15.3分式方程(第3课时)

合集下载

渭南市实验中学八年级数学上册 第十五章 分式 15.3 分式方程 课时2 分式方程与实际问题的综合教

渭南市实验中学八年级数学上册 第十五章 分式 15.3 分式方程 课时2 分式方程与实际问题的综合教

第十五章分式15.3 分式方程课时2 分式方程的应用【知识与技能】(1)进一步熟练地解可化为一元一次方程的分式方程.(2)熟练地列可化为一元一次方程的分式方程解应用题.【过程与方法】建立分式方程模型的过程,体会建模思想.【情感态度与价值观】在探索分式方程解决实际问题的过程中,体会数学在实际生活中的广泛应用.在不同的实际问题中审清题意设未知数,列分式方程,解决实际问题.在不同的实际问题中,设未知数列分式方程.多媒体课件.教师出示问题:1.列方程解应用题的一般步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)验;(6)答.(教师板书)2.由学生讨论,我们现在所学过的应用题有哪些类型?学生举手回答上面的两个问题,教师点评.在学生讨论的基础上,教师归纳、总结,基本上有五种:(出示投影)(1)行程问题:路程=速度×时间,而行程问题中又分相遇问题和追及问题.(2)数字问题:在数字问题中,要掌握十进制数的表示法.(3)工程问题:工作量=工作时间×工作效率.(4)顺水、逆水问题:v顺水=v静水+v水,v逆水=v静水-v水.(5)利润问题:售价-进价=利润率×进价.教师引入:有一些实际问题,我们可以通过列分式方程解决.(板书课题)教师:同学们,我们一起来看几个例子(教师依次出示教材P152例3、P153例4):例3两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?分析:甲队1个月完成总工程的,设乙队单独施工1个月能完成总工程的,那么甲队半个月完成总工程的(),乙队半个月完成总工程的(),两队半个月完成总工程的().教师引导学生在用式子表示上述的量之后,再根据“甲、乙两个工程队的工程总量=总工程量”这一相等关系建立方程.教师示范解答过程,强调必须检验这一过程.例4某次列车平均提速v km/h.用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50 km,提速前列车的平均速度为多少?学生讨论,教师引导.先指导学生读题,理清速度、路程和时间所对应的式子,再抓住“相同的时间”这一关键词,得出相等的数量关系,即“提速前的路程÷提速前的速度=提速后的路程÷提速后的速度”,从而建立方程.学生自己独立完成解答过程,教师再演示解答过程.注意:教师帮助学生解决含有字母的计算问题,求出关于x的方程的解.教师提醒:表达问题时,用字母不仅可以表示未知数(量),也可以表示已知数(量).最后教师总结:(1)在实际问题中,有时题目中包含多个相等数量关系,在列方程时一定要选择一个能够体现全部(或大部分)题意的相等关系.(2)在检验过程中,不仅要检验所得的根是否为原分式方程的根,还要检验这个根在实际问题中是否具有实际意义,如时间非负、人数为正数等.(3)在一些实际问题中,有时直接设问题所求的量为未知数可能比较麻烦,可以间接地设未知数.接着教师让学生独立完成教材P154练习第1,2题,同桌之间互相检查.列分式方程解应用题按下列步骤进行:(1)审题,了解已知量与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部(或大部分)含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验所求得的根是不是增根,以及是否符合实际意义;(6)写出答案.第十一章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列长度的三条线段能组成三角形的是( D )A.1,2,3 B.1, 2 ,3 C.3,4,8 D.4,5,62.正十边形的一个内角的度数是( D )A.108°B.120°C.135°D.144°3.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( A )A.40°B.60°C.80°D.90°4.如图,D,B,C,E四点共线,∠ABD+∠ACE=230°,则∠A的度数为( A )A.50°B.60°C.70°D.80°(第4题图)(第6题图)(第7题图)5.一个正多边形的外角等于45°,则这个正多边形的内角和是( B )A.1 440°B.1 080°C.900°D.720°6.如图,AD是△ABC的中线,已知△ABD的周长为22 cm,AB比AC长3 cm,则△ACD 的周长为( A )A.19 cm B.22 cm C.25 cm D.31 cm7.小明同学把自己的一副三角板(两个直角三角形)按如图所示的位置将相等的边叠放在一起,则α的度数为( C )A.135°B.120°C.105°D.75°8.已知n是正整数,若一个三角形的三边长分别是n+2,n+8,3n,则满足条件的n 的值有( D )A.4个B.5个C.6个D.7个9.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是( B )A.45°B.50°C.55°D.80°(第9题图)(第10题图)10.如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是( B )A.36°B.72°C.50°D.46°二、填空题(每小题3分,共18分)11.工人师傅盖房子时,常将房梁设计成如图所示的图形,使其牢固不变形,这是利用三角形的稳定性.(第11题图) (第14题图) (第16题图)12.若三角形两边长分别是2,4,第三边长为偶数,则第三边长为4. 13.若一个n 边形的外角和与它的内角和之和为1 800°,则边数n =10.14.如图,在△ABC 中,∠ACB =90°,AD 平分∠CAB,交边BC 于点D ,过点D 作DE⊥AB,垂足为点E.若∠CAD=20°,则∠EDB 的度数是40°.15.已知a ,b ,c 是三角形的三条边,则化简|a -b +c|-|c -a -b|=2c -2b .16.如图,在△ABC 中,∠A =84°,点O 是∠ABC,∠ACB 平分线的交点,点P 是∠BOC,∠OCB 平分线的交点,若∠P=100°,则∠ACB 的度数是56°.三、解答题(共72分)17.(6分)求图中∠α的度数.(1)解:∠α=360°-65°-70°-(180°-40°)=85°.(2)解:∠α=180°-(360°-90°-90°-40°)=40°.18.(6分)若三角形的三边长分别是2,x ,10,且x 是不等式x +14 <1-1-x 5的正偶数解,试求第三边的长x.解:原不等式可化为5(x +1)<20-4(1-x),解得x <11,又根据三角形的三边关系,得10-2<x <10+2,解得8<x <12,∵x 是正偶数,∴x =10,∴第三边的长为10.19.(6分)如图,AD 是△ABC 的高,AE 是△ABC 的角平分线,若∠BAC∶∠B∶∠C=6∶3∶1,求∠DAE 的度数.解:∵∠BAC∶∠B∶∠C=6∶3∶1,∴设∠BAC=6α,则∠B=3α,∠C =α,∵∠BAC +∠B+∠C=180°,∴6α+3α+α=180°,解得α=18°,∴∠BAC =108°,∠B =54°,∠C =18°.∵AD 是△ABC 的高,∴∠ADB =90°,∴∠BAD =180°-90°-54°=36°,∵AE 是△ABC 的角平分线,∴∠BAE =12 ∠BAC=12×108°=54°,∴∠DAE =∠BAE -∠BAD=54°-36°=18°.20. (8分)如图,在Rt △ABC 中,∠ACB =90°,∠A =34°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E.(1)求∠CBE 的度数;(2)过点D 作DF∥BE,交AC 的延长线于点F ,求∠F 的度数.解:(1)∵∠ACB=90°,∠A =34°,∴∠CBD =∠ACB+∠A=124°,∵BE 是∠CBD 的平分线,∴∠CBE=12∠CBD=62°.(2)∵∠ECB=90°,∠CBE =62°,∴∠CEB =90°-∠CBE=28°,∵DF ∥BE ,∴∠F =∠CEB=28°.21.(8分)如图,D 是△ABC 的边BC 上的一点,且∠1=∠2,∠3=∠4,∠BAC =66°,求∠DAC 的度数.解:∵∠4=∠1+∠2,∠1=∠2,∴∠4=2∠1,∵∠3=∠4,∴∠3=2∠1,∵∠BAC =66°,∴180°-∠2-∠3=180°-∠1-2∠1=66°,解得∠1=38°,∴∠DAC =∠BAC-∠1=66°-38°=28°.22.(8分)如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D.(1)求证:∠ACD=∠B;(2)若AF 平分∠CAB,且分别交CD ,BC 于点E ,F ,求证:∠CEF=∠CFE.证明:(1)∵∠ACB=90°,∴∠ACD +∠DCB=90°,又∵CD⊥AB 于点D ,∴∠DCB +∠B=90°,∴∠ACD =∠B.(2)∵∠CEF=∠CAF+∠ACD,∠CFE =∠B+∠FAB,又∵AF 平分∠CAB,∴∠CAF =∠FAB,由(1)知∠ACD=∠B,∴∠CEF =∠CFE.23.(9分)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.(1)已知一个“特征三角形”的“特征角”为100°,求这个“特征三角形”的最小内角的度数;(2)是否存在“特征角”为120°的三角形?若存在,请举例说明.解:设三角形的另一个内角为γ.(1)∵α=2β,且α+β+γ=180°,∴当α=100°时,β=50°,则γ=30°,∴这个“特征三角形”的最小内角的度数是30°.(2)不存在.∵α=2β,且α+β+γ=180°,∴当α=120°时,β=60°,则γ=0°,此时不能构成三角形,∴不存在“特征角”为120°的三角形.24.(9分)如图,在△ABC 中(AC >AB),AC =2BC ,BC 边上的中线AD 把△ABC 的周长分成60 cm 和40 cm 两部分,求边AC 和AB 的长.(提示:设CD =x cm )解:∵AD 是BC 边上的中线,∴BD =CD ,设BD =CD =x cm ,AB =y cm ,∵AC =2BC ,∴AC =4x cm ,分为两种情况:①若AC +CD =60 cm ,AB +BD =40 cm 时,则⎩⎪⎨⎪⎧4x +x =60,x +y =40, 解得⎩⎪⎨⎪⎧x =12,y =28, 即AC =4×12=48(cm ),AB =28 cm ,BC =2×12=24(cm ),此时符合AC >AB 和三角形三边关系;②若AC +CD =40 cm ,AB +BD =60 cm 时,则⎩⎪⎨⎪⎧4x +x =40,x +y =60, 解得⎩⎪⎨⎪⎧x =8,y =52,即AC =4×8=32(cm ),AB =52 cm ,不符合AC >AB ,舍去.综上所述,AC 的长为48 cm ,AB 的长为28 cm .25.(12分) “转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化成具体的问题.(1)请你根据已经学过的知识求出下面星形图①中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图①中星形截去一个角,如图②,请你求出∠A+∠B+∠C+∠D+∠E+∠F 的度数;(3)若再对图②中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图③中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?(只需写出结论,不需要写出解题过程)解:(1)如图①,∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,∴∠A +∠B+∠C+∠D+∠E=180°.(2)如图②,∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A +∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.(3)根据题(2)可得出规律:图①中,∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,所以当截去5个角时增加了(180×5)度,则∠A+∠B+∠C+∠D+∠E +∠F+∠G+∠H+∠M+∠N=180°×5+180°=1 080°.2.5 等腰三角形的轴对称性同步测试题(满分120分;时间:120分钟)班级____________姓名___________成绩_________一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 已知等腰三角形中,腰=,底=,则这个三角形的周长为()A. B. C. D.2. 的三边长分别,,,且=,则是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形3. 下列条件中,不能得到等边三角形的是()A.有两个内角是的三角形B.有两边相等且是轴对称的三角形C.有一个角是且是轴对称的三角形D.三边都相等的三角形4. 在等腰中,,、分别是底角的平分线,,图中等腰三角形有()A.个B.个C.个D.个5. 已知等腰三角形的一个外角等于,则这个三角形的三个内角的度数分别是()A.、、B.、、C.、、D.、、或、、6. 如图,在中,,,以为圆心,的长为半径作圆弧,交于点,连接,则等于()10A. B.C. D.7. 下列说法:①在中,若,则为等边三角形;②在中,若,则为等边三角形;③有两个角都是的三角形是等边三角形;④一个角为的等腰三角形是等边三角形.其中正确的个数为()A.个B.个C.个D.个8. 已知,,为的各边边长,当时,则的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形9. 如图,正方形网格中,网格线的交点称为格点,已知,是两格点,如果也是图中的格点,且使得为等腰三角形,则点的个数是()A. B. C. D.二、填空题(本题共计 8 小题,每题 3 分,共计24分,)10. 已知等腰三角形的一个外角为,则它的顶角的度数为________.11 已知一个等腰三角形的一个角是,其顶角的度数为________.12. 有一个角是________的等腰三角形是等边三角形.13. 如果一个三角形的两条角分线又是它的两条高线,则这个三角形是________三角形.14 如图,在的正方形网格中,点、分别在格点上,在图中确定格点,则以、、为顶点的等腰三角形有________个.15 如图,已知在矩形中,对角线,相交于点,且,,则图中长度为的线段有________条.16 如图,已知,,,,…,以此类推,若,则________.三、解答题(本题共计 8 小题,共计72分,)17. 画一个,在射线上任选一点,画,与交于点,试判断的形状.18. 如图,在中,=,于点,平分交于点,交于点,求证:=.19 如图,在中,,,,,求的度数.20. 如图,在等边中,点,分別在边,上,,过点作丄,交的延长线于点.求的度数;若,求,的长.21 如图,在中,=,点,点分别是,上一点,且.若=,=,求的度数.22. 如图,已知等边三角形,是边上一点,作交于点,交延长线于点,求证:=.23 如图,等边边长为,点是等边的中心,连接.将线段绕点顺时针旋转,设旋转角为._________;如图,当时,线段旋转到,求证在旋转过程中,当时,直接写出点经过的路径长.。

