华师大版九年级数学上册阶段强化专训一: 巧用一元二次方程的定义及相关概念求字

合集下载

华东师大初中数学九年级上册一元二次方程及其解法(一)直接开平方法—知识讲解(基础)

华东师大初中数学九年级上册一元二次方程及其解法(一)直接开平方法—知识讲解(基础)

一元二次方程及其解法(一)直接开平方法—知识讲解(基础)【学习目标】1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;2.掌握直接开平方法解方程,会应用此判定方法解决有关问题;3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.要点诠释:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常数项.要点诠释:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.要点二、一元二次方程的解法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x 的一元二次方程,可直接开平方求解,两根是.要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【典型例题】类型一、关于一元二次方程的判定1.判定下列方程是不是一元二次方程: (1); (2).【思路点拨】识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2. 【答案】(1)是;(2)不是. 【解析】(1)整理原方程,得,所以.其中,二次项的系数,所以原方程是一元二次方程. (2)整理原方程,得,所以 .其中,二次项的系数为,所以原方程不是一元二次方程. 【总结升华】不满足(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.的方程都不是一元二次方程,缺一不可. 举一反三:【高清ID 号:388447关联的位置名称(播放点名称):一元二次方程的概念-例1】 【变式】判断下列各式哪些是一元二次方程.①21x x ++;②2960x x -=;③ 2102y =;④215402x x -+=; ⑤ 2230x xy y +-=;⑥ 232y =;⑦ 2(1)(1)x x x +-=.【答案】②③⑥.【解析】①21x x ++不是方程;④215402x x -+=不是整式方程;⑤ 2230x xy y +-=含有2个未知数,不是一元方程;⑦ 2(1)(1)x x x +-=化简后没有二次项,不是2次方程. ②③⑥符合一元二次方程的定义.类型二、一元二次方程的一般形式、各项系数的确定2.把下列方程中的各项系数化为整数,二次项系数化为正数,并求出各项的系数:(1)-3x 2-4x+2=0; (2).【答案与解析】(1)两边都乘-1,就得到方程 3x 2+4x-2=0.各项的系数分别是: a=3,b=4,c=-2. (2)两边同乘-12,得到整数系数方程6x 2-20x+9=0. 各项的系数分别是:.【总结升华】一般地,常根据等式的性质把二次项的系数是负数的一元二次方程调整为二次项系数是正数的一元二次方程;把分数系数的一元二次方程调整为整数系数的一元二次方程.值得注意的是,确定各项的系数时,不应忘记系数的符号,如(1)题中c=-2不能写为c=2, (2)题中不能写为.举一反三:【高清ID 号:388447关联的位置名称(播放点名称):一元二次方程的形式-例3】【变式】将下列方程化为一元二次方程一般形式,并指出二次项系数、一次项系数和常数项: (1)2352x x =-; (2)(1)(1)2a x x x +-=-.【答案】(1)235+2=0x x -,二次项系数是3、一次项系数是-5、常数项是2.(2)(1)(1)2a x x x +-=-化为220,ax x a +--=二次项系数是a 、一次项系数是1、常数项是-a-2.类型三、一元二次方程的解(根)3. 如果关于x 的一元二次方程x 2+px+q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是( ) A .-3,2 B .3,-2 C .2,-3 D .2,3 【答案】A ;【解析】∵ x =2是方程x 2+px+q =0的根,∴ 22+2p+q =0,即2p+q =-4 ①同理,12+p+q =0,即p+q =-1 ② 联立①,②得24,1,p q p q +=-⎧⎨+=-⎩ 解之得:3,2.p q =-⎧⎨=⎩【总结升华】由方程根的定义得到关于系数的方程(组),从而求出系数的方法称为待定系数法,是常用的数学解题方法.即分别用2,1代替方程中未知数x 的值,得到两个关于p 、q 的方程,解方程组可求p 、q 的值.类型四、用直接开平方法解一元二次方程4. (2016春•仙游县月考)求下列x 的值 (1)x 2﹣25=0(2)(x+5)2=16. 【思路点拨】(1)移项后利用直接开方法即可解决.(2)利用直接开方法解决. 【答案与解析】解:(1)∵x 2﹣25=0,∴x2=25,∴x=±5.(2)∵(x+5)2=16,∴x+5=±4,∴x=﹣1或﹣9.【总结升华】应当注意,形如=k或(nx+m)2=k(k≥0)的方程是最简单的一元二次方程,“开平方”是解这种方程最直接的方法.“开平方”也是解一般的一元二次方程的基本思路之一.举一反三:【变式1】用直接开平方法求下列各方程的根:(1)x2=361;(2)2y2-72=0;(3)5a2-1=0;(4)-8m2+36=0.【答案】(1)∵ x2=361,∴ x=19或x=-19.(2)∵2y2-72=0,2y2=72,y2=36,∴ y=6或y=-6.(3)∵5a2-1=0,5a2=1,a2=,∴a=或a=-.(4)∵-8m2+36=0,-8m2=-36,m2=,∴m=或m=-.【变式2】解下列方程:(1) (2015 •东西湖区校级模拟)(2x+3)2-25=0;(2)(1﹣2x)2=x2﹣6x+9.【答案】解:(1)∵ (2x+3)2=25,∴ 2x+3=5或2x+3=-5.∴x1=1,x2=-4.(2)∵(1﹣2x)2=x2﹣6x+9,∴(1﹣2x)2=(x﹣3)2,∴1﹣2x=±(x﹣3),∴1﹣2x=x﹣3或1﹣2x=﹣(x﹣3),∴x1=43,x2=﹣2.。

