小学奥数—幻方(一)

合集下载

小学四年级奥数笔记之幻方

小学四年级奥数笔记之幻方

第一讲 幻方【知识要点】在3×3(三行三列)的正方形方格中,既不重复又不遗漏地填上1~9这九个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。

如果在44×(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44×方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。

一般地,在n×n(n 行n 列)的方格里,既不重复又不遗漏地填上n×n 个连续自然数,(注意这些连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的n 个自然数和均相等,我们把这个相等的和叫做幻和,n 叫做阶,这样排成的数的图形叫做n 阶幻方。

中心方格中这个数叫做这个幻方的中间数。

任意阶数幻方的各行或各列或两条条对角线上所有数的和成为幻和! 幻方的幻和等于 n (n 2 +1) ÷2 。

幻和=总和÷阶数幻积=中间数的3次方。

二、幻方的特征:1、对称性2、轮换性三、幻方的种类:按照纵横各有数字的个数,可以分为:三阶幻方、四阶幻方、五阶幻方、六阶幻方… … 按照纵横数字数量奇偶的不同,可以分为: 1、奇数阶幻方 2、偶数阶幻方(1)单偶数阶幻方,阶数是2的倍数,形如:2n+2 (2)双偶数阶幻方,阶数是4的倍数,形如:2n+4四、幻方的构造方法1、杨辉口诀法(仅仅适用于三阶幻方)早在公元1275年,宋朝的杨辉就对幻方进行了系统的研究。

他称这种图为“纵横图”,他提出了一个构造三阶幻方的秘诀:九子斜排,上下对易,左右相更,四维挺出戴九履一,左三右七,二四为肩,六八为足2、罗伯法适用于奇数阶幻方,适合于连续自然数或者等差数列的奇数阶幻方。

口诀:1居下行正中央,依次斜填切莫忘;下出框时往上写,左出框时往右放;排重便往上格填,左下排重一个样。

3、巴舍法(平移补空法)(适合奇数阶幻方)要点,构造五阶具体操作:(1)画图:构造楼梯(2)按顺序填数(数字按顺序斜排)(3)平移补空:把幻方外的数字平移进幻方——上到下,下到上,左到右,右到左,注意:几阶幻方就平移几个格。

小学奥数--幻方

小学奥数--幻方

填幻方
1、在下图的空格中填入适当的数,使每行、每列及两条对角线上的三个数的和都等于18.
2
5
2. 请编出一个三阶幻方,使其幻和为24。

3.在下面的方格内分别填上3~11、5~13、7~15这九个数字,使横、竖和对角
线上三个数的和都相等。

4.用11,13,15,17,19,21,23,25,27编制成一个三阶幻方。

5.将九个连续自然数填入九宫格中,使横、竖和对角线上三个数的和都等于
66.
6.把25~33这九个数字填入以下三阶幻方中,使每一行横、每一竖和每条对
角线上三个数的和都相等。

7.在下图的空格中填入适当的数,使每行、每列及两条对角线上的三个数的和都等于21.
7
8
8.空格中填入适当的数,使每行、每列及两条对角线上的三个数的和都等.
42
34 30。

小学奥数题目-二年级-数字敏感度类-简单幻方

小学奥数题目-二年级-数字敏感度类-简单幻方

简单幻方幻方1.概念简析:幻方:是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方,5×5的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样.幻和:是指每行或每列或每条对角线上所有数字之和。

2.解题方法:三阶幻方的性质1.幻和相等,幻和等于9个数的和除以3.2.中间数必位于幻方中心,中间数等于幻和除以3.3.黄金三角: 黄金三角顶点的数为两腰之和除以2.如右图所示,在正方形的空格里填上适当的数,使每一横行、竖行、斜行的三个数相加都为21.1.1.如右图所示,在正方形的空格里填上适当的数,使每一横行、竖行、以及对角线上的三个数相加都为18.问第三行的三个数字从左到右组成的数为_______.2.2.在空格里填数,使横行、竖行、以及对角线上的三个数相加得30。

问四个角数字之和为_______.如图所示,在正方形空格里填上适当的数,使每一横行、竖行、斜行的四个数相加都等于34.1.1.在正方形空格里填上适当的数,使每一横行、竖行以及对角线上的四个数相加都等于34.问四个角数字之和为_______.2.2.在下图的方格里填上适当的数,使每一横行、竖行、以及对角线上的三个数相加都为18.问四角上的数字之和为________.请你在下图的方格里填上合适的数,使每行、每列及两条对角线上的三个数相加的和都相等。

