特殊多面体外接球的计算
用公式巧解立体几何中的多面体外接球问题
用公式巧解立体几何中的多面体外接球问题
立体几何中的多面体外接球问题可以用以下公式巧解:
•体积公式法
对于一个多面体,可以使用它的体积公式来求其外接球半径。
公式为:V=4/3πR^3
其中 V 为多面体体积,R 为外接球半径。
•三角剖分法
对于一个多面体,可以使用三角剖分法将其分割成若干个三角形,再利用每个三角形对应的三角形面积和边长来求出外接球半径。
公式为: R=S*(abc)^1/3
其中 S 为多面体表面积, a,b,c 为三角形的三条边长。
这两种公式都是可以用来解决立体几何中的多面体外接球问题的,需要根据具体题目来使用。
多面体外接球半径常见的5种求法(汇编)
精品文档多面体外接球半径常见的5种求法文/郭军平如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧面两两垂直,则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就精品文档 可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =.寻求轴截面圆半径法例4 正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt .∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球.小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为A.12512πB.1259πC.1256πD.1253π C D A B SO 1图3A O DB 图4解设矩形对角线的交点为O,则由矩形对角线互相平分,可知OA OB OC OD===.∴点O到四面体的四个顶点A B C D、、、的距离相等,即点O为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA==.故3412536V Rππ==球.选C.精品文档。
_多面体外接球的求法
A C 1 的中点为 O.
【 评注 】 因为长方体 ( 正方 体 ) 外接球的球心为其对角线 所以长 方 体 ( 正 方 体) 对角线的长为其外接球半径 的中点 , 长的两倍 . 如果长 方 体 的 共 端 点 的 三 条 棱 长 分 别 为 a, b, c,
2 2 2 a + b + c 则其外接球的半径长为 R= 槡 . 2
O A=O B=O C=O D=O A1 =O B O C O D1 . 1= 1=
【 】 例1 已知长方体 A B C D -A1B C 1 1D 1 的所有顶点在 一个球面 上 , 若球的表面积为4 当| D C AD1|的 值 最 π, |·| 大时 , 则三棱锥 B 1 -ADD 1 的高为 . 解析 : 如图 所 示 , 设长方体 A B C D -A1B C 1 1D 1 的外接 球的半径为 R,
2 2 2 a + b + c 2 2 因为| =2, D C AD1 a· 槡 b + c |·| |= ≤ 2 2 2 2 当且仅当 a 时等号成立 , = b + c 2 2 2 又a + b + c =4,
即当 a=槡 2时 , D C AD1 | |·| |取最大值 2. 而三棱锥 B A D D A B A = A B = a, | | | | 1- 1 的高 B 1 1 的长 1 1 因此 , 当| 三棱锥 B D C AD1 |·| |的值最大时 , 1 -ADD 1 的高为槡 2.
( 得 6)+ ( 1 0) =4, 槡 槡 槡
2
2
AD 长方体外接球的 半 径 长 为 R=| |=2, 则四面体 A B C D 2
2 外接球的表面积为 4 R =1 6 π π.
