F ,C是 AD 的中点,连结BD 并延伸交EC的延伸线于点G ,连结AD,分别交 CE 、 BC 于点P、Q.( 1)求证:P是ACQ 的外心;3( 2)若tan ABC, CF8 ,求 CQ 的长;4(3)求证:( FP PQ )2FP gFG.2(、 2014? 镇江)如图,⊙O的直径 AC与弦 BD订交于点F,点 E是 DB延伸线上的一点,∠EAB=∠ADB.(1)求证: EA 是⊙O 的切线;(2)已知点 B 是 EF 的中点,求证:以 A、 B、 C 为极点的三角形与△ AEF 相像;(3)已知 AF=4, CF=2.在( 2)条件下,求 AE的长.3、( 2013? 桂林)如图,在△ ABC中,∠C=90°,∠BAC的均分线AD交 BC于 D,过点 D 作 DE⊥AD 交 AB于 E,以 AE 为直径作⊙O.( 1)求证:点 D在⊙O 上;( 2)求证: BC 是⊙O 的切线;( 3)若 AC=6, BC=8,求△ BDE 的面积.4、( 2012? 泰州)如图,已知直线 l 与⊙O 相离, OA⊥l于点 A, OA=5. OA与⊙O 订交于点 P,AB与⊙O 相切于点 B, BP的延伸线交直线 l 于点 C.(1)试判断线段 AB与 AC 的数目关系,并说明原因;(2)若 PC=2 ,求⊙O 的半径和线段 PB的长;(3)若在⊙ O上存在点 Q,使△ QAC 是以 AC为底边的等腰三角形,求⊙O 的半径 r 的取值范围.5、( 2012? 德阳)如图,已知点 C 是以 AB 为直径的⊙O 上一点, CH ⊥AB 于点 H ,过点 B 作⊙O 的切线交直线 AC 于点 D ,点 E 为 CH 的中点,连结 AE 并延伸交 BD 于点 F ,直线 CF 交 AB 的延伸 线于 G .( 1)求证: AE? FD=AF? EC ; ( 2)求证: FC=FB ;( 3)若 FB=FE=2,求⊙O 的半径 r 的长.6、如图,在 Rt △ ABC 中,∠ B=90°,它的内切圆分别与三角形的三边切于点 D,E,F ,连结AD 与内切圆订交于点 P ,连结 PC,PE,PF,FD,ED ,且 PC ⊥ PF 。
2018年中考数学押轴题解析-文档资料
2018年中考数学押轴题解析以下是查字典数学网为您推荐的 2018年中考数学押轴题解析,希望本篇文章对您学习有所帮助。
2018年中考数学押轴题解析一、选择题1. (2018福建龙岩4分)如图,矩形ABCD中,AB=1,BC=2,把矩形ABCD 绕AB所在直线旋转一周所得圆柱的侧面积为【】A. B. C. D.2【答案】B。
【考点】矩形的性质,旋转的性质。
【分析】把矩形ABCD 绕AB所在直线旋转一周所得圆柱是以BC=2为底面半径,AB=1为高。
所以,它的侧面积为。
故选B。
2. (2018福建南平4分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为【】A. B. C. D.3【答案】B。
【考点】翻折变换(折叠问题),正方形的性质,折叠的性质,勾股定理。
【分析】∵正方形纸片ABCD的边长为3,C=90,BC=CD=3。
根据折叠的性质得:EG=BE=1,GF=DF。
设DF=x,则EF=EG+GF=1+x,FC=DC-DF=3-x,EC=BC-BE=3-1=2。
在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3-x)2,解得:。
DF= ,EF=1+ 。
故选B。
3. (2018福建宁德4分)如图,在矩形ABCD中,AB=2,BC=3,点E、F、G、H分别在矩形ABCD的各边上,EF∥HG,EH∥FG,则四边形EFGH的周长是【】A.10B.13C.210D.2134. (2018福建莆田4分)如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按ABC-DA一的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是【】A.(1,-1)B.(-1,1)C.(-1,-2)D.(1,-2)【答案】B。
专题06 平移、旋转问题(原卷版)
决战2020年中考典型压轴题大突破模块二中考压轴题几何变换综合专题考向导航在近几年的中考试题中,为了体现教育部关于中考命题改革的精神,出现了动手操作题。
动手操作题是让学生在通过实际操作的基础上设计有关的问题。
这类题对学生的能力有更高的要求,有利于培养学生的创新能力和实践能力,体现新课程理念。
此类试题的显著特点是以动手为基础的手脑并用的形式,有助于创新能力的培养和实践能力的提高,改变了以往一只笔一张纸的学习方式,是新课程改革的基本理念之,在中考中越来越受到关注。
常见的有折叠、旋转和平移操作。
操作型问题是指通过动手测量作图(象)、取值、计算等实验,猜想获得数学结论的探索研究性活动,这类活动完全模拟以动手为基础的手脑结合的科学研究形式,需要动手操作、合情合理和验证,不但有助于实践能力和创新能力的培养,更有助于养成实验研究的习惯,符合新课程标准,特别强调发现式学习、探究式学习和研究式学习,鼓励学生进行“微科研”活动,提倡要积极引导学生从事实验活动和实践活动,培养学生乐于动手、勤于实践的意识和习惯,切实提高学生的动手能力、实践能力的指导思想因此,实验操作问题将成为今后中考的热点题型。
专题06 旋转类问题方法点拨旋转类问题证明问题,既体现此类题型的动手能力、又能利用几何图形的性质进行全等、相似等证明。
精典例题(2019•大同二模)综合与实践问题情境:如图1,在数学活动课上,老师让同学们画了等腰Rt△ABC和等腰Rt△ADE,并连接CE,BD.操作发现:(1)当等腰Rt△ADE绕点A旋转,如图2,勤奋小组发现了:①线段CE与线段BD之间的数量关系是.②直线CE与直线BD之间的位置关系是.类比思考:(2)智慧小组在此基础上进行了深入思考,如图3,若△ABC与△ADE都为直角三角形,∠BAC=∠DAE=90°,且AC=2AB,AE=2AD,请你写出CE与BD的数量关系和位置关系,并加以证明.拓展应用:(3)创新小组在(2)的基础上,又作了进一步拓展研究,当点E在直线AB上方时,若DE ∥AB,且AB=√5,AD=1,其他条件不变,试求出线段CE的长.(直接写出结论)【点睛】(1)如图2中,延长BD交AC于点O,交EC于H.证明△EAC≌△DAB(SAS),即可解决问题.(2)结论:CE=2BD,CE⊥BD.如图3中,延长BD交AC于点O,交EC于点H.证明△ABD∽△ACE,即可解决问题.(3)如图4中,当DE∥AB时,设DE交AC于H,易证AC⊥DE.求出EH,CH,理由勾股定理即可解决问题.巩固突破1.(2019•邓州市二模)阅读材料如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF 的中点均为O,连接BF、CD、CO,显然,点C、F、O在同一条直线上,可以证明△BOF≌△COD,所以BF=CD.解决问题:(1)将图①中的Rt△DEF绕点O旋转到图②的位置,猜想此时线段BF与CD的数量关系,并证明你的结论;(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中结论仍然成立吗?如果成立,请说明理由;如果不成立,请求出BF与CD之间的数量关系;(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为O,且顶角∠ACB=∠EDF=α,BF与CD之间的数量关系如何(用含α的式子表示出来)?请直接写出结果.2.(2019•中原区校级四模)问题发现:如图(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC =BE=6,Rt△BDE绕点B逆时针旋转,H为CD的中点,当点C与点E重台时,BH与AE的位置关系为,BH与AE的数量关系为;问题证明:在Rt△BDE绕点B旋转的过程中,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明若不成立,请说明理由;拓展应用:在Rt△BDE绕点B旋转的过程中,当DE∥BC时,请直接写出BH2的长.3.(2019•宛城区二模)【问题背景】如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,BE,点P为DC的中点.【观察猜想】观察图1,猜想线段AP与BE的数量关系是,位置关系是.(2)【拓展探究】把△ADE绕点A逆时针方向旋转到图2的位置,(1)中的结论是否仍然成立,若成立,请证明:否则写出新的结论并说明理由.(3)【问题解决】把△ADE绕点A在平面内自由旋转,若DE=4,BC=8,请直接写出线段AP长的取值范围.4.(2019•中原区校级三模)等腰直角三角形ABC中,AC=BC=4√2,E为AC中点,以CE为斜边作如图所示等腰直角三角形CED.(1)观察猜想:如图1所示,过D作DF⊥AE于F,交AB于G,线段CD与BG的关系为;(2)探究证明:如图2所示,将△CDE绕点C顺时针旋转到如图所示位置,过D作DF⊥AE于F,过B作DE的平行线与直线FD交于点G,(1)中结论是否成立?请说明理由;(3)拓展延伸:如图3所示,当E、D、G共线时,直接写出DG的长度.5.(2019•金水区校级模拟)如图,△ABC与△CDE为等腰直角三角形,∠BAC=∠DEC=90°,连接AD,取AD中点P,连接BP,并延长到点M,使BP=PM,连接AM、EM、AE,将△CDE绕点C顺时针旋转.(1)如图①,当点D在BC上,E在AC上时,AE与AM的数量关系是,∠MAE=;(2)将△CDE绕点C顺时针旋转到如图②所示的位置,(1)中的结论是否仍然成立,若成立,请给出证明,若不成立,请说明理由;(3)若CD=12BC,将△CDE由图①位置绕点C顺时针旋转α(0°<α<360°),当ME=√62CD时,请直接写出α的值.6.