高二数学选修1--1椭圆练习题
高二文科数学选修1-1椭圆单元练习卷
椭圆单元练习卷一、选择题:1162522=+y x 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( ) A .2 B .3 C .5 D .72.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( )A. 22143x y +=B. 22134x y +=C. 2214x y +=D. 2214y x += 3.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是( )A1858014520125201202522222222=+=+=+=+y x D y x C y x B y x 4.椭圆2255x ky -=的一个焦点是(0,2),那么k 等于( )A. 1-B. 1C.5 D.5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( )A.12B.C. D. 2 6.椭圆两焦点为 1(4,0)F -,2(4,0)F ,P 在椭圆上,若 △12PF F 的面积的最大值为12,则椭圆方程为( )A.221169x y += B . 221259x y += C . 2212516x y += D . 221254x y += 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是( )。
A 16x 2+9y 2=1B 16x 2+12y 2=1C 4x 2+3y 2=1D 3x 2+4y 2=18.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( )(A)450 (B)600 (C)900 (D)1209.椭圆221259x y +=上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为…… ( ) A. 4 B . 2 C. 8 D . 2310.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 ( )(A )2 3 (B )6 (C )4 3 (D )12 二、填空题:11.方程221||12x y m +=-表示焦点在y 轴的椭圆时,实数m 的取值范围是____________ 12.过点(2,3)-且与椭圆229436x y +=有共同的焦点的椭圆的标准方程为_____________ 13.设(5,0)M -,(5,0)N ,△MNP 的周长是36,则MNP ∆的顶点P 的轨迹方程为_______14.如图:从椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,且它的长轴端点A 及短轴的端点B 的连线AB ∥OM ,则该椭圆的离心率等于_____________三、解答题:) 15.已知椭圆的对称轴为坐标轴,离心率32=e ,短轴长为58,求椭圆的方程。
人教版高中数学选修1-1椭圆练习题
1、若方程22153x y k k +=---表示焦点在x 轴的椭圆,则实数k 的取值范围是_______2、椭圆5522=+ky x 的一个焦点是)2,0(,则_____________=k3、若椭圆2215x y m +=的离心率5e =,则m 的值是_________4、直线143x y +=与椭圆221169x y +=相交于,A B 两点,该椭圆上点P 使PAB ∆的面积等于6,这样的点P 共有_______个5、椭圆22193x y +=的焦点为21,F F ,点P 在椭圆上,如果线段1||PF 的中点在y 轴上,那么1||PF 是2||PF 的________倍6、已知椭圆221259x y +=的两焦点12,F F ,过2F 的直线交椭圆于点,A B ,若||8AB =,则11||||_________AF BF +=7、与椭圆22143x y +=具有相同的离心率且过点(2,的椭圆的标准方程是_______8、P 是椭圆14922=+y x 上的点,12,F F 是两个焦点,则12||||PF PF ⋅的最大值_______=最小值_________=9、椭圆369422=+y x 内有一点(1,1)P ,过P 的弦恰被P 平分,则这条弦所在的直线方程是____________10、要使直线)(1R k kx y ∈+=与焦点在x 轴上的椭圆1722=+ay x 总有公共点,则a 的取值范围是____________11、点00(,)P x y 在椭圆14922=+y x 上,焦点12,F F ,当12F PF ∠为钝角时,0______x ∈12、椭圆221mx ny +=与直线10x y +-=相交于,A B 两点,过AB 中点M 与坐标原点的直线的斜率为2,则___________m n=13、椭圆22221(0)x y a b a b +=>>的离心率为12e =,右焦点(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,与圆222x y +=的位置关系是______14、已知(1,1)A 为椭圆22195x y +=内一点,1F 为椭圆左焦点,P 为椭圆上一动点.求1||||PF PA +的最大值和最小值15、若x =2u x y =+的取值范围:16、设b a b a b a +=+∈则,62,,22R 的最小值是:17、已知椭圆)0(12222>>=+b a by a x 的两个焦点分别为21,F F ,点P 在椭圆上,且满足021=⋅PF PF ,2tan 21=∠F PF ,则该椭圆的离心率为18、已知ABC ∆的顶点B ()-3,0、C ()3,0,E 、F 分别为AB 、AC 的中点,AB 和AC 边上的中线交于G ,且5|GF |+|GE |=,则点G 的轨迹方程为19、已知12,F F 是椭圆22221(510)(10)x y a a a +=<<-的两个焦点,B 是短轴的一个端点,则△12F BF 的面积的最大值是20、过椭圆2213625x y +=的焦点1F 作直线交椭圆于A 、B 二点,2F 是此椭圆的另一焦点,则∆ABF 2的周长为 .21、已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =且0PM AM ⋅=,则||PM 的最小值是22、已知,,m n m n +成等差数列,,,m n mn 成等比数列,则椭圆221x y m n+=的离心率是_______23、已知椭圆221164x y +=的左右焦点分别为1F 与2F ,点P在直线:80l x ++=上.当∠12F PF 取最大值时,则12||||PF PF 的值为______________ 24、过椭圆14922=+y x 内一点()1,1P 作弦AB ,若PB AP =,则直线AB 的方程为 .25、若动点(,)P x y 在曲线2214x y +=上变化,则22x y +的最大值为26、设AB 是椭圆22221x y a b+=的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点,则AB OM k k ⋅=____________27、设12,F F 分别是椭圆222:1(01)y E x b b +=<<的左、右焦点,过1F 的直线l 与E 相交于,A B 两点,且22||,||,||AF AB BF 成等差数列,则AB 的长为。
人教新课标版(A)高二选修1-1 2.1.1椭圆及其标准方程(一)同步练习题
人教新课标版(A )高二选修1-1 2.1.1 椭圆及其标准方程(一)同步练习题【基础演练】题型一:椭圆的定义平面内与两个定点1F 、2F 距离的和等于常数(大于|F F |21)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距,请根据以上知识解决以下1~4题。
1. 到两定点1F (-2,0)和2F (2,0)的距离之和为4的点M 的轨迹是A. 椭圆B. 线段C. 圆D. 以上都不对2. 椭圆125y 9x 22=+的焦点为1F 、2F ,AB 是椭圆过焦点1F 的弦,则△2ABF 的周长是A. 20B. 12C. 10D. 6 3. 椭圆1y 25x 22=+上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为A. 5B. 6C. 7D. 84. 命题甲:动点P 到两定点A 、B 的距离之和()为常数且a ,0a a 2|PB ||PA |>=+; 命题乙:P 点的轨迹是椭圆,则命题甲是命题乙的A. 充分不必要条件B. 必要不充分条件C. 充分且必要条件D. 既不充分又不必要条件题型二:椭圆的标准方程椭圆的两种标准方程1b y a x 2222=+,1bx a y 2222=+中都有:(1)0b a >>;(2)222b a c -=或222c b a +=;(3)焦点坐标(c ±,0)或(0,c ±);(4)2x 与2y 所对应的分母,哪个大,焦点就在哪个轴上,请用以上知识解决以下5~8题。
5. 椭圆116y 32x 22=+的焦距等于A. 312B. 8C. 6D. 46. 若方程1a y ax 222=-表示焦点在y 轴上的椭圆,则a 的取值范围是A. 0a <B. 0a 1<<-C. 1a <D. 无法确定7. 椭圆0ab by ax 22=++(0b a <<)的焦点坐标是A. ()0,b a -±B. ()0,a b -±C. ()b a ,0-±D. ()a b ,0-±8. 椭圆112y 13x 22=+上一点到两个焦点的距离和为A. 26B. 24C.134D. 132题型三:椭圆的标准方程的应用 紧扣标准方程的两种方式,焦点位置取决于两个分母哪个大,特别注意看似非标准形式的标准形式,如11k y kx 222=--,这说明01k <-,另外注意c 2|PF ||PF |21>+的约束条件,请用以上知识解决以下9~10题。
人教新课标版(A)高二选修1-1 2.1.3椭圆的几何性质(一)同步练习题
人教新课标版(A )高二选修1-1 2.1.3 椭圆的几何性质(一)同步练习题【基础演练】题型一:由椭圆的方程研究椭圆的性质 椭圆的几何性质请根据以上知识解决以下1~4题。
1. 椭圆6y x 622=+的长轴的端点坐标是A. (-1,0)、(1,0)B. (-6,0)、(6,0)C. (6-,0)、(6,0)D. (0,6-)、(0,6)2. 已知椭圆1b y a x 2222=+与椭圆116y 25x 22=+有相同的长轴,椭圆1by a x 2222=+的短轴长与椭圆19x 21y 22=+的短轴长相等,则A. 25a 2=,=2b 16B. 9a 2=,25b 2=C. 25a 2=,9b 2=或9a 2=,25b 2=D. 25a 2=,9b 2=3. 点A (a ,1)在椭圆12y 4x 22=+的内部,则a 的取值范围是A. 2a 2<<-B. 2a -<或2a >C. 2a 2<<-D. 1a 1<<-4. 求椭圆25y x 2522=+的长轴和短轴的长、焦点和顶点坐标。
题型二:由椭圆的几何性质求椭圆的方程 (1)充分利用椭圆的几何性质,以及a 、b 、c 间的数量关系,并结合平面几何知识,求出基本参数a 、b 、c 的值,进而求出椭圆的标准方程。
(2)利用椭圆的几何性质求标准方程的一般步骤是:①求基本参数a 、b ;②确定焦点所在的坐标轴;③写出方程,请根据以上知识解决以下5~7题。
5. 已知椭圆1by a x :C 2222=+与椭圆18y 4x 22=+有相同的离心率,则椭圆C 的方程可能是A. ()0m m 4y 8x 222≠=+B. 16x 2164y 2=+C. 12y 8x 22=+D. 以上都不可能6. 椭圆的短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则椭圆的标准方程是A. 19y 16x 22=+或116y 9x 22=+B. 19y 25x 22=+或19x 25y 22=+C. 116y 25x 22=+或116x 25y 22=+D. 椭圆的方程无法确定7. 已知椭圆中心在原点,焦点在x 轴上,从焦点看短轴两个端点的视角为直角,且焦点到长轴上较近的端点的距离是510-,求椭圆的方程。
苏教版高中数学选修1-1椭圆同步练习(1)
高中数学学习材料(灿若寒星精心整理制作)椭圆同步练习(1)一.选择题:1.已知椭圆的焦点,,是椭圆上一点,且是,的等差中项,则椭圆的方程是()A. B.C. D.2.椭圆的焦点坐标是().A. B.C. D.3.已知,是椭圆上的动点,是线段上的点,且满足,则动点的轨迹方程是()A. B.C. D.二.填空题:4.与椭圆有相同焦点且过点的椭圆方程是。