( ) 解析 : 将四 面 体 A 则长 1 B C D 放 入 长 方 体 如 图 所 示, 方体外接球即为四 面 体 A 由于长方体外接 B C D 的 外 接 球. 球的半径长 为 R =
高三复习资料:球的截面与外接问题
球的截面与外接问题一、截面性质:当截面圆为小圆时有:球心和截面圆心的连线 截面圆;球心到截面的距离d 与球的半径R 及截面的半径r 有下面的关系: ;(计算公式)二、多面体的外接球(转化成截面问题)(一)、特殊几何体的外接球:1、长(正)方体的外接球直径等于长(正)方体的对角线!(二)直棱柱的外接球:1、球心为直棱柱上下两底面外心连线的中点;2、222R r d =+中:22h l d ==(为直棱柱高的一半),r 为底面多边形外接圆的半径;d 为心距! (三)圆锥的外接球:1、球心在圆锥的高上,且有h R d =+h 为圆锥的高,2、222R r d =+:R 为外接球的半径,r 为底面圆的半径,d 为心距)(四)正棱锥的外接球:1、球心在正棱锥的高上(即顶点与底面中心的连线),且有h R d =+(h 为圆锥的高);2、222R r d =+:r 为底面多边形外接圆的半径,d 为心距)(五)有三条侧棱互相垂直的三棱锥(直三棱锥):补形为一个长(正)方体,练习二1、一球的球心为O ,R=4,圆C 是该球的一个截面圆,圆心为C ,且|OC |=3,则圆C 的面积为 ;2、三棱锥ABCD 中,ABC ∆为边长为6的正三角形,AD ABC ⊥面且AD=4,则该三棱锥的外接球体积为 ;3、正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为_________.4.表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积 ;5、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 6、已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的163 ,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 。
7、正四棱锥S ABCD -,点S A B C D 、、、、都在同一球面上,则此球的体积为 .8、若三棱锥P-ABC 的三条侧棱PA,PB,PC 两两互相垂直且长相等,其外接球半径为2,则三棱锥的表面积为;9、(不规则几何体:确定球心位置法)在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为A.12512π B.1259π1253π10.半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体棱长为,求半球的表面积和体积.11、(13全国2)已知正四棱锥O ABCD -的体积为,则以O 为球心,OA 为半径的球的表面积为________。
数学高考重点内容多面体外接球、内切球常见解题方法总结
多面体外接球、内切球半径常见的5种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同9一个球面上,且该六棱柱的体积为三,底面周长为3,则这个球的体积为86x=3,f1JQ———解设正六棱柱的底面边长为X,高为则有9后,2'§=6x甘",]入=右.正六棱柱的底面圆的半径r=~,球心到底面的距离d=—.:.外接球的半径22R=J/+J?=]....v球=—.3小结本题是运用公式R2=r-+d2求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16^B.20ttC.24>tD.32i解设正四棱柱的底面边长为X,外接球的半径为R,则有4/=16,解得%=2, 2R=a/22+22+42=2^6,:.R=£.这个球的表面积是4*=24^,选C.小结本题是运用''正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3若三棱锥的三个侧棱两两垂直,且侧棱长均为右,则其外接球的表面积是—.解据题意可知,该三棱锥的三条侧棱两两垂直,...把这个三棱锥可以补成一个棱长为73的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R,则有(27?)2=(、厅『+(、行『+(^3)2=9./.R2=|,故其外接球的表面积S=4*=9兀.小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为0、/?、c,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为A,则有2R=7a2+b2+c2.寻求轴截面圆半径法例4正四棱锥S-ABC。
多面体外接球半径内切球半径的常见几种求法
