X射线荧光光谱分析法
X射线荧光光谱
矿物成分分析 环境分析 陶瓷材料分析 催化剂成分分析 薄膜厚度测定 X射线荧光光谱法具有谱线简单、无损检测等特 点,应用不断扩大,已成 主要局限性
不能分析原子序数小于5的元素 分析灵敏度不高 对标准试样的要求很严格
1.2 X射线荧光的产生
X射线的能量与原子轨道能级差的数量级相等, 待测元素经X射线照射后,发生X射线吸收, 原子内层电子(如K层)受到激发,逐出一个 电子,形成一个空穴,此时,较外层(如L层) 上的电子发生跃迁来填补这个空穴,这时就 会发出特征的X射线。
X射线激发电子弛豫过程示意图
1.3 俄歇效应
发 射K层X射 线 数 产 生K层 空 穴 数
一般来说,对于原子序数小于11的元素以发 射俄歇电子为主,而原子序数大于11的元素 以发射X荧光射线为主,因此 XRF法更适合分析原子序数较大元素。
2. X射线荧光法定性分析
对于每种元素来说,由于各自的能级分布不同,所发射出 的能量(或波长)互不相同,称为特征谱线。特征谱线的 频率取决于电子跃迁的始态和终态的能量差。
X射线荧光光谱
1.原理
X射线光谱分析法包括: X射线荧光光谱法(XRF) X射线衍射光谱法(XRD) X射线荧光光谱法是利用元素内层电子跃迁产生 的荧光光谱,应用于元素的定性、定量分析, 特别适合于固体表面成分分析。
1.1 什么是X射线
X射线是介于紫外线和 射线之间的一种电磁 辐射,波长范围0.001~10nm,波长大于0.1nm 的X射线称“软”X射线,而波长较长的X射线 称“硬”X射线。X射线与物质作用产生衍射 现象,这是X射线作为电磁波的特征,X射线 也可看作具有一定能量的光子。
当较外层电子跃迁到空穴时,所释放出的 能量随即在原子内部被吸收又释放出另一 个较外层的电子时,此效应称为俄歇效应。 而所产生的新的光电子叫俄歇电子。它的 能量是特征的与入射辐射的能量无关。
X射线荧光光谱分析法
X射线荧光光谱分析法X射线荧光光谱分析法(X-ray fluorescence spectroscopy,简称XRF)是一种非破坏性的分析方法,可以用于确定样品中的元素成分和浓度。
这种方法是通过样品中原子受到入射的X射线激发,产生特定能量的荧光X射线,然后测量荧光X射线的强度和能谱来确定元素的类型和浓度。
X射线荧光光谱分析法通常包括两个主要步骤:样品的激发和荧光X射线的检测。
在激发过程中,样品被置于X射线源的束斑中,经过激发后,样品中的原子会发射出特定能量的荧光X射线。
荧光X射线经过一系列的激发、透射和转换后,最终被探测器测量和记录下来。
测量得到的荧光X射线强度和能谱可以通过专门的软件进行分析和解析,从而确定样品中元素的类型和浓度。
XRF分析技术具有许多优点,使其成为一种常用的分析方法。
首先,它是一种非破坏性的分析方法,样品在测试过程中完整保留,不需要额外的处理,可以用作进一步的测试或保存。
其次,XRF方法具有广泛的元素适用范围,可以准确测定周期表中从钍(原子序数90)到氢(原子序数1)的所有元素。
同时,该方法还适用于各种不同的样品类型,包括固体、液体和粉末等。
另外,XRF分析速度快,具有高灵敏度和准确性,可以同时进行多元素分析。
然而,X射线荧光光谱分析法也存在一些局限性。
首先,由于荧光X射线的能量范围有限,该方法无法测定低原子序数的元素,比如锂(原子序数3)以下的元素。
其次,对于高原子序数的元素,如铀和钍,荧光X射线的强度相对较弱,需要较长的测量时间来获取准确的结果。
另外,XRF方法对于样品的准备要求较高,包括取样、研磨和制备等步骤,对样品的形状和尺寸也有一定的要求。
总的来说,X射线荧光光谱分析法是一种广泛应用于材料科学、地质学、环境科学、金属冶金等领域的有效分析方法。
在实际应用中,为了获得准确的结果,需要根据具体的测试要求对仪器进行校准,并对样品进行合理的处理和制备。
此外,随着技术的不断进步,XRF方法也在不断改进,如开发更高分辨率的能谱仪和软件等,以提高分析的灵敏度和准确性。
X射线荧光光谱(XRF)分析
消除基体效应
基体效应会影响XRF的测 量结果,因此需要采取措 施消除基体效应,如稀释 样品或添加标准物质。
固体样品的制备
研磨
将固体样品研磨成细粉,以便进行XRF分析。
分选
将研磨后的样品进行分选,去除其中的杂质和粗 颗粒。
压片
将分选后的样品压制成型,以便进行XRF测量。
液体样品的制备
1 2
稀释
将液体样品进行稀释,以便进行XRF分析。
定性分析的方法
标样法
01
通过与已知标准样品的荧光光谱进行比较,确定样品中元素的
种类。
参考法
02