华东师大版初三数学上册一元二次方程知识点-2019年学习文档

华东师大版初三数学上册一元二次方程知识点-2019年学习文档

华东师大版初三数学上册一元二次方程知识点只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,查字典数学网整理了一元二次方程知识点,具体内容请看下文。

知识点
1.一元二次方程得一般形式特点为方程右边是0,方程左边是关于x的二次整式。

2.“a≠0”是一元二次方程的一个重要组成部分,也是它的一个判断标准之一,但b、c可以为0。

若没有出现bx,则b=0;没有出现c,则c=0。

3.可以通过“去分母,去括号,移项,合并同类项”等步骤得到一元二次方程得一般形式。

【一元一次方程的解】
1.一元二次方程的解(根)的意义:
能使一元二次方程左右两边相等的未知数的值是一元二次方程的解。

又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根。

2.一元二次方程一定有两个解,但不一定有两个实数解。

这x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量。

ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0)
3.对一元二次方程ax2+bx+c=0(a≠0)来说当判别式
△=b2-4ac>0时方程有两个解△=b2-4ac=0时方程有一个解△=b2-4ac
一元二次方程知识点的全部内容就是这些,预祝大家在新学期可以更好的学习。

华师大版2019秋九年级数学上册专题 3.类比归纳专题:一元二次方程的解法

华师大版2019秋九年级数学上册专题 3.类比归纳专题:一元二次方程的解法

类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一 一元二次方程的一般解法方法点拨: 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)⎝⎛⎭⎫x -522-14=0;(2)x 2-6x +7=0;(3)x 2-22x +18=0;(4)3x (2x +1)=4x +2.◆*类型二 一元二次方程的特殊解法 一、十字相乘法方法点拨:例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确), 第2种拆法:2x -2x =0(错误),所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1.2.解一元二次方程x 2+2x -3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程: (1)x 2-5x -6=0; (2)x 2+9x -36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b =_______.5.解方程:(x 2+5x +1)(x 2+5x +7)=7.1.解:(1)移项,得⎝⎛⎭⎫x -522=14, 两边开平方,得x -52=±14, 即x -52=12或x -52=-12,∴x 1=3,x 2=2;(2)移项,得x 2-6x =-7,配方,得x 2-6x +9=-7+9,即(x -3)2=2, 两边开平方,得x -3=±2, ∴x 1=3+2,x 2=3-2;(3)原方程可化为8x 2-42x +1=0. ∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0, ∴x =-(-42)±02×8=24,∴x 1=x 2=24; |(4)原方程可变形为(2x +1)(3x -2) =0,∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.2. x -1=0或x +3=0.3.解:(1)原方程可变形为(x -6)(x +1) =0,∴x -6=0或x +1=0, ∴x 1=6,x 2=-1;(2)原方程可变形为(x +12)(x -3) =0,∴x +12=0或x -3=0, ∴x 1=-12,x 2=3. 4.-12或15.解:设x 2+5x +1=t ,则原方程化为t (t +6)=7,∴t 2+6t -7=0,解得t =1或-7.当t =1时,x 2+5x +1=1,x 2+5x =0, x (x +5)=0,∴x =0或x +5=0,∴x 1=0,x 2=-5; 当t =-7时,x 2+5x +1=-7,x 2+5x +8=0,∴b 2-4ac =52-4×1×8<0,此时方程 无实数根.∴原方程的解为x 1=0,x 2=-5.。

华东师大版数学九年级上册22章一元二次方程复习课件(第一课时共30张)

华东师大版数学九年级上册22章一元二次方程复习课件(第一课时共30张)
故m=-1 二次项系数非零是一元二次方程存在 的前提条件!
及时反馈
1、下列方程是不是一元二次方程,若不是 一元二次方程,请说明理由:
(1) (x-1)2=4 (2) x2-2x=8 (3) x2=y+1
(4) x3-2x2=1 (5) ax2+bx+c=0 (6) 32x+x=1 (7) x2-3x+4=x2-7 (8) 3x2 1 2 0
华东师大版九年级上册
第22章 一元二次方程 章末复习 第一课时
学而不疑则怠,疑而不探则空
全章知识结构
一元二次方程 方程两边都是整式
的定义
只含有一个未知数
一 ax²+bx+c=0(a0) 未知数的最高次数是2

直接开平方法 (x a)2 b b 0

次 一元二次方程

的解法

因式分解法 (x a)(x b) 0
⑤(x-3)2=2(3-x) ⑥5(m+2)2=8 ⑦3y2-y-1=0
⑧2x2+4x-1=0 ⑨(x-2)2-16=0 ⑩x2-6x-9991=0
合适运用直接开平方法的

合适运用因式分解法的

合适运用公式法的

合适运用配方法的
.
3、将4个数a、b、c、d排成2行2列,两边各加
一条竖线记成 a
c
b ,定义 a
一元二次方程,则( C )
A、m=±2
B、m=2
C、m=-2
D、m≠ ±2
4、若 m 2x2 m 2x 2 0是关于x的一元
二次方程,则m 。
5、若方程 (m 2)xm2 2 (m 1)x 2 0 是 关于x的一元二次方程,则m的值为 。

华师大版数学九年级上第3讲 一元二次方程及解法

华师大版数学九年级上第3讲 一元二次方程及解法

第3讲 一元二次方程及解法【引例】小明把一张边长为10cm 的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子,如果要求长方体的底面积为81cm 2,那么剪去的正方形的边长是多少?设剪去的正方形的边长为xcm ,你能列出满足条件的方程吗?列出的方程是知识要点梳理:一元二次方程的概念:1、只含有 个未知数,并且未知数的最高次数是 ,这样的整式方程,叫做一元二次方程。