1.1.八戒巡山,遇到一块大石头挡路,上面写着:在方格里填上合适的数,使每行、每列及两条对角线上的三个数相加的和都相等,填写正确才能过去,聪明的小朋友你会填吗?问最后一行的三位数为_________.2.2.请你在下图的方格里填上合适的数,使每行、每列及两条对角线上的三个数相加的和都相等。

问四角上的数字之和为________.请你在下图的方格里填上合适的数,使每行、每列及两条对角线上的三个数相加的和都相等。

1.1.请你在下图的方格里填上合适的数,使每行、每列及两条对角线上的三个数相加的和都相等。

小学三年级奥数_幻方

小学三年级奥数_幻方
64 64 64 64
全是单数
②这个四阶幻方 64 的幻和是多少? 64
5、巧填幻方:
例1:给出一个不完整的幻方,请你们认真补充完这个表格!
68 68 68 68
2 30
28
8
先求出幻和
24 12 14 18 16 20 22 4 10
26 6
32
68 ( 68 ) 68 68
★例2、
13 下面是一个四阶幻方,求a=__
故事引入:
公元前三千多年,有条洛河经常发大水,皇帝 夏禹带领百姓去治理洛河,这时,从水中浮起一 只大乌龟,背上有奇特的图案。
龟背上的图案是
什么意思呢?
龟背上的图案代表了几个不同的数,人们称它为“书”。
探究一
龟背上的这些数填到表格中,你能发现什么? 4 3 9 5
2
7 6
8
1
每一行,每一列,每一条对角线上的三个 数的和,有什么特点?
35
5 17
接下来你们看看幻和 跟a有关的有哪些行 , 35+23+3=19+b+25 b=17 能求出来吗 哪些列或哪些对角线 ? ? 幻和=5+23+15+29=74
3
11 23
b 19 17
29
a
33
2
幻和不能求出来 …. a=74-(35+23+3)=13
但可以表示出来: 35+23+3+a 19+b+25+a
9
4
5
1
3
8
13
15
1 3
25 3
幻和
1
例3、 下图中,a~g 7个字母,各代表7个数字, 要使三阶幻方成立,“a”所代表的数字是多少?

1.3小学必学奥数 幻方综合

1.3小学必学奥数 幻方综合

1. 会用罗伯法填奇数阶幻方2. 了解偶数阶幻方相关知识点3. 深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有: ①求幻和: 所有数的和÷行数(或列数)②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3.知识点拨教学目标5-1-4-1.幻方(一)③角上的数=与它不同行、不同列、不同对角线的两数和÷2.四、数独数独简介:(日语:数独すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。

小学奥数 数阵与幻方 知识点+例题+练习 (分类全面)

小学奥数 数阵与幻方 知识点+例题+练习 (分类全面)

拓展、把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于8和10。

例2、将1—7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。

拓展、将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于10。

例3、把1~5这五个数填入下图中的○里(已填入5),使两条直线上的三个数之和相等。

拓展、将 10~20填入下图的○内,其中15已填好,使得每条边上的三个数字之和都相等。

例4、将1—10这十个数填入下图小圆中,使每个大圆上六个数的和是30。

拓展、将1~8个数分别填入图中,使每个圆圈上五个数和分别为20,22。

例5、把1—10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。

拓展、将1~11这十一个数分别填入下图的○里,使每条直线上的三个数之和相等,并且尽可能大。

例6、将1—6六个数分别填入下图的○内,使每边上的三个○内数的和相等。

拓展、将1—8八个数分别填入下图的○内,使每条边上三个数的和相等。

例7、将1—8这八个数分别填入下图○内,使外圆四个数的和,内圆四个数的和以及横行、竖行上四个数的和都等于18。

拓展、将1—8八个数填入下图方格里,使上面四格、下面四格、左四格、右四格、中间四格以及对角线四格内四个数的和都是18。

例8、将1—9九个数分别填入下图○内,使外三角形边上○内数之和等于里面三角形边上○内数之和。

拓展、将1—9填入下图的○中,使横、竖行五个数相加的和都等于25。

例9、如下图,将1~9这九个数字填在方格里,使每行、每列、每条对角线上的三个数之和都相等。

拓展、将1—9九个自然数分别填入下图的九个小三角形中,使靠近大三角形每条边上五个数的和相等,并且尽可能大。

这五个数之和最大是多少?例10、将4~12这九个数字填在下图所示的3×3的方格中,使每行、每列及两条对角线上的三个数的和都相等。

拓展、下图的每个空格中,填入不大于12且互不相同的九个自然数,使每行、每列、每条对角线上的三个数之和都等于21。

小学奥数之罗伯特法填幻方(完整版)