利用已知元素的标准光谱,通过匹配样品中释放的X射线荧光光
谱来识别元素。
特征谱线法
03
通过测量样品中特定元素的特征谱线,与标准谱线进行对比,
确定元素的存在。
定性分析的步骤
X射线照射
使用X射线源照射样品,激发 原子中的电子跃迁并释放出X 射线荧光光谱。
XRF和ICP-AES都是常用的元素分析方法,ICP-AES具有更高的灵敏度和更低 的检测限,适用于痕量元素分析,而XRF具有更广泛的应用范围和更简便的操 作。
XRF与EDS的比较
XRF和EDS都是用于表面元素分析的方法,EDS具有更高的空间分辨率,适用于 微区分析,而XRF具有更广泛的元素覆盖范围和更简便的操作。
XRF分析的局限性
01
元素检测限较高
对于某些低浓度元素,XRF的检 测限相对较高,可能无法满足某 些应用领域的精度要求。
02
定量分析准确性有 限
由于XRF分析基于相对强度测量, 因此对于不同样品基质中相同元 素的定量分析可能存在偏差。
03
对非金属元素分析 能力有限
X射线光谱法
5.2.1. X射线辐射源
5.2.1.1. X射线管
分析工作最常用的X射线光源是各种不同形状和方 式的高功率X射线管,一般是由一个带铍窗口(能透过X 射线)的防射线的重金属罩和一个具有绝缘性能的真空 玻璃罩组成的套管。
5.2.1. X射线辐射源
5.2.1.2.放射性同位素
许多放射性物质可以用于X射线荧光和吸收分析。通 常,放射性同位素封装在容器中防止实验室污染,并且套 在吸收罩内,吸收罩能够吸收除一定方向外的所有辐射。 多数同位素源提供的是线光谱。由于X射线吸收曲线的形 状,一个给定的放射性同位素.可以适合一定范围元素的 荧光和吸收研究。
5.1.1.2.电子束源产生的特征X射线
在对钼靶进行轰击后产生了两条强 的发射线(0.063和0.071nm),在0.04~ 0.06 nm还产生了一系列连续谱。在原子 序数大于23的元素中,钼的发射行为很 典型:与紫外的发射线相比,钼的X射线 非常简单;它由两个线系组成,短波称为 K系,长波称为L系。下表列举了部分元 素的特征X射线。
目前在X射线光谱分析中,特征线的符号系统 比较混乱,尚未达到规范化。通常,在一组线系中, α1线最强。除Kα2比Kβ1强以外,一般β1为第二条最 强线。元素中的各谱线都是用相应的符号来表示的。 上述能级图适用于大部分元素,能级差会随原子序 数增大而规律性的增大;而核电荷的增加也会提高最 低加速电压。
5.1.3. X射线的散射和衍射
X射线衍射所需条件有两个:1.原子层之间间距必 须与辐射的波长大致相当;2.散射中心的空间分布必须 非常规则。如果距离
AP+PC=nλ n为一整数,散射将在OCD相,晶体好象是在反 射X辐射。但是,
AP=PC=dsinθ d为晶体平面间间距。因此,光束在反射方向发 生相干干涉的条件为:
X射线荧光光谱法
1.X射线激发源
由X射线管所发出的一次x射线的连续光谱和特征光谱 是x射线荧光分析中常用的激发源。
初级X射线的波长应稍短于受激元素的吸收限,能量最 有效地激发分析元素的特征谱线.
一般分析重元素时靶材选钨靶.分析轻元素用铬靶。
荧光x射线的波长随着元素原子序的增加 有规律地向波长变短方向移动。 其数学关系式为
式中K S为常数,随不同谱线系列(K、L)而定.Z是原子序数。
6.3 X射线荧光光谱仪
根据分光原理,可将x射线荧光光谱仪分为两类:
波长色散型(晶体分光)和能量色散型(高分辨率半导 体探测器分光)。
(一)波长色散型X射线荧光光谱仪
6.4 X射线荧光分析方法及应用
(一)定性分析 (二)定量分析
1.定量分析的影响因素
现代x射线荧光分析的误差主要不是来源于仪 器.而是来自样品 (1)基体效应一般表现为吸收和激发效应
基休效应的克服方法有:(i)稀释法.以轻元素 为稀释物可减小基体效应。(ii)薄膜样品法,将 样品做得很薄.则吸收、激发效应可忽略。 (iii)内标法,在一定程度上也能消除基体效应
2.定量分析方法
(1)校准曲线法 (2)内标法
内标元素的选择原则:
(i)试样中不含该内标元素; (ii)内标元素与分析元素的激发、吸收等性质要尽量相似, 它 们的原子序相近. (iii)两种元素之间没有相互作用。
(3)增量法 先将试样分成若干份.其小一份 不加待测元素,其他各份分别加入不同含量 (1—3倍)的待测元素,然后分别测定分析线 强度、以加入含量为横坐标、强度为纵坐标绘 制标准曲线.当待测元素含量较小时,校准曲 线近似为一直线。将直线外推与横坐标相交, 交点坐标的绝对值即为待测元素的含量。作图 时,应对分析线的强度做背景校正。