人教版八年级数学上册15.3分式方程(增根.无解)ppt精品课件

人教版八年级数学上册15.3分式方程(增根.无解)ppt精品课件
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
3x23x23 无m x解x,
二、利用分式方程解的情况确定所含字母的取值 范围
例3.若分式方程 的取值范围. a
2xx的2a解 是1正数,求
例3.若分式方程 的取值范围. a
2xx的2a解 是1正数,求
方法总结: 1.化整式方程求解. 2.根据题意列不等式组.(特别注意分式方程中分母 能为0)。
2019/7/8
最新中小学教学课件
thank
you!2019/7/8最新小学教学课件学习重点:
利用分式方程解的情况确定所含字母的取值。
练习:解方程:
x 1
3
x1
(x1)(x2)
.
一、分式方程增根的应用
例1、分式方程 有增根,求m的值。
1 m x 2 x 1
方法总结: 1.化为整式方程。(方程可以不整理) 2.确定增根。 3.把增根代入整式方程求出字母的值。
练习:已知关于x的方程 求实数K的值。
1 4x2
2 有 增x k根2
练习:解方程:
x 2 1 x 1 3x 3
.
例2、若关于x的分式方程 无解,求m的值.
xm 3 1 x1 x
方法总结: 1.化为整式方程(整式方程需要整理). 2. 分两种情况讨论 (1)整式方程无解 (2)分式方程有增根.