小学奥数之罗伯特法填幻方(完整版)

小学奥数之罗伯特法填幻方1. 会用罗伯法填奇数阶幻方2. 了解偶数阶幻方相关知识点3. 深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑴适用于三阶幻方的三大法则有:⑴求幻和: 所有数的和÷行数(或列数)⑴求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3.987654321987654321134141516129781051132165-1-4-1.幻方(一)教学目标知识点拨⑴角上的数=与它不同行、不同列、不同对角线的两数和÷2.四、数独数独简介:(日语:数独すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。

考试必考!小学奥数“幻方”常规解法汇总,强烈建议人手一份!

考试必考!小学奥数“幻方”常规解法汇总,强烈建议人手一份!

考试必考!小学奥数“幻方”常规解法汇总,强烈建议人手一
份!
从教多年,经常有家长在微信上向我咨询孩子的学习问题,有很多家长都在问,孩子小学阶段学习奥数有用吗?作为一名老师,我可以很肯定的回答大家,有用!对于6-12岁的孩子来说,通过奥数训练,不仅可以培养孩子的思维能力,提升孩子的学习兴趣,同时对孩子的智力开发也是很有帮助的。

幻方作为小学奥数中最难的题型之一,由于对孩子的思维能力要求比较高,所以很多孩子都不能很好的掌握。

为了更好的帮助孩子掌握这部分知识,今天老师就将这部分的知识进行了非常详细的归纳和解析,希望可以帮助到孩子的学习。

此外,家长如果在孩子学习方法和记忆方法上还有任何疑问,或者需要任何学习资料的,都可以通过文末的方式直接与我交流,我都将免费为您解答。

今天的分享就先到这了,一个真正的老师,不是叫学生多少知识,而是教给学生好的学习方法。

我专注于记忆力提升、学习方法的研究,帮助孩子找到合适的学习方法,有任何疑问都可以添加“微信”向我咨询,我都将免费您解答。

小学奥数教程:幻方(一)全国通用(含答案)

小学奥数教程:幻方(一)全国通用(含答案)

1. 会用罗伯法填奇数阶幻方2. 了解偶数阶幻方相关知识点3. 深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有: ①求幻和: 所有数的和÷行数(或列数)②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3. ③角上的数=与它不同行、不同列、不同对角线的两数和÷2.知识点拨教学目标5-1-4-1.幻方(一)四、数独数独简介:(日语:数独すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。

小学奥数 趣味幻方

小学奥数  趣味幻方

趣味幻方
例1:罗伯法 把7~15这9个数填入下面的方框中,使之成为三阶幻方。

练习:
1、把3、4、5、8、9、10、13、14、15填入下列方格中,使每行、每列、每 条对角线上所有数的和都相等。

2、把1~25填入下面方格中,使之成为五阶幻方。

例2:巴舍法 把4~12这9个数填入下面的方框中,使之成为三阶幻方。

练习:
1、把4~12这9个数填入下面的方框中,使之成为三阶幻方。

2、把11~35这25个数填入下面的方框中,使之成为五阶幻方。

例3:对称交换法 把1~16填入下面的方框中,使之成为四阶幻方。

练习:把22~37填入下面的方框中,使之成为四阶幻方。

能力检测:
1、请用巴舍法把1、3、5、7、9、11、13、15、17制成三阶幻方。

2、请用罗伯法将5~29制成五阶幻方。

3、请把8~16制成三阶幻方,并求幻和。

4、请把1、3、
5、7、9、11、13、15、17、19、21、23、25、27、29、31填入
四阶方阵中,使之成为四阶幻方。

小学奥数四年级-幻方与数阵图

小学奥数四年级-幻方与数阵图

幻方与数阵图扩展[内容概述]本讲有两部分主要内容:1、 幻方的概念和性质,简单幻方的编制;2、 把一些数字按照一定要求排列成相应的图形,叫做数阵图。

大致分为三类:封闭型数阵图、辐射型数阵图和复合型数阵图。

幻方的概念:所谓幻方是指在正方形方格表的每个方格内填入数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格数。