多面体外接球、内切球半径常见的5种求法 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,8x x x h h =⎧⎧=⎪⎪∴⎨⎨=⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离d =.∴外接球的半径1R ==.43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧棱两两垂直,则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =寻求轴截面圆半径法例4 正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图3所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =是外接圆的半径,也是外接球的半径.故43V π=球. 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C. 出现多个垂直关系时建立空间直角坐标系,利用向量知识求解【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,︒=∠120BAC ,2===AC AD AB 解:由已知建立空间直角坐标系3,,设球心坐BO 知222222)2(z y x z y x ++-=++CD A B S O 1图3A O D B 图4C y解得 1331===z y x 所以半径为3211331222=++=)(R 【结论】:空间两点间距离公式:221221221)()()(z z y y x x PQ -+-+-=四面体是正四面体外接球与内切球的圆心为正四面体高上的一个点,根据勾股定理知,假设正四面体的边长为a 时,它的外接球半径为a 46。
多面体外接球半径内切球半径的常见几种求法
多面体外接球、内切球半径常见的5种求法 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球。
有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点。
研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用。
公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 。
解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =。
∴外接球的半径1R ==。
43V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A 。
16πB 。
20πC 。
24π D.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= 。
∴这个球的表面积是2424R ππ=。
选C 。
小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的。
补形法例3 若三棱锥的三个侧棱两两垂直,则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为.设其外接球的半径为R ,则有()222229R =++=。
∴294R =。
故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径。
多面体外接球半径常见的5种求法
多面体外接球半径常见得5种求法如果一个多面体得各个顶点都在同一个球面上,那么称这个多面体就是球得内接多面体,这个球称为多面体得外接球、有关多面体外接球得问题,就是立体几何得一个重点,也就是高考考查得一个热点。
研究多面体得外接球问题,既要运用多面体得知识,又要运用球得知识,并且还要特别注意多面体得有关几何元素与球得半径之间得关系,而多面体外接球半径得求法在解题中往往会起到至关重要得作用.知识回顾:1、球心到截面得距离d与球半径R及截面得半径r有以下关系2、球面被经过球心得平面截得得圆叫.被不经过球心得平面截得得圆叫3、球得表面积表面积S=;球得体积V=4、球心一定在过多边形(顶点均在球面上)外接圆圆心且垂直此多边形所在平面得垂线上方法一:公式法例1一个六棱柱得底面就是正六边形,其侧棱垂直于底面,已知该六棱柱得顶点都在同一个球面上,且该六棱柱得体积为,底面周长为3,则这个球得体积为。
解设正六棱柱得底面边长为,高为,则有∴正六棱柱得底面圆得半径,球心到底面得距离.∴外接球得半径。
、小结:本题就是运用公式求球得半径得,该公式就是求球得半径得常用公式.(R—球得半径;d—球心到球截面圆得距离,注意球截面圆通常就是顶点在球上多边形得外接圆;r-顶点在球上多边形得外接圆得半径)方法二:多面体几何性质法例2已知各顶点都在同一个球面上得正四棱柱得高为4,体积为16,则这个球得表面积就是( )A. B. C。
D。
解:设正四棱柱得底面边长为,外接球得半径为,则有,解得、∴。
∴这个球得表面积就是。
选C。
小结:本题就是运用“正四棱柱体(包括正方体、长方体)对角线得长等于其外接球得直径"这一性质来求解得、方法三:补形法例3:若三棱锥得三个侧面两两垂直,且侧棱长均为,则其外接球得表面积就是、解:据题意可知,该三棱锥得三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为得正方体,于就是正方体得外接球就就是三棱锥得外接球、设其外接球得半径为,则有。
几类特殊的多面体的外接球问题