人教版八年级数学上册教案:15.3分式方程

人教版八年级数学上册教案:15.3分式方程
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是含有未知数的分式等于另一个分式或整式的方程。它在解决按比例分配、速度与距离等问题中起着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了分式方程在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调去分母法和换元法这两个重点。对于难点部分,如含有绝对值、不等式的分式方程,我会通过举例和比较来帮助大家理解。
举例:解方程如$\frac{x-1}{2} = \frac{3}{4}$,通过去分母法求解,强调分式方程解法的基本步骤和关键点。
(2)分式方程在实际问题中的应用:学会将现实问题抽象成分式方程,能够运用数学知识解决实际问题。
举例:速度、比例分配等实际问题的建模与求解。
2.教学难点
(1)分母的去除与转换:学生在解分式方程时,往往在去除分母这一步骤上遇到困难,如何正确地转换分母,避免解题错误。
1.讨论主题:学生将围绕“分式方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
举例:解方程$\frac{2}{x+1} - \frac{1}{x-1} = \frac{1}{x}$,如何找到合适的公共分母,并转化为整式方程。
(2)换元法的运用:在解决含有多项式的分式方程时,如何恰当选择换元,简化方程结构,是学生需要掌握的难点。

分式方程ppt课件

分式方程ppt课件
36
36
根据题意,得 x =
+2,
(1+50%)x
解得 x=6.
经检验,x=6 是方程的解.
答:该施工队原计划每天改造 6 m.
知3-练
例 5 [情境题 校园文化]为了进一步丰富校园文体活动,
某中学准备一次性购买若干个足球和排球,用480 元
购买足球的数量和用390 元购买排球的数量相同,已
知足球的单价比排球的单价多15 元.





③ =x;④
+3=




其中是分式方程的是________(填序号).
③④
知识点 2 分式方程的解法
知2-讲
1. 解分式方程的基本思路:去分母,把分式方程转化为整
式方程.
2. 解分式方程的一般步骤
知2-讲
3. 检验分式方程解的方法
(1)直接检验法:将整式方程的解代入原分式方程,这
车的速度.
知3-练
思路引导:
知3-练
解:设大型客车的速度为x km/h,


则小型客车的速度为1.2x km/h,12 min= h.


根据题意,得 -


= ,解得x
.
经检验,x = 6 0 是方程的解.
答:大型客车的速度是60 km/h.
= 6 0.
知3-练
3-1.[中考·广州] 随着城际交通的快速发展, 某次动车平

;(3) =1;
- +





(4)

;(5) -2=x(a为非零常数).

+ -
解题秘方:利用判别分式方程的依据——分母中含有

15.3分式方程的应用

15.3分式方程的应用
15.3分式方程的 应用
例3:两个工程队共同参与一项筑路工程, 甲队单独施工1个月完成总工程的三分之 一,这时增加了乙队,两队又共同工作了
半个月,总工程全部完成。哪个队的施工 速度快?
分析:甲队1个月完成总工程的 独施工1个月能完成总工程的 1
1 ,设乙队单
3
,那么甲队半
个月完成总工程的 1 ,乙队x半个月完成总工
所以
列分式方程解应用题的 一般步骤
1.审:分析题意,找出研究对象,建立等量关系. 2.设:选择恰当的未知数,注意单位. 3.列:根据等量关系正确列出方程. 4.解:认真仔细. 5.验:有三次检验. 6.答:不要忘记写.
练习1.某单位将沿街的一部分房屋出租,每间房 屋的租金第二年比第一年多500元,所有房屋 的租金第一年为9.6万元,第二年为10.2万元.
(1).分别求两年每间出租房屋的租金?
(2).求出租房屋的总间数?
练习2.某市从今年1月1日起调整居民 用水价格,每吨水费上涨三分之一,小 丽家去年12月的水费是15元,今年2 月的水费是30元.已知今年2月的用 水量比去年12月的用水量多5吨,求 该市今年居民用水的价格?
补充练习
1、一项工程,需要在规定日期内完 成,如果甲队独做,恰好如期完成, 如果乙队独做,就要超过规定3天, 现在由甲、乙两队合作2天,剩下 的由乙队独做,也刚好在规定日期 内完成,问规定日期是几天?
要保持什么速度才能使全程的平
均速度是30千米/时?
5、甲、乙两列车分别从相距300 千米的A、B两站同时相向而行。 相遇后,甲车再经过2小时到达B 站,乙车再经过4小时30分到达A 站,求甲、乙两车的速度。
• 小结: • 本节课你有何收获?还有何困惑?
2、把多边形的边数增加1 倍得到一个 新多边形,原多边形内角和是新多 边形内角和的0.4。

15.3.2分式方程的实际应用——工程、行程问题+课件+2024-2025学年人教版数学八年级上册

15.3.2分式方程的实际应用——工程、行程问题+课件+2024-2025学年人教版数学八年级上册
在规定日期内完成,问规定日期是多少天?
拓展应用
解:设规定日期为x天,根据题意,得
1
x 3
1


3

1
x x4
x4


解得:x=12.
经检验:x=12是原方程的解且符合题意.
答:规定日期为12天.
回顾反思
1. 本节课探究了分式的哪些问题?
2. 在探寻分式方程的应用时,你经历了哪些数学活动?在
(2)数字问题:在数字问题中要掌握十进制数的表示法;
(3)工程问题:基本公式: 工作量=工时×工效以及它的两个变式 ;
回顾复习
(4)顺水逆水问题:顺水速度= 轮船速度+水流速度 ,
逆水速度= 轮船速度-水流速度 ;
(5)利润问题:基本公式: 利润=售价-进价,利润率=利润÷进价.
探究新知
学生活动一 【一起探究】
的工作效率比原计划提高20%,结果提前2天完成任务.设原计
划每天铺设x米,下面所列方程正确的是( A )
720
720

2
x
( x 20%) x
720
720
C.

2
(1 20%) x
x
A.
720
720

2
(1 20%) x
x
720
720
D.

x 2 (1 20%) x
B.
拓展应用
x
x 2x
解得x=30,
经检验x=30为原方程的根且符合题意.
∴2x=60.
答:甲队单独完成这项工程需30天,乙队单独完成这项工程
需60天.
课后作业
1.课本P154 习题15.3第3,5题.

人教版 八年级上册数学 15.3 分式方程 同步课时训练(含答案)

人教版 八年级上册数学 15.3 分式方程 同步课时训练(含答案)