5.点是椭圆上一点,是其焦点,若,则的面积为.6.已知,是椭圆内的点,是椭圆上的动点,则的最大值为______________,最小值为___________.三.解答题:7.椭圆的焦距为6且经过点,求焦点在轴上的椭圆的标准方程.8.椭圆的一个焦点是,且截直线,所得弦的中点横坐标为,求椭圆的标准方程.9.已知方程,,对不同范围内的值分别指出方程所代表的曲线的类型,并画出显示其特征的草图.10.已知直线交椭圆于,两点,点坐标为(0,4),当椭圆右焦点恰为的重心时,求直线的方程.11.椭圆与直线相交于,两点,是的中点,若,为原点,的斜率为,求椭圆的方程.参考答案:一.选择题:1.C 2.C 3.B二、填空题:4. 5. 6.,三.解答题:7.8.设所求椭圆方程为,由,得,将与联立消去得.设,,则,解出、,所求椭圆方程为.9.当时,方程的图形为直线;当时方程的图形为中心在原点、焦点在轴上的椭圆;当时方程的图形为以原点为圆心、2为半径的圆;当时方程的图形为中心在原点、焦点在轴上的椭圆.画图略.10.设,,由及为的重心有,得,,.所以中点为(3,-2).又、在椭圆上,故,.两式相减得到,可得即为的斜率,由点斜式可得的方程为.四、由直线方程与椭圆方程联立消去得.设,,,则,,,所以…①;又由可得…②.由①,②解得,,所求椭圆为.。
高二数学选修1-1椭圆练习卷
高二数学选修1-1椭圆练习卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)1.-12的绝对值是()3.如图M1-1所示几何体的主视图是()4.如图M1-2,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°,∠B′=110°,则∠BCA′的度数是()5.将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为() A.y=x2-1 B.y=x2+1C.y=(x-1)2 D.y=(x+1)26.已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<-1 B.-1<a<32C.-32<a<1 D.a>327.下列图形中,既是轴对称图形又是中心对称图形的是()8.如图M1-3,已知D,E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()9.依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是()A.平行四边形B.矩形C.菱形D.梯形10.如图M1-4,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是()二、填空题(本大题共6个小题,每小题4分,共24分)11.使式子m-2有意义的最小整数m是________________________________________________________________________.12.若代数式-4x6y与x2ny是同类项,则常数n的值为__________.13.如图M1-5,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD 绕点A旋转后得到△ACE,则CE的长度为__________.14.若A(x1,y1)和B(x2,y2)在反比例函数y=2x的图象上,且0<x1<x2,则y1与y2的大小关系是y1________y2.15.如图M1-6,双曲线y=kx(k>0)与⊙O在第一象限内交于P,Q两点,分别过P,Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为____________.16.如图M1-7,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=__________.三、解答题(一)(本大题共3小题,每小题5分,共15分)17.计算:2-2sin45°-(1+8)0+2-1.18.如图M1-8,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.19.观察下列等式:第1个等式:a1=11×3=12×;第2个等式:a2=13×5=12×;第3个等式:a3=15×7=12×;第4个等式:a4=17×9=12×;……请解答下列问题:(1)按以上规律列出第5个等式:a5=____=____;(2)用含有n的代数式表示第n个等式:an=____=____(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.四、解答题(二)(本大题共3小题,每小题8分,共24分)20.如图M1-9,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2),B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)(1)点A关于点O中心对称的点的坐标为________________________________________________________________________;(2)点A1的坐标为________;(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为________.21.如图M1-10,直线y=2x-6与反比例函数y=kxx>0的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.22.如图M1-11,小山岗的斜坡AC的坡度是tanα=34,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数。
(典型题)高中数学选修1-1第二章《圆锥曲线与方程》测试(答案解析)
一、选择题1.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=2.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+=3.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .64.已知点()P m n ,是抛物线214y x =-上一动点,则A .4B .5C D .65.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .3⎡⎢⎣B .3⎡⎢⎣C .3⎡⎢⎣D .3⎡⎢⎣ 6.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若1MF =,则E 的离心率为( )A .3B .2C .5D .27.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .128.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .231e <<B .23e >C .3e >D .13e <<9.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83C .5D .16310.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25411.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( )A .)+∞B .)+∞C .(D .(12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.过双曲线221x y -=上的任意一点(除顶点外)作圆221x y +=的切线,切点为,A B ,若直线AB 在x 轴、y 轴上的截距分别为,m n ,则2211m n-=___________. 15.已知拋物线()2:20C y px p =>的焦点为F ,O 为坐标原点,C 的准线为l 且与x 轴相交于点B ,A 为C 上的一点,直线AO 与直线l 相交于E 点,若BOE BEF ∠=∠,6AF =,则C 的标准方程为_____________.16.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.17.在双曲线22221x y a b-=上有一点P ,12,F F 分别为该双曲线的左、右焦点,121290,F PF F PF ∠=︒的三条边长成等差数列,则双曲线的离心率是_______.18.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.三、解答题21.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点21,A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.22.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点31,2A ⎛⎫⎪⎝⎭,且124AF AF +=. (1)求C 的方程;(2)过点2F 且斜率为1的直线与C 交于点M 、N ,求OMN 的面积.23.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.24.已知椭圆()2222:10x y C a b a b +=>>过点421,3P ⎛⎫ ⎪ ⎪⎝⎭,离心率为53.(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值. 25.已知是抛物线2:2C y px=(0)p >的焦点,(1,)M t 是抛物线上一点,且||2MF =.(1)求抛物线C 的方程;(2)过点O (坐标原点)分别作,OA OB 交抛物线C 于,A B 两点(,A B 不与O 重合),且.2OA OB k k =.求证:直线AB 过定点.26.如图,已知抛物线()2:20C y px p =>,焦点为F ,过点()2,0G p 作直线l 交抛物线C 于A 、B 两点,设()11,A x y 、()22,B x y .(1)若124x x ⋅=,求抛物线C 的方程;(2)若直线l 与x 轴不垂直,直线AF 交抛物线C 于另一点M ,直线BF 交抛物线C 于另一点N .求证:直线l 与直线MN 斜率之比为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线30x y -+=过(,0)F c -,所以030c --+=,得3c =所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-,所以221222122(2)ABy y b b k x x a a-==-⋅-=-,又,A B在直线0x y -+=上,所以1AB k =,所以2221b a =,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.2.B解析:B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项.【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩,1121121131232y y y y k x x x x -===⋅-,利用点差法22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=, 整理得到2212214y b x a =,即222222244b a c k k a a-=⇒=, 即221k e +=故选:B 【点睛】关键点点睛:本题的关键利用三等分点得到211222x x y y =-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.3.C解析:C 【分析】设E是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.4.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n +++-++的几何意义,数形结合求最值.