(2019•镇平三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.7.(2019•葫芦岛模拟)在等腰△ABC中,∠BAC=90°,作∠ABC的平分线交AC于点D,∠MDN=135°,将∠MDN绕点D旋转,使∠MDN的两边交直线BA于点E,交直线BC于点F.(1)当∠MDN绕点D旋转到如图①的位置时,请直接写出三条线段AE,CF,AD的数量关系;(2)当∠MDN绕点D旋转到如图②的位置时,(1)中结论是否成立,若成立,请证明;若不成立,请写出正确的结论,并说明理由;(3)若BC=2+√2,当∠CDF=15°时,请直接写出线段CF的长度.8.(2019•北辰区二模)在平面直角坐标系中,O为坐标原点点A(3,4)点B(6,0).(Ⅰ)如图①,求AB的长;(Ⅱ)如图②,把图①中的△OAB绕点B顺时针旋转,使点O的对应点M恰好落在OA延长线上,N 是点A旋转后的对应点.①求证:BN∥OM;②求点N的坐标;(Ⅲ)点C是OB的中点,点D为线段OA上的动点在△OAB绕点B顺时针旋转过程中,点D的对应点是P,求线段CP长的取值范围(直接写出结果)9.(2019•南岗区四模)已知:在平面直角坐标系中,点O为坐标原点,线段AB的两个端点的坐标分别为A (0,a ),B (b ,0),且a >0,b <0,将线段AB 绕点A 顺时针旋转90°得到线段AC .(1)如图1,用a ,b 表示点C 的坐标;(2)如图2,连接BC 并延长交y 轴于点D ,点E 在x 轴上,连接CE ,DE ,且BE =CE ,求证:∠BDE =45°;(3)如图3,在(2)条件下,过点D 作BD 的垂线DF ,点F 在第一象限内,连接BF 交CE 于点G ,若BG :BC :DF =3:3:4,BF =17,求AO 的长.10.(2019•洛阳三模)如图1,在Rt △ABC 中,∠C =90°,AC =8,AB =10,D ,E 两点分别是AC ,CB 上的点,且CD =6,DE ∥AB ,将△CDE 绕点C 顺时针旋转一周,记旋转角为α.(1)问题发现①当α=0°时,AD EB = ;②当α=90°时,AD EB= . (2)拓展探究 请你猜想当△CDE 在旋转的过程中,AD EB 是否发生变化?根据图2证明你的猜想.(3)问题解决 在将△CDE 绕点C 顺时针旋转一周的过程中,当AD =2√13时,BE = ,此时α= .11.(2019•碑林区校级二模)在△ABC中,∠ACB=90°,BC=AC=2,将△ABC绕点A顺时针方向旋转α角(0°<α<180°)至△AB′C′的位置.问题探究:(1)如图1,当旋转角为60°时,连接C′C与AB交于点M,则C′C=,CM=.(2)如图2,在(1)条件下,连接BB′,延长CC′交BB′于点D,求CD的长.问题解决:(3)如图3,在旋转的过程中,连线CC′、BB′,CC′所在直线交BB′于点D,那么CD的长有没有最大值?如果有,求出CD的最大值:如果没有,请说明理由.12.(2019•洛阳二模)如图1,在Rt△ABC中,∠ABC=90°,AB=BC=4,点D、E分别是边AB、AC 的中点,连接DE,将△ADE绕点A按顺时针方向旋转,记旋转角为α,BD、CE所在直线相交所成的锐角为β.(1)问题发现当α=0°时,CEBD=;β=°.(2)拓展探究试判断:当0°≤α<360°时,CEBD和β的大小有无变化?请仅就图2的情形给出证明.(3)在△ADE旋转过程中,当DE∥AC时,直接写出此时△CBE的面积.13.(2019•苏家屯区二模)已知:如图,△ABC和△BDE都是等腰直角三角形,∠ACB=∠BDE=90°,点F是AE的中点,连接DF,CF.(1)如图1,点D,E分别在AB,BC边上,填空:CF与DF的数量关系是,位置关系是;(2)如图2,将图1中的△BDE绕B顺时针旋转45°得到图2,请判断(1)中CF与DF的数量关系和位置关系是否仍然成立,如果成立,请加以证明;如果不成立,请说明理由;(3)如图3,将图1中的△BDE绕B顺时针旋转90°得到图3,如果BD=2,AC=3√2,请直接写出CF的长.14.(2019•博罗一模)有一块含30°角的直角三角板OMN,其中∠MON=90°,∠NMO=30°,ON=2√3,将这块直角三角板按如图所示位置摆放.等边△ABC的顶点B与点O重合,BC边落在OM上,点A恰好落在斜边MN上,将等边△ABC从图1的位置沿OM方向以每秒1个单位长度的速度平移,边AB,AC分别与斜边MN交于点E,F(如图2所示),设△ABC平移的时间为t(s)(0<t<6).(1)等边△ABC的边长为;(2)在运动过程中,当时,MN垂直平分AB;(3)当0<t<6时,求直角三角板OMN与等边△ABC重叠部分的面积S与时间t之间的函数关系式.15.(2019•海州区一模)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.16.(2019•建昌一模)已知:点A、B在∠MON的边OM上,作AC⊥OM,BD⊥OM,分别交ON于C、D两点.(1)若∠MON=45°.①如图1,请直接与出线段AB和CD的数量关系.②将△AOC绕点O逆时针旋转到如图2的位置,连接AB、CD,猜想线段AB和CD的数量关系,并证明你的猜想.(2)若∠MON=α(0°<α<90°),如图3,请直接写出线段OC、OD、AB之间的数量关系.(用含α的式子表示)17.(2019•南漳模拟)在四边形ABCD 中,点E 为AB 边上的一点,点F 为对角线BD 上的一点,且EF ⊥AB .(1)若四边形ABCD 是正方形①如图1,直接写出AE 与DF 的数量关系 ;②将△EBF 绕点B 逆时针旋转到图2所示的位置,连接AE ,DF ,猜想AE 与DF 的数量关系并说明理由;(2)如图3,若四边形ABCD 为矩形,AB BC =√22,其它条件都不变,将△EBF 绕点B 顺时针旋转α(0o<α≤90o )得到△E 'BF '(E 、F 的对应点分别为E '、F '点),连接AE '、DF ',请在图3中画出草图,并判定AE′DF′的值是否随着α的变化而变化.若变化,请说明变化情况;若不变,请求出AE′DF′的值.18.(2019•徐州一模)将一副直角三角尺按图1摆放,其中∠C =90°,∠EDF =90°,∠B =60°,∠F =45°,等腰直角三角尺的直角边DF 恰好垂直平分AB ,与AC 相交于点G ,BC =4√3cm .(1)求DG 的长;(2)如图2.将△DEF 绕点D 按顺时针方向旋转,直角边DF 经过点C ,另一直角边DE 与AC 相交于点H ,分别过点H ,D 作AB ,BC 的垂线,垂足分别为点M ,N .猜想HM 与CN 之间的数量关系,并证明;(3)如图3,在旋转的过程中,若△DEF 两边DE ,DF 与△ABC 两边AC ,BC 分别交于K 、T 两点,则KT 的最小值为 .19.(2019•太原一模)综合与实践数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动,探究线段长度的有关问题.动手操作:如图1,在直角三角形纸片ABC中,∠BAC=90°,AB=6,AC=8.将三角形纸片ABC进行以下操作:第一步:折叠三角形纸片ABC使点C与点A重合,然后展开铺平,得到折痕DE;第二步:将△ABC沿折痕DE剪开,然后将△DEC绕点D逆时针方向旋转得到△DFG,点E,C的对应点分别是点F,G,射线GF与边AC交于点M(点M不与点A重合),与边AB交于点N,线段DG与边AC交于点P.数学思考:(1)求DC的长;(2)在△DEC绕点D旋转的过程中,试判断MF与ME的数量关系,并证明你的结论;问题解决:(3)在△DEC绕点D旋转的过程中,探究下列问题:①如图2,当GF∥BC时,求AM的长;②如图3,当GF经过点B时,AM的长为;③当△DEC绕点D旋转至DE平分∠FDG的位置时,试在图4中作出此时的△DFG和射线GF,并直接写出AM的长.(要求:尺规作图,不写作法,保留作图痕迹,标记出所有相应的字母)11/ 11。
专题06 阿氏圆问题-中考数学二次函数压轴题核心考点突破
中找一点 M 使得 “ PM 1 PA ”. 2
思路 1:构造相似三角形
A
A
点 M 与 A、C 共线,且 M 点必满足: CP2 CM CA ,
代入 CP、CA,即可得: 22 =4 CM ,得:CM=1, 即可确定 M 点位置, 1 PA PB PM PB
2 问题转化为 PM+PB 最小值,直接连 BM 即可.
∴S△ABM= AB •MH= ×4(﹣m2+6m﹣5)=﹣2m2+12m﹣10=﹣2(m﹣3)2+8
∴S 四边形 AMBC=S△ABC+S△ABM=10+[﹣2(m﹣3)2+8]=﹣2(m﹣3)2+18 ∴当 m=3,即 M(3,﹣4)时,四边形 AMBC 面积最大,最大面积等于 18 (可以直接利用点 M 是抛物线的顶点时,面积最大求解)
【练习 1】如图,在ABC 中,∠ACB=90°,BC=12,AC=9,以点 C 为圆心,6 为半径的 圆上有一个动点 D.连接 AD、BD、CD,则 2AD+3BD 的最小值是 .
C
D
A
B
【分析】首先对问题作变式
2AD+3BD=
3
2 3
AD
BD
,故求
2 3
AD
BD
最小值即可.
考虑到 D 点轨迹是圆,A 是定点,且要求构造 2 AD ,条件已经足够明显. 3
应用:已知半径及 A、B 中的其中一点,即可知道 PA:PB 的值.
练习 1:已知 A、B 求圆轨迹.
已知在坐标系中,点 A(-1,0),点 B(3,0),P 是平面中一点且 PA:PB=3:1,求 P 点
y
轨迹圆圆心位置.