幻方题可以粗略的分为两种,一种是限制了所填入的数字,或者给出了需要填入的各个数字,或者已经填入一个或几个数字;另一种是对填入的数字没有任何限制,填对即可。

幻方又称为魔方,方阵等,它最早起源于我国。

宋代数学家杨辉称之为纵横图。

关于幻方的起源,我国有“河图”和“洛书”之说。

相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,感动了上苍,于是黄河中跃出一匹龙马,背上驮着一张图,反作为礼物献给他,这就是“河图”了,是最早的幻方。

伏羲氏凭借着“河图”而演绎出了八卦。

后来大禹治洪水时,洛水中浮出一只大乌龟,它的背上有图有字,人们称之为“洛书”。

“洛书”所画的图中共有黑、白圆圈45个。

把这些连在一起的小圆和数目表示出来,得到1至9这九个数,恰组成一个三阶幻方。

幻方问题主要方法: 一、 累加法:利用累加的方法可以求出“幻和”和关键位置上的数字。

通常将若干个“幻和”累加在一起,再计算每一个位置上的重数,从而求出“幻和”和关键位置上的数字。

二、 求出“幻和”和关键位置上的数字后,结合枚举法完成数阵图的填写,在填写数阵图的过程中注意从特殊的数字和位置入手。

三、 比较法:利用比较的方法可以直接填出某些位置的数字。

注意观察数阵图中相关联的“幻和”之间的关系,注意它们之间共同的部分,去比较不同的部分。

四、 掌握好3阶幻方中的规律。

本讲还有一部分内容是数阵图拓展,也就是在三年级数阵图初步的基础上继续学习数阵图问题的解题方法。

数阵图问题方法多样且特殊,我们将在例题中详细讲解。

其实这些方法和幻方是一致的,大家可以在下面的学习中体会到这一点。

小学三年级奥数-幻方

小学三年级奥数-幻方
把3,4,5,6,…..18这16个数字编成一个四阶幻方.
数字依次先排好, 上下中间交叉换, 左右中间交叉换, 其他地方不要变!
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
42
42
42
42
42
42
42
42
所以 幻和=42
同学们 你们真的好棒哦!不要骄傲, 继续加油哦!
把1,2,3…9这9个数填入3×3的方格里,变成三阶幻方
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
换位
归位
三阶幻方有技巧, 3数斜着先排好, 上下左右要交换, 然后各自归位了!
01
如何填幻方(幻方的构成)
02
定中间数 填四角数 算其余数
定中间数,填四角数,算其余数
将1~9九个自然数填入下图的九个方格里,使每行、每列、每条对角线上的三个数的和都相等。 把九个数最中间的一个填在方格的正中央,第二、四、六、八个数分别填在四个角上。 幻和=(1+2+3+…+8+9) ÷3=15
9
9、
8、
7、
6、
5、
13
12、
11、
10、
一.三阶幻方的编制和补充
二.四阶幻方的编制和补充
三阶幻方有技巧, 3数斜着先排好, 上下左右要交换, 然后各自归位了!
数字依次先排好, 上下中间交叉换, 左右中间交叉换, 其他地方不要变!

小学奥数教程:幻方(一)全国通用(含答案)

小学奥数教程:幻方(一)全国通用(含答案)

1. 会用罗伯法填奇数阶幻方2. 了解偶数阶幻方相关知识点3. 深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有: ①求幻和: 所有数的和÷行数(或列数)②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3. ③角上的数=与它不同行、不同列、不同对角线的两数和÷2.知识点拨教学目标5-1-4-1.幻方(一)四、数独数独简介:(日语:数独すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。

三年级奥数-巧填幻方

三年级奥数-巧填幻方

巧填幻方这些数字,不管横着加,还是竖着加,还是斜着加,和都是15。

这就是传说中神秘的幻方,由于这个幻方是3行3列,所以又称之为
3阶幻方,也称之为九宫图。

九宫图口诀:
“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央。


“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团
圆。


幻方是指横行、竖列、对角线上数的和都相等的数的方阵。

把1-9这九个数填入下面的九宫格中,不能重复,使得每一行,每一
列,每条对角线上的三个数的和相等。

【改编】
把1-25这二十五个数填入下面的五阶幻方中,不能重复,使得每一行,
每一列,每条对角线上的五个数的和相等。

(★★★)
1
编出一个三阶幻方,使其幻和为30,而且幻方中没有重复的数。

(★★★)
在下图中的A、B、C、D处填上适当的数,使下图成为一个三阶幻方。

(★★★)
在下图的每个方格中填入一个数字,使得每行、每列以及每条对角线
上的方格中的四个数字都是1,2,3,4。

(★★★★)
2
【例1改编】17 24 1
23 5 7 14 【例3】
A=21 B=12 C=20 D=16。

小学四年级奥数幻方与数阵图教程

小学四年级奥数幻方与数阵图教程

小学四年级数学提高教程——幻方与数阵图【知识点解析】一、幻方的概念:所谓幻方是指在正方形方格表的每个方格内填入数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格数。