第六章 X-射线荧光光谱分析-3
2019/2/10
--------------
7
2)谱线干扰:虽然X射线荧光光谱比较简单,绝大部 分是单独的谱线。但在一个复杂的样品中,谱线干扰仍 是不可忽视的,有的甚至造成严重的干扰。这种干扰严 重影响X射线强度的测定,对定量分析带来一定的困难。 克服的方法有: ①避免干扰线,选用无干扰的谱线作分析线; ②适当选择仪器测量条件,提高仪器的分辨本领; ③降低X光管的管电压至干扰元素激发电压以下,防 止产生干扰元素的谱线; ④进行数学校正,现代仪器上都有数学校正程序。
TB
分析线峰的强度测量值为IP,计数时间为TP =TB, 分析线峰的纯强度I=IP -IB,分析线峰的纯强度测量的标 2 2 1/2 准偏差:
∴
σ ( σ σ ) P B
IP ≈IB ,
对于痕量分析
2019/2/10
∴
σ P≈σ B
12
2 1/2 σ (2 σ ) 2 σ -------------- B B
2019/2/10 -------------- 8
6.5.3
背景
背景可以定义为当分析线不存在时,在分析线2θ 角位置上测得的强度。 背景的成分很复杂,主要来源有: ①由样品散射和X光管发出的连续谱和特征谱 IP.SC; ②由仪器电路、晶体散射的样品的辐射线 IC.SC; ③晶体受X射线照射后发出的二次X射线 IC.Cm 。 因此
2020311用纯物质或标样测定仪器对元素的灵敏度系数并存入仪器放置未知样品输入仪器测定条件和待测元素参数给出测定值的初期值计算荧光x线强度计算理论强度将理论强度和元素灵敏度系数的乘积与测定强度比较修正定量值修正后与修正前的差01结束图601基本参数法的分析流程图35x射线荧光强度的理论公式的推导和计算都是相当繁而复杂的
X-荧光光谱分析
10Å = 1nm = 10-3μm = 10-6mm = 10-9m XRF analysis covers the following energy- respective wavelength range: E = 0.11 - 60 keV λ = 11.3 - 0.02 nm or 元素范围从铍 (Be)到铀 (U)
X射线 射出
§2.1、波长色散型X射线荧光光谱仪 四、准直器( Sollers 狭缝)
• 准直器作用示意图
0.46 °
准直器的作用:提高分辨率
§2.1、波长色散型X射线荧光光谱仪 五、分光晶体
• 分光晶体是应用了X射线的衍射特性 • X射线的衍射特性 • 二束或多束射线相互作用,如果射线间的光程差为波长的整数倍, 射线将增强,但射线的波长不变 ,如果射线的相位反相,射线将减弱。
• 仪器结构及(原理图):
●X射线光管发射的原级
样品
X射线入射至样品,激发 样品中各元素的特征谱线 ●分光晶体将不同波长 的X射线分开 ●计数器记录经分光的 特定波长的X射线光子 N ●根据特定波长X射线光子 N的强度,计算出与该波长 对应的元素的浓度
分光 晶体
§2.1、波长色散型X射线荧光光谱仪 关键部件
§2.1、波长色散型X射线荧光光谱仪
一、 X射线光管
• 用X射线管发出的初级X射线照射样品,以激发样品组成 元素的特征谱线。X光管发出的初级X射线束中包括连续 光谱和靶元素的特征光谱两部分,前者用来激发试样中大 部分分析元素,而靶的特征光谱对激发试样中某些特定元 素特别有效。如选用铬靶特征谱线激发钙、钛等轻元素, 均可获得较高的激发效率。 • 波长色散型X射线荧光光谱仪几乎都采用封闭式X射线管 作为激发源。这类管子具有在较高功率下连续工作的特性; 其高压可在10~60kV或10~100kV范围内变化,管电流 可在5~80mA范围内变化,最高功率可达3~3.5kW。这 类管子要求制靶材料有较高的纯度,以免对分析线产生干 扰;要求有尽可能薄的铍窗,以提高长波辐射对管窗的透 射率。封闭式X射线管通常备有多种靶材,以供选用,如 钨、钼、铬、铑、金等靶,以及钨一铬、钨一钪等双元靶。 • 为了兼顾长短波长的激发效率,我们使用钨靶。
X射线荧光光谱分析法
X射线荧光光谱分析法利用原级X射线光子或其他微观粒子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。
在成分分析方面,X射线荧光光谱分析法是现代常规分析中的一种重要方法。
简史20世纪20年代瑞典的G.C.de赫维西和R.格洛克尔曾先后试图应用此法从事定量分析,但由于当时记录和探测仪器水平的限制,无法实现。
40年代末,随着核物理探测器的改进,各种计数器相继应用在X射线的探测上,此法的实际应用才成为现实。