几类特殊的多面体的外接球问题沈清臣(湖南省长沙市长郡中学㊀410000)摘㊀要:本文主要通过空间球体的截面性质引入ꎬ介绍几类锥体㊁柱体的外接球问题的求解策略.关键词:多面体ꎻ外接球ꎻ截面ꎻ补体中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)28-0061-03收稿日期:2020-07-05作者简介:沈清臣(1979.11-)ꎬ男ꎬ湖南省沅陵人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.基金项目:本文系长沙市教育科学规划重点资助课题«高中数学必修模块易错点提前干预策略的研究»成果.㊀㊀空间几何体与球的组合问题是近几年高考中的一个频考点ꎬ且考查形式灵活多样ꎻ要正确求解此类问题ꎬ学生必须通过读㊁想㊁画㊁转㊁算五个基本环节ꎬ找准熟悉的基本几何模型及相应的求解策略.此类问题可划分为旋转体㊁多面体的内切㊁外接球问题ꎻ而旋转体的内切㊁外接球问题ꎬ通过轴截面可转化为平面几何问题求解ꎻ多面体的内切球问题ꎬ利用等体法可直接求解.因此ꎬ本文主要介绍多面体(棱柱㊁棱锥)的外接球问题ꎬ在此之前ꎬ我们先熟悉空间球体的截面性质及其应用.㊀㊀一㊁球的截面性质及其应用如图1ꎬ空间球体有如下性质:(1)用一个平面去截球ꎬ所得截面是一个圆面ꎻ(2)球心与截面圆心的连线与截面垂直ꎬ且满足:R2=r2+d2(其中R表示球的半径ꎬr表示截面圆的半径ꎬd表示球心到截面的距离).图1㊀㊀㊀㊀㊀㊀㊀㊀图2例1㊀(2018年全国卷Ⅲ理第10题)设AꎬBꎬCꎬD是同一个半径为4的球的球面上四点ꎬәABC为等边三角形且其面积为93ꎬ则三棱锥D-ABC体积的最大值为(㊀㊀).A.123㊀B.183㊀C.243㊀D.543分析㊀如图2ꎬ设等边三角形әABC外接圆圆心为O1ꎬ则易知当O1㊁O㊁D共线ꎬ即DO1为高时ꎬ棱锥体积最大.又由等边三角形әABC的面积可求得边长AB=6ꎬ所以AO1=12 ABsin60ʎ=23ꎬ所以OO1=AO2-AO21=2ꎬ即可得三棱锥D-ABC体积的最大值为13SΔABC DO1=13ˑ93ˑ(4+2)=183ꎬ故选答案B.上例的求解过程ꎬ充分利用球体的截面性质ꎬ即球心与截面圆圆心的连线与截面垂直ꎬ使得求解难度大大降低.类似的问题还在高考试题中曾多次出现ꎬ如2013年新课标Ⅰ(理)第6题㊁2013年新课标Ⅰ卷(文)第15题㊁2013年大纲卷(文)第16题㊁2013年大纲卷(理)第16题等.其实ꎬ更多几何体的外接球问题的求解均需要利用到球体的截面性质ꎬ在后面的问题中将作介绍.㊀㊀二㊁棱柱的外接球问题此处我们主要介绍直棱柱(侧棱垂直于底面)的外接球问题.因为正方体㊁长方体的外接球直径即为体对角线ꎬ因此遇到直棱柱的外接球问题ꎬ首先可以考虑将该直棱柱补体为长方体或正方体ꎻ若不能补体ꎬ再考虑利用球体的截面性质确定球心位置ꎬ再由勾股定理求解.图3如图3ꎬ设直三棱柱ABC-A1B1C1上㊁下底面的外接圆圆心分别为H1㊁Hꎬ连接H㊁H1ꎬ则易知HH1的中点O即为该棱柱外接球的球心ꎬAH即为底面外接圆的半径ꎬAO即为球的半径R.利用平面几何知识求出AHꎬ再结合球的截面性质可直接求解.例2㊀(2013年辽宁文㊁理第10题)已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上ꎬ若AB=3ꎬAC=4ꎬABʅACꎬAA1=12ꎬ则球O的半径为(㊀㊀).16A.3172㊀㊀B.210㊀㊀C.132㊀㊀D.310分析1㊀由题设条件ꎬ可将该三棱柱补成长㊁宽㊁高分别为3ꎬ4ꎬ12的长方体ꎬ则长方体的对角线长为13ꎬ即外接球的直径为13ꎬ半径为132ꎬ故选答案C.分析2㊀易知底面әABC为Rtәꎬ所以其外接圆半径r=BC2=52ꎬ球心到底面的距离d=AA12=6ꎬ因此由球的截面性质可得所求球的半径R=r2+d2=132ꎬ故选答案C.直接考查正方体㊁长方体的外接球问题ꎬ在高考试题中曾多次出现ꎬ如2013年天津文第10题㊁2014年陕西理第5题㊁2016全国Ⅱ文第4题㊁2017年天津文㊁理第10题㊁2017年全国Ⅱ文第15题等ꎬ此类问题难度不大.补体的策略在后面的锥体的外接球问题中将进一步详细介绍.㊀㊀三㊁棱锥的外接球问题球与锥体的组合问题ꎬ在高考真题及各地的模拟试题中出现频率最高ꎬ试题形式多样ꎬ灵活多变.类似于柱体的求解策略ꎬ我们首先考虑补体ꎬ再者利用截面性质确定球心ꎬ进而可得解.下面将按四种类型进行详细阐述.1.有条侧棱垂直于底面的棱锥若棱锥的一条侧棱垂直于底ꎬ则补体为直棱柱求解ꎬ如图4ꎬ三棱锥S-ABC中ꎬ侧棱SAʅ底面ABCꎬ则可补体成直棱柱SQP-ABC(如图5)ꎬ即转化为直棱柱的外接球问题.图4㊀㊀㊀㊀㊀㊀㊀㊀图5例3㊀(2019年全国Ⅰ理第10题)已知三棱锥P-ABC的四个顶点在球O的球面上ꎬPA=PB=PCꎬәABC是边长为2的正三角形ꎬEꎬF分别是PAꎬAB的中点ꎬøCEF=90ʎꎬ则球O的体积为(㊀㊀).A.86π㊀B.46π㊀C.26π㊀D.6π分析㊀如图6ꎬ易知三棱锥P-ABC为正棱锥ꎬ故对棱相互垂直ꎬ即PBʅACꎬ又由题设条件知EFʅECꎬPBʊEFꎬʑPBʅECꎬ即PBʅ平面PAC.结合正三棱锥的结构特征ꎬ可知PAꎬPBꎬPC两两垂直ꎬ且PA=PB=PC=2.将三棱锥P-ABC补成正方体ꎬ如图7.所以外接球的半径R=32ˑ2=62ꎬ体积为V=43πR3=43π(62)3=6πꎬ故选答案D.