人教版初二数学15.3 分式方程同步课时训练一、选择题1. 下列关于x的方程:+x=1,+===2,其中,分式方程有 ()A.1个B.2个C.3个D.4个2. 解分式方程+=,分以下四步,其中错误的一步是()A.最简公分母是(x-1)(x+1)B.方程两边乘(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=13. 把分式方程2x+4=1x转化为一元一次方程时,方程两边需同乘()A.x B.2xC.x+4 D.x(x+4)4. 西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾所用的时间为x小时,根据题意可列出方程为()A.+=1B.+=C.+=D.+=15. [2018·益阳] 体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊速度的1.25倍,小进比小俊少用了40秒.设小俊的速度是x米/秒,则下列所列方程正确的是()A.40×1.25x-40x=800B.-=40C.-=40D.-=406. 若关于x 的方程3x -2x +1=2+mx +1无解,则m 的值为( ) A .-5 B .-8C .-2D .57.从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a .若数a 使关于x 的不等式组⎩⎪⎨⎪⎧13(2x +7)≥3x -a <0无解,且使关于x 的分式方程x x -3-a -23-x=-1有整数解,那么这5个数中所有满足条件的a 的值之和是( )A. -3B. -2C. -32D. 128. 若关于x 的方程=有增根,则m 的值与增根x 的值分别是( )A .-4,2B .4,2C .-4,-2D .4,-2二、填空题9. 分式方程5y -2=3y 的解为________.10. 若关于x 的方程ax +1x -1-1=0有增根,则a 的值为________.11. 若式子1x -2和32x +1的值相等,则x =________.12. 当a =________时,关于x 的方程x +1x -2=2a -3a +5的解为x =0.13. 若分式方程x -ax +1=a 无解,则a 的值为________.14. 在正数范围内定义一种运算“※”,其规则为a ※b=+,如2※4=+=.根据这个规则求得x ※(-2x )=的解为 .15. 当a=________时,关于x的方程axa-1-2x-1=1的解与方程x-4x=3的解相同.16. 拓广应用已知关于x的分式方程kx+1+x+kx-1=1的解为负数,则k的取值范围是________________.三、解答题17.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校.乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的12,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?18. 解分式方程:(1)23+x3x-1=19x-3;(2)xx+2=2x-1+1;(3)7x2+x+3x2-x=6x2-1.19. 小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)若每本硬面笔记本比每本软面笔记本贵1.2元,则小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比每本软面笔记本贵a元,是否存在正整数a,使得硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.20. 甲、乙两商场自行定价销售同一种商品,销售时得到如下信息:信息1:甲商场将该商品提价15%后的售价为1.15元;信息2:乙商场将该商品提价20%后,用6元钱购买该商品的件数比提价前少买1件.(1)该商品在甲商场的原价为元.(2)求该商品在乙商场的原价是多少.(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是.(a>0,b>0,a≠b)甲、乙两商场中哪个商场提价较多?请说明理由.人教版初二数学15.3 分式方程同步课时训练-答案一、选择题1. 【答案】C2. 【答案】D3. 【答案】D4. 【答案】B[解析] 由甲、乙两车合作1.2小时完成整个工作的一半,可得+=.5. 【答案】C [解析] 小进跑800米用的时间为秒,小俊跑800米用的时间为秒.∵小进比小俊少用了40秒, ∴所列方程是-=40.6. 【答案】A[解析] 分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x 的值,代入整式方程求出m 的值即可.具体的解答过程如下: 去分母,得3x -2=2x +2+m.由分式方程无解,得到x +1=0,即x =-1. 代入整式方程,得-5=-2+2+m. 解得m =-5. 故选A.7.【答案】B【解析】解不等式组得⎩⎪⎨⎪⎧x ≥1x <a ,∵原不等式组无解,∴a ≤1,则a 不能取五个已知值中的3;解分式方程得x =5-a2,又∵分式方程有整数解,∴5-a 2为整数,且5-a 2≠3,∴a 只能从-3,-1,12,1中取-3,1,所以满足条件的a 的值的和为-3+1=-2.8. 【答案】B二、填空题9. 【答案】y =-3[解析] 去分母,得5y =3y -6,解得y =-3.经检验,y =-3是分式方程的解. 则分式方程的解为y =-3.10.【答案】-1【解析】将方程两边同时乘以x -1,得ax +1-x +1=0,则(a -1)x +2=0,∵原方程有增根,∴x =1,将x =1代入(a -1)x +2=0中,得a -1+2=0,a =-1.11. 【答案】7 11.1512. 【答案】±1[解析] 去分母,得x -a =a(x +1).整理,得(a -1)x =-2a.当a =1时,0·x =-2,该方程无解.当a≠1时,x =-2a a -1.若x =-1,则原分式方程无解,此时-1=-2a a -1,解得a =-1.综上可知,当a =±1时原分式方程无解. 故答案为±1.13. 【答案】17 [解析] 由方程x -4x =3得x -4=3x.解得x =-2.当x =-2时,x≠0.所以x =-2是方程x -4x =3的解.又因为方程ax a -1-2x -1=1的解与方程x -4x=3的解相同,因此x =-2也是方程ax a -1-2x -1=1的解.这时-2a a -1-2-2-1=1.解得a =17.当a =17时,a -1≠0,故a =17满足条件.14. 【答案】x=[解析] x ※(-2x )=+=,即-=,解得x=.经检验,x=是原分式方程的解.15. 【答案】解:(1)方程两边同乘(9x -3),得2(3x -1)+3x =1.解得x =13. 检验:当x =13时,9x -3=0, 所以x =13不是原方程的解. 所以原分式方程无解.(2)方程两边同乘(x -1)(x +2), 得x(x -1)=2(x +2)+(x -1)(x +2). 解得x =-12.检验:当x =-12时,(x -1)(x +2)≠0. 所以原分式方程的解为x =-12. (3)方程两边同乘x(x +1)(x -1),得16. 【答案】k>-12且k≠0 [解析] 去分母,得k(x -1)+(x +k)(x +1)=(x +1)(x -1).整理,得(2k +1)x =-1.因为方程kx +1+x +k x -1=1的解为负数,所以2k +1>0且x≠±1, 即2k +1>0且-12k +1≠±1. 解得k>-12且k≠0,即k 的取值范围为k>-12且k≠0. 故答案为k>-12且k≠0.三、解答题17. 【答案】解:(1)设乙骑自行车的速度为2x 米/分,则甲步行的速度为x 米/分,公交车的速度为4x 米/分.(1分)由题意列方程为:600x +3000-6004x +2=30002x ,(4分)解得: x =150,(5分)经检验得:当x =150时,等式成立, ∴2x =2×150=300 ,(6分)答:乙骑自行车的速度为300米/分.(2)甲到达学校的时间为600x +3000-6004x =600150+3000-6004×150=8(分),(7分)∴乙8分钟内骑车的路程为:300×8=2400(米),(8分) ∴乙离学校还有3000-2400=600(米).(9分)答:当甲到达学校时,乙同学离学校还有600米.18. 【答案】x-1)+3(x+1)=6x.解得x=1.检验:当x=1时,x(x+1)(x-1)=0,所以x=1不是原方程的解.故原分式方程无解.19. 【答案】解:(1)设买每本软面笔记本花费x元,则买每本硬面笔记本花费(x+1.2)元.由题意,得=,解得x=1.6.经检验,x=1.6是原分式方程的解.此时==7.5(不符合题意),∴小明和小丽不能买到相同数量的笔记本.(2)存在.设买每本软面笔记本花费m元(1≤m≤12,且m为整数),则买每本硬面笔记本花费(m+a)元.由题意,得=,解得a=m.∵a为正整数,∴m=4,a=3或m=8,a=6或m=12,a=9.当m=8,a=6时,==1.5(不符合题意).∴a的值为3或9.20. 【答案】解:(1)1(2)设该商品在乙商场的原价为x元.则-=1,解得x=1.经检验,x=1是原分式方程的解,且符合题意.答:该商品在乙商场的原价为1元.(3)乙商场提价较多.理由:由于原价均为1元,则甲商场两次提价后的价格为(1+a)(1+b)=(1+a+b+ab)元,乙商场两次提价后的价格为1+2=1+a+b+2元.因为2-ab=2>0,所以乙商场提价较多.。

15.3巧解分式方程

15.3巧解分式方程

检验:把x1= -3 代入最简公分母, x(x-2)≠0;
把x2=
2
代入最简公分母, x(x-2)=0 是增根,舍去.
∴x= 2
∴原方程的根是x= -3
解方程
3x 2 6 x 3 x 1 2 0 2 x 2x 1 x 1
3( x 1) x 1 2 0 2 ( x 1) x 1
y 1 y 2 y 1 , y 2 yy y 1 y 0 y 1 , y 2 1 2 22 00 y 1 , y 2 y1 1 y 2 2 0 y
1 2
y 3y 2 0
x 9x 36 x 9x 9
2 2
例3 :解方程
y 4 y 5 y 7 y 8 y 5 y 6 y 8 y 9
点拨: 此方程的特点是:各分式的分子与分母的次数相
同, 这样一般可将各分式拆成: 整式+分式 的形式。 1 1 1 1 解: 1 1 1 1 y 5 y 6 y 8 y 9
会用了吗? 掌握了吗? 知道了吗?
x2 x4 x6 x8 x 1 x3 x5 x7 1 1 1 1 解: 1 1 1 1 x 1 x3 x5 x7
1 1 1 1 x 1 x3 x5 x7 2 2 通分得: 2 2 x 4x 3 x 12 x 35
1
解:设乙队如果单独施工1个月能完成总工程的 x 根据工程的实际进度,得:
1 3 1 6 1 2x 1
1
方程两边同乘以6x,得: 2x x 3 6x 解得: x=1 检验:x=1时6x≠0,x=1是原方程的解。
由以上可知,若乙队单独工作一个月可以完成全部任务, 对比甲队1个月完成任务的,可知乙队施工速度快。 答:乙队的速度快。