2、一元二次方程的一般形式: ,其中 是二次项, 是一次项, 是常数项, 是二次项系数 , 是一次项系数。

3、一元二次方程的解(根):使得方程成立的未知数的值4、形如2x =a(a ≥0)或(mx+n )2=a(a ≥0)的方程可用直接开方法求解5、复习完全平方公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-尝试解方程:x 2-4x +3=0我们把方程x 2-4x +3=0变形为(x -2)2=1,它的左边是一个含有未知数的完全平方式,右边是一个非负常数.这样,就能应用直接开平方的方法求解.这种解一元二次方程的方法叫做配方法.练一练 :配方.填空:(1)x 2+6x +( )=(x + )2; (2)x 2-8x +( )=(x - )2;(3)x 2+23x +( )=(x + )2; 经典例题:例1.判断下列方程是否为一元二次方程。

(1)8142=x ; (2)y x 3)1(22=-; (3)x x 4152=-; (4)02112=-+xx ; (5)1322-+x x ; (6))2(5)1(3+=-x x x ; 例2 将下列一元二次方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数。

(1)8142=x (2))2(5)1(3+=-x x x例3.解下列方程:(1)x 2-2=0; (2)16x 2-25=0.(3)64)3(2=+x (4)49)121(42=-x(5)0862=+-x x例4.已知关于x 的方程122)2(222-+=--x x kx x k 是一元一次方程,求k 的值,并求出这个方程的解?例5. 用配方法解下列方程:(1)x 2-6x -7=0; (2)x 2+3x -1=0.解(1)移项,得x 2-6x =____.方程左边配方,得x 2-2·x ·3+ 2=7+ ,即( )2= .所以 x -3=_______.原方程的解是x 1=_____,x 2=____.(2)移项,得x 2+3x =1.方程左边配方,得x 2+3x +( )2=1+____,即 ____________________所以___________________原方程的解是: x 1=______________x 2=___________例2.用配方法解下列方程:(1)011242=--x x (2)03232=-+x x (3)03422=+-x x经典练习:一、选择题1.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对2. 若9x 2 -ax +4是一个完全平方式,则a 等于( );A. 12B. -12C. 12或-12D. 6或-63.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-14.把方程x x 432=+,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=25.用配方法解方程x 2+4x=10的根为( )A .2±10B .-2±14C .-2+10D .2-10 二、填空用适当的数填空:①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )2⑤ (x - )2 = x 2 - 32x + ; 三.用配方法解方程:(1)x 2+8x -2=0 (2)x 2-5x -6=0.(3)2x 2-x=6 (4)4x 2-6x +( )=4(x - )2=(2x - )2作业练习1.如果2是方程x 2﹣3x +k=0的一个根,则常数k 的值为( )A .1B .2C .﹣1D .﹣22.若1﹣是方程x 2﹣2x +c=0的一个根,则c 的值为( )A .﹣2B .4﹣2 C .3﹣ D .1+3.若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.﹣1或4 B.﹣1或﹣4 C.1或﹣4 D.1或44.用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=35.若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.96.一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4二.填空题(共5小题)7.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.8.已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=.9.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=.10.方程(x﹣1)2=4的解为.11.若将方程x2+6x=7化为(x+m)2=16,则m=.三.解答题(共3小题)12.解方程:(x﹣3)2﹣9=0.13.解方程:x2+4x﹣1=0.14.解方程:x2﹣6x﹣4=0.因式分解法知识要点梳理:1.分解因式的方法有:提公因式法、利用平方差公式分解因式、利用完全平方公式分解因式、十字相乘法、分组分解法等2.因式分解法解一元二次方程的原理:000==⇔=b a ab 或经典例题例1:用因式分解法解下列方程:(1) t (2t -1)=3(2t -1); (2) y 2+7y +6=0(3)(2x -1)(x -1)=1. (4)0)34()43(22=---x x例2:用适当方法解下列方程: (1)3(1-x )2=27; (2)x 2-6x -19=0;(3)3x 2=4x +1; (4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0; (6)4(3x +1)2=25(x -2)2.练习题:1、解方程:2(x ﹣3)2=x 2﹣9.2、解方程:(x ﹣3)(x ﹣1)=3.3、解方程:(1)())3(332-=-x x x (2)0910x 2=+-x(3)()22x 1x 2+=+ (4)()0)32(33222=---x x公式法知识要点梳理1.一元二次方程ax 2 +bx +c =0的求根公式:利用这个公式,我们可以由一元二次方程中系数a 、b 、c 的值,直接求得方程的解,这种解方程的方法叫做公式法.2.根的判别式:ac b 42-=∆① 当b 2-4ac >0时,方程有2个不相等的实数根;② 当b 2-4ac =0时,方程有2个相等的实数根x 1=x 2=ab 2- ③ 当b 2-4ac <0时,方程无实数根.经典例题例1.用配方法解一元二次方程ax 2+bx +c =0(a ≠0).因为a ≠0,方程两边都除以a ,得_____________________=0. 移项,得 x 2+ab x =________, 配方,得 x 2+a b x +______=______-ac , 即 (____________) 2=___________因为a ≠0,所以4 a 2>0,当b 2-4 ac ≥0时,直接开平方,得_____________________________.所以x =_______________________ x =aac b b 242-±-( b 2-4 ac ≥0)例2.不解方程,判断方程根的情况。