图6㊀㊀㊀㊀㊀㊀㊀㊀图7在三棱锥中ꎬ若共顶点的三条棱两两垂直ꎬ则将棱锥补体为正方体或长方体ꎬ可迅速求解.类似问题再如ꎬ2012年辽宁文理第16题.2.对棱相等的锥体正方体或长方体中ꎬ相对面的对角线相等ꎬ因此当三棱锥的对棱相等的时候ꎬ可以将该三棱锥放于正方体或长方体内ꎬ即补体为正方体或长方体.例4㊀三棱锥D-ABC中ꎬAB=CD=6ꎬ其余四条棱均为2ꎬ则三棱锥D-ABC的外接球的表面积为.图8分析㊀如图8ꎬ将三棱锥D-ABC放入到长方体中ꎬ并设该长方体的长㊁宽㊁高分别为aꎬbꎬcꎬ则a2+b2=6ꎬb2+c2=4ꎬc2+a2=4{⇒a2+b2+c2=7ꎬʑ球的半径R满足4R2=a2+b2+c2=7ꎬ故表面积为S=4πR2=7π.本例也可以取AB或CD的中点ꎬ作出截面ꎬ根据几何体的对称特征ꎬ确定球心的位置ꎬ利用球的截面性质列出方程组求解.但两种解法对比ꎬ可体现上述解法的简便快捷.特别是准确熟悉正四面体与正方体之间的联系ꎬ可快速解决正四面体的外接球问题ꎬ比如下面的例题.3.正棱锥(底面为正三角形ꎬ顶点在底面的射影为底面的中心)由正棱锥的结构特征可知ꎬ其外接球的球心一定在图9其高线上.如图9ꎬ在正三棱锥S-ABC中ꎬ设底面边长为aꎬ侧棱长为bꎬ高为hꎬ外接球球心为Oꎬ半径为Rꎬ则AH即为底三角形的外接圆半径ꎬ且AH=33aꎬh=b2-(33a)2ꎬ再由AO2=AH2+OH2得ꎬR2=(33a)2+(h-R)2ꎬ即可求出外接球半径R的值.26例5㊀(2014年大纲文第10题㊁理第8题)正四棱锥的顶点都在同一球面上ꎬ若该棱锥的高为4ꎬ底面边长为2ꎬ则该球的表面积为(㊀㊀).A.81π4㊀B.16π㊀C.9π㊀D.27π4图10分析㊀如图10ꎬ正四棱锥P-ABCD的高为PEꎬ则PE=4ꎬAB=2ꎬAE=12AC=2.设外接球的球心为Oꎬ半径为Rꎬ连接AOꎬ则在RtәAOE中ꎬ有AO2=AE2+OE2ꎬ即R2=(2)2+(4-R)2ꎬ解得R=94.ʑ球的表面积为S=4πR2=4πˑ(94)2=814πꎬ故选择答案A.上述例题的求解过程ꎬ还是利用球体的截面性质.前述例3(2019年全国Ⅰ理第10题)亦可利用上述方法求解.4.有两个面垂直的棱锥如图11ꎬ已知球O1㊁O2的两个截面圆所在平面垂直ꎬ则四边形OO1HO2为矩形ꎬ且әOAO1ꎬәOBO2均为RtәꎬAO=BO=R.利用勾股定理结合已知条件列出方程组ꎬ即可求解.例6㊀四面体A-BCD中ꎬøABC=øABD=øCBD=60ʎꎬAB=3ꎬCB=DB=3ꎬ则此四面体外接球的表面积为(㊀㊀).A.19π2㊀B.1938π24㊀C.17π㊀D.1717π6图11㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀图12分析㊀如图12ꎬ由题设条件知әBCD是边长为3的正三角形ꎬ设E为其外接圆圆心ꎬ则其外接圆半径r1BE=23BF=233ꎬ且EF=33.又ȵøABC=øABD=60ʎꎬAB=3ꎬCB=DB=3ꎬ由余弦定理可得AD=AC=7ꎬCD边上高AF=6ꎬ则AF2+BF2=AB2ꎬʑAFʅBFꎬ即可得AFʅ平面BCDꎬ即有平面ACDʅ平面BCD.设әBCDꎬәACD的外接圆圆心分别为E㊁Hꎬ四面体A-BCD的外接球球心为Oꎬ则OEʅ平面BCDꎬOHʅ平面ACDꎬOEFH为矩形ꎬʑOE=HFꎬOH=EF.连接AO㊁BOꎬ并设外接球半径为RꎬOE=HF=xꎬ则分别在RtәBOEꎬRtәAOH中可得:BO2=BE2+OE2ꎬAO2=AH2+OH2ꎬ{即R2=(233)2+x2ꎬR2=(6-x)2+(33)2ìîíïïïï解得R2=198.ʑ四面A-BCD的外接球的表面积S=4πR2=19π2ꎬ故选答案为A.上述例题的求解过程ꎬ还是利用球的截面性质(过截面圆圆心且与截面垂直的直线一定过球心)ꎬ通过两个截面来确定球心的位置ꎬ再利用勾股定理求解.其实ꎬ一般情况下ꎬ并要求两个截面圆所在平面垂直.如下例:例7㊀(2020年广州市一模文第12题)在三棱锥A-BCD中ꎬәABD和әCBD均为边长为2的等边三角形ꎬ且二面角A-BD-C的平面角为120ʎꎬ则此三棱锥的外接球的表面为(㊀㊀).A.7π㊀㊀B.8π㊀㊀C.16π3㊀㊀D.28π3图13分析㊀如图13ꎬ取BD的中点为Eꎬ并连结AEꎬCEꎬ易知øAEC=120ʎ.设әABD和әCBD的外心分别为H2ꎬH1ꎬ并过H2ꎬH1作平面ABD和平面CBD的垂线交于点Oꎬ则O即为三棱锥A-BCD的外接球的球心ꎬ且EH1=EH2=13CE=33ꎬʑRtәOEH1≅RtәOEH2ꎬøOEH1=øOEH2=12øAEC=60ʎꎬOE=2EH1=233ꎬ故所求外接球半径为R=OB=OE2+BE2=213.ʑ三棱锥A-BCD的外接球的表面积S=4πR2=28π3ꎬ故选答案D.以上内容是对常见的棱柱㊁棱锥的几类外接球问题及其求解策略的归纳.因为题型可以灵活多变ꎬ问题的求解途径多种多样ꎬ以上肯定有阐述不全面不到位的地方ꎬ期盼读者去补充完善.㊀㊀参考文献:[1]周瑜芽.对一道三棱外接球高考题的解法探究[J].中学数学研究(华南师范大学版)ꎬ2020(02):57-59.[2]熊向前ꎬ杨墁.例析破解三棱锥外接球问题的六种方法[J].中学数学研究ꎬ2020(03上):38-40.[责任编辑:李㊀璟]36。
多面体外接球半径常见的几种求法