幻方题可以粗略的分为两种,一种是限制了所填入的数字,或者给出了需要填入的各个数字,或者已经填入一个或几个数字;另一种是对填入的数字没有任何限制,填对即可。

幻方又称为魔方,方阵等,它最早起源于我国。

宋代数学家杨辉称之为纵横图。

关于幻方的起源,我国有“河图”和“洛书”之说。

相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,感动了上苍,于是黄河中跃出一匹龙马,背上驮着一张图,作为礼物献给他,这就是“河图”了,是最早的幻方。

伏羲氏凭借着“河图”而演绎出了八卦。

后来大禹治洪水时,洛水中浮出一只大乌龟,它的背上有图有字,人们称之为“洛书”。

“洛书”所画的图中共有黑、白圆圈45个。

把这些连在一起的小圆和数目表示出来,得到1至9这九个数,恰组成一个三阶幻方。

二、幻方问题主要方法1、累加法利用累加的方法可以求出“幻和”和关键位置上的数字。

通常将若干个“幻和”累加在一起,再计算每一个位置上的重数,从而求出“幻和”和关键位置上的数字。

2、求出“幻和”和关键位置上的数字后,结合枚举法完成数阵图的填写,在填写数阵图的过程中注意从特殊的数字和位置入手。

3、比较法利用比较的方法可以直接填出某些位置的数字。

注意观察数阵图中相关联的“幻和”之间的关系,注意它们之间共同的部分,去比较不同的部分。

4、掌握好3阶幻方中的规律。

【例题】1、如下图,将1—9填入3×3的方格表中,使得每行每列以及两条对角线上的三个数字之和都相等,你一共可以得到多少种填法?第1题「分析」首先,我们思考要填出一个三阶幻方,什么量的求出是最重要的?立刻我们就知道,那个所谓的“幻和”,即每行、每列、每条对角线三个数的和是最重要的量。

它是多少呢?哦,如果我们按照行(按照列也一样)把幻方中的九个数加起来,那么它们的总和不就是3倍的“幻和”吗?而另一方面,我们也知道,由于1到9 这九个数字都只各用了一次,所以3倍的的“幻和”就等于1+2+3+4+5+6+7+8+9=45(请复习学过的等差数列知识)。

四年级数学奥数培优讲义-专题16幻方(含解析)

四年级数学奥数培优讲义-专题16幻方(含解析)

专题16幻方1.在如图的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次。

A 是 、B 是  。

C 是 。

2.在如方格中,每行每列都有1﹣4这四个数,并且每个数在每行每列都只出现一次 。

13B 4A13.在如图方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次 ,B 应该是 。

4.在图中的方格中,每行、每列都有1一4这四个数,并且每个数在每行、每列都只出现一次 B 是 。

5.在如图所示的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次。

23B4A2A应该是 ,B应该是 。

6.小游戏:如图,九宫格中左上角为“开”,其余8格分别写着下一步的移动方法,就按照这格上的指示要求移动(如“左2”,即左移2格;“下1”,即下移1格);如果要把每一格都跳一遍(不重复),则第一次要放在第 列第 行的那一格。

7.如图的方格中,每行、每列都有1~4这四个数,且每个数在每行、每列都只出现一次.A是 ,B 是 .A.1B.2C.38.如图,在5×5的正方形方格中,排列着数字1、2、3、4、5,在每列中也恰好出现一次。

则写着X的空格中的数应当是 。

9.如表方格中每行、每列都有1~4这4个数,并且每个数在每行、每列都只出现一次。

想一想,A应该是 B应该是 。

322A13B10.在如图的方格里,每行、每列都有1~4这四个数,并且每个数在每行、每列都只能出现一次 。

11.在如图的方格中,每行、每列都有1﹣4这四个数,并且每个数在每行每列都只出现一次 ,C 是 .12.在如图的方格中,每行每列都有1~4这四个数,并且每个数在每行每列都只出现一次 ,B 是 .13.如图是一种精简版的“数独”游戏,每行每列都只有1~4这四个自然数,并且每个数在每行、每列都只出现一次 。