1948年H.弗里德曼和L.S.伯克斯制成了一台波长色散的X射线荧光分析仪,此法才开始发展起来。
此后,随着X射线荧光分析理论和方法的逐渐开拓和完善、仪器的自动化和计算机水平的迅速提高,60年代本法在常规分析上的重要性已充分显示出来。
70年代以后,又按激发、色散和探测方法的不同,发展成为X射线光谱法(波长色散)和X 射线能谱法(能量色散)两大分支,两者的应用现已遍及各产业和科研部门。
仪器X射线荧光分析仪(见彩图)主要由激发、色散(波长和能量色散)、探测、记录和测量以及数据处理等部分组成。
X射线光谱仪与X射线能谱仪两类分析仪器有其相似之处,但在色散和探测方法上却完全不同。
在激发源和测量装置的要求上,两类仪器也有显著的区别。
X射线荧光分析仪按其性能和应用范围,可分为实验室用的X射线荧光光谱仪和能谱仪、小型便携式X射线荧光分析仪及工业上的专用仪器。
X射线荧光光谱仪实验室用的X射线荧光光谱仪的结构见图1 。
由X射线管发射出来的原级X射线经过滤光片投射到样品上,样品随即产生荧光X射线,并和原级X射线在样品上的散射线一起,通过光阑、吸收器(可对任何波长的X射线按整数比限制进入初级准直器的X射线量)和初级准直器(索勒狭缝),然后以平行光束投射到分析晶体上。
入射的荧光X射线在分析晶体上按布喇格定律衍射,衍射线和晶体的散射线一起,通过次级准直器(索勒狭缝)进入探测器,在探测器中进行光电转换,所产生的电脉冲经过放大器和脉冲幅度分析器后,即可供测量和进行数据处理用。
(完整版)X射线荧光光谱分析XRF
Direct excitation
WDXRF Sample
EDXRF Sample
Secondary excitation
Polarized EDXRF
X-ray tube
Sample
X-ray tube
Promary collimator
Detector
Analysing crystal 2
02:57:03
(2)荧光分析原理
每一种元素都有其特定波长(或能量)的特征 X射线。通过测定试样中特征X射线的波长(或能 量),便可确定试样中存在何种元素,即为X射线 荧光光谱定性分析。
元素特征X射线的强度与该元素在试样中的原 子数量(即含量)成比例。因此,通过测量试样中 某元素特征X射线的强度,采用适当的方法进行校 准与校正,便可求出该元素在试样中的百分含量, 即为X射线荧光光谱定量分析。
重元素U – K 重元素U – K 轻元素Cl – F 轻元素Be, B, C, N
02:57:03
(5)分光晶体 (Crystal)
❖有 8个 供 选 择 的 晶 体可覆 盖所有波长,分布在一个滚 筒周围。分光晶体的作用是 通过衍射将从样品发出的荧 光按不同的波段分离,根据 的原理是布拉格方程。晶面 间距d值不同,可供选择的 晶体很多,仪器中选用5块 晶体。晶体的选择决定可测 定的波长范围,即可测定的 元素。
子发射发光谱、原子吸收光谱、原子荧光光谱法等)及电 子探针分析。 特点:1)非破坏的方法 ;2)绝大多数物理分析方法的分 析区域很小 ;3)物理分析方法多为表面分析方法;4)分 析速度快;5)灵敏度高,可测出痕量元素。
02:57:03
X射线荧光光谱分析(XRF)
X荧光光谱法(XRF)解析
定性分析
基本原理:试样发出的X荧光射线波长 与元素的原子序数存在一定关系,即 元素的原子序数增加,X射线荧光的波 长变短,关系式为 1 1 ( ) 2 K (Z S )
式中K ,S:随不同谱线系列而定的常 数;Z:原子序数.
定性分析
从试样发出的X射线荧光具有所含元素 的固有波长,该波长可用Bragg公式表示:
波长色散型:分光元件(分光晶体+狭缝); 特点:分辨率好,定性分析容易(谱线重叠 少);分析元素为 5 B 92U 灵敏度低. 能量色散型:半导体检测器;分辨率差,定 性较难(谱线重叠多),分析元素为 11 Na 92U 灵敏度高.需液氮冷却.
X射线管
波长色散型X射线荧光分析装置原理
X射线荧光光谱仪器组成
X射线发生系统:产生初级高强X射线,用于激发样品; 冷却系统:用于冷却产生大量热的X射线管; 样品传输系统:将放置在样品盘中的样品传输到测定位置 分光检测系统:把样品产生的X射线荧光用分光元件和检 测器进行分光,检测; 计数系统:统计,测量由检测器测出的信号,同时也可以除 去过强的信号和干扰线; 真空系统:将样品传输系统和分析检测系统抽成真空 ,使 检测在真空中进行(避免强度的吸收损失); 控制和数据处理系统:对各部分进行控制,并处理统计测 量的数据,进行定性,定量分析,打印结果.