分式方程(第3课时)

分式方程(第3课时)

徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主! 执笔:林朝清 第 周 星期 第 节 本学期学案累计: 16 课时 姓名:________课题:16.3 分式方程(第3课时)学习目标 我的目标 我实现 1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.学习过程 我的学习 我作主导学活动1:知识回顾解下列方程 1.1441222-=-x x 2.xx x -=+--23123解分式方程的步骤: 。

导学活动2:知识引入1.引导说出列方程解应用题的步骤 .2.相关背景:相关背景:时间速度路程⨯= 时间路程速度= 速度路程时间= 导学活动3:知识转化例4:从2004年5月起,某列车平均速度提速40千米/小时,用相同的时间,列车提速前行驶125千米,提速后比提速前多行驶50千米,求提速前列车的平均速度为多少千米/小时?练习1.从2004年5月起,某列车平均速度提速v 千米/小时,用相同的时间,列车提速前行驶s 千米,提速后比提速前多行驶50千米,求提速前列车的平均速度为多少千米/小时?徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主!学习评价 我的评价 我自信当堂检测(限时:12分钟 )我自信 我进取1、解方程: 22122=-+-x x x x2.八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发.结果他们同时到达,已知汽车的速度是骑自行车同学速度的2倍,求骑车同学的速度.3.两个小组同时开始攀登一座450米高的山,第一组的攀登速度是第二组的2倍,他们比第二组早15分钟到达了顶峰,求两个小组的攀登速度各是多少?自我小结:列方程解应用题的步骤 自我评价:我完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差课后作业 我的作业 我承担课本(P32)习题16.3 第6、7题。

15.3分式方程-增根(教案)-人教版八年级数学上册

15.3分式方程-增根(教案)-人教版八年级数学上册
在学生小组讨论环节,我注意到有些学生发言积极,但也有一些学生较为沉默。为了鼓励更多学生参与讨论,我将在下一次教学中尝试采取一些激励措施,如对积极发言的学生给予表扬和奖励,以提高学生的积极性。
举例:在去分母时,要注意将等式两边的每一项都乘以分母的最小公倍数,避免漏乘或乘错。
(3)解整式方程后的检验:学生在解整式方程后,容易忽视对解的检验。教师应强调检验的重要性,并教授具体的检验方法。
举例:求解分式方程$\frac{1}{x-2} = \frac{2}{x+1}$,解得$x=5$,需将$x=5$代入原方程检验是否成立。
1.教学重点
(1)理解增根的定义:增根是指使分式方程分母为零的根。这是本节课的核心概念,教师需通过实例讲解,使学生深刻理解增根的含义。
举例:分式方程$\frac{1}{x-a}= \frac{2}{a}$,当$x=a$时,分母为零,此时$x=a$为增根。
(2)掌握求解含增根分式方程的方法:包括识别增根、去分母、求解整式方程、检验解等步骤。教师需详细讲解并举例说明每个步骤的操作方法。
2.教学难点
(1)增根的识别:对于初学者来说,判断何时会产生增根是一大难点。教师可通过列举不同类型的分式方程,帮助学生识别增根。
举例:分式方程$\frac{1}{x-a} + \frac{1}{x-b} = \frac{2}{x-c}$,增根可能为$x=a$、$x=b$或$x=c$。
(2)去分母过程中易出现的错误:在求解含增根分式方程时,去分母是关键步骤,但学生容易在此过程中出现错误。教师应详细讲解并强调注意事项。
五、教学反思
在本次教学过程中,我发现学生们对增根的概念和求解含增根分式方程的方法掌握程度有所不同。有些学生能够迅速理解并运用到实际题目中,但也有一些学生在识别增根和处理分母为零的情况时遇到困难。这让我意识到,在教学过程中,我们需要针对不同水平的学生进行有针对性的指导。

2024年-人教版数学八年级上册第15章——15.3《分式方程》同步练习及(含答案)3

2024年-人教版数学八年级上册第15章——15.3《分式方程》同步练习及(含答案)3
15.3 第3课时 分式方程的应用
一、选择题
1.小明和小张两人 练习 电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相 等。设小明打字速度为x个/分钟,则列方程正确的 是( )
A: B: C: D:
2.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所 用的天数相等,若设甲班每天植 树x棵,则根据题意列出的方程是().
20.列方程或方程组解应用题:
据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.
A. = B. = C. = D. =
5.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
A. = B. =
C. = D. =
6.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60 千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时,则可列方程()
18 .某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好全部运走,怎么样调配劳动力才能使挖出的土能及时运走且不窝工,解决此问题可设派x人挖土,其他人运土,列方程:.
三、解答题
19.某人驾车从A地到B地,出发2小时后车子出了点毛病,耽搁了半小时修车,为了弥补耽搁的时间他将车速增加到后来的1.6倍,结果按时到达,已知A、B两地相距100千米,求某人原来驾车的速度.

15.3 分式方程 导学案

15.3 分式方程 导学案

第十一课时 15.3 分式方程(1)【学习目标】1.了解分式方程的概念.2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思想和程序化思想. 3.了解解分式方程根需要进行检验的原因. 【学习重点】利用去分母的方法解分式方程 【学习难点】产生增根的原因.一、学前准备1、前面我们已经学习了哪些方程?是怎样的方程?如何求解?(1)前面我们已经学过了 方程。