14.在右面的方格中,每行、每列都有1~4这4个数,并且每个数在每行、每列都出现一次。

B应该是 ,A应该是 。

小学奥数15幻方

小学奥数15幻方

1.10.4幻方例1 将1~9九个自然数,填入下图空格内,使横、坚、斜对角每三个数的和都是15。

解:在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵列及对角线的几个数之和都相等,具有这种性质的图表,称为“幻方”。

我国古代称为“河图”、“洛书”,又叫“纵横图”。

由三行三列数组成的幻方,称为“三阶幻方”。

制作这种幻方的方法是:把九个自然数,按照从小到大的递增次序斜排(如图一),然后把上、下两数对调,左、右两数也对调(如图二),最后再把中部四个数各向外拉出到正方形的四角,幻方就制成了。

如果把图三制好的幻方,旋转90°、180°、270°都各成一个新的幻方。

如果画在透明纸上,反过来观察,再旋转上述角度每次所得到的幻方,也具备上述性质。

这样便可得到八个图,当然,它们并无实质上的区别。

例2 将1~9九个自然数,填在3×3正方形表格内,使其中每一横行、每一竖列及任一条对角线上的三数之和都不等,并且相邻的两个数在图中位置也相邻。

解:具备题中特征的称为“反幻方”。

据美国当代科普作家加德纳研究发现,符合上述条件的反幻方,只有两个,即:反幻方也很有趣,瞧,它的数字排列酷似个螺旋,前一个由外向内转,后一个由内向外转。

例3 认真观察下列的七阶幻方,指出它有哪些显著的特点。

解:这个幻方纵、横、斜对角的七个数和是175;如果圈出图内5×5格,也是个幻方,它的纵、横、斜五个数和也是175;圈出中心的三阶幻方,纵、横、斜三数和是75。

这个幻方的奇妙之处是:将七阶幻方,剥掉一层,就成了五阶幻方;再剥掉一层,就成了三阶幻方。

它从中心向外辐射,内部的三阶幻方是个核心。

因此,这种幻方,叫做同心幻方,也叫嵌套幻方。

例4 下图是由1~64组成的八阶幻方,如果把其中的数字逐个间隔地取出来,按原顺序重新组成两个四阶方阵,这个新的数字方阵,有什么特点?解:我们先把上图中数字逐个间隔地取出来,排成如下面的四阶方阵,再分析它们的特点。

小学奥数题_幻方

 小学奥数题_幻方

《小学奥数教程:幻方》专项突破(附答案详解)奥校小学数学竞赛教研中心一、单选题1.在下面的方格中,每行、每列都有1—4这四个数,并且每个数在每行、每列都只出现一次。

A是()A. 1B. 2C. 42.如图有九个空格,要求每个格中填入互不相同的数,使得每行、每列、每条对角线上的三个数之和都相等,则图中左上角的数是()A. 9B. 16C. 21D. 233.把、、、、、、、、九个分数填在下面的九个空格内,使横竖对角线上的三个分数之和都相等,那么这个相等的值是()A. B. C. D.4.在如图方格表中的每个方格中填入一个字母,使得方格表中每行、每列及两条对角线上的四个方格中的字母都是A,B,C,D,那么表中★所在方格应填的字母是()A. AB. BC. CD. D5.九宫图的每行、每列、每条对角线上的三个数的和都相等,那么x等于()A. 47B. 48C. 50D. 516.把、、、、、、、、九个分数填在右面的九个空格内,使横竖对角线上的三个分数之和都相等,那么这个相等的值是()A. B. C. D.7.在如图方格表中的每个方格中填人一个字母,使得方格表中每行、每列及两条对角线上的四个方格中的字母都是A,B,C,D,那么表中★所在方格应填的字母是()A. AB. BC. CD. D8.将1到8这8个自然数分别填入如图数阵中的8个圆圈,使得数阵中各条直线上的三个数之和都相等,那么A和B两个圆圈中所填的数之和最大是()A. 8B. 10C. 12D. 149.将1,2,3,4,5,6分别填入6×6的方格网(如图所示)的36个小方格中,使得每一行每一列中的6个数1,2,3,4,5,6各出现一次,并且满足与不等号相邻的两个数中小数是大数的约数,那么,第二行从左到右的第6个数是()(左图是一个3×3的例子)A. 5B. 4C. 3D. 2二、判断题10.在图的小圆圈里分别填入1、2、3、4、5、6、7、8这八个数,使得每个大圆上五个数的和都相等.那么,每个大圆上五个数的和有6种不同的可能..(判断对错)三、填空题11.在如图的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次.那么A是________,B是________.12.在下面的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、幻方定义
5-1-4-1.幻方(一).题库
学生版
page 1 of 8
幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的 3 3 的数阵称作三阶幻方, 4 4 的数阵称作四阶幻方, 5 5 的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,
81 6 357 49 2
1 15 14 4 12 6 7 9 8 10 11 5 13 3 2 16
A 12 D B 15 20 16 C 11
【巩固】在图的九个方格里,每行、每列、每条对角线上的三个数的和都相等,则 N=