受能 每 激量 一 原的 次 子释 的 的放 跃 二, 迁 次从 都 而伴 射形 随 线成 有 。
X
X
在当今众多的元素分析技术中,X射线荧光技术是 一种应用较早,且至今仍广泛应用的多元素分析 技术。
曾经成功的解决了:矿石中Nb和Ta,Zr和Hf及单个稀土 元素(REE)的测定问题;地质与无机材料分析中工作 量最大,最繁重,最耗时的主次量组分快速全分析的难 题;以及高精度,海量地球化学数据的获取问题等等。
x-射线荧光光谱法
x-射线荧光光谱法
X射线荧光光谱法(XRF)是一种基于测量由初级X射线激发的原子内层电子产生特征次级X射线的分析方法。
XRF可应用于液体、粉末及固体材料的定性、定量分析。
以下是关于X射线荧光光谱法的更详细的解释:
X射线照射到供试品上时,供试品中的各元素被激发而辐射出各自的荧光X 射线。
这些荧光X射线通过准直器经分光晶体分光,按照布拉格定律产生衍射,使不同波长的荧光X射线按照波长顺序排列成光谱,不同波长的谱线由探测器在不同的衍射角上接收。
根据测得谱线的波长可以识别元素种类,根据元素特征谱线的强度与元素含量间的关系,可以计算获得供试品中每种元素含量百分数。
供试品的制备方法包括液体供试品可以直接进样分析,固体供试品可以直接压片或与适当的辅剂混合处理后压片进样分析。
在仪器的使用过程中,使用国家标准物质或样品进行校准和验证,确保仪器性能正常和准确测量结果。
XRF技术广泛应用于各种领域,如地质调查、环境监测、材料科学、化学分析等。
通过使用XRF技术,可以快速、准确地测定样品中元素的种类和含量,为科学研究、工业生产、质量控制等提供重要的技术支持。
X射线荧光光谱分析
2021/1/16
编辑课件ppt
4
③ X射线荧光光谱分析是一种物理分析方法。
分析元素种类为元素周期表中5B~92U,分析的 浓度范围为10-6~100%;
一般检出限达1µg.g-1 , 全反射X射线荧光光 (TXRF)谱的监测限可达 10-3 ~ 10-6 µg.g-1 。
④ 非破坏分析、测量的重现性好。
对于X射线荧光光谱分析者来说,最感兴趣的是: 波长在0.01—24nm之间的X射线。
(1 Å =0.1nm = 10-10m,是一种非系统单位,在X射 线光。谱分析中X射线的波长都用Å为单位)。
X射线可分为: 超硬(<0.l Å) 硬(0.1~1 Å) 软(1~1 0 Å) 超软(>1 0 Å)X射线。 X射线也是一种光子,它具有粒子—波动双重性。
X射线度量单位:
在X射线测量中常用到三个参数:波长、能 量和强度。
波长:用符号λ表示,它的单位用Å。如果用 其它长度单位,一定要有脚标,如λnm、λmm。
频率: 用符号ν表示,ν=C/λ,单位为赫兹 (Hz),在X射线光谱分析中不常用频率这个物理 量。
能量:就是一个光子所具有的能量,用符号E表示, 它的单位用电子伏特(eV)或千电子伏特(KeV)。能量与 波长的关系式为:
考古和首饰
• 古青铜钱币中铅铜锡的测定 • 珍贵邮票的快速鉴定 • 银首饰Ag的分析
国外的应用:
• 德国U Ehrke , 评估旋压成形的晶片的沾污情况 • 意大利L Bonnizzoni ,以粉末悬浮液的全反射X射线荧光谱分析 为基础、鉴定古代陶瓷 • 匈牙利 A Auita ,应用同步辐射-全反射X射线荧光谱技术、分 析与航空港有关的气溶胶中的痕量元素 • 巴西S Moreira , 研究树木物种作为环境污染的生物指示剂 • 德国M Mages ,斑马鱼(一种有似斑马条纹的胎生观赏鱼)的鱼蛋 受 V、Zn与Cd污
X射线荧光光谱法
X射线的发现
一次偶然的机会使他发现,未经太阳曝晒的底 片冲出来后,出现了很深的感光黑影,这使他非常 吃惊。是什么使底片感光呢?跟荧光物质是否有关
呢?他进一步用不发荧光的铀化合物进行实验,同
样使底片感光;可见铀化合物能发出一种肉眼看不 见的射线,与荧光无关。 1896年3月2日,他向法国科学院报告了这一惊 人的发现,从此打开了一个新的研究领域。
40
产生条件:
当管电压超过某临界值时,特征谱才会出现,该 临界电压称激发电压。当管电压增加时,连续谱 和特征谱强度都增加,而特征谱对应的波长保持 不变。
钼靶X射线管当管电压等于或高于20KV时,则除 连续X射线谱外,位于一定波长处还叠加有少数 强谱线,它们即特征X射线谱。
钼靶X射线管在35KV电压下的谱线,其特征X射线 分别位于0.63Å和0.71Å处,后者的强度约为前者 强度的五倍。这两条谱线称钼的K系 。
三、应用 X 射线从晶体平面的衍射而建立的—— X 射线 衍射法。
12
X射线分析法 X射线荧光法 X射线衍射法
直接X射线法
X射线光电子波谱法
X射线吸收法
13
X-射线分析法:X-Ray Analysis 以X射线为辐
射源的分析方法。
共同点:
(1) 属原子发射光谱的范畴;
(2) 涉及到元素内层电子; (3) 以X-射线为激发源; (4) 可用于固体表层或薄层分析
23
X射线管的结构
24
25
26
X射线管
库利吉管 旋转阳极X射线管
27
旋转阳极
28
与固定阳极X射线管相比,旋转阳极X射线管具有焦点小、功率 大等优点。 1、采用固定阳极 X射线管的 X射线机连续工作时间大大高于采 用旋转阳极X射线管的X射线机 ,固定阳极X射线管的热量可以 及时通过阳极耙芯传导到射线管外,散发到油中,所以散热效 率极高,从而使阳极耙面始终保持较低的温度,这样仪器便可 以长时间连续工作,所以固定阳极X射线管的X射线机连续工作 时间大大高于旋转阳极X射线机; 2、采用固定阳极X射线管的X射线机可靠性、使用寿命大大高 于采用旋转阳极 X射线管的X射线机;固定阳极 X射线管结构相 对简单,阳极静止,不易损坏,所以可靠性好,使用寿命长, 而旋转阳极 X 射线管结构及控制较为复杂,所以容易损坏,故 障率相对较高,可靠性相对较差,使用寿命相对较短; 3、同等情况下,采用固定阳极 X射线管的 X射线机比采用旋转 阳极X射线管的X射线机更经济实用,使用和维护成本低 。 29
X射线荧光光谱分析
X射线荧光光谱法进行定量分析的依据是元素的荧光X射线强度I1与试样中该元素的含量Wi成正比:
(10.2)
式中,为 =100%时,该元素的荧光X射线的强度。根据式(10.2),可以采用标准曲线法,增量法,内标法等 进行定量分析。但是这些方法都要使标准样品的组成与试样的组成尽可能相同或相似,否则试样的基体效应或共 存元素的影响,会给测定结果造成很大的偏差。所谓基体效应是指样品的基本化学组成和物理化学状态的变化对X 射线荧光强度所造成的影响。化学组成的变化,会影响样品对一次X射线和X射线荧光的吸收,也会改变荧光增强 效应。例如,在测定不锈钢中和等元素时,由于一次X射线的激发会产生荧光X射线,在样品中可能被吸收,使激 发产生,测定 i时,因为Fe的吸收效应使结果偏低,测定时,由于荧光增强效应使结果偏高。但是,配置相同的 基体又几乎是不可能的。为克服这个问题,目前射荧光光谱定量方法一般采用基本参数法。该办法是在考虑各元 素之间的吸收和增强效应的基础上,用标样或纯物质计算出元素荧光X射线理论强度,并测其荧光射线的强度。将 实测强度与理论强度比较,求出该元素的灵敏度系数,测未知样品时,先测定试样的荧光X射线强度,根据实测强 度和灵敏度系数设定初始浓度值,再由该浓度值计算理论强度。将测定强度与理论强度比较,使两者达到某一预 定精度,否则要再次修正,该法要测定和计算试样中所有的元素,并且要考虑这些元素间相互干扰效应,计算十 分复杂。因此,必须依靠计算机进行计算。该方法可以认为是无标样定量分析。当欲测样品含量大于1%时,其相 对标准偏差可小于1%。
X射线荧光光谱分析法
X射线荧光光谱分析法X射线荧光光谱分析法(X-ray fluorescence spectroscopy,简称XRF)是一种利用样品被X射线辐照后发出的荧光光谱进行化学元素定性和定量分析的方法。
它是一种非破坏性的分析技术,适用于固体、液体和气体样品。
X射线荧光光谱分析法基于X射线与物质相互作用的原理。
当样品受到X射线辐照后,其内部的原子会吸收部分X射线能量,随后再以荧光的形式发射出来。
这些发出的荧光光谱可以通过光谱仪进行检测和分析。
不同元素的荧光光谱特征不同,因此可以根据光谱特征来确定样品中的元素成分。
在X射线荧光光谱分析法中,首先需要制备样品,将其制备成均匀的固体、液体或气体形态。
为了提高分析的精确度,还可以选择加入一定的荧光剂,以增加荧光光谱的信号强度。
接下来,样品将被放置于X射线辐照源下,如X射线管,发射出的X 射线将通过样品,并激发样品中的原子产生荧光。
这些荧光将被荧光仪器所记录下来,并转换成一个荧光光谱。
荧光光谱中的特征峰可以通过对样品中各元素的荧光峰进行定性和定量分析。
对于定性分析,可以通过比对荧光峰的位置和强度与已知标准峰进行比较来确定样品中的元素成分。
对于定量分析,可以通过测量荧光峰的强度,并使用已知浓度的标准样品制备的校准曲线进行计算。
X射线荧光光谱分析法具有许多优点。
首先,它是一种非破坏性的分析方法,不需要对样品进行破坏性的处理,可以重复使用。
其次,它具有高分析速度和较高的灵敏度,可以在较短的时间内分析大量的样品,并且可以检测到低至ppm级别的元素含量。
此外,X射线荧光光谱分析法还具有广泛的适用性,可以用于各种类型的样品,包括金属、岩石、矿石、玻璃、陶瓷、塑料等。
尽管X射线荧光光谱分析法具有上述的优点,但也存在一些局限性。
首先,X射线荧光光谱分析法对于一些轻元素,如氢、碳、氮等,不敏感。