2018年中考与圆有关的动点问题(答案)
1.【答案】D 【解析】如解图,点D 运动的路径是以AO 中点M 为圆心,AO 一半的长为半径的圆,∵AB 为⊙O 的直径,AB =8,∴AO =12AB =4,∴点D 运动的路径长为:π×4=4π.2.【答案】B 【解析】如解图,过A 作⊙O 的直径AE ,连接ED ,AD ,∴∠ADE =90°,∵∠E =∠B =30°,∴∠EAD =60°.在Rt △ADE 中,AD =12AE =6,∵AC 是⊙O 的切线,∴OA ⊥AC ,∴∠OAC =90°,∴∠CAD =90°-60°=30°,过点D 作AC 的垂线,垂足为C ',在Rt △DA C '中,∵∠DA C '=30°,∴DC '=12AD =3,∴当点C 在C '点时,CD 有最小值,最小值为3.3.【答案】D 【解析】如解图,连接OA ,OB ,∵∠ACB =30°,∴∠AOB =60°.∵OA =OB ,∴△AOB 是等边三角形,∴AB =6.当GH 为⊙O 的直径时,GE +FH 有最大值.∵当GH 为直径时,E 点与O 点重合,∴AC 也是直径,AC =12.∵∠ABC 是直径所对的圆周角,∴∠ABC =90°,∠C =30°,∴AB =12AC =6.∵点E 、F 分别为AC 、BC 的中点,∴EF =12AB =3.∴GE +FH =GH -EF =12-3=9. 4.【答案】D 【解析】∵AB =15,AC =9,BC =9,∴2AB =2AC +2BC ,∴△ABC 为直角三角形,∠ACB =90°,点C 在圆上,所以EF 为圆的直径,若求线段EF 的最值,即要使圆最小,圆与AB 的切点为D ,如解图,连接CD ,当CD 垂直于AB 时,即CD 是圆的直径时,EF 长度最小,即最小值是斜边AB 上的高CD ,利用三角形面积可得:12AB ·CD =12AC ·BC =12×15×CD =12×12×9,解得CD =365. 5.【答案】C 【解析】当点C 为劣弧AB 的中点时,△ABC 内切圆半径r 最大,如解图,连接OC 交AB 于D 点,⊙M 为△ABC 内切圆,作ME ⊥AC 于E 点,∵点C 为劣弧AB 的中点,∴OC ⊥AB ,AD =BD =12AB =3,AC =BC ,∴点M 在CD 上,∴ME 和MD 都为⊙M 的半径,设ME =MD =r ,∵∠ACB =120°,∴∠A =30°,∠ACD =60°,在Rt △ACD 中,CD在Rt △CEM 中,∠ECM =60°,∠CME =30°,CEEMr ,第1题解图B第2题解图第3题图D第4题解图AF E CB∴CM =2CE,CM +DM =CD+rr =6-6.【答案】C 【解析】由题可知=ABCACDABCD S SS+四边形,过点D 作DE ⊥AC 于点E ,过点B 作BF ⊥AC 于点F ,如解图,则1=2ABCD S AC BF ∙四边形+12AC DE ∙=12+12DE,当点D 为劣弧AC 的中点时,DE 取得最大值,此时∠DAC =∠ACD =∠ABD =12∠ABC =30°,在Rt △ADE 中,AE =12AC,DE =12AD ,由勾股定理可得DE =12,∴此时12ABCD S 四边形7.【答案】B 【解析】如解图,作直径BD ,连接CD ,OC ,BM ,CM ,OM ,则∠BCD =90°,则∠BAC =∠D ,∵BC =BD =2OB =4,∴CD2,∴CD =12BD ,∴∠DBC =30°,∴∠BAC =∠D =60°,∴∠BOC =2∠BAC =120°,∠ABC +∠ACB =120°,∵P 点是△ABC 的内心,∴∠PBC +∠PCB =12(∠ABC +∠ACB )=60°,∴∠BPC =120°=∠BOC ,∴点O 在⊙M 上,∴OM =CM ,∵BM =CM ,∴BM =CM ,∴∠BOM =∠COM =60°,∴△OCM 是等边三角形,∴CM =OC =2,即⊙M 的半径不变等于2.故选B .8.【答案】B 【解析】如解图,连接OA 、OB ,∵∠ACB =45°,∴∠AOB =90°,又∵OA =OB ,∴△AOB 是等腰直角三角形,∵AB =6,∴OA =OB =6M 、N 分别是AB 、BC 的中点,∴MN 是△ABC 的中位线,∴MN =12AC ,要使MN 最大,即AC 最大,而AC 是⊙O 的弦,故AC 是⊙O 的直径时,值最大,此时AC =2OA MN 长的最大值是12AC =12⨯第5题解图A第6题解图第7题解图第8题解图9.【答案】B 【解析】如解图,将⊙O 补全,延长BO 交⊙O 于点C ,连接AC 交MO 于点P ,连接BP ,∵CB ⊥MN ,OB =OC ,∴BP =CP ,∴PA +PB =PA +PC ,根据两点之间线段最短可知所作点P 即为所求,此时PA +PC =AC .∵CB 为⊙O 的直径,∴∠BAC =90°,在Rt △ABC 中,AB =4,BC =2OB =10,∴AC10.【答案】C 【解析】如解图,∵AC 为其直径,∠ACB =30°,∴∠A =60°,∵点A '在AC 上运动,∴∠A '=∠A =60°,∵C 'B ⊥A 'B ,∴∠C '=90°-60°=30°,∵∠C '是定值,∴点C '的运动路径是一个圆,当点C '运动到C ''时,C C ''=2BC ,∵⊙O 的半径为7,∴AC =14,AB =7 ,∴BC =C C ''=C '以在C C ''中点M 为圆心,BC '的最大值为11.【答案】A 【解析】连接AE ,如解图①,∵∠BAC =90°,AB =AC ,BC =AB =AC =4,∵AD 为直径,∴∠AED =90°,∴∠AEB =90°,∴点E 在以AB 为直径的⊙O 的上,∵⊙O 的半径为2,∴当点E 为线段OC 与⊙O 的交点时,CE 最小.如解图②,在Rt △AOC 中,∵OA =2,AC =4,∴OCCE =OC -OE=-2.即线段CE长度最小值为2.当点E 为射线CO 与⊙O 的交点时,CE 最大,最大值为+2,∴-2≤CE ≤+2.12.【答案】A 【解析】如解图,连接OQ ,∵MN =OP (矩形对角线相等),⊙O 的半径为2,OQ =12MN =12OP =1,可得点Q 的运动轨迹是以O 为圆心,1为半径的圆.当点P 沿着圆周转过45°时,点Q 也是转过45°.∴Q 运动过的长度为45360︒︒×2π=4π.故选A . 13.【答案】C 【解析】如解图,连接CE ,∵点E 是AD 的中点,A 'E =AE =12AD ,点F 为动点,则随着F 的运动,A '的运动轨迹是以点E 为圆心,AE 为半径在矩形ABCD 内的第9题解 图第10题解图②图B①图圆弧,则C A '、A 'E 和CE 围成三角形,根据三角形的三边关系,即A 'E + C A '>CE ,当E 、A '、C 在同一直线上时,则A 'E + C A '=CE ,此时C A '最小.在Rt △CDE 中,CD =3,DE =1,则CEC A '1.14.【答案】A 【解析】过点A 、B 作圆P ,且使OA 、OB 交⊙P 于A 、B 两点,如解图,连接AP ,BP ,∵OA =OB =AB =4,∴△OAB 是等边三角形,∴∠AOB =60°,∴∠ACB =12∠AOB =30°,∵BD ⊥BC ,∴∠D =60°,∵AB =4,是一个定值,∴点D 在圆P 上,要使△ABD 面积的最大,∴点D 到AB 的距离要最大时,此时D 为圆P 优弧AB 的中点,此时△ABD 为等边三角形,D 到AB 的距离为ABD S ∆=12△ABD 面积的最大值为15.【答案】B 【解析】当点C 运动到A 点处时,点D 在如解图D '的位置处,当点C 运动到B 点处时,点D 与点B 重合,∵△BCD 是等边三角形,∴∠CDB =60°,又∵CO =BO ,∴△CDO ≌△BDO ,∴∠ODB =30°,∴点C 在半圆AB 上运动时,点D 在以BD '为直径的圆上运动,当点O ,D 与BD '的中点M 共线时,线段OD 最长,为⊙M 的直径,∴OD 的长随点C 的运动而变化,最大值为16.【答案】B 【解析】如解图,连接OA 、OB ,∵∠AMB =45°,∴∠AOB =90°,∴△AOB 是等腰直角三角形,∵⊙O 的半径是2,∴AB==,∵A M BA NM A N B S S S ∆∆=+四边形,∴要使四边形MANB 面积最大,则需两个三角形的高的和最大,当MN 为直径时,NM 最大,∴由垂径定理可知MN ⊥AB 时,四边形MANB 面积有最大值,∴MANB S 四边形=12·AB ·MN =1217.【答案】C 【解析】如解图,取劣弧CB 的中点D ,连接AD ,BD ,∵∠BCA =90°,AB =第12题解图CF第13题解图第14题解图第15题解图2AC =4,∴CA =2,则∠ABC =30°,∴∠BAC =60°,∵D 为劣弧CB 的中点,∴BD =CD ,∴∠BAD =30°,∴BD =12AB =2,∠BPC =60°,∴∠BDC =120°,∵I 为△PBC 的内心,∴∠PBI =∠IBC ,∵BD =CD ,∴∠BPD =∠DBC ,∴∠PBI +∠BPD =∠IBC +∠DBC ,即∠BID =∠IBD ,∴ID =BD ,∵BD =CA =2,∴ID =2,∴动点I 到定点D 的距离为2,即点I 的轨迹是以点D 为圆心,2为半径的弧CIB (不含C 、B ),弧CIB 的长为1202180π⨯=43π,则l 的取值范围是:0<l <43π18.【答案】A 【解析】如解图,分别作∠A 与∠B 的角平分线,交点为P ,∵△ACD 和△BCE 都是等边三角形,∴AP 与BP 为CD 、CE 的垂直平分线.又∵圆心O 在CD 、CE 垂直平分线上,则交点P 与圆心O 重合,即圆心O 是一个定点,连接OC ,若半径OC 最短,则OC ⊥AB .又∵∠OAC =∠OBC =30°,AB =4,∴OA =OB =2OC ,∴AC =BC =2,∴在Rt △AOC 中,2OC =2AO -2AC ,即2OC =42OC -4,解得OC19.【答案】C 【解析】如解图,连接OP ,∵PM ⊥CD ,PN ⊥AB ,∴∠PMO =∠PNO =90°,∴点M 、N 在以OP 为直径的圆上,∴∠MPN =90°,MN 有最大值2.20.【答案】 B 【解析】如解图,连接DO 并延长,交⊙O 于点P ′,由圆的性质知,当点P 运动到点P ′时,DP 的值最大.∵△ABC 为等腰直角三角形,且AB=∴BC=根据勾股定理得8AC ==,∵点D 、O 分别为AB 、AC 的中点,∴DO为△ABC的中位线,∴12DO BC ==DP ′=DO +OP ′=4,故DP 的最大值为4.