多面体外接球半径常见的几种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩∴正六棱柱的底面圆的半径12r =,球心到底面的距离d =.∴外接球的半径1R ==.43V π∴=球. 小结 此题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的外表积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的外表积是2424R ππ=.选C.小结 此题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 假设三棱锥的三个侧面两两垂直,则其外接球的外表积是 .解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥的外接球.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的外表积249S R ππ==.小结 一般地,假设一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、R,则有2R =寻求轴截面圆半径法例4 正四棱锥S ABCD -的底面边长和各侧棱长CD ABSO 1图3S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得222SA SC AC +=. ∴ASC AC ∆∆是以为斜边的Rt . ∴12AC =43V π=球.小结 根据题意,我们可以选择最正确角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.此题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为A.12512π B. 1259π C. 1256π D. 1253π解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径52R OA ==.故3412536V R ππ==球.选C.出现两个垂直关系,利用直角三角形结论【原理】:直角三角形斜边中线等于斜边一半。
克列尔公式求外接球半径
克列尔公式求外接球半径克列尔公式求外接球半径克列尔公式源于18世纪法国数学家克列尔的研究,该公式用于计算一个正四面体外接球的半径。
由于正四面体是一种重要的多面体,而外接球半径又是其重要参数之一,因此克列尔公式被广泛地应用于物理、化学、材料科学等领域。
下面将详细介绍克列尔公式的原理、推导和应用。
一、克列尔公式的原理正四面体是一种多面体,具有4个面、6条棱和4个顶点。
如果在正四面体的每个面上取一个点,那么这4个点的凸包就是该正四面体。
同时,如果在正四面体外部构造一个球,该球可以切到正四面体的每个面上且仅切到各个面的一个点上,那么这个球就是该正四面体的外接球。
在任意一个正四面体中,外接球的半径都可以由克列尔公式计算得到。
二、克列尔公式的推导设正四面体ABCD中,A点到外接球的球心O的距离为R,边长为a,则有:AB = AC = AD = aBC = BD = a√2CD = a√3设O为球心,OA = OB = OC = OD = R,则有:∠AOD = 3π/2,∠BOC = π/2,∠AOC = ∠BOD = π/3,则△AOD、△BOC、△AOC、△BOD都是等边三角形。
设M为OA的中点,则有:OM = OA/2 = R/2AD = a√3/3 = 2OM,即 AD/OM = 2∠AOD = 3π/2,∠ADO = π/6△AMO、△ADO相似,则有:AD/OA = OM/AMAD/R = R/2OM2R³ = a³ + 4OM³R³ = a³/(2√3)由此可得:R = a/√6三、克列尔公式的应用克列尔公式的应用非常广泛,特别是在物理、化学和材料科学等领域。
例如,利用克列尔公式可以计算出各种晶体的晶格常数、原子半径和空隙率等参数,进而进一步研究晶体结构和物理性质。
此外,该公式还可以用于诸如密排球堆、分子包装和天然晶体形态等问题的计算。
综上所述,克列尔公式是一种极其重要的数学工具,它不仅有着理论上的重要性,还具有广泛的实际应用价值。
多面体外接球半径常见的五种求法
多面体外接球半径常见的5种求法文/xx如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为9,底面周长为3,则这个球的体积为.86x3,1x,x2解设正六棱柱的底面边长为,高为h,则有932xh,64h3.8∴正六棱柱的底面圆的半径r31,球心到底面的距离d.∴外接球的半径22R r2d21.V球4.3222小结本题是运用公式R r d求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16B.20C.24D.32解设正四棱柱的底面边长为x,外接球的半径为R,则有4x16,解得x2.∴2R 222224226,R6.∴这个球的表面积是4R224.选C.小结本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是.解据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为3的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R,则有2R223232329.