初三数学 一元二次方程复习知识精讲 华东师大版

初三数学 一元二次方程复习知识精讲 华东师大版

初三数学 一元二次方程复习知识精讲 华东师大版【同步教育信息】一. 本周教学内容:第23章 一元二次方程复习复习目标:⑴了解一元二次方程的有关概念.⑵能灵活运用直接开平方法、配方法、公式法、•因式分解法解一元二次方程. ⑶会根据根的判别式判断一元二次方程的根的情况.⑷知道一元二次方程根与系数的关系,并会运用它解决有关问题.⑸能运用一元二次方程解决简单的实际问题.⑹了解数学解题中的方程思想、转化思想、分类讨论思想和整体思想.二. 基础知识回顾1. 方程中只含有_______•未知数,•并且未知数的最高次数是_______,•这样的______的方程叫做一元二次方程,通常可写成如下的一般形式:_______( )其中二次项系数是______,一次项系数是______,常数项是________.例如:一元二次方程7x -3=2x 2化成一般形式是________•其中二次项系数是_____、一次项系数是_______、常数项是________.2. 解一元二次方程的一般解法有⑴_________;⑵________;⑶•_________;•⑷•求根公式法,•求根公式是______________.3. 一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式是____________,当_______时,它有两个不相等的实数根;当_________时,它有两个相等的实数根;当_______时,•它没有实数根.例如:不解方程,判断下列方程根的情况:⑴x (5x +21)=20 ⑵x 2+9=6x ⑶x 2-3x =-54. 设一元二次方程x 2+px +q =0的两个根分别为x 1,x 2,则x 1+x 2=_______,x 1·x 2=______.例如:方程x 2+3x -11=0的两个根分别为x 1,x 2,则x 1+x 2=________;x 1·x 2=_______.5. 设一元二次方程ax 2+bx +c =0(a≠0)的两个根分别为x 1,x 2,则x 1+x 2=•_______,•x 1·x 2=________.三. 重点讲解1. 了解一元二次方程的概念,对有关一元二次方程定义的题目,要充分考虑定义的三个特点,即①是整式方程;②化简后只含有一个未知数;③未知数的最高次数是2.2. 解一元二次方程时,应根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.3 .一元二次方程20(0)ax bx c a ++=≠的根的判别式正反都成立.利用其可以⑴不解方程判定方程根的情况;⑵根据参系数的性质确定根的X 围;⑶解与根有关的证明题.4. 一元二次方程根与系数的应用很多:⑴已知方程的一根,不解方程求另一根及参系数;⑵已知方程,求含有两根对称式的代数式的值及有关未知数系数;⑶已知方程两根,求作以方程两根或其代数式为根的一元二次方程.5. 能够列出一元二次方程解应用题.能够发现、提出日常生活、生产或其他学科中可以利用一元二次方程来解决的实际问题,并正确地用语言表述问题及其解决过程.6. 本章解题思想总结:⑴转化思想转化思想是初中数学最常见的一种思想方法.运用转化的思想可将未知数的问题转化为已知的问题,将复杂的问题转化为简单的问题.在本章中,将解一元二次方程转化为求平方根问题,将二次方程利用因式分解转化为一次方程等.⑵从特殊到一般的思想从特殊到一般是我们认识世界的普遍规律,通过对特殊现象的研究得出一般结论,如从用直接开平方法解特殊的问题到配方法到公式法,再如探索一元二次方程根与系数的关系等.⑶分类讨论的思想一元二次方程根的判别式体现了分类讨论的思想.四. 易错点点拨易错点1:对一元二次方程的定义的理解.判断一个方程是否一元二次方程,关键是将整式方程化简后只含有一个未知数,且未知数的最高次数为2,特别地,当二次项的系数用字母表示时,二次项系数不为零不能漏掉.易错点2:一元二次方程的一般形式.在确定一元二次方程的二次项、一次项及常数项时,一定要将一元二次方程化为一般形式.易错点3:关于解一元二次方程时的易错点.⑴是在解形如“2x x =”这样的方程时,千万不能在方程左右两边都除以x ,从而造成方程丢根;⑵用配方法时,当二次项的系数不为1时,应将二次项系数化为1,再将方程左边配成完全平方式;⑶利用公式法求一元二次方程的解时,要先判断24b ac -必须非负才能求解;⑷利用因式分解法求一元二次方程的解时,方程右边一定要变为0.易错点4:在用一元二次方程解决有关实际问题时,注意运用转化思想,如图形问题中,如何通过平移,旋转等变换把不规则的图形转化为规则的图形.另外,对于增长率问题,要把握基础数与总数的关系.特别地,一元二次方程的两个解,一定要会判断检验其是否符合实际意义.【典型例题】考点1:一元二次方程的概念及一般形式相关知识:只含有一个未知数的整式方程,并且都可以化为ax 2+bx +c =0(a 、b 、c 为常数,a≠0)的形式,这样的方程叫做一元二次方程.一元二次方程的一般形式:ax 2+bx +c =0(a ≠0).复习策略:准确理解一元二次方程的定义,一元二次方程首先是整式方程,然后是经过化简后能得到一元二次方程的一般形式的方程才是一元二次方程.例1. ⑴下列方程是关于x 的一元二次方程的是 ( )A.23(1)2(1)x x +=+ B.21120x x+-= C.20ax bx c ++= D.2221x x x +=-⑵方程215x x -=的一次项的系数是. 分析:⑴选A .因为B 选项含有分式,不是一元二次方程;C 选项由于a 的取值不确定,有可能等于0,不一定是一元二次方程;D 选项化简后是一元一次方程.⑵确定一元二次方程的二次项、一次项及常数项时,一定要将方程化为一般形式.解:⑴选A .⑵5或-5.【评注】概念性的问题关键是抓住概念的本质.一元二次方程必须符合三个条件:①是整式方程;②化简后只含一个未知数;③未知数的最高次数为2.