第16题解图第17题解图第18题解图B第19题解图第20题解图 第22题解图 第23题解图 21.C 【解析】如解图,点P 运动的路径是以G 为圆心的劣弧,在⊙G 上取一点H ,连接EH 、FH ,∵四边形AOCB 是正方形,∴∠AOC =90°,∵∠CEA =12∠COA =45°,∴∠AFP =45°,∵EF 是⊙O 的直径,∴∠AFP =45°,∵EF 是⊙O 的直径,∴∠EAF =90°,∴∠APF =∠AFP =45°,∴∠H =∠APF =45°,∴∠EGF =2∠H =90°,∵EF =4,GE =GF ,∴GE =GF=EF 的长为90222180π=22.A 【解析】作DH ⊥BC 于H ,如解图,∵四边形ABCD 中,AD ∥BC ,∠ABC =90°,∴AB ⊥AD ,AB ⊥BC ,∴四边形ABHD 为矩形,∴AB 为直径,∴AD 和BC 为⊙O 的切线,∵CD 和MN 为⊙O 切线,∴DE =DA ,CE =CB ,NE =NF ,MB =MF ,∵四边形ABHD 为矩形,∴BH =AD =2,DH =AB =6,设BC =x ,则CH =x -2,CD =x +2,在Rt △DCH 中,∵222CH DH DC += ,∴222(2)6(2)x x -+=+,解得x =92,∴CB =CE =92,∴△MCN 的周长=CN +CM +MN =CN +CM +NF +MF =CE +CB =923.A 【解析】如解图,当点D 在⊙O 上运动时,点E 在以AO 为直径的圆上,当点D 运动到点C 处时,AE ′=12AC ;当点D 运动到点B 处时,AE ′′=12AB ,∴E ′E ′′为△ABC 的中位线,∴E ′E ′′=12BC =2,∵∠A =45°,∴E E ''' 所对的圆心角为90°,点E所在圆的半径r ∵点D 在优弧BAC上运动,∴点E运动的路径长为(3601802-=.24.A 【解析】如解图,当点D 在⊙O 上运动时,点E 在⊙M 上,点D 运动到D ′处时,D ′、O 、B 、M 共线,此时D ′B 为⊙O 的直径,∵BE =12BD ,∴BM =12BO ,在Rt △ABC 中,∵BC =AB =4,∴AC =BO=AO =BM D 与点A 重合时,点EC运动到E ′′处,∵△ABC 是等腰直角三角形,∴∠C =45°,∴∠BOA =90,∴∠E ′′MB =90°,∴当点D 从点A 运动至点B 时,点E的运动路径长为901802=.第24题解图 第25题解图25.C 【解析】如解图,过点P 作PF ⊥OM ,交直线l 同侧的⊙O 于点F ,连接OF ,记OF 的中点为G ,∵CM ⊥直线l ,∴∠MCO =∠OPF =90°,在Rt △CMO 和Rt △POF ,∴∠POF =∠CMO ,OF ⊥直线l ,∵点G 是OF 的中点,∴OG =GP =GF ,∴点P 在以点G 或G ′为圆心,OG 或OG ′长为半径的圆上,当点M 运动一周时,点P 的运动路程是⊙G 周长的2倍,∵OF =OM =10,∴点P 运动路程为2×10π=20π.。
专题06 直线与圆的位置关系、圆与圆的位置关系(重难点突破)原卷版
专题06 直线与圆的位置关系、圆与圆的位置关系一、知识结构思维导图二、学法指导与考点梳理知识点一直线与圆的位置关(1)三种位置关系:相交、相切、相离.(2)圆的切线方程的常用结论①过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2;②过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2;③过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.知识点二圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).方法位置关系几何法:圆心距d与r1,r2的关系代数法:两圆方程联立组成方程组的解的情况外离d>r1+r2无解外切d=r1+r2一组实数解【知识必备】1.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.2.圆系方程(1)同心圆系方程:(x-a)2+(y-b)2=r2(r>0),其中a,b是定值,r是参数;(2)过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方程:x2+y2+Dx+Ey+F+λ(Ax+By +C)=0(λ∈R);(3)过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的圆系方程:x2+y2+D1x +E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(该圆系不含圆C2,解题时,注意检验圆C2是否满足题意,以防漏解)。
高中化学专题06 化工、环境与原理大综合专题(原卷版)
专题05 化工、环境与原理大综合专题1.(14分) 氮的氧化物是造成大气污染的主要物质,研究氮氧化物间的相互转化及脱除具有重要意义。
I .氮氧化物间的相互转化 (1)已知2NO(g)+O 2(g) 2NO 2(g)的反应历程分两步:第一步 2NO(g) N 2O 2(g) (快速平衡)第二步 N 2O 2(g) +O 2(g)2NO 2(g) (慢反应)①用O 2表示的速率方程为v(O 2)= k 1·c 2(NO)·c(O 2);NO 2表示的速率方程为v(NO 2)=k 2·c 2(NO)·c(O 2),k 1与k 2分别表示速率常数(与温度有关),则12k K =________。
②下列关于反应2NO(g)+O 2(g)=2NO 2(g)的说法正确的是_________(填序号)。
A .增大压强,反应速率常数一定增大B .第一步反应的活化能小于第二步反应的活化能C .反应的总活化能等于第一步和第二步反应的活化能之和(2)容积均为1L 的甲、乙两个容器,其中甲为绝热容器,乙为恒温容器.相同温度下,分别充入0.2mol 的NO 2,发生反应:2NO 2(g)N 2O 4(g) ∆H<0,甲中NO 2的相关量随时间变化如图所示。
①0~3s 内,甲容器中NO 2的反应速率增大的原因是______________________。
②甲达平衡时,温度若为T ℃,此温度下的平衡常数K =____________________。
③平衡时,K 甲_____K 乙,P 甲_____P 乙(填“>”、“<” 或“=”)。
(3)以NH 3为还原剂在脱硝装置中消除烟气中的氮氧化物。
主反应:4NH 3(g)+4NO(g)+O 2(g)= 4N 2(g)+6H 2O(g) ΔH 1 副反应:4NH 3(g)+3O 2(g)=2N 2(g)+6H 2O(g) ΔH 2=-1267.1kJ/mol 4NH 3(g)+5O 2(g)=4NO(g)+6H 2O(g) ΔH 3=-907.3 kJ/mol①△H1=____________。
2018年中考压轴题(动点问题) 精品
2018压轴题-动点问题1、(2018包头)如图,已知ABC△中,10AB AC==厘米,8BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B 同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?2、(2018齐齐哈尔)直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.3(2018深圳)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?4(2018哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.5(2018河北)在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C 出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B 匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t = 2时,AP = ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C 时,请直接..写出t的值.6(2018河南))如图,在Rt ABC°,°,2BC=.点ACB B∠=∠=△中,9060O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;α=°时,判断四边形EDBC是否为菱形,并说明理由.(2)当90(备用图)7(2018济南)如图,在梯形ABCD 中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形.8(2018江西)如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.CMA D E BF C图4(备用)ADE BF C图5(备用)A D E BF C图1 图2A D EBF C PNM 图3A D EBFCPN M(第25题)9(2018兰州)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C →D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.10(2018临沂)数学课上,张老师出示了问题:如图1,四边形ABCD∠的是正方形,点E是边BC的中点.90∠=,且EF交正方形外角DCGAEF平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.11(2018天津)已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.ADFC GE 图1ADF C GE 图2 ADFC GE B图312(2018太原)问题解决 如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN 的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN 的值等于 ;若1CE CD n =(n 为整数),则AMBN的值等于 .(用含n 的式子表示) 联系拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN的值等于 .(用含m n ,的式子表示)方法指导: 为了求得AMBN 的值,可先求BN 、AM 的长,不妨设:AB =2图(2)N A BCDEFM 图(1) A B CDEFMN。
2018年中考数学压轴题专题解析---几何动态探究问题—动点+动面
第1题图 (1)在整个运动过程中,当点 G在线段 AE上时,求 t 的值; (2)在整个运动过程中,是否存在点 P,使△ APQ是等腰三角形?若存在,求出 t 的值; 若不存在,说明理由; (3)在整个运动过程中,设△ GMN与△ AEF重叠部分的面积为 S.请直接写出 S 与 t 之间的 函数关系式以及自变量 t 的取值范围 ; (4) 在运动过程中,是否存在某一时刻 t , 使得 S: S△GMN=1:2? 若存在,求出 t 的值,若不存在, 请说明理由 .
2018 年中考数学压轴题专题解析 --- 几何动态探究问题—动点 +动面
1. 已知在矩形 ABCD中, E 为 BC边上一点, AE⊥DE, AB=12, BE=16, F 为线段 BE上一点, EF= 7,连接 AF.如图①,现有一张硬质纸片△ GMN,∠ NGM= 90°, NG= 6,MG= 8,斜边 MN 与边 BC在同一直线上,点 N与点 E 重合,点 G在线段 DE上.如图②,△ GMN从图①的位置 出发,以每秒 1 个单位的速度沿 EB向点 B 匀速移动,同时点 P 从 A点出发,以每秒 1 个单 位的速度沿 AD向点 D匀速移动,点 Q为直线 GN与线段 AE的交点,连接 PQ.当点 N到达终 点 B 时,△ GMN和点 P同时停止运动.设运动时间为 t 秒,解答下列问题:
AB与 QR在同一直线 l 上,开始时点 Q与点 A 重合,让△ PQR以 1cm/ s 的速度在直线 l 上运 动,同时 M点从点 Q出发以 1cm/ s 沿 QP运动,直至点 Q与点 B 重合时,都停止运动,设运
动的时间为
t ( s),四边形
PMBN的面积为
S(
2
cm
).