∴R29.4故其外接球的表面积S4R9.小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a、b、c,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R a2b2c2.寻求轴截面圆半径法例4正四棱锥S ABCD的底面边长和各侧棱长都为2,点S、A、B、C、D都在同一球面上,则此球的体积为.解设正四棱锥的底面中心为O1,外接球的球心为O,如图1所示.∴由球的截面的性质,可得OO1平面ABCD.DCO1图3BS又SO1平面ABCD,∴球心O必在SO1所在的直线xx.∴ASC的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASCxx,由SA SC A2,AC2,得SA2SC2AC2.∴ASC是以AC为斜边的Rt.∴AC4.1是外接圆的半径,也是外接球的半径.故V球23小结根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5在矩形ABCD中,AB4,BC3,沿AC将矩形ABCD折成一个直二面角B AC D,则四面体ABCD的外接球的体积为125125A.B.C.D.12963解设矩形对角线的交点为O,则由矩形对角线互相平分,可知OA OB OC OD.∴点O到四面体的四个顶点A、B、C、D的距离相等,即点O为四面体的外接球的球心,如图2所示.∴外接球的半541253.选C.径R OA.故V 球R236DCBAO图4。
多面体外接球半径常见求法
多面体外接球半径常见的5种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球。
有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用。
公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 。
解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离d =。
∴外接球的半径1R ==。
43V π∴=球。
小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式。
多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A 。
16πB 。
20πC 。
24πD 。
32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C.小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径"这一性质来求解的。
补形法例3,则其外接球的表面积是 .解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一.设其外接球的半径为R ,则有()222229R =++=。
∴294R =。
故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =。
多面体外接球半径内切球半径的常见几种求法
多面体外接球、内切球半径常见的5种求法 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球。
有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 。
解 设正六棱柱的底面边长为x ,高为h,则有263,1,296,8x x x h h =⎧⎧=⎪⎪∴⎨⎨=⎪⎪=⎩⎩ ∴正六棱柱的底面圆的半径12r =,球心到底面的距离d =.∴外接球的半径1R ==。
43V π∴=球。
小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式。
多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A 。
16πB 。
20πC 。
24πD 。
32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =.∴2R R ==∴= 。
∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的。
补形法例3 若三棱锥的三个侧棱两两垂直,则其外接球的表面积是 。
解 据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2R =寻求轴截面圆半径法例4 正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图3所示。
内接球和外接球半径计算公式
内接球和外接球半径计算公式
内接球和外接球是几何学中的概念,它们分别是指一个多面体内部最大的(最小的)球和一个多面体外部最小的(最大的)球。
下面是内接球和外接球的半径计算公式。
(以下解释中,我们以正四面体为例)
内接球半径计算公式:
正四面体的内接球是四面体内部最大的球,它的半径可以通过正四面体的棱长计算得出。