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n +++-++几何意义是点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.5.C解析:C【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k-+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以2222))122k k B k C k A D +++=+++,令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以1AB CD y +=∈⎢⎣, 综上AB CD +的取值范围是3⎡⎢⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.6.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则1MF =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=,则2||MF b ==,OM a ==,1MF =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.7.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y , 联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=, 由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-, 2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =,所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△29646464641016k =+=⨯+=. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.8.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30ba >,再由公式21b e a ⎛⎫=+ ⎪⎝⎭可求得该双曲线离心率的取值范围. 【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,22113MO MF OF c =-=,所以,1260MF F ∠=,则1230PF F ∠=,所以,双曲线的渐近线by xa=的倾斜角α满足30α>,则123tan3bPF Fa>∠=,因此,该双曲线的离心率为2222222313c c a b bea a a a+⎛⎫====+>⎪⎝⎭.故选:B.【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a、c的值,根据离心率的定义求解离心率e的值;(2)齐次式法:由已知条件得出关于a、c的齐次方程,然后转化为关于e的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.9.D解析:D【分析】由题意作出MD垂直于准线l,然后得2PM MD=,得30∠=︒DPM,写出直线方程,联立方程组,得关于y的一元二次方程,写出韦达定理,代入焦点弦公式计算.【详解】如图,过点M做MD垂直于准线l,由抛物线定义得MF MD=,因为PF FM=,所以2PM MD=,所以30∠=︒DPM,则直线MN方程为3(1)x y=-,联立23(1)4x yx y⎧=-⎪⎨=⎪⎩,,消去x得,231030y y-+=,设()()1122,,,M x y N x y,所以121210,13y y y y+==,得121016||2233MN y y=++=+=.故选:D.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12||=++AB x x p 或12||=++AB y y p ,若不过焦点,则必须用一般弦长公式.10.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍)当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.11.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e -=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y , 由题意得22x ty a y px=+⎧⎨=⎩,整理得2220y pty pa --=, 所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.1【分析】设出三点坐标表示出直线利用方程思想得到直线的方程算出可计算得到解【详解】设双曲线上任意一点为过作圆的切线切点为不是双曲线的顶点故切线存在斜率且则故直线化简得:即同理有又均过点有故直线故答案解析:1 【分析】设出,,P A B 三点坐标,表示出直线,PA PB ,利用方程思想,得到直线MN 的方程,算出,m n ,可计算2211m n-得到解.【详解】设双曲线上任意一点为()11,P x y ,()22,A x y ,()33,B x y 过()11,P x y 作圆221x y +=的切线,切点为,A B()11,P x y 不是双曲线的顶点,故切线存在斜率且OA PA ⊥,则221PA OA x k k y =-=-故直线()2222:xPA y y x xy-=--化简得:222222y y y x x x-=-+即2222221x x y y x y+=+=同理有33:1PB x x y y+=又,PA PB均过点()11,P x y,有313131311,1x x y y x x y y+=+=故直线11:1MN x x y y+=1111,m nx y==221222111x xm n-=-=故答案为:115.【分析】推导出求出可得出直线的方程联立直线与抛物线的方程求出点的坐标利用抛物线的定义求出的值即可得出抛物线的标准方程【详解】因为即所以则直线的方程为联立直线与抛物线方程解得所以解得因此抛物线标准方程解析:28y x=【分析】推导出OBE EBF△△,求出tan BOE∠,可得出直线AO的方程,联立直线AO与抛物线C的方程,求出点A的坐标,利用抛物线的定义求出p的值,即可得出抛物线C的标准方程.【详解】因为BOE BEF∠=∠,90OBE EBF∠=∠=,OBE EBF∴△△,OB BEBE BF∴=,即2222p pBE OB BF p=⋅=⨯=,2BE p∴=,所以tan 2BEBOE OB∠==,则直线AO 的方程为2y x =, 联立直线OA 与抛物线方程222y xy px⎧=⎪⎨=⎪⎩ 解得(),2A p p , 所以3622p pAF p =+==,解得4p =, 因此,抛物线标准方程为28y x =. 故答案为:28y x =. 【点睛】方法点睛:求抛物线的标准方程的主要方法是定义法与待定系数法:(1)若题目已给出抛物线的方程(含有未知数p ),那么只需求出p 即可; (2)若题目未给出抛物线的方程:①对于焦点在x 轴上的抛物线的标准方程可统一设为()20y ax a =≠的正负由题设来定;②对于焦点在y 轴上的抛物线的标准方程可统一设为()20x ay a =≠,这样就减少了不必要的讨论.16.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E 解析:175【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =,∴离心率5c e a ==.【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.17.5【分析】首先根据双曲线的定义和等差数列的形式可设的三边长表示为最后根据勾股定理得到根据齐次方程求解离心率【详解】设并且的三边成等差数列最长的边为则三边长表示为又整理为两边同时除以得解得:或(舍)所解析:5 【分析】首先根据双曲线的定义和等差数列的形式,可设12PF F △的三边长表示为24,22,2c a c a c --,最后根据勾股定理得到22650c ac a -+=,根据齐次方程求解离心率. 【详解】设12PF PF >,并且122PF PF a -=,12PF F △的三边成等差数列,最长的边为2c ,则三边长表示为24,22,2c a c a c --, 又1290F PF ∠=,()()22224224c a c a c ∴-+-=,整理为22650c ac a -+=,两边同时除以2a 得,2650e e -+=,解得:5e =或1e =(舍),所以双曲线的离心率是5. 故答案为:5 【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化 解析:82-【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan bb BAO CFO ac ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有22b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫-- ⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =,∴e =【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.三、解答题21.(1)2212x y +=;(2.【分析】(1)根据椭圆离心率为2,以及椭圆经过点2A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩ ∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)22143xy +=;(2. 【分析】(1)利用椭圆的定义可求出a 的值,将点A 的坐标代入椭圆C 的方程,求出2b 的值,进而可得出椭圆C 的方程;(2)设点()11,M x y 、()22,N x y ,写出直线MN 的方程,联立直线MN 与椭圆C 的方程,列出韦达定理,利用三角形的面积公式结合韦达定理可求得OMN 的面积. 【详解】(1)由椭圆的定义可得1224AF AF a +==,可得2a =,椭圆C 的方程为22214x y b+=, 将点A 的坐标代入椭圆C 的方程可得291414b +=,解得23b =,因此,椭圆C 的方程为22143x y +=;(2)易知椭圆C 的右焦点为()21,0F ,由于直线MN 的斜率为1,所以,直线MN 的方程为1y x =-,即1x y =+, 设点()11,M x y 、()22,N x y ,联立221143x y x y =+⎧⎪⎨+=⎪⎩,消去x 得27690y y +-=,364793680∆=+⨯⨯=⨯>,由韦达定理可得1267y y +=-,1297y y =-,212112277OMNSOF y y =⋅-===⨯=.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)24x y =;(2)1y x =+或1y x =-+. 【分析】(1)由1PM y =+,结合两点间的距离公式得出轨迹方程;(2)由题直线l 斜率存在,设出直线l 的方程,联立轨迹C 的方程,由韦达定理以及抛物线的定义求出直线l 的方程. 【详解】(1)动点(),P x y (0y >)到x 轴的距离为y ,到点M 的距离为PM =由动点(),P x y 到定点()0,1M 的距离比到x 轴的距离大1,1y =+,两边平方得:24x y =,所以轨迹C 的方程:24x y =; (2)显然直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为:1y kx =+,由241x y y kx ⎧=⎨=+⎩,消去x 整理得()222410y k y -++=, ∴21224y y k +=+,∴2122428AB y y p k =++=++=, 解得21k =,即1k =±,∴直线l 的方程为1y x =+或1y x =-+. 【点睛】方法点睛:求轨迹方程的常用方法:(1)直接法,(2)定义法,(3)相关点法.24.(1)22194x y +=;(2)最大值为.