8N
6
16
12
【巩固】在下面两幅图的每个空格中,填入 7 个自然数,使得每行、每列、每条对角线上的三个数之和等于 21.
8
8
4
4
【巩固】在图 1 所示的和方格表中填入合适的数,使得每行、每列以及每条对角线上的三个数的和相等。那么 标有“★”的方格内应填入的数是_______.
5-1-4-1.幻方(一).题库
学生版
page 5 of 8
【例 9】 将九个数填入下图的空格中,使得每行、每列以及每条对角线上的三个数之和都相等,证明: c (a b) 2
c a
b
c 2d-b * da b 2a-c
【例 10】 在下图中的 A 、 B 、 C 、 D 处填上适当的数,使下图成为一个三阶幻方.
【例 3】 用 11,13,15,17,19,21,23,25,27 编制成一个三阶幻方。
【例 4】 如下图的 3 3 的阵列中填入了1 ~ 9 的自然数,构成大家熟知的 3 阶幻方.现在另有一个 3 3 的 阵列,请选择 9 个不同自然数填入 9 个方格中,使得其中最大者为 20,最小者大于 5,且要求横加、 竖加、对角线方式相加的 3 个数之和都相等.
况出现,那么这个假设就是错误的,我们回到假设点重新开始。
例题精讲
模块一、构造幻方
【例 1】 3 3 的正方形中,在每个格子里分别填入1 ~ 9 的 9 个数字,要求每行每列及对角线上的三个数的 和相等(请给出至少一种填法).
5-1-4-1.幻方(一).题库
学生版
page 3 of 8
【例 2】 3 3 的正方形格子中,在每个格子里分别填入 2 ~ 10 的 9 个数字,要求每行每列及对角线上的三个 数的和相等(请给出至少一种填法).
总结 4 个小技巧:
1、
巧选突破口:数独中未知的空格数目很多,如何寻找突破口呢?首先我们要通过规则的限制来分析
每一个空格的可选数字的个数,然后选择可选数字最少的方格开始,一般来说,我们会选择所在行、
所在列和所在九宫格中已知数字比较多的方格开始,尽可能确定方格中的数字;而大小数独中已知
的数字往往非常少,这个时候大小关系更加重要,我们除了利用已知数字之外更加需要考虑大小关
3