第 2 题图
(1)当 t =1s 时,求 S 的值;
2018年中考数学挑战压轴题(含答案)
2018年挑战压轴题中考数学精讲解读篇因动点产生的相似三角形问题1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC 交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.3.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB时,求k1的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE时,请直接写出满足条件的所有k2的值.4.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan∠AFB的值;(2)CE•AF的值是否随线段AD长度的改变而变化?如果不变,求出CE•AF的值;如果变化,请说明理由;(3)当△BGE和△BAF相似时,求线段AF的长.5.如图,平面直角坐标系xOy中,已知B(﹣1,0),一次函数y=﹣x+5的图象与x轴、y轴分别交于点A、C两点,二次函数y=﹣x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△APC的面积;(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.6.已知:半圆O的直径AB=6,点C在半圆O上,且tan∠ABC=2,点D为弧AC上一点,联结DC(如图)(1)求BC的长;(2)若射线DC交射线AB于点M,且△MBC与△MOC相似,求CD的长;(3)联结OD,当OD∥BC时,作∠DOB的平分线交线段DC于点N,求ON的长.7.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣1),点C(0,﹣4),顶点为点M,过点A作AB∥x轴,交y轴与点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包含△ABC的边界),求m的取值范围;(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).因动点产生的等腰三角形问题8.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,说明理由.9.已知,一条抛物线的顶点为E(﹣1,4),且过点A(﹣3,0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK ⊥x轴,垂足为K,DK分别交线段AE、AC于点G、H.(1)求这条抛物线的解析式;(2)求证:GH=HK;(3)当△CGH是等腰三角形时,求m的值.10.如图,已知在Rt△ABC中,∠ACB=90°,AB=5,sinA=,点P是边BC上的一点,PE⊥AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q,线段CQ与边AB交于点D.(1)求AD的长;(2)设CP=x,△PCQ的面积为y,求y关于x的函数解析式,并写出定义域;(3)过点C作CF⊥AB,垂足为F,联结PF、QF,如果△PQF是以PF为腰的等腰三角形,求CP的长.11.如图(1),直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c 经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图(2),将△BDP绕点B逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC,且点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.12.综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.因动点产生的直角三角形问题13.已知,如图1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,tan ∠ABC=2,点E在AD边上,且AE=3ED,EF∥AB交BC于点F,点M、N分别在射线FE和线段CD上.(1)求线段CF的长;(2)如图2,当点M在线段FE上,且AM⊥MN,设FM•cos∠EFC=x,CN=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△AMN为等腰直角三角形,求线段FM的长.14.如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C 在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).因动点产生的平行四边形问题15.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a 的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.16.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x 轴,y轴建立平面直角坐标系.(1)求点E坐标及经过O,D,C三点的抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2 个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.17.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.18.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P 右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ,DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).19.在平面直角坐标系xOy(如图)中,经过点A(﹣1,0)的抛物线y=﹣x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.(1)求b的值以及直线AD与x轴正方向的夹角;(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F 在E的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△EFG的周长为l,试用m表示l;(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.20.如图,直线y=mx+4与反比例函数y=(k>0)的图象交于点A、B,与x 轴、y轴分别交于D、C,tan∠CDO=2,AC:CD=1:2.(1)求反比例函数解析式;(2)联结BO,求∠DBO的正切值;(3)点M在直线x=﹣1上,点N在反比例函数图象上,如果以点A、B、M、N 为顶点的四边形是平行四边形,求点N的坐标.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P 在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD 的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.因动点产生的梯形问题22.如图,在平面直角坐标系xOy中,二次函数y=+bx+c的图象与y轴交于点A,与双曲线y=有一个公共点B,它的横坐标为4,过点B作直线l∥x轴,与该二次函数图象交于另一个点C,直线AC在y轴上的截距是﹣6.(1)求二次函数的解析式;(2)求直线AC的表达式;(3)平面内是否存在点D,使A、B、C、D为顶点的四边形是等腰梯形?如果存在,求出点D坐标;如果不存在,说明理由.23.如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.(1)求证:AB∥CD;(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在请说明理由.因动点产生的面积问题24.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC 于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.25.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M 作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.26.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG 上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.27.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?并说明理由.28.如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)∠OBA=°.(2)求抛物线的函数表达式.(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?29.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;=3S△EBC?若存在求出点(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBCF的坐标,若不存在请说明理由.30.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B (1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.31.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD 上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H 在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.32.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M 从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.33.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.因动点产生的相切问题34.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+2x+c与x轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.35.如图,在Rt△ABC中,∠C=90°,AC=14,tanA=,点D是边AC上一点,AD=8,点E是边AB上一点,以点E为圆心,EA为半径作圆,经过点D,点F是边AC 上一动点(点F不与A、C重合),作FG⊥EF,交射线BC于点G.(1)用直尺圆规作出圆心E,并求圆E的半径长(保留作图痕迹);(2)当点G的边BC上时,设AF=x,CG=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EG,当△EFG与△FCG相似时,推理判断以点G为圆心、CG为半径的圆G与圆E可能产生的各种位置关系.36.如图,线段PA=1,点D是线段PA延长线上的点,AD=a(a>1),点O是线段AP延长线上的点,OA2=OP•OD,以O为圆心,OA为半径作扇形OAB,∠BOA=90°.点C是弧AB上的点,联结PC、DC.(1)联结BD交弧AB于E,当a=2时,求BE的长;(2)当以PC为半径的⊙P和以CD为半径的⊙C相切时,求a的值;(3)当直线DC经过点B,且满足PC•OA=BC•OP时,求扇形OAB的半径长.37.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD 向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.38.如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B 位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C 同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.因动点产生的线段和差问题39.如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P 的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;=S△PAQ,求m的值;(2)若两个三角形面积满足S△POQ(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.40.抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.41.如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.42.如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.43.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(,),点B的坐标为(,),点C的坐标为(,),点D的坐标为(,);(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.44.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.45.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为,此时点P,A间的距离为;点M与AB的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)46.