(2)一元一次方程是 方程。

(3)一元一次方程解法 步骤是:①去 ;②去____;③移项;④合并 ;⑤_____化为12、解方程:163242=--+x x二、探索思考探究(一):1、一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多2、 仔细观察这个方程,未知数的位置有什么特点?3、方程 与上面的方程有什么共同特征?4、分式方程的概念:【练习一】下列式子中,属于分式方程的是 ,属于整式方程的是 (填序号).探索(二) 1、你能试着解分式方程探索(一)列出的方程及以下方程吗? (1)v v -=+30603090 (2)275-=x x (3)1132-=+x x2、思考:(1)如何把分式方程转化为我们会解的整式方程呢? (2)怎样去分母?(3)这样做的依据是什么?三、典例分析【例】解下列分式方程 (1)2510512-=-x x (2)13321++=+x x x x (3) 23112-+=--x x x x【例题反思】1、解分式方程为什么要检验? 2、解分式方程的一般步骤:① ;② ③ ;④ 四、当堂反馈 解方程:(1)3221+=x x (2)14122-=-x x (3)()531222x x x x -=--(4)01522=--+x x x x (5)2324111x x x +=+-- (6)23132--=--xx x五、学习反思1、学习目标完成情况反思:2、 错题原因分析:21133=+++x x x x 21211023525==+--x x x x ;;第十二课时 15.3 分式方程(2)【学习目标】1.会解较复杂的分式方程和较简单的含有字母系数的分式方程. 2.能够列分式方程解决简单的实际问题.3.通过学习分式方程的解法,体会转化的数学思想.【学习重点】解分式方程,列分式方程解决简单的实际问题. 【学习难点】解含有字母系数的分式方程. 一、学前准备1、 整式方程与分式方程的区别在哪里?________________________________________________________.2、解分式方程的步骤是什么?(1)___________________;(2)___________________(3)____________________.(4) 3、解分式方程 ⑴11122x x =-- ⑵ 63041x x -=+- (3)()()31112x x x x -=--+二、探索思考探索(一)1、两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的二分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?(1)填右表 (2)等量关系:(3)设未知数,据等量关系列出方程并解答【练习一】 某车间有甲、乙两个小组,甲组的工作效率比乙组工作效率高25%,因此甲组加工2 000个零件 所用的时间比乙组加工1 800个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件?【例】 解关于x 的方程 ≠【练习二】 解关于x 的方程 ≠ ≠四、当堂反馈1、若x =2是关于x 的分式方程2372a x x+=的解,则a 的值为 2、解方程 ①2373226x x +=++ ②2512552x x x +=+- ③1637222-=-++x x x x x3、(1)在公式1221P P V V =中,20P ≠,求出表示2V 的公式 (2)在公式12111RR R =+中,1R R ≠,求出表示2R 的公式4、要在规定的日期内加工一批机器零件,如果甲单独做,恰好在规定的日期内完成,如果乙单独做, 则要超过规定如期3天才能完成,现甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定的日期是多少天?五、学习反思1、学习目标完成情况反思:2、 错题原因分析:工作效率 工作时间 工作量甲队乙队x111+=.-a b b x a()001-=+mn m n x x ().第十三课时 15.3 分式方程(3)【学习目标】列分式方程解决实际问题【学习重点】列分式方程解决实际问题【学习难点】找实际问题中的数量关系及等量关系一、学前准备1、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.2、列分式方程解应用题的一般步骤是什么?(1);(2)(3)(4)(5)二、探索思考探索(一)某次列车平均提速v km/h.用相同的时间,列车提速前行驶s km,提速后比提速前多行驶60 km,提速前列车的平均速度为多少?(1)这个问题中的已知量有、、,未知量是、(2)等量关系:(3)设未知数,据等量关系列出方程并尝试解答【练习一】八年级学生去距学校s km的博物馆参观,一部分学生骑自行车先走,过了t min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是学生骑车速度的2倍,求学生骑车的速度.【例】一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t min. 求两根水管各自的注水速度。

八上数学15.3分式方程及其解法

八上数学15.3分式方程及其解法
知识回顾
什么是方程? 解方程的步骤?
知识回顾: 1.观察这是个什么方程?
1 x 3 x 62
①只含有一个未知数x
2.什么叫一元一次方程? ②未知数x的次数为1
③各项都是整式
3.解一元一次方程的一般步骤有哪些?
解: 6 (x 3) 3x 去分母
6 x 3 3x 去括号
一艘轮船在静水中的最大航速为30千米/时, 它沿江以最大航速顺流航行90千米所用时间,与 以最大航速逆流航行60千米所用时间相等,江水 的流速为多少?
解:设江水的流速为 v 千米/时,则顺水速度为____
千米/时;逆水速度为______千米/ 时; 根据题意,得
90 60 30 v 30 v
1、上面两个分式方程中,为什么
90 30+V
=
60 30-V
去分母后得到的整式方程的解就是它的解,而
1 x-5
=
10 x2-25
去分母后得到的整式方程的解却不
是原分式方程的解呢?我们来观察去分母的过程
= 90
30+V
3600-V当两v=边6时同,乘(3(03+0v+)v()3(03-0v-)v≠)090(30-v)=60(30+v)
解得:
x+5=10
增根
从去分母后所得的整式方程
x=5 中解出的
检验:
能使分式方程的分母为0的解
将x=5代入x-5、x2-25的值都为0,相应
分式无意义。所以x=5不是原分式方程的解。
∴原分式方程无解。
增根的定义
增根:在去分母,将分式方程转化为整式方程 的过程中出现的不·适·合·于·原·方·程·的·根·.