4
7
5-1-4-1.幻方(一).题库
学生版
page 6 of 8
【例 11】 在九宫图中,第一行第三列的位置上填 5,第二行第一列位置上填 6,如下图.请你在其他方格中 填上适当的数,使方阵横、纵、斜三个方向的三个数之和均为 27.
5 6
A B5 6CD E FG
8 14 5 6 9 12 13 4 10
模块二、幻方性质
【例 7】 将九个数填入下图的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定 数 k ,则中心方格中的数必为 k 3 .
【例 8】 请编出一个三阶幻方,使其幻和为 24.
【巩固】将九个连续自然数填入下图的九个空格,使每一横行及每一竖列的三个数之和都等于 60.
17 24 19 22 20 18 21 16 23
分析,数字 4 只能填入 A1 中,所以 A1 可以确定填入 4,我们就可以不用考虑 A1,这样就可以发现
2 只能填入 A3 中,所以 A3 也能确定,A2 和 A4 可以通过其他办法进行确定。
4、
假设法:如果找不到能够确定的空格,我们不妨进行假设,当然,假设也是原则的,我们不能进行
无意义的假设,假设的原则是:如果通过假设一个空格的数字,可以确定和这个空格处在同一个单
4 92 357 8 16
我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三 右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻 方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月 半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.
5-1-4-1.幻方(一)
教学目标
1. 会用罗伯法填奇数阶幻方 2. 了解偶数阶幻方相关知识点 3. 深入学习三阶幻方
知识点拨
一、幻方起源
也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它 编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每 年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是 3 行,竖着数是 3 列,每块 乌龟壳上都有几个点点,正好凑成 1 至 9 的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟 又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加, 结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇 的图案叫做“幻方”,由于它有 3 行 3 列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和 为 15 的三阶幻方.如下图:
4 92 357 8 16
【例 5】 从 1、2、3…20 这 20 个数中选出 9 个不同的数放入 3×3 的方格表中,使得每行、每列、每条对角 线上的三个数的和都相等。这个 9 个数中最多有_______个质数。
5-1-4-1.幻方(一).题库
学生版
page 4 of 8
【例 6】 请你将1 ~ 25 这二十五个自然数填入 5 5 的空格内使每行、每列、每条对角线上的五数之和相等.
系的限制。
2、
相对不确定法:有的时候我们不能确定 2 个方格中的数字,却可以确定同一单元其他方格中肯定不
5-1-4-1.幻方(一).题库
学生版
page 2 of 8
会出现什么数字,这个就是我们说的相对不确定法。举例说明,A1 可以填入 1 或者 2,A2 也可以填
入 1 或者 2,那么我们可以确定,1 和 2 必定出现在 A1 和 A2 两者之中,A 行其他位置不可能出现 1
【巩固】 在下图的空格里填入七个自然数,使每一行、每一列及每一条对角线上的上的三个数的和都等于 90.
47 3 40
23
23 30 37
57
20 57 13
【巩固】 右图中有九个空格,要求每个格中填入互不相同的数,使得每行、每列、每条对角线上的三个数之 和都相等。问:图中左上角的数是多少?
△ 19
13
【巩固】图中是一个 3 3 幻方,满足每行、每列及两条对角线上三数之和都相等,那么其中“★”代表的数是 __________.
△ 8 10 2
【巩固】图中 A ______, B ______, C ______, D ______时,它才能构成一个三阶幻方? A B 22 25 23 C D 19 26
70 24
21 72
5-1-4-1.幻方(一).题库
学生版
page 8 of 8
角线上的四个数字所组成的四位数 ABCD 是

A 004
B
0 17
0 C 23
00 D4
7 20 9 12
【巩固】 方格中的图形符号“◇”,“○”,“▽”,“☆”代表填入方格中的数,相同的符号代表相同的数,如图所 示,若第一列,第三列,第二行,第四行的四个数的和分别是 36,50,41,37,则第三行的四个数 的和为
元内的其它某一个或者某几个空格的数字,那么我们就以选择这样的空格来假设为佳。举例说明,B3
可以填入 1 或者 2,A3 可以填入 2 或者 3,B4 可以填入 1 或者 2,这个时候我们就应该假设 B3 填
入 2,这样就可以确定 A3 填入 3,B4 填入 1,然后以这个为基础进行推理,如果推出违反规则的情
或者 2.
3、
相对排除法:某一单元中ห้องสมุดไป่ตู้现好几个空格无法确定,但是我们可以通过比较这几个空格的可选数字
进行对比分析来确定它们中的某一个或者几个空格。举例说明,A 行中已经确定 5 个数字,还有 4
个数字(我们假设是 1、2、3、4)没有填入,通过这 4 个空格所在的其他单元我们知道 A1 可以填
入 1、2、3、4,A2 可以填入 1、3,A3 可以填入 1、2、3,A4 可以填入 1、3,这个时候我们可以
36 50
○ △ △ △ ○ ○ ○ △ 41 ○ △ △ △ △
△ △ △ △ 37
【例 13】 将 2、4、6、8、12、18、24、36、72 填入右边的九宫格, 使每行每列及两条对角线上三数的积 都相等.每行的三个数的积是______.
【例 14】 请将 1~9 这 9 个数填入右图 3×3 表格中,使得第 1,2 行三数的乘积分别是 70,24,第 l,2 列三数 的乘积分别是 21.72.
③角上的数=与它不同行、不同列、不同对角线的两数和÷2.
四、数独
数独简介:(日语:数独 すうどく)是一种源自 18 世纪末的瑞士,后在美国发展、并在日本得以发扬光大
的数学智力拼图游戏。如今数独的雏型首先于 1970 年代由美国的一家数学逻辑游戏杂志发表,当时名为
Number Place。现今流行的数独于 1984 年由日本游戏杂志《パズル通信ニコリ》发表并得了现时的名称。数
相关文档
最新文档