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.47.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S 的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).48.如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.49.如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.2017 挑战压轴题中考数学精讲解读篇参考答案与试题解析一.解答题(共36小题)1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q为顶点的三角形与△PAT相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.【解答】解:(1)如图①,设直线AB与x轴的交点为M.∵∠OPA=45°,∴OM=OP=2,即M(﹣2,0).设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得,解得.故直线AB的解析式为y=x+2;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,根据条件可知△QDC为等腰直角三角形,则QD=QC.设Q(m,m2),则C(m,m+2).∴QC=m+2﹣m2=﹣(m﹣)2+,QD=QC=[﹣(m﹣)2+].故当m=时,点Q到直线AB的距离最大,最大值为;(3)∵∠APT=45°,∴△PBQ中必有一个内角为45°,由图知,∠BPQ=45°不合题意.①如图②,若∠PBQ=45°,过点B作x轴的平行线,与抛物线和y轴分别交于点Q′、F.此时满足∠PBQ′=45°.∵Q′(﹣2,4),F(0,4),∴此时△BPQ′是等腰直角三角形,由题意知△PAT也是等腰直角三角形.(i)当∠PTA=90°时,得到:PT=AT=1,此时t=1;(ii)当∠PAT=90°时,得到:PT=2,此时t=0.②如图③,若∠PQB=45°,①中是情况之一,答案同上;先以点F为圆心,FB为半径作圆,则P、B、Q′都在圆F上,设圆F与y轴左侧的抛物线交于另一点Q″.则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.设Q″(n,n2)(﹣2<n<0),由FQ″=2,得n2+(4﹣n2)2=22,即n4﹣7n2+12=0.解得n2=3或n2=4,而﹣2<n<0,故n=﹣,即Q″(﹣,3).可证△PFQ″为等边三角形,所以∠PFQ″=60°,又PQ″=PQ″,所以∠PBQ″=∠PFQ″=30°.则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.则ET=AE=,OE=1,所以OT=﹣1,解得t=1﹣;(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.设TG=a,则PG=TG=a,AG=TG=a,AP=,∴a+a=,解得PT=a=﹣1,∴OT=OP﹣PT=3﹣,∴t=3﹣.综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC 交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.【分析】(1)由AD⊥BC,BH⊥AO,利用垂直的定义得到一对直角相等,再由一对公共角,且半径相等,利用AAS得到三角形ADO与三角形BHO全等,利用全等三角形对应边相等得到OH=OD,利用等式的性质化简即可得证;(2)连接AB,AF,如图1所示,利用HL得到直角三角形ADB与直角三角形BHA全等,利用全等三角形对应角相等得到一对角相等,再由公共角相等得到三角形ABE与三角形AFB相似,由相似得比例即可确定出y与x的函数解析式;(3)连接OF,如图2所示,利用两对角相等的三角形相似得到三角形AFO与三角形FOG相似,由相似得比例求出BD的长即可.【解答】(1)证明:∵AD⊥BC,BH⊥AO,∴∠ADO=∠BHO=90°,在△ADO与△BHO中,,∴△ADO≌△BHO(AAS),∴OH=OD,又∵OA=OB,∴AH=BD;(2)解:连接AB、AF,如图1所示,∵AO是半径,AO⊥弦BF,∴∴AB=AF,∴∠ABF=∠AFB,在Rt△ADB与Rt△BHA中,,∴Rt△ADB≌Rt△BHA(HL),∴∠ABF=∠BAD,∴∠BAD=∠AFB,又∵∠ABF=∠EBA,∴△BEA∽△BAF,∴=,。
2018年中考与圆有关的动点问题
2018年中考与圆有关的动点问题1.如图,AB为⊙O的直径,AB=8,点C为圆上任意一点,OD⊥AC于D,当点C在⊙O 上运动一周,点D运动的路径长为()A.π B.2π C.3π D.4π2.如图,⊙O的半径为6,B是优弧AD上一动点,∠B=30°,AC是⊙O的切线,则CD 的最小值是()A.2 B.3 C.4 D.63.如图,AB是⊙O的一条弦,点C是⊙O的优弧AB上一动点,且∠ACB=30°,点E是AC的中点,直线EF∥AB与⊙O交于G、H两点,交BC于点F,若⊙O的半径为6,则GE+FH的最大值( )A.不存在B.6 C.8 D.94.如图,在△ABC中,AB=15,AC=9,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是()A.7 B.185C.14 D.3655.如图,点C是⊙O上一动点,弦AB=6,∠ACB=120°,△ABC内切圆半径r的最大值为()AB.C.6-D.6△ABC内接于⊙O,点D为劣弧AC上一动点(且与A、C不重合),则四边形ABCD的最大面积为()第1题图BA第2题图第3题图第4题图AFECB12A .2B .4 CD .7.如图,半径为2的⊙O 中,弦BC =A 是优弧BC 上的一个动点,P 点是△ABC 的内心,经过B 、C 、P 三点作⊙M ,当点A 运动时,⊙M 的半径( ) A .发生变化,随A 位置决定 B .不变,等于2 C .有最大值为D .有最小值为18.如图,AB 是⊙O 的弦,AB =6,点C 是⊙O 上的一个动点,且∠ACB =45°,若点M 、 N 分别是AB 、BC 的中点,则MN 长的最大值是( )A .B .C .D .9.如图,A 、B 是半圆O 上的两点,MN 是直径,OB ⊥MN .若AB =4,OB =5,P 是MN 上的一动点,则PA +PB 的最小值为( )A .B .C .D第5题图第6题图第7题图第8题图第9题图第10题图第11题图BC第12题图310.在半径为7的圆O 中,AC 为其直径,点B 是圆上的定点,∠ACB =30°,点A '在AC 上运动(不与A ,C 重合),C 'B ⊥A 'B 交A 'C 的延长线于点C ',则B C '的最大值为( )A .14B .21C .D .11.如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =D 是直线AC 上一动点,连接BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的范围是( ) A .-+2 B .2C .2<CE <+2 D .CE <+212.如图,⊙O 的半径为2,AB 、CD 是互相垂直的两条直径,点P 是⊙O 上任意一点(P与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为( ) A .4π B .2π C .6π D .3π13.在矩形ABCD 中,AD =2,AB =3,点E 是AD 边的中点,点F 是AB 延长线上的一动点,将△AEF 沿EF 所在直线翻折得到△A 'EF ,连接A 'C ,则A 'C 的最小值为( )A .3 BC1 D .214.已知A 、B 为⊙O 上两点,且OB =AB =4,C 为优弧AB 上一动点(C 不与A 、B 重合),过点B 作BD ⊥BC 交直线CA 的延长线于点D ,则△ABD 面积的最大值为( ) A .B .C .D415.如图,AB 为⊙O 的直径,AB =C 为半圆AB 上一动点,以BC 为边向⊙O 作等边△BCD (点D 在直线AB 的上方),连接OD ,则线段OD 的长( )A .随点C 的运动而变化,最大值为4B .随点C 的运动而变化,最大值为C .随点C 的运动而变化,最大值为2D .随点C 的运动而变化,但无最值16.如图,⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB =45°,则四边形MANB 面积的最大值是( ) A .8 B .C .D .417.如图,Rt △ABC 内接于⊙O ,∠BCA =90°,AB =2AC =4,点P 在优弧CAB 上由点C向点B 移动,但不与点C 、B 重合,点I 为△PBC 的内心,则点I 随点P 移动所经过的路径长l 的取值范围是( ) A .l <43π B .l <23π C .0<l <43π D .0<l <23π18.如图,已知线段AB =4,C 为线段AB 上的一个动点(不与点A 、B 重合),分别以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O 的半径最小值为( ) ABCD .2 第13题图CDA'E FBAD第14题图A第15题图D第16题图5第20题图19.如图,⊙O 的半径是2,AB 、CD 是⊙O 的直径,P 是BC 上任意一点,PM ⊥CD 于M ,PN ⊥AB 于N ,MN 的最大值为( ) AB .1C .2D .20.如图,等腰Rt △ABC 内接于⊙O ,AB=D 为AB 的中点,P 为⊙O 上一动点,则线段DP 的最大值为( ) A.2B.4 C .D.621.如图,正方形OABC 的边长为2.以O 为圆心,EF 为直径的半圆经过点A ,连接AE ,CF 相交于点P ,将正方形OABC 从OA 与OF 重合的位置开始,绕着点O 逆时针旋转90°,则点P 运动的路径长是 ( )第17题图第18题图第19题图A.2π B.π CD.3π第21题图第22题图第23题图第24题图第25题图22.如图,四边形ABCD中,AD∥BC,∠ABC=90°,AD=2,AB=6,以AB为直径的⊙O 切CD于点E,F在劣弧BE上运动,过点F的直线MN为⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长( )A.不变,等于9 B.随点F的运动而变化,最大值为9 C.随点F的运动而变化,最小值为9 D.随点F的运动而变化,无法确定23如图,△ABC内接于⊙O,∠A=45°,BC=4,当点D在优弧BAC上由B点运动到C 点时,弦AD的中点E运动的路径长为().A.2πB. C.2πD.第24题图第25题图24如图,在等腰Rt△ABC中,BC=AB=4,点D在以斜边AC为直径的圆上,点E在线段DB6的延长线上,EB=12BD,当点D在劣弧AB上从点A运动至点B时,点E运动的路径长是()A.2π Bc.π D 2π25如图,已知直线l经过圆心O,P是半径OM上一动点,当半径OM绕点O旋转时,总有点P到点O的距离等于点M到直线l的距离,若OM=10,则当OM绕点O旋转一周时,点P运动的路程是()A .10π B.15π C.20π D .25π7。
专题06 二次函数与圆的综合问题(解析版)
备战2020中考数学之解密压轴解答题命题规律 专题06 二次函数与圆的综合问题【典例分析】【例1】(2019·湖南中考真题)如图,抛物线26y ax ax =+(a 为常数,a >0)与x 轴交于O ,A 两点,点B 为抛物线的顶点,点D 的坐标为(t ,0)(﹣3<t <0),连接BD 并延长与过O ,A ,B 三点的⊙P 相交于点C . (1)求点A 的坐标;(2)过点C 作⊙P 的切线CE 交x 轴于点E .①如图1,求证:CE =DE ;②如图2,连接AC ,BE ,BO ,当33a =,∠CAE =∠OBE 时,求11OD OE -的值思路点拨(1)令y=0,可得ax (x+6)=0,则A 点坐标可求出;(2)①连接PC ,连接PB 延长交x 轴于点M ,由切线的性质可证得∠ECD=∠COE ,则CE=DE ;②设OE=m ,由CE 2=OE•AE ,可得m =262t t+,由∠CAE=∠OBE 可得BD DO BE OE =,则m =66t t --,综合整理代入11t m --可求出11OD OE-的值.满分解答(1)令ax 2+bax =0 ax (x +6)=0 ∴A (-6,0)(2)连接PC ,连接PB 延长交x 轴于MP Q e 过O 、A 、B 三点,B 为顶点PM OA ∴⊥,90PBC BOM ∠+∠=又∵PC =PBPCB PBC ∴∠=∠,∵CE 为切线90PCB ECD ∴∠+∠=°, 又BDP CDE ∠=∠QECD COE ∴∠=∠,∴CE =DE ,(3)设OE =m ,即E (m,0) 由切割定理:CE 2=OE ·AE ()()22662t m t m m m t-=⋅+⇒=+①,CAE CBD ∠=∠Q ,已知CAE OBE ∠=∠,CBO EBO ∠=∠ 由角平分线定理:BD DOBE OE=()()2232766327t t t m mt m ++-=⇒=--++②由①②得22618360626t tt t t t =⇒++=+--∴t 2=-18t -36211113616t OD OE t m t +-=--=-=, 【名师点睛】本题是二次函数与圆的综合问题,涉及二次函数图象与x 轴的交点坐标、切线的性质、等腰三角形的判定、切割线定理等知识.把圆的知识镶嵌其中,会灵活运用圆的性质进行计算是解题的关键.【例2】(2018·山东中考真题)如图①,在平面直角坐标系中,圆心为P (x ,y )的动圆经过点A (1,2)且与x 轴相切于点B .(1)当x=2时,求⊙P 的半径;(2)求y 关于x 的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到 的距离等于到 的距离的所有点的集合.(4)当⊙P 的半径为1时,若⊙P 与以上(2)中所得函数图象相交于点C 、D ,其中交点D (m ,n )在点C 的右侧,请利用图②,求cos ∠APD 的大小.思路点拨(1)由题意得到AP=PB ,求出y 的值,即为圆P 的半径;(2)利用两点间的距离公式,根据AP=PB ,确定出y 关于x 的函数解析式,画出函数图象即可; (3)类比圆的定义描述此函数定义即可;(4)画出相应图形,求出m 的值,进而确定出所求角的余弦值即可.