考点2:一元二次方程的解相关知识:使一元二次方程左右两边的值相等的未知数的值,叫做一元二次方程的解,或叫做一元二次方程的根.复习策略:要判断一个值是否是一元二次方程的解,只要将这个值代入一元二次方程,看看方程左右两边是否相等即可.相等,则是方程的解;反之,则不是.例2. 如果关于x 的一元二次方程22(2)340m x x m -++-=有一个解是0,求m 的值. 分析:根据方程的解的意义可知,当x =0时,方程左右两边相等,此题即是求当x =0时,m 的值.但同时一定要记住,当方程是一元二次方程时,二次项系数不为0这一前提条件,即m -2≠0.解:将x =0 代入方程中,得: 22(2)03040m m -⨯-⨯+-=,整理得:24m =,2m =±.∵方程为关于x 的一元二次方程,∴m -2≠0,即 m ≠2∴m 的值为-2.【评注】已知方程的解确定方程中的待定系数的值,是逆向思维的运用,有时将方程的解代入方程中,可能还会出现含两个待定系数的方程,这时要注意整体思想方法的运用.考点3:了解方程并判定方程根的情况相关知识:一元二次方程根的判别:⑴当24b ac ->0时,方程有两个不相等的实数根;⑵当24b ac -=0时,方程有两个相等的实数根;⑶当24b ac -<0时,方程没有实数根.反之也成立.复习策略:要掌握一元二次方程根的判别式的应用:①不解方程判别根的情况;②根据方程解的情况确定系数的取值X 围;③求解与根有关的综合题.例3. ⑴(2007某某市)一元二次方程2210x x --=的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根⑵(2007某某某某)若关于x 的一元二次方程02.2=+-m x x 没有实数根,则实数m 的取值X 围是( )A. m <lB. m >-1C. m >lD. m <-1分析:⑴判定一元二方程的根的情况,一种方法是根据乘方的定义,即任何一个数的平方都是非负数来确定;另一种方法就是根据“Δ=24b ac -”的值来确定.⑵一元二次方程根的判别式的性质反用也成立,即已知根的情况,可以得到一个等式或不等式,从而确定系数的值或取值X 围.解:⑴因为方程Δ=24b ac -=2(2)41(1)--⨯⨯-=8>0,所以方程有两个不相等的实数根,故选B ;⑵根据一元二次方程根的判别式可得:2(2)4m --<0 ,解得:m >l ,故选C .【评注】一元二次方程根的判别式的运用,是一正一反的过程,在运用时,一定要明确是确定方程的根的情况还是根据根的情况确定字母系数的值或X 围,从而选择正用还是逆用.考点4:解一元二次方程相关知识:我们知道,一元二次方程的解法有四种:直接开平方法、因式分解法、配方法和公式法.而解一元二次方程的关键是判断方程的特点,选择最佳解题方法,其基本思想是“ 降次”,把二次转化为一次.这四种方法各有千秋,在解一元二次方程时可根据方程的特点,选用最佳解法.复习策略:灵活选用一元二次方程的解法,可从以下几点考虑:⑴对于形如x 2=a (a ≥0)或(mx -n )2=a (m ≠0, a ≥0)的方程,可根据平方根的意义,用直接开平方的方法求解.⑵如果一元二次方程缺少常数项,或方程的右边为0,左边很容易分解因式,可考虑用因式分解法.⑶当一元二次方程的二次项系数为1,一次项的系数是偶数时,可考虑使用配方法. ⑷如果用以上几种方法都不易求解时,可考虑用公式法求解.例4. 解下列方程:⑴(x +1)2=12⑵(2x +1) (3x -1)=1⑶2x (x +2)+1=0⑷16-x 2-4x =0⑸3(x -2)2=x (x -2)解析:⑴方程形如(x +m )2=n (n ≥0),所以选用直接开平方法解简便.另外,把方程整理成一般形式之后,如果一次项系数等于零,也选用直接开平方法来解.用直接开平方法:得 x +1x 1-1, x 2= -1. ⑵方程整理为 6x 2+x -2=0;其左边可分解成(2x -1)(3x +2),所以选用因式分解法.当然,如果方程中常数项为零,一次项系数不为零也可用因式分解法.用因式分解法:(2x -1)(3x +2)=0 ∴x 1=12,x 2=-23. ⑶方程整理成一般形式:2x 2+4x +1=0;左边不能在有理数X 围内因式分解,所以选用公式法简便.用公式法:∵b 2-4ac =42-4×2×1=8,∴x =2b a -±1±2⑷方程整理为 x 2+4x -16=0;由于不易分解,且系数简单,可选用配方法,当然也可用公式法.(此题用配方法写解题过程)整理方程得:x 2+4x =16 配方得x 2+4x +4=16+4 (x +2)2=20 则x +2=±∴x 1=2, x 2= -2.⑸观察方程特点,方程左右两边都有因式(x -2),当然用因式分解法了.由3(x -2)2=x (x -2)得3(x -2)2-x (x -2)=0 因式分解为得(x -2)[3(x -2)-x]=0∴x -2=0或2x -6=0, ∴x 1=2, x 2=3.由以上解析可以这样来总结:解一元二次方程,首先要把原方程变形为一般形式,然后计算b 2-4ac ,最后考虑用何种方法求解.如果b 2-4ac 是完全平方数,则用因式分解法,如果b 2-4ac 不是完全平方数且大于零,则用公式法,配方法实际是公式法的推导过程,因此,除题目要求,一般不用配方法.例5. 解方程:⑴(2007)解方程:2410x x +-=.⑵(2007某某某某)解方程:x 2+3=3(x +1).分析:⑴根据计算:Δ=24b ac -=20,其值不是完全平方数,所以不宜用因式分解法,因此,可考虑配方法或公式法来解.⑵方程先化成一般形式x 2-3x =0,再分析,很明显用因式分解法.解:⑴配方,得:(x +2)2=5,解得:x 1=-2x 2=-2;⑵原方程化为:x 2-3x =0,解得:1x =0,2x =3【评注】一元二次方程的四种解法用哪一种解法最简便,是因题而异的,解题步骤也不是如上面总结一成不变的,必须经过对题目的观察与分析,才能选择适当方法,使解题过程简捷.