(1)将1,3P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合3c a =和222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C过点1,3P ⎛⎫⎪ ⎪⎝⎭,所以2213219a b +=,c a = 又222a b c =+,所以得22194x y +=;(2)(i )当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,设O 到直线y kx m =+的距离记为d,则d =,联立22,1,94y kx n x y =+⎧⎪⎨+=⎪⎩,消去y 得()()2229418940k x knx n +++-=,设()11,M x y ,()22,N x y ,1221894kn x x k +=-+,()21229494n x x k -=+,所以12294MN x k =-=+, 因为y kx n =+与圆O1=,因为y kx m =+与椭圆相切,所以2294k m +=,1122OMN QMNOMQN S S S MN d =+=⨯=四边形△△=== 可得OMQN S 四边形随k的增大而增大,即OMQN S <四边形(ii )当MN斜率不存在时,不妨取1,3M ⎛ ⎝⎭,1,3N ⎛- ⎝⎭,此时()3,0Q ,OMQN S =四边形综上所得四边形OMQN的面积的最大值为【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查计算能力,解题的关键是当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,从而可得2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△,化简可得结果,属于中档题25.(1)24y x =;(2)直线AB 过定点(2,0)-,证明见解析. 【分析】(1)由抛物线的定义求得p ,得抛物线方程;(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y ,直线方程代入抛物线方程,由判别式大于0得参数满足的条件,应用韦达定理得1212,y y y y +,计算由2OA OB k k =可得128y y =,从而求得参数b ,并可得出m 的范围.此时由直线方程可得定点坐标. 【详解】(1)由抛物线定义可知:122p+=,则2p =, 所以抛物线C 的方程为24y x =(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y联立24y x x my b⎧=⎨=+⎩得2440y my b --=,则216160m b ∆=+>即20()m b +>*。
最新精编高中人教A版选修1-1高中数学椭圆 同步检测题和答案
椭圆同步测试一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆63222=+y x 的焦距是( )A .2B .)23(2-C .52D .)23(2+2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( )A .椭圆B .直线C .线段D .圆3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是( ) A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是 ( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)5. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( ) A. 22 B. 2 C.2 D. 16.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( ) A .41B .22 C .42 D .217. 已知k <4,则曲线14922=+y x 和14922=-+-k y k x 有( ) A. 相同的准线 B. 相同的焦点 C. 相同的离心率 D. 相同的长轴 8.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离是( ) A .516B .566 C .875 D .877 9.若点P 在椭圆1222=+y x 上,1F 、2F 分别是椭圆的两焦点,且 9021=∠PF F ,则21PF F ∆的面积是( )A. 2B. 1C.23D. 2110.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( )A .01223=-+y xB .01232=-+y xC .014494=-+y xD . 014449=-+y x 11.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( ) A .3B .11C .22D .1012.在椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是( )A .25 B .27C .3D .4二、填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)13.椭圆2214x y m+=的离心率为12,则m = 。
2021-2022高二人教版数学选修1-1练习:2.1.1椭圆及其标准方程 Word版含答案
►基础梳理1.椭圆的定义及标准方程.(1)平面内与两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两点间的距离叫做椭圆的焦距.(2)椭圆的标准方程(请同学们自己填写表中空白的内容):焦点在x 轴上 焦点在y 轴上标准方程 x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b 2=1(a >b >0)焦点 (±c ,0) (0,±c )a ,b ,c 的关系:c 2=a 2-b 22.只有当||PF 1+||PF 2=2a >||F 1F 2时,点P 的轨迹才是椭圆; 当||PF 1+||PF 2=2a =||F 1F 2时,点P 的轨迹是线段F 1F 2; 当||PF 1+||PF 2=2a <||F 1F 2时,点P 的轨迹不存在. 3.正确理解椭圆的两种标准形式. (1)要熟记a ,b ,c 三个量的关系.椭圆方程中,a 表示椭圆上的点M 到两焦点间距离和的一半,正数a ,b ,c 恰构成一个直角三角形的三条边,a 是斜边,所以a >b ,a >c ,且a 2=b 2+c 2,其中c 是焦距的一半,叫做半焦距.(2)通过标准方程可以推断焦点的位置,其方法是:看x 2,y 2的分母大小,哪个分母大,焦点就在哪个坐标轴上.4.用待定系数法求椭圆标准方程的步骤.(1)作推断:依据条件推断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程:①依据上述推断设方程为x 2a 2+y 2b 2=1或x 2b 2+y 2a2=1.②在不能确定焦点位置的状况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ). (3)找关系,依据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求.,►自测自评1.到两定点F 1(-4,0)和F 2(4,0)的距离之和为8的点M 的轨迹是线段F 1F 2.2.椭圆的焦点坐标为(4,0),(-4,0),椭圆上一点到两焦点的距离之和为10,则椭圆的标准方程为x 225+y 29=1. 3.已知a =4,c =3,焦点在y 轴上的椭圆的标准方程为x 27+y 216=1.4.椭圆x 225+y 29=1的焦点坐标为(4,0),(-4,0).1.已知两定点F 1(-2,0),F 2(2,0),点P 是平面上一动点,且|PF 1|+|PF 2|=6,则点P 的轨迹是(C ) A .圆 B .直线 C .椭圆 D .线段2.若椭圆的两焦点为(-2,0),(2,0),且过点⎝⎛⎭⎫52,-32,则该椭圆的方程是(D ) A.y 28+x 24=1 B.y 210+x26=1 C.y 24+x 28=1 D.y 26+x 210=1 解析:由题意知,所求椭圆的焦点在x 轴上,可以排解A 、B ;再把点⎝⎛⎭⎫52,-32代入方程,可知应选D. 3.过椭圆4x 2+2y 2=1的一个焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点F 2构成△ABF 2,那么△ABF 2的周长是______.答案:2 24.写出适合下列条件的椭圆的标准方程: (1)a =4,b =3焦点在x 轴上; (2)a =5,c =2焦点在y 轴上;(3)求中心在原点,焦点在坐标轴上,且经过点⎝⎛⎭⎫63,3和点⎝⎛⎭⎫223,1.答案:(1)x 216+y 29=1;(2)y 225+x 221=1;(3)x 2+y 29=1.5.设F 1、F 2分别为椭圆C :x 2a 2+y2b2=1,(a >b >0)的左右两焦点,若椭圆C上的点A ⎝⎛⎭⎫1,32到F 1、F 2两点的距离之和为4,求椭圆C 的方程及焦点坐标.解析:椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1,F 2两点的距离之和是4,得2a =4,即a =2.又A ⎝⎛⎭⎫1,32在椭圆C 上, ∴122+⎝⎛⎭⎫322b 2=1,解得b 2=3. ∴c 2=a 2-b 2=1.∴椭圆C 的方程为x 24+y 23=1,焦点坐标为F (±1,0).。
椭圆应用参考试题(选修1-1)
椭圆应用参考试题(选修1-1)一.解答题(共30小题)1.已知直线x﹣2y+2=0经过椭圆的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AB,BS与直线分别交于M,N两点.(1)求椭圆C的方程;(2)求线段MN的长度的最小值.2.已知椭圆(a>b>0)的左、右焦点分别为F1、F2,A为上顶点,AF1交椭圆E于另一点B,且△ABF2的周长为8,点F2到直线AB的距离为2.(I)求椭圆E的标准方程;(II)求过D(1,0)作椭圆E的两条互相垂直的弦,M、N分别为两弦的中点,求证:直线MN经过定点,并求出定点的坐标.3.已知抛物线C:x2=2py(p为正常数)的焦点为F,过F做一直线l交C于P,Q两点,点O为坐标原点.(1)当P,Q两点关于y轴对称时,|PQ|=4,求抛物线的方程;(2)若△POQ的面积记为S,求的值.4.定义变换T:可把平面直角坐标系上的点P(x,y)变换到这一平面上的点P′(x′,y′).特别地,若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为,长轴顶点和短轴顶点间的距离为2.求该椭圆C的标准方程.并求出当时,其两个焦点F1、F2经变换公式T变换后得到的点F1′和F2′的坐标;(2)当时,求(1)中的椭圆C在变换T下的所有不动点的坐标;(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T:(,k∈Z)下的不动点的存在情况和个数.5.经过点M(﹣2,1)作直线l交椭圆于S、T两点,且M是ST的中点,求直线l的方程.6.如图,已知直线l:x=my+1过椭圆的右焦点F,抛物线:的焦点为椭圆C的上顶点,且直线l交椭圆C于A、B两点,点A、F、B在直线g:x=4上的射影依次为点D、K、E.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l交y轴于点M,且,当m变化时,探求λ1+λ2的值是否为定值?若是,求出λ1+λ2的值,否则,说明理由;(Ⅲ)连接AE、BD,试证明当m变化时,直线AE与BD相交于定点.7.由椭圆(a>b>0)的顶点B(0,﹣b)引弦BP,求BP长的最大值.8.已知F1(﹣2,0),F2(2,0)是椭圆C的两个焦点,过F1的直线与椭圆C的两个交点为M,N,且|MN|的最小值为6.(I)求椭圆C的方程;(II)设A,B为椭圆C的长轴顶点.当|MN|取最小值时,求∠AMB的大小.9.已知椭圆的右焦点为F,右准线与x轴交于E点,若椭圆的离心率e=,且|EF|=1.(1)求a,b的值;(2)若过F的直线交椭圆于A,B两点,且与向量共线(其中O为坐标原点),求与的夹角.10.设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.11.已知中心在原点,焦点在坐标轴上的椭圆过M(1,),N(﹣,)两点.(1)求椭圆的方程;(2)在椭圆上是否存在点P(x,y)到定点A(a,0)(其中0<a<3)的距离的最小值为1,若存在,求出a的值及点P的坐标;若不存在,请给予证明.12.已知椭圆M:的面积为πab,M包含于平面区域Ω:内,向平面区域Ω内随机投一点Q,点Q落在椭圆内的概率为.(Ⅰ)试求椭圆M的方程;(Ⅱ)若斜率为的直线l与椭圆M交于C、D两点,点为椭圆M上一点,记直线PC的斜率为k1,直线PD的斜率为k2,试问:k1+k2是否为定值?