设正四面体的棱长为a,则正四面体的内接球半径R为:
R = a / (2√3)
其中√3表示根号下3,也就是3的平方根。
该公式适用于所有正多面体内接球的半径计算。
外接球半径计算公式:
正四面体的外接球是四面体外部最小的球,它的半径可以通过正四面体的边长计算得出。
设正四面体的边长为a,则正四面体的外接球半径r为:
r = a / (2√6)
其中√6表示根号下6,也就是6的平方根。
该公式同样适用于所有正多面体外接球的半径计算。
需要注意的是,以上公式仅适用于正多面体,对于其他不规则多面体,内接球和外接球的半径计算需要用到其他方法。
多面体外接球半径内切球半径的常见几种求法之欧阳法创编
多面体外接球、内切球半径常见的5种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为.解 设正六棱柱的底面边长为x ,高为h ,则有263,1,296,84x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩∴正六棱柱的底面圆的半径12r =,球心到底面的距离2d =.∴外接球的半径1R ==.43V π∴=球. 小结本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16πB.20πC.24πD.32π解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =. ∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C.小结本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3 若三棱锥的三个侧棱两两垂直,且侧棱长,则其外接球的表面积是.解 据题意可知,该三棱锥的三条侧棱两两垂的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R ,则有()222229R =++=.∴294R =. 故其外接球的表面积249S R ππ==. 小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =寻求轴截面圆半径法例4 正四棱锥S ABCD -的底面边长和各侧棱长都S A B C D 、、、、都在同一球面上,则此球的体积为.解 设正四棱锥的底面中心为1O ,外接球的球心为O ,如图3所示.∴由球的截面的性质,可得1OO ABCD ⊥平面. 又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在ASC ∆中,由2SA SC AC ===,得C DA B S O 1图3222SA SC AC +=.∴ASC AC ∆∆是以为斜边的Rt . ∴12AC=是外接圆的半径,也是外接球的半径.故43V π=球. 小结根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π 解 设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示.∴外接球的半径CA O DB 图452R OA ==.故3412536V R ππ==球.选C.出现多个垂直关系时建立空间直角坐标系,利用向量知识求解【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,︒=∠120BAC ,2===AC AD AB径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 在矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折
成一个直二面角B-AC-D,则四面体ABCD的外接球的体
积是______1_2_5___.
D
6
C
A
O
B
二、定轴截面圆半径法
例 正四棱锥S-ABCD的底面边长和各侧棱长都为 2 ,点S、
A、B、C、D都在同一个球面上,则此球的体积为__4____.
S
S
C
C
B
A
B
A
第四类:等腰四面体(3组对棱两两相等)
D B
A C
D
5 56
B
b Ac
a
C
练习
1、已知各顶点都在同一个球面上的正四棱柱的高
24 为4,体积为16,则这个球的表面积是_______.
2、在半球内有一个内接正方体,试求这个半球的
体积与正方体的体积之比.
6:2
3、已知点A、B、C、D在同一个球面上,
S
3
D
C
O1
A
B
三、补形法 第一类:正四面体
A
B
R : r 3:1
A
O1
B
D OE
C
D
C
正四面体高h R r
6a
外接球半径R 内切球半径r
3
BO1 AO1
OO1 AO
R
6a
4
6
3
a
6a 6a 4 12
第二类:直角四面体(3条侧棱两两垂直)
D DACFra bibliotekBA
C
B
第三类:四个面都是直角三角形的四面体。
AB 平面BCD ,BC DC ,AB 6, AC=2 13,AD=8
则球的体积是____4_____.
3
A
B
C
D
4、已知三棱锥的四个顶点都在球O的球面
上,且
,
,
,
,
, 求球O的体积。
500
3
知识回顾 Knowledge Review
祝您成功!