考点5:根据根与系数的关系,求与方程的根有关的代数式的值相关知识: 一元二次方程根与系数的关系:若一元二次方程20ax bx c ++=(a 、b 、c 为已知数,a ≠0,240b ac -≥)的两个实数根为12,x x ,则ac x x ,a b x x 2121=-=+.即:一元二次方程两个根的和等于方程的一次项系数除以二次项系数的商的相反数;两个根的积等于常数项除以二次项系数的商.复习策略:根与系数的关系存在的前提是:①a≠0,即方程一定是一元二次方程;②b 2-4ac≥0,即方程一定有实数根.根据新课标的要求,在课改实验区的中考试题中,运用一元二次方程根与系数的关系的考题主要是求与方程的根有关的代数式的值的题型.例6. ⑴(2007某某某某)若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足2121x x x x =+.则k 的值为( )(A )-1或34(B )-1 (C )34(D )不存在 ⑵(2007某某德阳)阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a+=-,a c x x 21=.根据该材料填空: 已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______ 分析:以上所选的两道中考题,属于同一种类型,即都是根据一元二次方程根与系数的关系,分别求得12x x +和12x x 的值,⑴是利用方程思想求字母系数k 的值,特别要注意一元二次方程一定有实数根这一前提条件的检验.⑵是求代数式2112x x x x +的值时,要先转化为含有12x x +和21x x ⋅的形式.解:⑴由题意,得:12x x +=-k ,21x x =243k -,再代入2121x x x x =+,得:-k=243k -,即:2430k k +-=,所以(1)(43)0k k +-=,解得k 的值为-1或34; 又∵k =-1时,方程为:210x x -+=,该方程无解,∴舍去.故选C .⑵因为2112x x x x +=221212x x x x +=2121212()2x x x x x x +-,再将12x x +=-6和3x x 21=代入,得:原式=36233-⨯=10. 【评注】不解方程,利用一元二次方程根与系数的关系求两个代数式的值关键是把所给的代数式经过恒等变形,化为含12x x +,21x x ⋅的形式,然后把12x x +,21x x ⋅的值代入,即可求出所求代数式的值.常见的代数式变形有:①222121212()2x x x x x x +=+-②12121211x x x x x x ++= ③212122221212()211()x x x x x x x x +-+=④22112121212()2x x x x x x x x x x +-+=⑤12x x -=考点6: 一元二次方程的应用相关知识:应用一元二次方程解决实际问题的步骤:在日常生活实践中,许多问题都可以通过建立一元二次方程这个模型来进行求解,然后回到实际问题中去进行解释和检验.首先要把实际问题加以分析,抽象成数学问题,然后用数学知识去解决它.应用一元二次方程解决实际问题的步骤可归结为:“设、找、列、解、验、答”:⑴设:是指设未知数,可分为直接设和间接设.所谓直接设,就是指问什么设什么;在直接设未知数比较难列出方程或者列出的方程比较复杂时,可考虑间接设未知数.⑵找:是指读懂题目,审清题意,明确已知条件和未知条件,找出它们之间的等量关系.⑶列:就是指根据等量关系列出方程.⑷解:就是求出所列方程的解.⑸验:分为两步.一是检验解出的数值是否是方程的解,二是检验方程的解是否符合实际情况.⑹答:就是书写答案,一定要遵循“问什么答什么,怎么问就怎么答”的原则. 以上几个步骤中,审题是基础,找出等量关系是解决问题的关键,能否恰当设元直接影响着列方程和解方程的难易,所以要根据不同的具体情况把握好解题的每一步.复习策略:1. 一元二次方程解应用题应注意:⑴写未知数时必须写清单位,用对单位;列方程时,方程两边必须单位一致;答必须写清单位.⑵注意语言和代数式的转化,要把用语言给出的条件用代数式表示出来.2. 常见的应用题:⑴几何图形的面积问题:这类问题的面积公式是等量关系,如果图形不规则,应分割或组合成规则图形,找出各部分面积之间的关系,再运用规则图形的面积公式列出方程.⑵平均增长(降低)率问题:此类问题是在某个数据的基础上连续增长(降低)两次得到新的数据,解这类问题需牢记公式2(1)a x b +=或2(1)a x b -=,其中a 表示增长(降低)前的数据,x 表示增长或降低率,b 表示后来得到的数据,“+”表示增长,“-”表示降低.[方法·规律]:⑴解此类问题所列的方程,一般用直接开平方法求解.⑵增长率不能为负数,降低率不能大于1.⑶营销问题:解决此类问题首先要清楚几个名称的意义,如成本价、售价、标价、打折、利润、利润率等以及它们之间的等量关系.[梳理·总结]:此类问题常见的等量关系是:“总利润=总售价-总成本”或“总利润=每件商品的利润×销售数量,100⨯售价-进价利润率=%进价” 例7. (2007某某省)据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2008年的利用率提高到60%,求每年的增长率.(取2≈1.41)分析:此题是平均增长率问题,相等关系是“2008年的利用率达到60%”.对于每年产出的农作物秸杆的总量,可以作为1,也可以设一个未知数,在解题中会自然约去.解:设我省每年产出的农作物秸杆总量为a ,合理利用量的增长率是x ,由题意得: 30%a (1+x )2=60%a ,即(1+x )2=2,∴x 1≈0.41,x 2≈-2.41(不合题意舍去).∴x ≈0.41.答:我省每年秸秆合理利用量的增长率约为41%.例8. 一块矩形耕地大小尺寸如图1,如果修筑同样宽的两条“之”字形的道路,如图1所示,余下的部分作为耕地.要使耕地的面积为540m 2,道路的宽应是多少?分析:在面积问题中有一些计算题,如采用平移的方法适当改变图形的形状,可以给解决问题带来意想不到的美妙效果.