人教版八年级数学上册15.3 分式方程及其应用 习题梳理

人教版八年级数学上册15.3  分式方程及其应用 习题梳理

15.3 分式方程及其应用考点一 分式方程的定义1. 分母中含有未知数的方程叫做分式方程.例1.下列方程是分式方程的是()A .1023x -= B .42x=- C .213x -=D .213x x +=答案解析:选B .A 、1023x -=是一元一次方程, 故A 错误;B 、42x=-是分式方程, 故B 正确;C 、213x -=是一元二次方程, 故C 错误;D 、213x x +=是一元一次方程, 故D 错误.过关检测1. 下列关于x 的方程中,是分式方程的是( ) A .132x =B .12x= C .2354x x++= D .321x y -= 2. 下列关于x 的方程①153x -=,②141x x =-,③1(1)1x x x-+=,④11x a b =-中, 是分式方程的有( ) A . 4 个 B . 3 个 C . 2 个 D . 1 个考点二 解分式方程1. 解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.例1.解方程:答案解析:最简公分母是2(x-1),等号两边同时乘最简公分母,去分母得:2x ﹣4x+4=3,解得:x=,经检验x=是分式方程的解.过关检测1. 解分式方程14322x x-=--时, 去分母可得( ) A .13(2)4x --= B .13(2)4x --=-C .13(2)4x ---=-D .13(2)4x --=2. 解方程 (1)113x x x -=+ (2)241111x x x -+=-+ (3)13211x x-=-- (4)1112x x x ++=- (5)考点三 分式方程的解(一般解、增根、无解)1. 求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程解.2. 增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.例1.若关于x 的分式方程311m x -=-的解为2x =,则m 的值为( ) A .5 B .4C .3D .2答案解析:关于x 的分式方程311m x -=-的解为2x =,22x m ∴=-=,解得:4m =.故选:B .例2.若关于x 的分式方程2122x a x -=-的解为非负数, 则a 的取值范围是________答案解析:原分式方程的解为x=223a-+,0x x ∴≥关于的解释非负数 则2302a-+≥,得1a ≥.故答案为1a ≥.过关检测1. 2x =是分式方程321321x a x a +-=-+的解, 则a 的值是( )A .1-B . 0C . 1D . 3 2. 分式方程2112x x -=-的解为( ) A .1x =- B .12x =C .1x =D .2x = 3. 已知3x =是分式方程2121kx k x x--=-的解,则实数k 的值为?4. 若关于x 的分式方程2322x m mx x++=--的解为正实数, 则实数m 的取值范围是?例3. 若方程61(1)(1)1mx x x -=+--有增根,则它的增根是( )A .0B .1C .1-D .1和1-答案解析:方程两边都乘(1)(1)x x +-,得6(1)(1)(1)m x x x -+=+-,由最简公分母(1)(1)0x x +-=,可知增根可能是1x =或1-.当1x =时,3m =,当1x =-时,得到60=,这是不可能的,所以增根只能是1x =.故选:B .过关检测1. 关于x 的分式方程7311mx x +=--有增根,则增根为( ) A .1x = B .1x =-C .3x =D .3x =-2. 若关于x 的方程1011m x x x --=--有增根,则m 的值是( ) A .3B .2C .1D .1-3.若分式方程231222x a x x x x-+=--有增根,则实数a 的取值是?例4. 关于x 的方程32211x mx x -=+++无解,则m 的值为( ) A .5- B .8- C .2- D .5答案解析:去分母得:3222x x m -=++,由分式方程无解,得到10x +=,即1x =-,代入整式方程得:522m -=-++,解得:5m =-,故选:A .过关检测1. 若关于x 的方程2134416m m x x x ++=-+-无解, 则m 的值为?2. 若关于x 的分式方程3233x a a x x+=--无解,则a 的值为?3. 若关于x 的分式方程7311mx x x +=--无解, 则实数m =?考点四 分式方程的应用1. 行船问题例1.一艘轮船在静水中的最大航速为30/km h ,它以最大航速沿江顺流航行100km 所用时间,与以最大航速逆流航行80km 所用时间相等,设江水的流速为v /km h ,则可列方程为( )A .100803030v v =+-B .100803030v v =-+C .100803030v v=+-D .100803030v v =-+答案解析:船顺流而下时速度为船速加水速,即v+30,逆流而下时速度为船速减水速,即v-30,根据时间相等,列等量关系式,100803030v v =+- 故答案选A过关检测1. 一艘轮船在静水中的最大航速为35/km h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行90km 所用时间相等.设江水的流速为v /km h ,则可列方程为( )A .120903535v v =+- B .120903535v v =-+C .120903535v v =-+ D .120903535v v=+-2. 甲、乙两船从相距300km 的A 、B 两地同时出发相向而行,甲船从A 地顺流航行180km 时与从B 地逆流航行的乙船相遇,水流的速度为6/km h ,若甲、乙两船在静水中的速度均为x /km h ,则求两船在静水中的速度可列方程为( )A .18012066x x =+- B .18012066x x =-+C .1801206x x=+ D .1801206x x =-2. 行程问题例1.为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x 公里,根据题意列出方程正确的是( )A .30252x x =+ B .30252x x =+C .30252x x =- D .30252x x=- 答案解析:乙每小时速度为x-2,路程=速度×时间,找到时间为等量关系,有两者时间相等,列关系式为:30252x x =-,故答案选C过关检测1. 甲、乙两地相距600km ,乘高铁列车从甲地到乙地比乘特快列车少用4h ,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为/xkm h ,根据题意可列方程为( ) A .60060043x x += B .60060043x x -= C .60060043x x-= D .600600423x x-=⨯ 2. 2016年5月15日从呼市到鄂尔多斯市的6767D 次动车首发成功,鄂尔多斯市自此迎来了动车时代,已知两地铁路长为450千米,动车比火车每小时多行驶50千米,从呼市到鄂尔多斯市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x -=- B .4504504050x x -=+ C .4504502503x x -=+ D .4504502503x x -=-3. 徐州至北京的高铁里程约为700km ,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A 与“复兴号”高铁B 前往北京.已知A 车的平均速度比B 车的平均速度慢,车的行驶时间比车的行驶时间多,两车的行驶时间分别为多少?4.小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院和,两人分别从家中同时出发,已知小明和小刚的速度比是,结果小明比小刚提前到达剧院.求两人的速度.5. 班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍从学校出发.苏老师因有事情,从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问: (1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?80/km h A B 40%1200m 2000m 3:44min 8:008:3090606x x =-3. 工程问题例1. 甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与乙60个所用的时间相等.设甲每小时做个零件,所列方程正确的是D . A .B . C. 答案解析:工程总量=工作效率×工作时间,设甲的工作效率为x ,则乙的工作效率为x-6,根据工作时间相等列等量关系式,有:,故答案选A 过关检测1. 西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾, 调用甲车 3 小时只清理了一半垃圾, 为了加快进度, 再调用乙车, 两车合作 1.2 小时清理完另一半垃圾 . 设乙车单独清理全部垃圾的时间为小时, 根据题意可列出方程为 A .B .C .D .2. 某社区积极响应正在开展的“创文活动”, 组织甲、 乙两个志愿工程队对社区的一些区域进行绿化改造 . 已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的 2 倍, 并且甲工程队完成 300 平方米的绿化面积比乙工程队完成 300x ()90606x x =-90606x x =+90606x x =+90606x x =-x ()1.2 1.216x += 1.2 1.2162x +=1.2 1.2132x += 1.2 1.213x+=平方米的绿化面积少用 3 小时, 乙工程队每小时能完成多少平方米的绿化面积?4.经济问题例1.小敏上月在某文具店正好用30元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小敏只比上次多用了6元钱,却比上次多买了8本,若设她上月买了本笔记本,则根据题意可列方程为... .答案解析:销售总价=销售单价×销售数量。

人教版初中数学八年级上册教学课件 第十五章 分式 分式方程(第3课时)

人教版初中数学八年级上册教学课件 第十五章 分式 分式方程(第3课时)

1.理清速度、路程和时间对应的式子 2.关键词:“相同的时间” 3.数量关系:“提速前的路程÷提速前 的速度=提速后的路程÷提速后的速 度”,从而建立方程.
表达问题时,用字母不仅可以表示未 知数(量),也可以表示已知数(量).
这里的字母v,s 表示已知数据,设提速前列车
的平均速度为x km/h,那么提速前列车行驶s km 所
A. 720 720 2B. 720 720 2
x (x 20%)x
(1 20%)x x
C. 720 720 2D. 720 720
(1 20%)x x
x 2 (1 20%)x
1.某小区为了排污,需铺设一段全长为720米的排污
管道,为减少施工对居民生活的影响,需缩短施工时 间,实际施工时每天的工作效率比原计划提高20%,
新课标 人
数学
8年级/上
八年级数学·上 新课标 [人]
第十五章 分 式
学习新知
检测反馈
解下列方程.
(1) (x 1)2 3x 1 2 0;
x2
x
(2) 2x 1 1 1. x 3x
解:
(1)x 1.(2)x 4 . 3
学习新知
例1 两个工程队共同参与一项筑路工
程,甲队单独施工1个月完成总工程
时间非负、人数为正整数等.
(3)在一些实际问题中,有时直接 设问题所求的量为未知数可能比 较麻烦,可以间接地设未知数.
知识小结
列分式方程解应用题按下列步骤进行:
(1)审题了解已知量与所求各量所表示 的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部(或大部分) 含义的相等关系,列出分式方程;
1.关键词:“增加” 2.“5月份的销售量比4月份的销售量 增加20件”

初中数学人教版八年级上册15.3 分式方程

初中数学人教版八年级上册15.3 分式方程

先把分式方程转化为整式方程,再把使得分式方程 中分母为零的未知数的值代入到转化后的整式方程 中,即可求得待定量的值.
列分式方程解应用题
一般步骤
列 (1)审:找出问题中已知与未知的数量关系;
分 (2)设:一般是直接设未知数,个别是间接设未知数;
式 方
(3)列:根据等量关系列出分式方程;
程 (4)解:解转化后的整式方程;
3
所以 2 m ≠2,解得m≠0.综上所述,m的取值范围为m<6
3
且m≠0.故选C.
本题在求m的取值范围时,只注意到方程
2 x2
xm 2 x
2
的解为正数,而忽略了排除分式方程无解的情况.
题型一 解分式方程
角度a 可化为一元一次方程的分式方程
例8 解方程:
y
6y 2
12 4y
4
y2 4 y2 4y 4
角度b 解含有字母的分式方程
例9 解方程: x m x (m -2, m -1). x1 x1 x1
思路导图
方程两边同乘 (x-1)(x+1),把 分式方程转化为 整式方程,解整 式方程
检验,将求得 的整式方程的 解代入分式方 程的最简公分 母中,检验是 否为零
写出 原分 式方 程的 解
解:方程两边同乘(x-1)(x+1),得(m+2)x=-m.
续表
知识 解读
(1)问题中的数量关系可能不止一个,分析得出 与未知的等量关系,选择适当的未知数可以简 化方程; (2)列方程时要保持单位统一; (3)注意在分式方程应用题中检验意义的双重性, 既要检验得到的整式方程的解是否是列出的分 式方程的解,又要检验其是否符合实际意义
注意:列分式方程解应用题一定要检验,同时还要 保证其结果符合实际意义.