其次,由于X射线荧光光谱分析法使用的是非单一元素的基线和互作用效应,因而分析结果可能受到谱线重叠和基线的干扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探测器
过滤片
2θ角度
范围/(°) 14~18 12~21 26~45 42~62 61~126 76~146 91~146 100~115
步长
/(°) 0.04 0.03 0.05 0.05 0.05 0.08 0.10 0.12
时间/步
/s 0.20 0.25 0.25 0.20 0.16 0.16 0.20 0.16
X射线荧光光谱分析法
第一节 基本原理和方法特点 第二节 X射线荧光光谱仪结构及工作原理 第三节 X射线荧光光谱分析的应用
第一节 基本原理和方法特点
一 X射线荧光光谱分析法的基本原理
原子受高能射线激发发射出特征X射线 光谱线,每一元素都有它自己本身的固定波 长(或能量)的特征谱线,测定X射线荧光 光谱线的波长(或能量),就可知道是何种 元素,测定某一元素分析谱线的强度并与标 准样品的同一谱线强度对比或根据一些基本 参数的理论计算,即可知道该元素的含量。
金属样品表面处理需要注意的问题:
a.表面光洁度 ;
b.关于组成结构的变化和分析部位 ; c.表面污染 ; d.试样的保管和再抛光 。
一次X射线 检出 一次X射线 检出
图5
(A) (B)
(二)粉末样品
粉末样品的种类有矿石、耐火材料、炉渣、 金属粉、土壤等。 粉末样品的制备有压片法和熔融法两种。
1. 压片法 应解决的问题:矿物效应、 颗粒效应、 均匀性、 压片成型条件。
对扫描获得的谱图进行定性分析的一般步骤: (4)如果第(2)条某元素存在的假设成立, 则将该元素的所有其它谱线都标出来。 (5)继续按第(2)条寻找下一个强度最大 的谱峰并用同法予以识别。 现代X射线荧光光谱仪所带的定性分析分析 软件,一般均可自动对扫描谱图进行搜索和匹配, 以确定是何种元素的哪条谱线。
作重元素分析时,使用钨、钼、铑靶X射线管, 轻元素则用铬靶或铑靶X射线管,铑靶X射线管是 通用的。一般外加电压调在40~60(KV)之间,外 加电流根据具体情况确定。 X射线通路一般都用真空通路。但当样品有飞 散危险或用大气液体样槽作液体分析时,须在大气 气氛或氦气气氛下测定。
2.分光条件和扫描条件的设定
管压
/KV 60 60 60 60 50 30 30 30
管流
/mA 50 50 50 50 60 100 100 100
9
10
PE
PX1
300
300
F—PC
F—PC
无
无
130~147
20~60
0.12
0.15
0.16
0.50
30
30
100
100
(二)定性分析操作及图谱解析
如果要检测试样中是否存在某个指定元素,则 在选择的测量条件下对该元素的主要谱线进行定 性扫描,将所得扫描图与“谱线—2θ”表对照,就 可确定该元素是否存在。 如果要对试样中所有元素进行定性,则需用 不同的测量条件和扫描条件编制几个程序段,用 测角器对所有元素进行全程扫描,用记录仪将顺 次出现的谱线自动记录在记录纸上,利用“谱线 —2θ”表,或利用计算机自动解析程序解析谱图。
研磨过程中的其它问题:
a. 附聚现象及不易粉碎—助粉碎剂 ; b.不易成片—黏结剂 ;
黏结剂 微晶纤维素 低压聚乙烯 石蜡 配方 5g样+2g黏结剂 5g样+2g黏结剂 15g样+1g黏结剂 黏结剂 硼酸 硬脂酸 P.T.A涤纶 配方 5g样+2g黏结剂 10g样+0.5g黏结剂 7g样+1g黏结剂
第二节 X射线荧光光谱仪结构及工作原理
一 X射线荧光光谱仪分类
顺序型(扫描型)
波长色散型
色散型 光谱仪 非色散型 能量色散型
多元素同时分析型(多道)
固定道与顺序型相结合
二 波长色散X射线荧光光谱仪结构原理
图1为顺序型波长色散X射线荧光光谱仪结构原理图。
7 8 1 5 2 3 4 6 9
图1 1—X射线管;2—一次X射线滤光片; 3—样品; 4—限制视野狭缝;5—吸收器;6—索拉狭缝; 7—分光晶体;8—索拉狭缝; 9—探测器。
二 X射线荧光光谱分析法的特点
(一)优点 (1)分析速度快。 (2)X射线荧光光谱跟样品的化学结合状态及物理状态无关。 (3)非破坏分析。 (4)X射线荧光分析是一种物理分析方法,所以对化学性质上属于同一 族的元素也能进行分析。 (5)分析精密度高。 (6)X射线光谱比发射光谱简单,故易于解析。 (7)制样简单。 (8)X射线荧光分析系表面分析,测定部位是0.1mm深以上的表面层。 (二)缺点 (1)难于作绝对分析,故定量分析需要标样。 (2)原子序数低的元素,其检出限及测定误差都比原子序数高的元素差。
第三节 X射线荧光光谱分析的应用
(一)块状样品 一 样品制备 (二)粉末样品 (三)液体样品 (一)定性分析法 二 定性分析 (二)谱图分析步骤 (一)测量条件的选择 三 定量分析 (二)常用定量分析法 (三)仪器漂移的校正