请证明你的结论、13.设圆M:x2+y2=8,将曲线上每一点的纵坐标压缩到原来的,对应的横坐标不变,得到曲线C.经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),l交曲线C于A、B两个不同点.(1)求曲线C的方程;(2)求m的取值范围;(3)求证直线MA、MB与x轴始终围成一个等腰三角形.14.已知动点M到两个定点F1(﹣3,0),F2(3,0)的距离之和为10,A、B是动点M轨迹C上的任意两点.(1)求动点M的轨迹C的方程;(2)若原点O满足条件,点P是C上不与A、B重合的一点,如果PA、PB的斜率都存在,问k PA•k PB 是否为定值?若是,求出其值;若不是,请说明理由.15.已知,动点P满足|PF 1|+|PF2|=4,记动点P的轨迹为E.(1)求E的方程;(2)曲线E的一条切线为l,过F1,F2作l的垂线,垂足分别为M,N,求|F1M|•|F2N|的值;(3)曲线E的一条切线为l,与x轴分别交于A,B两点,求|AB|的最小值,并求此时切线的斜率.16.已知椭圆+=1(a>b>0)的上顶点为A(0,3),左、右焦点分别为B、C,离心率为.(1)试求椭圆的标准方程;(2)若直线PC的倾斜角为α,直线PB的倾斜角为β,当β﹣α=时,求证:①点P一定在经过A,B,C三点的圆M上;②PA=PB+PC.17.设椭圆C:的离心率为e=,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.(1)求椭圆C的方程;(2)椭圆C上一动点P(x0,,y0)关于直线y=2x的对称点为,求3x1﹣4y1的取值范围.18.已知椭圆的离心率,左、右焦点分别为F1、F2,点满足F2在线段PF1的中垂线上.(1)求椭圆C的方程;(2)如果圆E:被椭圆C所覆盖,求圆的半径r的最大值.19.已知椭圆C:(a>b>0)的离心率,且经过点A(2,3).(1)求椭圆C的方程;(2)设直线AO(O是坐标原点)与椭圆C相交于点B,试证明在椭圆C上存在不同于A、B的点P,使AP2=AB2+BP2(不需要求出点P的坐标).20.如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l 在y轴上的截距为m(m≠0),直线l交椭圆于A、B两个不同点(A、B与M不重合).(Ⅰ)求椭圆的方程;(Ⅱ)当MA⊥MB时,求m的值.21.已知F1(﹣c,0),F2(c,0)是椭圆(a>b>0)的左、右焦点,过点F1作倾斜角为60°的直线l 交椭圆于A,B两点,ABF2的内切圆的半径为 c(I)求椭圆的离心率;(II)若|AB|=8,求椭圆的标准方程.22.在△ABC中,顶点A,B,C所对三边分别是a,b,c.已知B(﹣1,0),C(1,0),且b,a,c成等差数列.(I)求顶点A的轨迹方程;(II)设直线l过点B且与点A的轨迹相交于不同的两点M、N如果满足|+|=|﹣|,求l的方程.23.在直角坐标系xOy中,点M到点F1、F2的距离之和是4,点M的轨迹是C,直线l:与轨迹C交于不同的两点P和Q.(Ⅰ)求轨迹C的方程;(Ⅱ)是否存在常数k,使?若存在,求出k的值;若不存在,请说明理由.24.已知椭圆+=1(0<b<2)的左焦点为F,左、右顶点分别为A、C,上顶点为B,过F、B、C作圆P.(I)当b=时,求圆P的方程;(II)直线AB与圆P能否相切?证明你的结论.25.已知F1、F2为椭圆的焦点,P为椭圆上的任意一点,椭圆的离心率为.以P为圆心PF2长为半径作圆P,当圆P与x轴相切时,截y轴所得弦长为.(1)求圆P方程和椭圆方程;(2)求证:无论点P在椭圆上如何运动,一定存在一个定圆与圆P相切,试求出这个定圆方程.26.已知椭圆上三点A(x1,y1),B(4,y2),C(x3,y3)和焦点F(4,0)的距离依次成等差数列.①求x1+x3;②求证线段AC的垂直平分线过定点,并求出此定点的坐标.27.已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),平行于OM直线ℓ在y轴上的截距为m(m<0),设直线ℓ交椭圆于两个不同点A、B,(1)求椭圆方程;(2)求证:对任意的m的允许值,△ABM的内心I在定直线x=2上.28.已知椭圆的左焦点与短轴的两个端点构成边长为2的等边三角形,设M(x1,y1),N(x2,y2),(x1≠x2)是椭圆上不同的两点,且x1x2+4y1y2=0.(1)求椭圆C的方程.(2)求证:x12+x22=4.(3)在x轴上是否存在一点P(t,0),使?若存在,求出t的取值范围,若不存在,说明理由.29.已知,为坐标原点,动点M满足.(1)求动点M的轨迹C;(2)若点P、Q是曲线C上的任意两点,且,求的值.30.如图所示:已知椭圆方程为,A,B是椭圆与斜轴的两个交点,F是椭圆的焦点,且△ABF为直角三角形.(1)求椭圆离心率;(2)若椭圆的短轴长为2,过F的直线与椭圆相交的弦长为,试求弦所在直线的方程.椭圆应用参考试题(选修1-1)参考答案与试题解析一.解答题(共30小题)1.已知直线x﹣2y+2=0经过椭圆的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AB,BS与直线分别交于M,N两点.(1)求椭圆C的方程;(2)求线段MN的长度的最小值.,从而.由题设条件可以求出,的方程为.,从而.,则,从而.,∴,∴=.当且仅当时等号成立k=时,线段的长度取最小值.2.已知椭圆(a>b>0)的左、右焦点分别为F1、F2,A为上顶点,AF1交椭圆E于另一点B,且△ABF2的周长为8,点F2到直线AB的距离为2.(I)求椭圆E的标准方程;(II)求过D(1,0)作椭圆E的两条互相垂直的弦,M、N分别为两弦的中点,求证:直线MN经过定点,并求出定点的坐标.的标准方程:.由题设条件可知的方程为的距离,.∴,∴过定点过定点3.已知抛物线C:x2=2py(p为正常数)的焦点为F,过F做一直线l交C于P,Q两点,点O为坐标原点.(1)当P,Q两点关于y轴对称时,|PQ|=4,求抛物线的方程;(2)若△POQ的面积记为S,求的值.的面积,最后代入即可求得答案.设距离,4.定义变换T:可把平面直角坐标系上的点P(x,y)变换到这一平面上的点P′(x′,y′).特别地,若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为,长轴顶点和短轴顶点间的距离为2.求该椭圆C的标准方程.并求出当时,其两个焦点F1、F2经变换公式T变换后得到的点F1′和F2′的坐标;(2)当时,求(1)中的椭圆C在变换T下的所有不动点的坐标;(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T:(,k∈Z)下的不动点的存在情况和个数.的标准方程为)时,利用()是双曲线在变换下的不动点,推出(,代入,推出时,方程无解;时,要使不动点存在,则需,,故当时,双曲线在变换的标准方程为(由椭圆定义知焦距,即的标准方程为.两个焦点的坐标分别为和:,当可得和到.于是,,即的坐标为即的坐标为.下的不动点,则当⇒得:的不动点共有两个,分别为和.⇒因为,故不妨设双曲线方程为(代入得则有,故当时,方程时,要使不动点存在,则需,,故当时,双曲线在变换轴上时,;轴上时,5.经过点M(﹣2,1)作直线l交椭圆于S、T两点,且M是ST的中点,求直线l的方程.∴=的方程:6.如图,已知直线l:x=my+1过椭圆的右焦点F,抛物线:的焦点为椭圆C的上顶点,且直线l交椭圆C于A、B两点,点A、F、B在直线g:x=4上的射影依次为点D、K、E.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l交y轴于点M,且,当m变化时,探求λ1+λ2的值是否为定值?若是,求出λ1+λ2的值,否则,说明理由;(Ⅲ)连接AE、BD,试证明当m变化时,直线AE与BD相交于定点.b=)由题设条件想办法证明点于定点抛物线的焦点坐标,∴的方程轴交于∴又由∴同理∴∵∴的值为定值)∵时,=同理可证,点相交于定点∵相交于定点7.由椭圆(a>b>0)的顶点B(0,﹣b)引弦BP,求BP长的最大值.(解:设椭圆(|BE|=..8.已知F1(﹣2,0),F2(2,0)是椭圆C的两个焦点,过F1的直线与椭圆C的两个交点为M,N,且|MN|的最小值为6.(I)求椭圆C的方程;(II)设A,B为椭圆C的长轴顶点.当|MN|取最小值时,求∠AMB的大小.的方程为=1的方程为+,代入+),,即.,代入++|MN|=•.的最小值为.的方程为=1=,=,AMB=9.已知椭圆的右焦点为F,右准线与x轴交于E点,若椭圆的离心率e=,且|EF|=1.(1)求a,b的值;(2)若过F的直线交椭圆于A,B两点,且与向量共线(其中O为坐标原点),求与的夹角.)由题意知消去依题意:,故,故与的夹角为10.设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.,其中,设,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.,得,其中两点坐标满足方程组,所以11.已知中心在原点,焦点在坐标轴上的椭圆过M(1,),N(﹣,)两点.(1)求椭圆的方程;(2)在椭圆上是否存在点P(x,y)到定点A(a,0)(其中0<a<3)的距离的最小值为1,若存在,求出a的值及点P的坐标;若不存在,请给予证明.两点得+=1)a﹣∴,即椭圆方程为+)满足题设条件,由=1﹣)(﹣|时,﹣a±,∴<12.已知椭圆M:的面积为πab,M包含于平面区域Ω:内,向平面区域Ω内随机投一点Q,点Q落在椭圆内的概率为.(Ⅰ)试求椭圆M的方程;(Ⅱ)若斜率为的直线l与椭圆M交于C、D两点,点为椭圆M上一点,记直线PC的斜率为k1,直线PD的斜率为k2,试问:k1+k2是否为定值?请证明你的结论、:依题意及几何概型,可得的方程为:的方程与椭圆方程得:∴依题意及几何概型,可得.因为所以,的方程为的方程为:由韦达定理得:所以,13.设圆M:x2+y2=8,将曲线上每一点的纵坐标压缩到原来的,对应的横坐标不变,得到曲线C.经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),l交曲线C于A、B两个不同点.(1)求曲线C的方程;(2)求m的取值范围;(3)求证直线MA、MB与x轴始终围成一个等腰三角形.的方程为的方程为.,的方程为由,,,=.14.已知动点M到两个定点F1(﹣3,0),F2(3,0)的距离之和为10,A、B是动点M轨迹C上的任意两点.(1)求动点M的轨迹C的方程;(2)若原点O满足条件,点P是C上不与A、B重合的一点,如果PA、PB的斜率都存在,问k PA•k PB 是否为定值?若是,求出其值;若不是,请说明理由.为焦点的椭圆,其中,为定值﹣的轨迹方程为,当∴在椭圆上,∴,∴∴为定值﹣.15.已知,动点P满足|PF 1|+|PF2|=4,记动点P的轨迹为E.(1)求E的方程;(2)曲线E的一条切线为l,过F1,F2作l的垂线,垂足分别为M,N,求|F1M|•|F2N|的值;(3)曲线E的一条切线为l,与x轴分别交于A,B两点,求|AB|的最小值,并求此时切线的斜率.为焦点的椭圆,,所以)知,,此时斜率为)∵又∵为焦点的椭圆,(,)知,当且仅当,此时斜率为16.已知椭圆+=1(a>b>0)的上顶点为A(0,3),左、右焦点分别为B、C,离心率为.(1)试求椭圆的标准方程;(2)若直线PC的倾斜角为α,直线PB的倾斜角为β,当β﹣α=时,求证:①点P一定在经过A,B,C三点的圆M上;②PA=PB+PC.=,)x)=2y+6+2,,,所以椭圆的标准方程为+=1(﹣=,所以.因为==.化简得))=2y+6+2PC=2,因为PC=417.设椭圆C:的离心率为e=,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.(1)求椭圆C的方程;(2)椭圆C上一动点P(x0,,y0)关于直线y=2x的对称点为,求3x1﹣4y1的取值范围.由此可求出椭圆的对称点为上,能够铁推出∵∴的方程为.的对称点为∴,:上,18.已知椭圆的离心率,左、右焦点分别为F1、F2,点满足F2在线段PF1的中垂线上.(1)求椭圆C的方程;(2)如果圆E:被椭圆C所覆盖,求圆的半径r的最大值.的离心率上任意一点,则,的离心率,椭圆,∴,的方程为,,∵∴)=.19.已知椭圆C:(a>b>0)的离心率,且经过点A(2,3).(1)求椭圆C的方程;(2)设直线AO(O是坐标原点)与椭圆C相交于点B,试证明在椭圆C上存在不同于A、B的点P,使AP2=AB2+BP2(不需要求出点P的坐标).可得,又由点)在椭圆上,可得)依题意,,)在椭圆上,所以,,知的方程为,即20.如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l 在y轴上的截距为m(m≠0),直线l交椭圆于A、B两个不同点(A、B与M不重合).