初中分式方程大单元教学设计

初中分式方程大单元教学设计

新课标理念下大单元教学设计案例初中数学单元设计数学分式方程自然单元 重组单元 序号 课时名称 对应教材内容二、单元分析(一)课标要求了解分式方程的概念,会检验分式方程的解,了解增根产生的原因,掌握解分式方程的一般步骤,会用分式方程解决简单的实际问题。

课标在“知识技能”方面指出:经历实际背景抽象出分式方程的过程,进一步发展数学符号感;掌握分式方程的解法,增强运算技能。

在“数学思考”方面指出: 通过探索分式方程的解法,体会化归思想;通过探究增根产生的过程,培养逻辑分析能力;用列方程解决实际问题,体会模型思想,建立符号意识,感受生活数学化过程,增强学生学数学、用数学意识;通过课堂活动,培养合作意识和探究精神,形成数学思维,实现数学核心素养要求。

本单元,教学内容为人教版八年级数学第 15 章分式-- 《分式方程》,是学生已掌握一元一次方程解法及分式的四则运算等有关知识的基础上进行学习的,要求学生能从实际的生活情境中抽象出分式方程的概念,以及研究分式方程 的解法,经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题和解决问题的能力,渗透转化的数学思想,培养学生的应用数学意识。

进一步, 引导学生如何借助分式方程来解决实际问题。

列方程解应用题体现了现实世界中事物的相互联系,在能力方面,无论是逻辑思维能力、计算能力,通过分式方程的应用教学,培养学生数学应用意识,在活动中培养学生乐于自主探究探,合作交流的学习习惯,体会数学源于实际、用于实际的学科价值与文化价值。

通过本单元的学习,丰富方程的认知,掌握分式方程的解法,体会化归思想,进一步感受方程求解,解决实际问题。

同时,也为一元二次方程及后续内容的学习奠定基础。

因此,本单元的学习重点是:分式方程的解法。

本单元的难点是:“分式方程的解法及增根的理解”和“列分式方程解决实际问题”。

新课标指出在义务教育阶段我们应该让学生能够获得适应社会需求的基础知识、基本技能、基本思想和生活经验,也就是我们所说的“四基”,基于本单元学情,从学生的认知规律看:在学习了两次学习了整式方程即“一元一次方程”、“二元一次方程组”后,他们对整式方程的解法和基本思路(使方程逐步化为x =a 的形式)已经比较熟悉,而分式方程的未知数在分母,解法步骤稍显复杂,但化为整式方程后的解法体现了解方程的统一性;在后续“二元一次方程”的学习中,会感受到解方程求解的一般路径,这也是方程思想有益积累和传承。

15.3分式方程应用题解析

15.3分式方程应用题解析

s s 50 x xv
解得 x sv 50
检验:x sv 时,x(x+v) ≠0, x sv 是方程的解。
50
50
答:提速前列车的平均速度为 sv 千米/小时。 50
1、一队学生去校外参观,他们出发30分钟时,学
校要把一个紧急通知传给带队老师,派一名学生骑车从
学校出发,按原路追赶队伍.若骑车的速度是队伍行进
∴ x=3是原方程的增根 ∴原方程无解
注意检验
例题分析:
两个工程队共同参与一项筑路工程,甲队单
独施工1个月完成总工程的三分之一,这时
增加了乙队,两队又共同工作了半个月,总
工程全部完成. 哪个队的施工速度快?
分析: 甲队1个月完成总工程的
1 3 ,设乙队如果
1
单独施工1个月完成总工程的
1
x
,那么甲队
2、甲、乙两人每时共能做35个零件,当甲做了90
个零件时,乙做了120个。问甲、乙每时各做多少个机
器零件?解:设甲每小时做X个,乙每小时做(35-x)个,

90 120
x 35 x
1.填空:
(1)一件工作甲单独做要m小时完成,乙单独做要
n小时完成,如果两人合做,完成这件工作的时间是
___m_n__小时; 1( 1 1 )
4、已知轮船在静水中每小时行20千米,如果此船
在某江中顺流航行72千米所用的时间与逆流航行48千
米所用的时间相同,那么此江水每小时的流速是多少
千米?
解:设水流的速度为x,则
72 48 20 x 20 x
想一想1:
某次测试,初二(5)班55位同学中,80分的 有25位,90分的有30位,班级平均分怎么算?

2024-2025学年度人教版八上数学15.3 分式方程【课件】

2024-2025学年度人教版八上数学15.3 分式方程【课件】
人教版 数学 八年级 上册
15.3 分式方程
第一课时
第二课时
第一课时
分式方程
导入新知
一艘轮船在静水中的最大航速为20 km/h,它沿江以
最大航速顺流航行100 km所用时间,与以最大航速逆流航
行60 km所用时间相等,江水的流速为多少?
解:设江水的流速为 v km/h,
根据题意,得
这样的方
程与以前学过
注意:由于去分母后解得的整式方程的解不一定是原分式方程的
解,所以需要检验.
巩固练习
2.指出下列方程中各分母的最简分母,并写出去分母后
得到的整式方程.
1
2


2x
x 3
2
4
2

x 1
x 1
解:①最简公分母2x(x+3),去分母得x+3=4x;
②最简公分母x2–1,去分母得2(x+1)=4;
探究新知
素养考点 1 解分式方程
例1
解下列方程:
2
3

x -2 x
解:方程的两边同乘以x(x–2),
得2x=3x–6
解得:x=6
检验:当x=6时,x(x–2)≠0.
所以,原方程的解是x=6.
巩固练习
1
2
3.解下列方程:
2x x 3
解:方程的两边同乘以2x(x+3),
得(x+3)=4x
解得:x= 1
整式方程了.
(2)利用等式的性质,可以在方程两边都乘同一个
式子——各分母的最简公分母.
探究新知

90
60
=
解分式方程 30+v 30-v .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

m n =0 (m n 0ห้องสมุดไป่ตู้. 解关于x 的方程 x x+1 m x=. m- n
解:∴
m 0, x x+1) 检验:当 x=时,( m- n m 所以,x=是原分式方程的解. m- n
列分式方程解应用题的一般步骤
1.审:分析题意,找出数量关系和相等关系. 2.设:选择恰当的未知数,注意单位和语言完整.
解得 x=1.
检验:x=1时6x≠0,x=1是原分式方程的解
答:由上可知,若乙队单独施工1个月可以完成全部任务, 而甲队1个月完成总工程的 1 ,可知乙队施工速度快.
3
3.列:根据数量和相等关系,正确列出方程.
4.解:认真仔细解这个分式方程. 5.验:检验. 6.答:注意单位和语言完整.
列分式方程解应用题
例3 两个工程队共同参与一项筑路工程,甲队单 独施工1个月完成总工程的三分之一,这时增加了乙队, 两队又共同工作了半个月,总工程全部完成,哪个队的 施工速度快? 1 (1)甲队1个月完成总工程的_____, 3
课堂练习
练习
m n =0 (m n 0). 解关于x 的方程 x x+1
x x+1 ) 解:方程两边同乘 ( ,得 m (x+1 ) -nx =0. 化简,得 mx+m-nx =0. x = -m. 移项、合并同类项,得(m-n) ∵ m n 0, ∴ m n 0,
课堂练习
练习
1 设乙队单独施工1个月能完成总工程的 x ,那么甲队半 1 个月完成总工程的____ 6 ,乙队半个月完成总工程的 1 1 1 + ____ 2 x ,两队半个月完成总工程的 6 2 x .
解: 设乙队如果单独施工1个月完成总工程
的 .依题意得
1 x
1 1 1 1, 3 6 2x
方程两边同乘6x,得2x+x+3=6x,
相关文档
最新文档