此题如不采用“平移法”,很难人手.若把“之”字道路平移一下位置,变为图2,则此题即可迎刃而解.图1 图2解:设道路的宽应是x 米,依题意得:(20)(32)540x x --=整理得:2521000x x -+=解得:12250x x ==,(不符合题意,舍去)答:道路的宽应是2米.【评注】方程是反映现实世界数量关系的一个有效的数学模型,在运用一元二次方程解决实际问题时,要注重对数量关系的分析,要有意识地弄清各数量之间的变化规律,用相应的数学知识和我们已有的经验去解决问题.考点7:一元二次方程中考阅读理解题例析与一元二次方程相关的阅读理解问题,是近几年的一种新题型,由于这类问题有助于培养学生的阅读理解能力、创新意识,而备受大家的关注,现略举几例与同学们共赏析. 例9. (2006年某某某某市)阅读下面的例题:解方程:x 2—|x|—2=0解:(1)当x ≥0时,原方程化为x 2—x —2=0,解得:x 1=2,x 2=—1(不合题意,舍去).(2)当x <0时,原方程化为x 2+x —2=0,解得:x 1=1(不合题意,舍去),x 2=—2∴原方程的根是x 1=2,x 2=—2.请参照例题解方程x 2—|x —3|—3=0,则此方程的根是.分析:本题首先请阅读例题的解法,再仿照其方法解类似的一元二次方程.解:当x —3≥0时,原方程化为x 2—x =0,解得x 1=0,x 2=1均不合题意,舍去. 当x —3<0时,原方程化为x 2+x —6=0,解得x 1=2,x 2=—3.∴原方程的根是x 1=2,x 2=—3.故填2,—3.点评:认真看懂例题的解题方法是关键.例10. (2006年某某某某市)先阅读,再填空解题:(1)方程x 2-x -12=0 的根是:x 1=-3,x 2=4,则x 1+x 2=1,x 1·x 2=-12;(2)方程2x 2-7x +3=0的根是:x 1=12,x 2=3,则x 1+x 2=72,x 1·x 2=32; (3)方程x 2-3x +1=0的根是:x 1=, x 2=.则x 1+x 2=,x 1·x 2=;根据以上(1)(2)(3)你能否猜出:如果关于x 的一元二次方程mx 2+nx +p =0(m ≠0且m 、n 、p 为常数)的两根为x 1、x 2,那么x 1+x 2、21x x ⋅与系数m 、n 、p 有什么关系?请写出来你的猜想并说明理由.分析:本题首先请同学们阅读两个一元二次方程的两根之和、两根之积与系数之间的关系,再通过第3个方程的两根之和、两根之积与系数之间的关系特点,归纳猜想出一元二次方程的两个根与系数的关系.解:(3).25—3,25321=+=x x .1,32121=•=+x x x x 猜想.,—2121mp x x m n x x =•=+ ∵一元二次方程mx 2+nx +p =0(m ≠0,且m ,n ,p 为常数)的两个实数根是.24,242221mmp n n x m mp n n x —————=+= ∴m n m mp n n m mp n n x x ——————=++=+24242221, .4)4()(242422222221m p m mp n n m mp n n m mp n n x x ==•+=•———————点评:本题是探索一元二次方程根与系数之间的关系.关于x 的一元二次方程mx 2+nx +p =0(m ≠0,且m ,n ,p 为常数)的两根为x 1,x 2,那么.,—2121m p x x m n x x =•=+由方程(1),(2),(3)的根与系数的关系特点,通过观察、比较、猜想发现一般性规律,并进行验证,培养同学们由特殊到一般的数学思想方法.【模拟试题】(答题时间:40分钟)一、选择题1、(2007某某市)一元二次方程2210x x --=的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根2、(2007某某某某)若关于x 的一元二次方程02.2=+-m x x 没有实数根,则实数m的取值X 围是( )A. m<lB. m>-1C. m>lD. m<-13、(2007某某内江)用配方法解方程2420x x -+=,下列配方正确的是( )A. 2(2)2x -=B. 2(2)2x +=C. 2(2)2x -=-D. 2(2)6x -= 4、(2007某某某某)下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A. x 2+4=0B. 4x 2-4x +1=0C. x 2+x +3=0D. x 2+2x -1=05、(2007某某某某)某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A. 200(1+a%)2=148B. 200(1-a%)2=148C. 200(1-2a%)=148D. 200(1-a 2%)=1486、(2007某某某某)已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值X 围是( )A. m >-1B. m <-2C. m ≥0D. m <07、(2007某某某某)如果2是一元二次方程x 2=c 的一个根,那么常数c 是( )A. 2B. -2C. 4D. -4二、填空题1、(2007某某)已知一元二次方程01322=--x x 的两根为1x 、2x ,则=+21x x2、(2007某某眉山)关于x 的一元二次方程x 2+bx +c =0的两个实数根分别为1和2,则b =______;c =______.3、(2007某某某某)方程220x x -=的解是.4、(2007某某某某)已知方程230x x k -+=有两个相等的实数根,则k =5、(2007某某某某)已知x 是一元二次方程x 2+3x -1=0的实数根,那么代数式235(2)362x x x x x -÷+---的值为____. 6、(2007某某某某)写出一个两实数根符号相反的一元二次方程:__________________。