(Ⅰ)求椭圆的方程;(Ⅱ)当MA⊥MB时,求m的值.)设椭圆方程为,设直线,即)设椭圆方程为,椭圆方程为…)依题意y=,∴∴代入椭圆方程,消得:((﹣…21.已知F1(﹣c,0),F2(c,0)是椭圆(a>b>0)的左、右焦点,过点F1作倾斜角为60°的直线l 交椭圆于A,B两点,ABF2的内切圆的半径为 c(I)求椭圆的离心率;(II)若|AB|=8,求椭圆的标准方程.y=代入椭圆(=)知利用弦长公式代入椭圆,=∴=∴∴∴椭圆的离心率)知,∴|AB|=椭圆的标准方程为.22.在△ABC中,顶点A,B,C所对三边分别是a,b,c.已知B(﹣1,0),C(1,0),且b,a,c成等差数列.(I)求顶点A的轨迹方程;(II)设直线l过点B且与点A的轨迹相交于不同的两点M、N如果满足|+|=|﹣|,求l的方程.|+|=|﹣•=0,)≠)由题知..)∵||=|﹣∴|+|=|﹣,展开得•=0,于是==,××±,或,)∴=))y=﹣23.在直角坐标系xOy中,点M到点F1、F2的距离之和是4,点M的轨迹是C,直线l:与轨迹C交于不同的两点P和Q.(Ⅰ)求轨迹C的方程;(Ⅱ)是否存在常数k,使?若存在,求出k的值;若不存在,请说明理由.的方程,整理得.然后利用根与系数的关系的椭圆,其方程为..①,代入上式,解得24.已知椭圆+=1(0<b<2)的左焦点为F,左、右顶点分别为A、C,上顶点为B,过F、B、C作圆P.(I)当b=时,求圆P的方程;(II)直线AB与圆P能否相切?证明你的结论.b=x=,)b=时,圆心坐标为(,)﹣)…,=相切,则25.已知F1、F2为椭圆的焦点,P为椭圆上的任意一点,椭圆的离心率为.以P为圆心PF2长为半径作圆P,当圆P与x轴相切时,截y轴所得弦长为.(1)求圆P方程和椭圆方程;(2)求证:无论点P在椭圆上如何运动,一定存在一个定圆与圆P相切,试求出这个定圆方程.)∵,r=椭圆方程为,方程为26.已知椭圆上三点A(x1,y1),B(4,y2),C(x3,y3)和焦点F(4,0)的距离依次成等差数列.①求x1+x3;②求证线段AC的垂直平分线过定点,并求出此定点的坐标.||+|﹣<两者作差得,故,(y+(y=)(﹣y=﹣过定点27.已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),平行于OM直线ℓ在y轴上的截距为m(m<0),设直线ℓ交椭圆于两个不同点A、B,(1)求椭圆方程;(2)求证:对任意的m的允许值,△ABM的内心I在定直线x=2上.∴所以,椭圆方程为,所以直线的方程为,,=28.已知椭圆的左焦点与短轴的两个端点构成边长为2的等边三角形,设M(x1,y1),N(x2,y2),(x1≠x2)是椭圆上不同的两点,且x1x2+4y1y2=0.(1)求椭圆C的方程.(2)求证:x12+x22=4.(3)在x轴上是否存在一点P(t,0),使?若存在,求出t的取值范围,若不存在,说明理由.与根与系数的关系,化简可得,令其的方程为,使得,∴是方程的两个根,得,使得,且29.已知,为坐标原点,动点M满足.(1)求动点M的轨迹C;(2)若点P、Q是曲线C上的任意两点,且,求的值.)∵)的轨迹方程是.,∴=30.如图所示:已知椭圆方程为,A,B是椭圆与斜轴的两个交点,F是椭圆的焦点,且△ABF为直角三角形.(1)求椭圆离心率;(2)若椭圆的短轴长为2,过F的直线与椭圆相交的弦长为,试求弦所在直线的方程.∴==,∴。
最新人教A版高中数学选修1-1 椭圆 同步测试(含答案)
椭圆同步测试一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出地四个选项中有只有一项是符合题目要求地.) 1.椭圆63222=+y x地焦距是( ) A .2B .)23(2- C .52 D .)23(2+2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 地轨迹是 ( ) A .椭圆 B .直线 C .线段 D .圆3.若椭圆地两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x y B .161022=+x y C .18422=+x y D .161022=+y x 4.方程222=+ky x表示焦点在y 轴上地椭圆,则k 地取值范围是 ( ) A .),0(+∞ B .(0,2) C .(1,+∞)D .(0,1) 5. 过椭圆12422=+y x地一个焦点1F 地直线与椭圆交于A、B 两点,则A 、B 与椭圆地另一焦点2F 构成2ABF ∆,那么2ABF ∆地周长是( )A. 22B. 2C. 2D. 16.若椭圆两准线间地距离等于焦距地4倍,则这个椭圆地离心率为 ( ) A .41 B .22C .42D . 217. 已知k <4,则曲线14922=+y x 和14922=-+-ky k x 有( )A. 相同地准线B. 相同地焦点C. 相同地离心率D. 相同地长轴 8.已知P 是椭圆13610022=+y x 上地一点,若P 到椭圆右准线地距离是217,则点P 到左焦点地距离是 ( ) A .516 B .566 C .875 D .877 9.若点P 在椭圆1222=+y x 上,1F 、2F 分别是椭圆地两焦点,且ο9021=∠PFF ,则21PF F ∆地面积是( )A. 2B. 1C. 23D. 21 10.椭圆1449422=+y x内有一点P (3,2)过点P 地弦恰好以P 为中点,那么这弦所在直线地方程为( )A .01223=-+y xB .01232=-+y xC .014494=-+y xD . 014449=-+y x11.椭圆141622=+y x 上地点到直线022=-+y x 地最大距离是( ) A .3 B .11C .22D .1012.在椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|地值最小,则这一最小值是( )A .25B .27 C .3D .4二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.) 13.椭圆2214x y m+=地离心率为12,则m =。
人教新课标版(A)高二选修1-1 2.1.2椭圆及其标准方程(二)同步练习题
人教新课标版(A )高二选修1-1 2.1.2 椭圆及其标准方程(二)同步练习题【基础演练】题型一:椭圆中的基本运算在椭圆中,a 2|PF ||PF |21=+,0b a >>,222c b a +=等都存在相互的关系,从方程的角度分析,可得方程(组)去求解,注意,在标准形式下,哪个表示a (或2a ),哪个表示b (或2b ),请用以上知识解决以下1~4题。
1. 已知椭圆的方程是125y ax 222=+(5a >),它的两个焦点分别为1F 、2F ,且8|F F |21=,弦AB 过点1F ,则△2ABF 的周长为A. 10B. 20C. 412D. 4142. 点P 是椭圆19y 25x 22=+上一点,以点P 以及焦点1F 、2F 为顶点的三角形的面积等于4,则P 点的坐标是A. ⎪⎪⎭⎫ ⎝⎛±3210,1B. ⎪⎪⎭⎫ ⎝⎛±±3210,1C. ⎪⎪⎭⎫⎝⎛±±1,3210D. ⎪⎪⎭⎫⎝⎛1,3210 3. “2k >”是方程“1k5y 2k x 22=-+-”表示的曲线是椭圆的 A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件4. 椭圆115y m x 22=+的焦距等于2,则m 的值是 A. 5或3 B. 16或14 C. 5 D. 16题型二:求椭圆的方程 求椭圆的方程的常用方法有:待定系数法、直译法、定义法、相关点法、几何法等,请根据以上知识解决以下5~9题。
5. 已知椭圆过点P ⎪⎭⎫⎝⎛-4,53和点Q (3,54-),则此椭圆的标准方程是A. 1x 25y 22=+B. 1y 25x 22=+ C. 1y 25x 22=+或125y x 22=+ D. 以上都不对6. 椭圆的两焦点为(-2,0)和(2,0),且椭圆过点⎪⎭⎫ ⎝⎛-23,25,则椭圆的方程是A. 14x 8y 22=+ B.16x 10y 22=+ C. 18x 4y 22=+D.16y 10x 22=+ 7. 已知A 、B 两点的坐标分别为(0,-5)和(0,5),直线MA 与MB 的斜率之积为94-,则M 的轨迹方程是A. 19100y 25x 22=+B. ()5x 19100y 25x 22±≠=+C. 125y 4225x 22=+D. ()0x 125y 4225x 22≠=+8. 与椭圆4y 4x 22=+有公共的焦点,且经过点A (2,1)的椭圆的方程为_________。
高二数学选修1--1椭圆练习题
时间60分钟 满分81分一、选择题(本大题共6小题,每小题5分,共30分)1.(2012·上海高考)对于常数m ,n ,“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B 因为当m <0,n <0时,方程mx 2+ny 2=1表示的曲线不是椭圆,但当方程mx 2+ny 2=1表示的曲线是椭圆时,m >0,n >0,mn >0.2.已知椭圆:x 210-m +y 2m -2=1的焦距为4,则m 等于( ) A .4 B .8C .4或8D .以上均不对 解析:选C 由⎩⎪⎨⎪⎧10-m >0,m -2>0,得2<m <10, 由题意知(10-m )-(m -2)=4或(m -2)-(10-m )=4,解得m =4或m =8.3.矩形ABCD 中,|AB |=4,|BC |=3,则以A ,B 为焦点,且过C ,D 两点的椭圆的短轴的长为( )A .2 3B .2 6C .4 2D .4 3解析:选D 依题意得|AC |=5,所以椭圆的焦距为2c =|AB |=4,长轴长2a =|AC |+|BC |=8,所以短轴长为2b =2a 2-c 2=216-4=4 3. 4.(2013·汕尾模拟)已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为( )A .5B .7C .13D .15解析:选B 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7.5.以椭圆上任意一点与焦点所连接的线段为直径的圆与以长轴为直径的圆的位置关系是( )A .内切B .相交C .相离D .无法确定解析:选A 如图,设线段是PF 1,O 1是线段PF 1的中点,连接O 1O ,PF 2,其中O 是椭圆的中心,F 2是椭圆的另一个焦点,则在△PF 1F 2中,由三角形中位线定理可知,两圆的连心线的长是|OO 1|=12|PF 2|=12(2a -|PF 1|)=a -12|PF 1|=R -r . 6.(2012·新课标全国卷)设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A.12 B.23C.34D.45解析:选C 根据题意直线PF 2的倾斜角是π3,所以32a -c =12|PF 2|=12|F 1F 2|=12×2c ,解得e =34. 二、填空题(本大题共3小题,每小题5分,共15分)7.若椭圆x 2a 2+y 2b 2=1(a >b >0)与曲线x 2+y 2=a 2-b 2恒有公共点,则椭圆的离心率e 的取值范围是__________.解析:由题意知,以半焦距c 为半径的圆与椭圆有公共点,故b ≤c ,所以b 2≤c 2,即a 2≤2c 2, 所以22≤c a .又c a <1,所以22≤e <1. 答案:⎣⎡⎭⎫22,1 8.(2012·江西高考)椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为________.解析:依题意得|F 1F 2|2=|AF 1|·|BF 1|,即4c 2=(a -c )·(a +c )=a 2-c 2,整理得5c 2=a 2,得e =c a =55. 答案:559.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.过右焦点F 且斜率为k (k >0)的直线与椭圆C 相交于A ,B 两点.若AF u u u r =3FB u u u r ,则k =________.解析:根据已知c a =32,可得a 2=43c 2,则b 2=13c 2,故椭圆方程为3x 24c 2+3y 2c2=1,即3x 2+12y 2-4c 2=0.设直线的方程为x =my +c ,代入椭圆方程得(3m 2+12)y 2+6mcy -c 2=0.