满分解答(1)由x=2,得到P (2,y ), 连接AP ,PB ,∵圆P 与x 轴相切, ∴PB ⊥x 轴,即PB=y , 由AP=PB ,得到()()22122y -+-=y ,解得:y=54, 则圆P 的半径为54; (2)同(1),由AP=PB ,得到(x ﹣1)2+(y ﹣2)2=y 2, 整理得:y=14(x ﹣1)2+1,即图象为开口向上的抛物线, 画出函数图象,如图②所示;(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A 的距离等于到x 轴的距离的所有点的集合;故答案为点A ;x 轴;(4)连接CD ,连接AP 并延长,交x 轴于点F ,交CD 于E , 设PE=a ,则有EF=a+1,21a -, ∴D 坐标为(21a -,a+1), 代入抛物线解析式得:a+1=14(1﹣a 2)+1,解得:a=﹣2+5或a=﹣2﹣5(舍去),即PE=﹣2+5, 在Rt △PED 中,PE=5﹣2,PD=1, 则cos ∠APD=PEPD=5﹣2. 【名师点睛】此题属于圆的综合题,涉及的知识有:两点间的距离公式,二次函数的图象与性质,圆的性质,勾股定理,弄清题意是解本题的关键.【例3】(2018·江苏中考真题)如图,在平面直角坐标系中,二次函数y=(x-a )(x-3)(0<a<3)的图象与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点D ,过其顶点C 作直线CP ⊥x 轴,垂足为点P ,连接AD 、BC .(1)求点A 、B 、D 的坐标;(2)若△AOD 与△BPC 相似,求a 的值;(3)点D 、O 、C 、B 能否在同一个圆上,若能,求出a 的值,若不能,请说明理由.思路点拨(1)根据二次函数的图象与x 轴相交,则y=0,得出A (a ,0),B (3,0),与y 轴相交,则x=0,得出D (0,3a ).(2)根据(1)中A 、B 、D 的坐标,得出抛物线对称轴x=32a +,AO=a ,OD=3a ,代入求得顶点C (32a +,-232a -⎛⎫ ⎪⎝⎭),从而得PB=3- 32a +=32a -,PC=232a -⎛⎫ ⎪⎝⎭;再分情况讨论:①当△AOD ∽△BPC 时,根据相似三角形性质得233322a aa a =--⎛⎫ ⎪⎝⎭, 解得:a=3(舍去);②△AOD ∽△CPB ,根据相似三角形性质得233322aaa a =--⎛⎫⎪⎝⎭,解得:a 1=3(舍),a 2=73; (3)能;连接BD ,取BD 中点M ,根据已知得D 、B 、O 在以BD 为直径,M (32,32a )为圆心的圆上,若点C 也在此圆上,则MC=MB ,根据两点间的距离公式得一个关于a 的方程,解之即可得出答案.满分解答(1)∵y=(x-a )(x-3)(0<a<3)与x 轴交于点A 、B (点A 在点B 的左侧), ∴A (a ,0),B (3,0), 当x=0时,y=3a , ∴D (0,3a );(2)∵A (a ,0),B (3,0),D (0,3a ).∴对称轴x=32a +,AO=a ,OD=3a , 当x= 32a +时,y=-232a -⎛⎫ ⎪⎝⎭, ∴C (32a +,-232a -⎛⎫ ⎪⎝⎭), ∴PB=3-32a +=32a -,PC=232a -⎛⎫ ⎪⎝⎭, ①当△AOD ∽△BPC 时, ∴AO OD BP PC=, 即 233322a aa a =--⎛⎫ ⎪⎝⎭,解得:a=3(舍去);②△AOD ∽△CPB , ∴AO OD CP PB=, 即233322aaa a =--⎛⎫⎪⎝⎭,解得:a1=3(舍),a2=73.综上所述:a的值为73;(3)能;连接BD,取BD中点M,∵D、B、O三点共圆,且BD为直径,圆心为M(32,32a),若点C也在此圆上,∴MC=MB,∴22222 3333333222222a a a a⎡⎤+-⎛⎫⎛⎫⎛⎫⎛⎫-++=-+⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,化简得:a4-14a2+45=0,∴(a2-5)(a2-9)=0,∴a2=5或a2=9,∴a1=5,a2=-5,a3=3(舍),a4=-3(舍),∵0<a<3,∴a=5,∴当a=5时,D、O、C、B四点共圆.【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键.【例4】(2009·山东中考真题)如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点.(1)求抛物线的解析式;(2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长.(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.思路点拨(1)根据⊙O半径为1,得出D点坐标,再利用CO=1,AO=1,点M、N在直线y=x上,即可求出答案;(2)先利用配方法求出顶点坐标,再根据相似三角形的对应边成比例即可求得结果;(3)先求出直线CD的解析式,即可得到点P的坐标,从而可以判断点是否在抛物线上.满分解答(1)圆心在坐标原点,圆的半径为1,点的坐标分别为抛物线与直线交于点,且分别与圆相切于点和点,.点在抛物线上,将的坐标代入,得:解之,得:抛物线的解析式为:.(2)抛物线的对称轴为,.连结,,,又,,.(3)点在抛物线上.设过点的直线为:,将点的坐标代入,得:,直线为:.过点作圆的切线与轴平行,点的纵坐标为,将代入,得:.点的坐标为,当时,,所以,点在抛物线上.【例5】(2017·四川中考真题)如图,已知抛物线(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求MF的值.思路点拨(1)可设抛物线的顶点式,再结合抛物线过点(4,2),可求得抛物线的解析式;(2)联立直线和抛物线解析式可求得B、D两点的坐标,则可求得C点坐标和线段BD的长,可求得圆的半径,可证得结论;(3)过点C作CH⊥m于点H,连接CM,可求得MH,利用(2)中所求B、D的坐标可求得FH,则可求得MF和BE的长,可求得其比值.满分解答(1)∵已知抛物线(a≠0)的图象的顶点坐标是(2,1),∴可设抛物线解析式为,∵抛物线经过点(4,2),∴,解得a=,∴抛物线解析式为,即;(2)联立直线和抛物线解析式可得,解得:或,∴B(,),D(,),∵C为BD的中点,∴点C的纵坐标为=,∵BD==5,∴圆的半径为,∴点C到x轴的距离等于圆的半径,∴圆C与x轴相切;(3)如图,过点C作CH⊥m,垂足为H,连接CM,由(2)可知CM=,CH=﹣1=,在Rt△CMH中,由勾股定理可求得MH=2,∵HF==,∴MF=HF﹣MH=,∵BE=﹣1=,∴==.【例6】如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的内接四边形,点A,B在x 轴上,△MBC是边长为2的等边三角形,过点M作直线l与x轴垂直,交⊙M于点E,垂足为点M,且点D平分.(1)求过A,B,E三点的抛物线的解析式;(2)求证:四边形AMCD是菱形;(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.思路点拨(1)根据题意首先求出抛物线顶点E的坐标,再利用顶点式求出函数解析式;(2)利用等边三角形的性质结合圆的有关性质得出∠AMD=∠CMD=∠AMC=60°,进而得出DC=CM=MA=AD,即可得出答案;(3)首先表示出△ABP的面积进而求出n的值,再代入函数关系式求出P点坐标.满分解答(1)由题意可知,△MBC 为等边三角形,点A ,B ,C ,E 均在⊙M 上, 则MA=MB=MC=ME=2, 又∵CO ⊥MB , ∴MO=BO=1, ∴A (﹣3,0),B (1,0),E (﹣1,﹣2),抛物线顶点E 的坐标为(﹣1,﹣2), 设函数解析式为y=a (x+1)2﹣2(a≠0)把点B (1,0)代入y=a (x+1)2﹣2, 解得:a=,故二次函数解析式为:y=(x+1)2﹣2;(2)连接DM , ∵△MBC 为等边三角形, ∴∠CMB=60°, ∴∠AMC=120°, ∵点D 平分弧AC , ∴∠AMD=∠CMD=∠AMC=60°, ∵MD=MC=MA , ∴△MCD ,△MDA 是等边三角形,∴DC=CM=MA=AD , ∴四边形AMCD 为菱形(四条边都相等的四边形是菱形);(3)存在.理由如下: 设点P 的坐标为(m ,n ) ∵S △ABP =AB|n|,AB=4 ∴×4×|n|=5, 即2|n|=5, 解得:n=±, 当时,(m+1)2﹣2=, 解此方程得:m 1=2,m 2=﹣4即点P 的坐标为(2,),(﹣4,),当n=﹣时,(m+1)2﹣2=﹣, 此方程无解,故所求点P 坐标为(2,),(﹣4,).【变式训练】一、单选题1.如图,抛物线2144y x =-与x 轴交于A 、B 两点,P 是以点C (0,3)为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连结OQ .则线段OQ 的最大值是( )A .3B 41C .72D .4【答案】C【解析】【分析】 根据抛物线解析式可求得点A (-4,0),B (4,0),故O 点为AB 的中点,又Q 是AP 上的中点可知OQ=12BP ,故OQ 最大即为BP 最大,即连接BC 并延长BC 交圆于点P 时BP 最大,进而即可求得OQ 的最大值.【详解】 ∵抛物线2144y x =-与x 轴交于A 、B 两点 ∴A (-4,0),B (4,0),即OA=4.在直角三角形COB 中 2222345+=+=OC OB∵Q 是AP 上的中点,O 是AB 的中点∴OQ 为△ABP 中位线,即OQ=12BP 又∵P 在圆C 上,且半径为2,∴当B 、C 、P 共线时BP 最大,即OQ 最大此时BP=BC+CP=7 OQ=12BP=72. 【点睛】本题考查了勾股定理求长度,二次函数解析式求点的坐标及线段长度,中位线,与圆相离的点到圆上最长的距离,解本题的关键是将求OQ 最大转化为求BP 最长时的情况.2.已知抛物线y =a(x ﹣3)2+254过点C(0,4),顶点为M ,与x 轴交于A 、B 两点.如图所示以AB 为直径作圆,记作⊙D ,下列结论:①抛物线的对称轴是直线x =3;②点C 在⊙D 外;③在抛物线上存在一点E ,能使四边形ADEC为平行四边形;④直线CM与⊙D相切.正确的结论是( )A.①③B.①④C.①③④D.①②③④【答案】B【解析】【分析】①根据抛物线的解析式即可判定;②求得AD、CD的长进行比较即可判定,③过点C作CE∥AB,交抛物线于E,如果CE=AD,则根据一组等边平行且相等的四边形是平行四边形即可判定;④求得直线CM、直线CD的解析式通过它们的斜率进行判定;【详解】由抛物线y=a(x﹣3)2+254可知:抛物线的对称轴x=3,故①正确;∵抛物线y=a(x﹣3)2+254过点C(0,4),∴4=9a+254,解得:a=﹣14,∴抛物线的解析式为y=﹣14(x﹣3)2+254,令y=0,则﹣14(x﹣3)2+254=0,解得:x=8或x=﹣2,∴A(﹣2,0),B(8,0);∴AB=10,∴AD=5,∴OD=3∵C(0,4),∴CD=225OC OD+=,∴CD=AD,∴点C在圆上,故②错误;过点C作CE∥AB,交抛物线于E,∵C(0,4),代入y=﹣14(x﹣3)2+254得:4=﹣14(x﹣3)2+254,解得:x=0,或x=6,∴CE=6,∴AD≠CE,∴四边形ADEC不是平行四边形,故③错误;由抛物线y=a(x﹣3)2+254可知:M(3,254),∵C(0,4),∴直线CM为y=34x+4,直线CD为:y=43-x+4,∴CM⊥CD,∵CD=AD=5,∴直线CM与⊙D相切,故④正确;故选:B.【点睛】此题是抛物线与圆的综合题,考察抛物线的性质,(2)用勾股定理判断CD与圆的半径的大小关系;(3)抛物线中平行四边形的构成,先作平行线求得线段CE的长度,再与线段AD比较即可知是否为平行四边形;(4)中的相切关系需证得直线的垂直关系,即直线解析式中k值互为负倒数时直线垂直,由此证得CM与圆相切.3.如图,在Rt OAB V 中,o 90AOB ∠=,4OA =,3OB =.O e 的半径为2,点P 是线段AB 上的一动点,过点P 作O e 的一条切线PQ ,Q 为切点.设AP x =,2PQ y =,则y 与x 的函数图象大致是( )A .AB .BC .CD .D【答案】A【解析】【分析】 根据PC ∥BO ,可得△ABO ∽△APC ,继而可得AP PC AC AB OB OA ==,由AP =x ,OA =4,OB =3,可得PC =35x ,AC =45x ,即OC =4-45x ,由勾股定理可得OP 2=(4-45x )2+(35x )2=x 2-325x +16,继而可得y =OP 2-OQ 2= x 2-325x +16,根据列出函数表达式,即可判断. 【详解】解:如图,作PC ⊥OA ,垂足为C ,∵PC ∥BO ,∴△ABO ∽△APC ,∴AP PC AC AB OB OA==, ∵AP =x ,OA =4,OB =3,∴PC =35x ,AC =45x ,∴OC=4-45 x,∴OP2=(4-45x)2+(35x)2=x2-325x+16,∴y=OP2-OQ2= x2-325x+16,当x=0时,y=12,当x=5时,y=5.故选A.【点睛】本题主要考查了函数的图象与列函数表达式,分析题意弄清题目中的函数关系是做出正确判断的关键.4.如图,抛物线y=14(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的最小值是-8;②抛物线的对称轴是直线x=3;③⊙D的半径为4;④抛物线上存在点E,使四边形ACED为平行四边形;⑤直线CM与⊙D相切.其中正确结论的个数是()A.5 B.4 C.3 D.2【答案】D【解析】【分析】根据抛物线的解析式将其化为一般式,再利用抛物线的性质,求解最小值,对称轴。
专题06 圆的有关动点综合问题-2018届突破中考数学压轴题讲义(原卷版)
【类型综述】综合题是指学生在不同的学习阶段所学的知识,不同章节所学的知识,特别是代数、几何不同学科中所学的知识,综合运用进行解题的数学题目,它既能考察同学们对数学基础知识基本方法掌握的熟练程度,又能考察综合运用数学知识分析问题、解决问题的能力。