一 样品制备
制备样品时要注意不要引入外来干扰物质, 更不能改变样品的成分。样品的物理形态有块 状、粉末、液体等。
c. 内标物质的加入; d. 颗粒大小及均匀性—粉碎时间试验。
压片成型: 用合适的模具在油压机上压片成型,防止 油及模具污染 。 压力大小试验: 把X射线强度变化小的压力当作预设压力。 压片方法: 有园环法和模具法。 试样
铝环
图6
双层压片 填塞试样 纤维素粉
2 .熔融法
熔融法是将粉末氧化物样品与熔剂按一定 比例混合均匀后,置于铂金坩锅(5%Au— 95%Pt)中于1000℃~1300℃加热熔融,冷却 后形成玻璃状试样。
d.冷却 熔体有的采用自然冷却,有的为防止偏析采 用快速冷却,用压缩空气冷却底部,浇铸前模具 要预热至1000℃左右。 e.分析表面 分析表面可直接利用与坩埚接触的接触面, 如表面不平可用砂纸抛光。 f. 脱模剂和氧化剂 为了提高制片的成功率和有效地保护铂金坩 锅,在熔融时需加少量的脱模剂和氧化剂。
定性分析的狭缝系统一般都使用标准狭缝系统, 分析晶体和探测器的组合及测角器的扫描角度范围 见下表 。
探测元素范围
22ห้องสมุดไป่ตู้i~92U(重元素) 13Ai~22Ti(轻元素)
分析晶体 Li(200) EDDT(PET)
探测器 SC F—PC
测角器 时间 扫描速度 常数 4°/分 4°/分 0.2秒
扫描角度 范围 5~90°
全定性或半定量分析用全程扫描程序设置(铑靶X光管)
扫描段 晶体 狭缝
/μm 1 2 3 4 5 6 7 8 LiF220 LiF200 LiF220 LiF220 LiF220 LiF200 Ge PE 150 150 150 150 150 150 300 300 SC SC SC SC F—PC F—PC F—PC F—PC 黄铜(100 μm) 黄铜(300 μm) 铝(750 μm) 铝(200 μm) 无 无 无 无
三 定量分析
分辨率: 光谱仪区别或辨认独立的且相距很近 的两条谱线的一种能力的量度,它是色散 率和发散度的函数。 检出限: 在一定的分析灵敏度条件和计数时间 内,分析线的净强度或总计数等于3倍背景 偏差所对应的分析元素含量,即为该元素 检出限。
(一)定量分析测量条件的选择 1.谱线选择
a.波长色散谱仪的分析线应选择Kα、Kβ、 Lα、Lβ等几条主要特征谱线,原子序数小于55的 元素通常选K系谱线作分析线,原子序数大于55 的元素,一般都选L系谱线作分析线。 能量色散谱仪有Kα、Kβ、Lα、Lβ和Mα 可供选择,通常原子序数小于42的元素用K系线, 大于42的元素用L系谱线,有时亦可选M系谱线。
制样步骤:干燥和焙烧、混合和研磨、压片。
干燥:
目的是除去吸附水,提高制样精度,可将 样品摊开在玻璃器皿等容器上,放在电烘箱中 于105℃~110℃下加热干燥1~2小时。
焙烧:
可改变矿物结构,克服矿物效应,亦可除 去结晶水和碳酸根,可将样品在1200℃焙烧1小 时。
混合和研磨:
可降低或消除不均匀性和颗粒效应。
对扫描获得的谱图进行定性分析的一般步骤: (1)先将X光管靶材元素的特征谱线标出。 (2)从强度最大的谱峰识别起,根据所用分 光晶体、谱峰的2θ角和X射线特征谱线波长及对 应之2θ角表,假设其为某元素的某条特征谱线。 (3)通过对该元素的其它谱线是否存在来验 证第(2)条的假设是否成立,同时要考虑同一 元素不同谱线之间的相对强度比是否正确。
(三)液体样品
液体样品一般指物质的水溶液和油类。有直 接法、富集法、点滴法。
在制样中还应注意: a.标样与未知样必须采用相同的样品处理 方法。 b.试样的厚度必须要有大于半衰减层(使 透射X射线强度衰减一半时所需吸收物质的厚 度)两倍以上的足够厚度。
二 定性分析
(一)定性分析测量条件的选择 1.激发条件和气氛的设定
研磨时注意:污染和化学反应。
污染情况有两种: 一种是研样容器材质带来的,为此要选择材 质和物理性能合适的料钵。 另一种是前次粉碎后的残留样品对下次粉碎 样品的污染,所以,要注意振动磨料钵使用前后 要洗干净;当分析样品足够多时,粉碎前也可用 少量样品先粉碎一遍以清洗料钵,弃除钵内试样 再进行正式粉碎。 化学反应: 有脱水、吸潮、氧化的情况。
0.5秒 35~145°
11Na,12Mg
TIAP
F—PC
1°/分
1.0秒 35~55°
3.计测条件的设定
把脉冲高度分析器设定成微分测定方式。 闪烁计数器的脉冲高度调整用金属铜作试样, 用LiF(200)对CuKα分光,调整增益使脉冲高度 值在200/1000刻度处。 流气正比计数器系统中,用金属铝作试样,用 EDDT(或PET)对AlKα进行分光测定。与闪烁计 数器一样,调整增益,使脉冲高度值在200/1000刻 度处。