设A (x 1,y 1),B (x 2,y 2),则根据AF u u u r =3FB u u u r ,得(c -x 1,-y 1)=3(x 2-c ,y 2),由此得-y 1=3y 2,根据韦达定理y 1+y 2=-2cm m 2+4,y 1y 2=-c 23(m 2+4),把-y 1=3y 2代入得,y 2=cm m 2+4,-3y 22=-c 23(m 2+4),故9m 2=m 2+4,故m 2=12,从而k 2=2,k =±2. 又k >0,故k = 2.答案: 2三、解答题(本大题共3小题,每小题12分,共36分)10.求以坐标轴为对称轴,一焦点为(0,52)且截直线y =3x -2所得弦的中点的横坐标为12的椭圆方程. 解:根据题意设所求椭圆的方程为x 2b 2+y 2a2=1(a >b >0). ∵c =52,∴a 2=b 2+50.由⎩⎨⎧ y =3x -2,x 2b 2+y 2b 2+50=1消去y ,得10(b 2+5)x 2-12b 2x -b 2(b 2+46)=0.设直线与椭圆相交于M (x 1,y 1),N (x 2,y 2)两点,则x 1,x 2是上述方程的根,∵x 1+x 2=6b 25(b 2+5),∴x 1+x 22=12·6b 25(b 2+5)=12, ∴b 2=25,a 2=75.故所求椭圆方程为x 225+y 275=1. 11.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0).斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程;(2)求△P AB 的面积.解:(1)由已知得c =22,c a =63,解得a =23, 又b 2=a 2-c 2=4.所以椭圆G 的方程为x 212+y 24=1. (2)设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m ,x 212+y 24=1,得4x 2+6mx +3m 2-12=0.① 设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1<x 2),AB 中点为E (x 0,y 0),则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m 4. 因为AB 是等腰△P AB 的底边,所以PE ⊥AB .所以PE 的斜率k =2-m 4-3+3m 4=-1.解得m =2. 此时方程①为4x 2+12x =0.解得x 1=-3,x 2=0.所以y 1=-1,y 2=2.所以|AB |=3 2.此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2=322, 所以△P AB 的面积S =12|AB |·d =92. 12.(2012·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝⎛⎭⎫55a ,22a 在椭圆上. (1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.解:(1)因为点P ⎝⎛⎭⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58. 于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64.(2)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧ y 0=kx 0,x 20a 2+y 20b 2=1,消去y 0并整理得x 20=a 2b 2k 2a 2+b 2.① 由|AQ |=|AO |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2. 整理得(1+k 2)x 20+2ax 0=0,而x 0≠0,故x 0=-2a1+k 2,代入①,整理得(1+k 2)2=4k 2·a 2b 2+4. 由(1)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5,k 2=-35(舍去). 所以直线OQ 的斜率k =±5.12.(2012·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝⎛⎭⎫55a ,22a 在椭圆上. (1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.解:(1)因为点P ⎝⎛⎭⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58. 于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64. (2)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b 2=1,消去y 0并整理得x 20=a 2b 2k 2a 2+b 2.① 由|AQ |=|AO |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2. 整理得(1+k 2)x 20+2ax 0=0,而x 0≠0,故x 0=-2a1+k 2,代入①,整理得(1+k 2)2=4k 2·a 2b 2+4. 由(1)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5,k 2=-35(舍去). 所以直线OQ 的斜率k =±5.。
高二数学椭圆单元练习卷新人教版选修1
高二文科班选修1-1——椭圆单元练习卷㈠ 选择题(每小题5分,共计50分):⒈已知椭圆1162522=+y x 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( )A .2B .3C .5D .7⒉中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( )A. 22143x y += B. 22134x y += C. 2214x y += D. 2214y x += ⒊与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是( )A 1858014520125201202522222222=+=+=+=+y x D y x C y x B y x ⒋椭圆2255x ky -=的一个焦点是(0,2),那么k 等于( )A. 1-B. 1C.5D.⒌若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( )A. 12B.C. D. 2⒍椭圆两焦点为 1(4,0)F -,2(4,0)F ,P 在椭圆上,若 △12PF F 的面积的最大值为12,则椭圆方程为( )A. 221169x y += B . 221259x y += C . 2212516x y += D . 221254x y += ⒎椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是( )。
A 16x 2+9y 2=1B 16x 2+12y 2=1C 4x 2+3y 2=1D 3x 2+4y 2=1⒏椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( )(A)450 (B)600 (C)900 (D)1200⒐椭圆221259x y +=上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为…… ( )A. 4 B . 2 C. 8 D . 23⒑已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 ( )(A )2 3 (B )6 (C )4 3 (D )12㈡填空题:(每小题5分,共计20分)⒒方程221||12x y m +=-表示焦点在y 轴的椭圆时,实数m 的取值范围是____________⒓过点(2,3)-且与椭圆229436x y +=有共同的焦点的椭圆的标准方程为_____________⒔设(5,0)M -,(5,0)N ,△MNP 的周长是36,则MNP ∆的顶点P 的轨迹方程为_______ ⒕如图:从椭圆上一点M 向x 轴作垂线, 恰好通过椭圆的左焦点1F ,且它的长轴端点A 及短轴的端点B 的连线AB ∥OM ,则该椭圆的离心率等于_____________㈢解答题:(每小题10分,共计30分) ⒖已知椭圆的对称轴为坐标轴,离心率32=e ,短轴长为58,求椭圆的方程。
选修1-1椭圆测试题
2014-2015 学年度高二文科选修 1-1 第二章椭圆自主测试一、选择题(每小题 5分,共 60 分)1.椭圆 x 22=1的焦点在 y 轴上,长轴长是短轴长的两倍, A . 14 2.若椭圆+= A .2 3.椭圆 2+(k +2)y 2=k 的焦点在 y 轴上,则 k 的取值范围是 A . k >- 2 B . 4. , A .充分而不必要条件 充分也不必要条件 5. ( A . B . 121 过点( -2,) ,则其焦距为 ( B .2 5 C . 4C .6. m 的值为 D .4 )C .k >0 m >n >0”是“方程 2+2=1表示焦点在 y 轴上的椭圆” C .充要条件 k <-2 2=B .必要而不充分条件.k <0).既不矩形中,= 4,= 3,则以 A 、B 为焦点,且过 C 、 )2 2 已知椭圆 x2aB .2C .4D 两点的椭圆的短轴的长为 .4 2yb21 a b 0 的左焦点为 F ,右顶点为 A ,点B 在椭圆上,且⊥x uuur uuur轴于点 P .若 AP 2PB ,则椭圆的离心率是(C .130)和 C (4, 0),轴, 直线交 y A . 3B . 222 7. 在平面直角坐标系中,已知△顶点1上,22 xy 25 9 A .34 sin A sinC=( sinBA (-4, )B . 23C.).12 顶点 B在椭圆 4 51,( m >0>0) 的右焦点与抛物线 D .54y 2=8x 的焦点相同, 离心率为 1, 22x 2 m y2n 则此椭圆的方程为 22 A . x 2 y 212 16 9、过椭圆8.设椭圆 2x 2a 2 yb 2 点,若∠ F 12=60° 2 y 2112 0 的左焦点 F 1 作 x 轴的垂线交椭圆于点 P ,F 2 为右焦 则椭圆的离心率为 ( ) 2 x 16 ab10. 已知实数 4, m , 2 C . x48 2 y 2 1 64 2 x 64 2 y 21489 构成一个等比数列,则圆锥曲线2xy 2 1的离心率为30或 7 D. 5 或 7 6 6uuur uuur11.长为 3 的线段的端点 A 、 B 分别在 x 轴、y 轴上移动, uA uC ur=2C uuB ur ,则点 C的轨迹是 ( ) A .线段 B .圆 C .椭圆 D .双曲线 的长分别为 A 1和 A 2,半焦距分别为 c 1 和 c 2,且椭圆Ⅱ的 点为椭圆Ⅰ的中心.则下列结论不正确的是 A . A 1+ c 1>A 2+c 2 B .A 1-c 1=A 2-c 2 C . A 1c 2<A 2c 1D .A 1c 2>A 2c 1 二、填空题(每小题 4分,共 16 分)13. 如果 x 2ky 22表示焦点在 y 轴上的椭圆,那么实数 k 的取值范围是14. 与 椭 圆 9x 24y 236 有 相 同 的 焦 点 , 且 短 轴 长 为 4 5 的 椭 圆 方 程 是 .2215. 已知1 21 ( m >0, n >0,), 则当取得最小值时,椭圆x 2 y21的离心率m n m n 是 . 16. 以下同个关于圆锥曲线的命题中uuur uuur①设 A 、B 为两个定点, k 为非零常数, | uP uA ur| | uP uB ur | k ,则动点 P的轨迹为双曲线;②过定圆 C 上一定点 A 作圆的动弦, O 为坐标原点,若 OuuP ur 1 (O uu A ur O uu B ur )则动点 P的轨迹为椭圆;③方程 2x 2-52=0 的两根可分别作为椭圆和双曲线的离心率;222④双曲线xy1 与椭圆 xy 21 有相同的焦点 .259 35其中真命题的序号为 . (写出所有真命题的序 号) ( 15) ( 16)三、解答题(写出必要的文字和步骤,只给出结果不得分)A .306B . 7C .题 号1 2 3 4 5678910 11 12答 案一、选择题答案(每小题 5 分,共 60 分) 、填空题答案(每小题 4 分,共 16分)12.如图,有公共左顶点和公共左焦点 F 的椭圆Ⅰ与Ⅱ的长半轴 右顶 ( )( 13)( 14)217、(满分 12分)已知P为椭圆x y2 1上任意一点, F1, F2是椭圆的两个焦点,求:4(1)PF1 PF2 的最大值;(2)PF12PF2 2的最小值 .2218、(满分 12 分)已知椭圆x y 1过左焦点的直线l 的倾角为45o与椭圆相交32于两点(1)求的中点坐标;(2)求ABF2的周长与面积19、(满分 12 分)已知动点P与平面上两定点A( 2,0), B( 2,0)连线的斜率的积为定值1.2(Ⅰ)试求动点P的轨迹方程C.(Ⅱ)设直线l:y kx 1与曲线C交于M、N两点,当 4 2时,求直线 l 的方程. 320、(满分 12分)已知椭圆中心在原点,焦点在y 轴上,焦距为 4,离心率为2.3 (I )求椭圆方程;()设椭圆在y 轴的正半轴上的焦点为M,又点A和点B在椭圆上,且AM 2MB ,求线段所在直线的方程.21、(满分 12 分)已知椭圆M的对称轴为坐标轴 , 且(0,2)是椭圆M的一个焦点 , 又点A(1, 2) 在椭圆M上.(Ⅰ)求椭圆M的方程 ;( Ⅱ)已知直线 l 的斜率是2, 若直线 l 与椭圆M交于B、C两点, 求面积的最大值.2222、(满分 14 分) 己知椭圆C :x2y2 1 a b 0 旳离心率 e = 2, 左、 . 右焦a b 2点分别为F1,F2,点., P(2 ,3),点F2在线段1的中垂线上。