几何中关于圆的综合题大致可分为:(1)以几何知识为主体的综合题;(2)代数、几何知识相结合的综合题;(3)圆中的探索型问题;【方法揭秘】直线与圆的位置关系问题,一般也无法先画出比较准确的图形.解这类问题,一般也分三步走,第一步先罗列两要素:R和d,第二步列方程,第三步解方程并验根.第一步在罗列两要素R和d的过程中,确定的要素罗列出来以后,不确定的要素要用含有x的式子表示.第二步列方程,就是根据直线与圆相切时d=R列方程.如图1,直线443y x=+与x轴、y轴分别交于A、B两点,圆O的半径为1,点C在y轴的正半轴上,如果圆C既与直线AB相切,又与圆O相切,求点C的坐标.“既……,又……”的双重条件问题,一般先确定一个,再计算另一个.假设圆C与直线AB相切于点D,设CD=3m,BD=4m,BC=5m,那么点C的坐标为(0,4-5m).罗列三要素:对于圆O,r=1;对于圆C,R=3m;圆心距OC=4-5m.分类列方程:两圆外切时,4-5m=3m+1;两圆内切时,4-5m=3m-1.把这个问题再拓展一下,如果点C在y轴上,那么还要考虑点C在y轴负半轴.相同的是,对于圆O,r=1;对于圆C,R=3m;不同的是,圆心距OC=5m-4.图1【典例分析】例1 如图1,直线AB与x轴交于点A(-4, 0),与y轴交于点B(0, 3).点P从点A出发,以每秒1个单位长度的速度沿直线AB向点B移动.同时将直线34y x=以每秒0.6个单位长度的速度向上平移,交OA于点C,交OB于点D,设运动时间为t(0<t<5)秒.(1)证明:在运动过程中,四边形ACDP总是平行四边形;(2)当t取何值时,四边形ACDP为菱形?请指出此时以点D为圆心、OD长为半径的圆与直线AB 的位置关系并说明理由.图1例2如图1,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆上运动(包含P、Q两点),以线段AB为边向上作等边三角形ABC.(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(如图1);(2)设∠AOB=α,当线段AB与圆O只有一个公共点(即A点)时,求α的范围(如图2,直接写出答案);(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长(如图3).图1 图2 图3例3在Rt △ABC 中,∠C =90°,AC =6,53sin B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点.(1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系; (2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长;(3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域.图1 图2 图3例4如图1,在Rt △ABC 中,∠ACB =90°,AC =4,cos A =14,点P 是边AB 上的动点,以P A 为半径作⊙P .(1)若⊙P 与AC 边的另一个交点为D ,设AP =x ,△PCD 的面积为y ,求y 关于x 的函数解析式,并直接写出函数的定义域;(2)若⊙P 被直线BC 和直线AC 截得的弦长相等,求AP 的长;(3)若⊙C 的半径等于1,且⊙P 与⊙C AP 的长.图1 备用图例5如图1,抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的对称轴为y 轴,且经过(0,0)和1)16两点,点P 在该抛物线上运动,以点P 为圆心的⊙P 总经过定点A (0, 2).(1)求a 、b 、c 的值;(2)求证:在点P 运动的过程中,⊙P 始终与x 轴相交;(3)设⊙P 与x 轴相交于M (x 1, 0)、N (x 2, 0)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.图1【变式训练】1.(2017北京第29题)在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当O 的半径为2时,①在点123115,0,,,0222P P P ⎛⎛⎫⎛⎫ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭中,O 的关联点是_______________. ②点P 在直线y x =-上,若P 为O 的关联点,求点P 的横坐标的取值范围.(2)C 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y 轴交于点A B 、.若线段AB 上的所有点都是C 的关联点,直接写出圆心C 的横坐标的取值范围.2. (2017广东广州第25题)如图14,AB 是O 的直径, ,2AC BCAB ==,连接AC .(1)求证:045CAB ∠=;(2)若直线l 为O 的切线,C 是切点,在直线l 上取一点D ,使,B D A B B D =所在的直线与AC 所在的直线相交于点E ,连接AD .①试探究AE 与AD 之间的数量关系,并证明你的结论; ②EBCD是否为定值?若是,请求出这个定值;若不是,请说明理由.3. (2017湖南湘潭第26题)如图,动点M 在以O 为圆心,AB 为直径的半圆弧上运动(点M 不与点A B 、及 AB 的中点F 重合),连接OM .过点M 作ME AB ⊥于点E ,以BE 为边在半圆同侧作正方形BCDE ,过M 点作O 的切线交射线DC 于点N ,连接BM 、BN . (1)探究:如左图,当M 动点在 AF 上运动时; ①判断OEM MDN ∆∆ 是否成立?请说明理由; ②设ME NCk MN+=,k 是否为定值?若是,求出该定值,若不是,请说明理由;③设MBN α∠=,α是否为定值?若是,求出该定值,若不是,请说明理由;(2)拓展:如右图,当动点M 在 FB上运动时;分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)4. (2017湖南株洲第26题)已知二次函数y=﹣x2+bx+c+1,①当b=1时,求这个二次函数的对称轴的方程;②若c=14b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足13DEEF,求二次函数的表达式.5. (2017哈尔滨第26题)已知:AB 是O ⊙的弦,点C 是AB 的中点,连接OB 、OC ,OC 交AB 于点D . (1)如图1,求证:AD BD =;(2)如图2,过点B 作O ⊙的切线交OC 的延长线于点M ,点P 是 AC 上一点,连接AP 、BP ,求证:90APB OMB -=∠∠°.(3)如图3,在(2)的条件下,连接DP 、MP ,延长MP 交O ⊙于点Q ,若6MQ DP =,3sin 5ABO =∠,求MP MQ 的值.6. (2017年贵州省黔东南州第24题)如图,⊙M 的圆心M (﹣1,2),⊙M 经过坐标原点O ,与y 轴交于点A ,经过点A 的一条直线l 解析式为:y=﹣x+4与x 轴交于点B ,以M 为顶点的抛物线经过x 轴上点D (2,0)和点C (﹣4,0). (1)求抛物线的解析式; (2)求证:直线l 是⊙M 的切线;(3)点P 为抛物线上一动点,且PE 与直线l 垂直,垂足为E ,PF ∥y 轴,交直线l 于点F ,是否存在这样的点P ,使△PEF 的面积最小?若存在,请求出此时点P 的坐标及△PEF 面积的最小值;若不存在,请说明理由.7.(2017年四川省内江市第27题)如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE.(1)求证:AC2=AE•AB;(2)过点B作⊙O的切线交EC的延长线于点P,试判断PB与PE是否相等,并说明理由;(3)设⊙O半径为4,点N为OC中点,点Q在⊙O上,求线段PQ的最小值.8. (2017年浙江省杭州市第23题)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.9.(2017浙江温州第24题)(本题14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD 上),连结AC,DE.(1)当∠APB=28°时,求∠B和 CM的度数;(2)求证:AC=AB。
2018年中考数学压轴题之圆题例题
2018年中考数学压轴题之圆题例题(总1页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除广东中考数学专题训练(二):几何综合题(圆题) 例题训练1.如图,⊙O 为∆ABC 外接圆,BC 为⊙O 直径,BC =4.点D 在⊙O 上,连接OA 、CD 和BD ,AC 与BD 交于点E ,并作AF ⊥BC 交BD于点G ,点G 为BE 中点,连接OG .(1)求证:OA ∥CD ;(2)若∠DBC =2∠DBA ,求BD 的长;(3)求证:FG =2DE . 2.如图,⊙O 为∆ABC 外接圆,AB 为⊙O 直径,AB =4.⊙O 切线CD 交BA 延长线于点D ,∠ACB 平分线交⊙O 于点E ,并以DC 为边向下作∠DCF =∠CAB 交⊙O 于点F ,连接AF .(1)求证:∠DCF =∠D +∠B ; (2)若AF =32,AD =52,求线段AC 的长;(3)若CEAB ⊥CF .3.如图,⊙O 为∆ABC 外接圆,BC 为⊙O 直径.作AD =AC ,连接AD 、CD 和BD ,AB 与CD 交于点E ,过点B 作⊙O 切线,并作点E 作EF ⊥DC 交切线于点G .(1)求证:∠DAC =∠G +90°;(2)求证:CF =GF ;(3)若EF BD =23,求证:AE =DE . 4.如图,⊙O 为 ABC 外接圆,AB 为⊙O 直径.连接CO ,并作AD ∥CO 交⊙O 于点D ,过点D 作⊙O 切线DE 交CO 延长线于点E ,连接BE ,作AF ⊥CO 交BC 于点G ,交BE 于点H ,连接OG .(1)若CF =2,OF =3,求AC 的长;(2)求证:BE 是⊙O 的切线;(3)若2AF AH DE =23,求证:OG ⊥AB .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【类型综述】
综合题是指学生在不同的学习阶段所学的知识,不同章节所学的知识,特别是代数、几何不同学科中
所学的知识,综合运用进行解题的数学题目,它既能考察同学们对数学基础知识基本方法掌握的熟练程度,
又能考察综合运用数学知识分析问题、解决问题的能力。
几何中关于圆的综合题大致可分为:
(1)以几何知识为主体的综合题;
(2)代数、几何知识相结合的综合题;
(3)圆中的探索型问题;
【方法揭秘】
直线与圆的位置关系问题,一般也无法先画出比较准确的图形.
解这类问题,一般也分三步走,第一步先罗列两要素:R和d,第二步列方程,第三步解方程并验根.第一步在罗列两要素R和d的过程中,确定的要素罗列出来以后,不确定的要素要用含有x的式子表示.第二步列方程,就是根据直线与圆相切时d=R列方程.
如图1,直线
4
4
3
y x与x轴、y轴分别交于A、B两点,圆O的半径为1,点C在y轴的正半轴上,
如果圆C既与直线AB相切,又与圆O相切,求点C的坐标.
“既,,,又,,”的双重条件问题,一般先确定一个,再计算另一个.
假设圆C与直线AB相切于点D,设CD=3m,BD=4m,BC=5m,那么点C的坐标为(0,4-5m).罗列三要素:对于圆O,r=1;对于圆C,R=3m;圆心距OC=4-5m.
分类列方程:两圆外切时,4-5m=3m+1;两圆内切时,4-5m=3m-1.
把这个问题再拓展一下,如果点C在y轴上,那么还要考虑点C在y轴负半轴.
相同的是,对于圆O,r=1;对于圆C,R=3m;不同的是,圆心距OC=5m-4.
图1
【典例分析】
例1 如图1,直线AB与x轴交于点A(-4, 0),与y轴交于点B(0, 3).点P从点A出发,以每秒1个
单位长度的速度沿直线AB向点B移动.同时将直线
3
4
y x以每秒0.6个单位长度的速度向上平移,交OA
于点C,交OB于点D,设运动时间为t(0<t<5)秒.
(1)证明:在运动过程中,四边形ACDP总是平行四边形;
(2)当t取何值时,四边形ACDP为菱形?请指出此时以点D为圆心、OD长为半径的圆与直线AB 的位置关系并说明理由.
图1
例2如图1,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆上运动(包含P、Q两点),以线段AB为边向上作等边三角形ABC.
(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(如图1);
(2)设∠AOB=,当线段AB与圆O只有一个公共点(即A点)时,求的范围(如图2,直接写出答案);
(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长(如图3).
图1 图2 图3
例3在Rt △ABC 中,∠C =90°,AC =6,5
3sin B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点.
(1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系;(2)如图2,在(1)的条件下,当△
OMP 是等腰三角形时,求
OA 的长;
(3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域.
图1 图2 图3
例4如图1,在Rt △ABC 中,∠ACB =90°,AC =4,cosA =14
,点P 是边AB 上的动点,以P A 为半
径作⊙P .
(1)若⊙P 与AC 边的另一个交点为D ,设AP =x ,△PCD 的面积为y ,求y 关于x 的函数解析式,并
直接写出函数的定义域;
(2)若⊙P 被直线BC 和直线AC 截得的弦长相等,求AP 的长;
(3)若⊙C 的半径等于1,且⊙P 与⊙C 的公共弦长为
2,求AP 的长.
图1 备用图
例5如图1,抛物线y =ax 2
+bx +c (a 、b 、c 是常数,a ≠0)的对称轴为y 轴,且经过(0,0)和1(,)16
a 两
点,点P 在该抛物线上运动,以点
P 为圆心的⊙P 总经过定点A(0, 2).
(1)求a 、b 、c 的值;(2)求证:在点
P 运动的过程中,⊙
P 始终与x 轴相交;
(3)设⊙P 与x 轴相交于M(x 1, 0)、N(x 2, 0)两点,当△AMN 为等腰三角形时,求圆心
P 的纵坐标.
图1
【变式训练】
1.(2017北京第29题)在平面直角坐标系
xOy 中的点P 和图形M ,给出如下的定义:若在图形
M 上存在
一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点.
(1)当
O 的半径为2时,①在点1
2
3
1135,0,,,,0222
2P P P 中,
O 的关联点是_______________.
②点P 在直线y x 上,若P 为
O 的关联点,求点P 的横坐标的取值范围.。