高中数学 第二章 椭圆 选修1—1 试题
高二数学北师大版〔文〕选修1—1 第二章 椭圆〔答题时间是:60分钟〕一、选择题:〔一共8小题,每一小题5分,计40分〕1. 椭圆的值是,则的焦距是m y m x 21422=+〔 〕 A. 5 B. 5或者8 C. 3或者5 D. 20*2. 椭圆131222=+y x 的一个焦点是F,点P 在椭圆上,且线段PF 的中点M 在y 轴上,那么点M 的纵坐标是〔 〕A. 43±B. 23±C. 22± D. 43± *3. 假如方程222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是〔 〕A. 〔0,+∞〕B. 〔0,2〕C. 〔1,+∞〕D. 〔0,1〕4. 点〔0,-4〕是椭圆1322=+ky kx 的一个焦点,那么实数k 的值是〔 〕A. 6B. 61C. 24D. 241 5. ABC ∆的顶点B 〔0,-1〕,C 〔0,1〕,分别与AB ,AC 两边平行的中位线长的和是8,那么顶点A 的轨迹方程是〔 〕A. )0(,151622≠=+x x yB. )0(,1151622≠=+x x y C. )0(,1556422≠=+x x y D. )0(,1636422≠=+x x y *6. 假设关于x,y 的方程1cos sin 22=-ααy x 所表示的圆锥曲线是椭圆,那么圆1)sin ()cos (22=+++ααy x 的圆心在〔 〕A. 第一象限,B. 第二象限C. 第三象限D. 第四象限。
7. 中心在原点,准线方程是4±=x ,离心率是21的椭圆方程是〔 〕 A. ,13422=+y x B. ,14322=+y x C. 1422=+y x D. 1422=+y x 8. 椭圆的一顶点与焦点组成正三角形,那么椭圆的离心率是〔 〕 A. 21 B. 31 C. 41 D. 22二、填空题:〔4小题,每一小题5分,计20分〕**9. 椭圆)0(,12222>>=+b a by a x 的两焦点21,F F ,以21F F 的长为边作正三角形,假设椭圆恰好平分正三角形的另两条边,那么椭圆的离心率是_________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(本大题共6小题,每小题5分,共30分)1.(2012·上海高考)对于常数m ,n ,“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B 因为当m <0,n <0时,方程mx 2+ny 2=1表示的曲线不是椭圆,但当方程mx 2+ny 2=1表示的曲线是椭圆时,m >0,n >0,mn >0.2.已知椭圆:x 210-m +y 2m -2=1的焦距为4,则m 等于( ) A .4 B .8C .4或8D .以上均不对解析:选C 由⎩⎪⎨⎪⎧10-m >0,m -2>0,得2<m <10,由题意知(10-m )-(m -2)=4或(m -2)-(10-m )=4, 解得m =4或m =8.3.矩形ABCD 中,|AB |=4,|BC |=3,则以A ,B 为焦点,且过C ,D 两点的椭圆的短轴的长为( )A .2 3B .26C .4 2D .43解析:选D 依题意得|AC |=5,所以椭圆的焦距为2c =|AB |=4,长轴长2a =|AC |+|BC |=8,所以短轴长为2b =2a 2-c 2=216-4=4 3.4.(2013·汕尾模拟)已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为( )A .5B .7C .13D .15解析:选B 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7.5.以椭圆上任意一点与焦点所连接的线段为直径的圆与以长轴为直径的圆的位置关系是( )A .内切B .相交C .相离D .无法确定解析:选A 如图,设线段是PF 1,O 1是线段PF 1的中点,连接O 1O ,PF 2,其中O 是椭圆的中心,F 2是椭圆的另一个焦点,则在△PF 1F 2中,由三角形中位线定理可知,两圆的连心线的长是|OO 1|=12|PF 2|=12(2a -|PF 1|)=a -12|PF 1|=R -r .6.(2012·新课标全国卷)设F 1,F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )解析:选C 根据题意直线PF 2的倾斜角是π3,所以32a -c =12|PF 2|=12|F 1F 2|=12×2c ,解得e =34.二、填空题(本大题共3小题,每小题5分,共15分)7.若椭圆x 2a 2+y 2b2=1(a >b >0)与曲线x 2+y 2=a 2-b 2恒有公共点,则椭圆的离心率e 的取值范围是__________.解析:由题意知,以半焦距c 为半径的圆与椭圆有公共点,故b ≤c ,所以b 2≤c 2,即a 2≤2c 2,所以22≤c a .又c a <1,所以22≤e <1. 答案:⎣⎢⎡⎭⎪⎫22,1 8.(2012·江西高考)椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为________.解析:依题意得|F 1F 2|2=|AF 1|·|BF 1|,即4c 2=(a -c )·(a +c )=a 2-c 2,整理得5c 2=a 2,得e =c a =55. 答案:559.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.过右焦点F 且斜率为k (k >0)的直线与椭圆C 相交于A ,B 两点.若AF u u u r =3FB u u u r,则k =________.解析:根据已知c a =32,可得a 2=43c 2,则b 2=13c 2,故椭圆方程为3x 24c 2+3y 2c2=1,即3x2+12y 2-4c 2=0.设直线的方程为x =my +c ,代入椭圆方程得(3m 2+12)y 2+6mcy -c 2=0.设A (x 1,y 1),B (x 2,y 2),则根据AF u u u r =3FB u u u r,得(c -x 1,-y 1)=3(x 2-c ,y 2),由此得-y 1=3y 2,根据韦达定理y 1+y 2=-2cmm 2+4,y 1y 2=-c 23m 2+4,把-y 1=3y 2代入得,y 2=cmm 2+4,-3y 22=-c 23m 2+4,故9m 2=m 2+4,故m 2=12,从而k 2=2,k =± 2. 又k >0,故k = 2. 答案:2三、解答题(本大题共3小题,每小题12分,共36分)10.求以坐标轴为对称轴,一焦点为(0,52)且截直线y =3x -2所得弦的中点的横坐标为12的椭圆方程.解:根据题意设所求椭圆的方程为x 2b 2+y 2a2=1(a >b >0).∵c =52,∴a 2=b 2+50.由⎩⎪⎨⎪⎧y =3x -2,x 2b 2+y 2b 2+50=1消去y ,得10(b 2+5)x 2-12b 2x -b 2(b 2+46)=0.设直线与椭圆相交于M (x 1,y 1),N (x 2,y 2)两点,则x 1,x 2是上述方程的根, ∵x 1+x 2=6b 25b 2+5,∴x 1+x 22=12·6b 25b 2+5=12, ∴b 2=25,a 2=75.故所求椭圆方程为x 225+y 275=1.11.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0).斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程; (2)求△PAB 的面积.解:(1)由已知得c =22,c a =63,解得a =23, 又b 2=a 2-c 2=4.所以椭圆G 的方程为x 212+y 24=1. (2)设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m ,x 212+y24=1,得4x 2+6mx +3m 2-12=0.①设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1<x 2),AB 中点为E (x 0,y 0), 则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m4. 因为AB 是等腰△PAB 的底边,所以PE ⊥AB . 所以PE 的斜率k =2-m4-3+3m 4=-1.解得m =2.此时方程①为4x 2+12x =0.解得x 1=-3,x 2=0. 所以y 1=-1,y 2=2.所以|AB |=3 2.此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2=322, 所以△PAB 的面积S =12|AB |·d =92.12.(2012·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上.(1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.解:(1)因为点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58.于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64.(2)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 2b2=1,消去y 0并整理得x 20=a 2b 2k 2a 2+b 2.①由|AQ |=|AO |,A (-a,0)及y 0=kx 0, 得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 2+2ax 0=0,而x 0≠0,故x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2·a 2b 2+4.由(1)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5,k 2=-35(舍去).所以直线OQ 的斜率k =± 5.12.(2012·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上.(1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.解:(1)因为点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58.于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64.(2)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 2b2=1,消去y 0并整理得x 20=a 2b 2k 2a 2+b 2.①由|AQ |=|AO |,A (-a,0)及y 0=kx 0, 得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 2+2ax 0=0,而x 0≠0,故x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2·a 2b2+4.由(1)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5,k 2=-35(舍去).所以直线OQ 的斜率k =± 5.。