九年级数学上册 22.2 一元二次方程的解法 中考一元二次方程及其解法聚焦素材 (新版)华东师大版

九年级数学上册 22.2 一元二次方程的解法 中考一元二次方程及其解法聚焦素材 (新版)华东师大版

中考一元二次方程及其解法聚焦一元二次方程及解法是中学数学的重要内容,与解法有关的问题更是中考的必考内容,为了帮助大家了解这部分知识在中考中的考查形式及求解方法,在“知己”的基础上“知彼”,现结合中考试题将这部分知识考查情况归纳如下:一、基础篇(一)概念例1(盐城市)已知x=1是一元二次方程x2-2mx+1=0的一个解,则m的值是()A.1 B.0 C.0或1 D.0或-1析解:本题考查了一元二次方程根的定义,按照根的定义首先将x=1代入该方程解得m=1,故选A。

点评:此类题求解一般将所给的解直接代入所给方程,从而转化为解待定系数的方程。

注意二次项的系数不为0。

(二)一元二次方程的解法1、配方法例2(淮安市)方程x2+4x=2的正根为()A.2-6 B.2+6 C.-2-6 D.-2+6析解:由本方程的特点可知其不适合用因式分解法来解,用公式法也较繁琐,适合用配方法来解,原方程配方得:(x+2)2=2+4=6,解这个方程得:x+2=±6,x1=-2+6,x2=-2-6,由此可得这个方程的正根是-2+6,故选D。

2、公式法例3(福州市)解方程:x2+8x+1=0析解:由题目的特点可知本题适宜用公式法来解,这里a=1,b=8,c=1,则b2-4ac=82-4×1×1=60,所以x=2608±-=21528±-=-4±15,则x1=-4+15,x2=-4-15.3、因式分解法例4(天门市)方程x(x+3)=(x+3)的根为()A、x1=1,x2=3B、x1=1,x2=-3C、x=1D、x=-3析解:本题等号的两边都有x+3,故知适合用因式分解法来解,原方程移项得:x(x+3)-(x+3)=0,提取公因式x+3得:(x -1)(x+3)=0,解得x 1=1,x 2=-3。

点评:解一元二次方程关键是方法的选择。

当一个方程的二次项系数为1,一次项系数为偶数时则适合用配方法;当方程的两边有公因式或易于写成左边是两个因式的积右边是0的形式时就可利用因式分解法来解。

华师大版数学九年级上册第22章《一元二次方程》说课稿

华师大版数学九年级上册第22章《一元二次方程》说课稿

华师大版数学九年级上册第22章《一元二次方程》说课稿一. 教材分析华师大版数学九年级上册第22章《一元二次方程》是整个初中数学的重要内容,它既是对前面知识的综合运用,又是为高中数学打基础。

本章通过引入一元二次方程,让学生了解并掌握一元二次方程的解法、性质及应用。

教材从实际问题出发,引导学生认识一元二次方程,并通过自主探究、合作交流的方式,让学生掌握一元二次方程的解法,进而解决实际问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对代数知识有一定的了解。

但是,对于一元二次方程的理解和应用,还需要加强。

因此,在教学过程中,要充分考虑学生的认知水平,引导学生从实际问题中提出一元二次方程,并通过合作交流,探讨解决问题的方法。

三. 说教学目标1.知识与技能:让学生掌握一元二次方程的解法,了解一元二次方程的性质,能运用一元二次方程解决实际问题。

2.过程与方法:通过自主探究、合作交流,培养学生的动手操作能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探究、积极合作的精神。

四. 说教学重难点1.重点:一元二次方程的解法及其应用。

2.难点:一元二次方程的解法,特别是因式分解法和求根公式的运用。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中提出一元二次方程,激发学生的学习兴趣。

2.运用多媒体教学手段,展示一元二次方程的解法过程,增强学生的直观感受。

3.小组合作交流,让学生在讨论中思考,在交流中学习。

六. 说教学过程1.引入新课:通过展示实际问题,引导学生提出一元二次方程,激发学生的学习兴趣。

2.自主探究:让学生自主探究一元二次方程的解法,总结解题规律。

3.合作交流:学生进行小组合作交流,分享解题方法,讨论解决问题的策略。

4.课堂讲解:对一元二次方程的解法进行讲解,重点讲解因式分解法和求根公式的运用。

5.巩固练习:布置练习题,让学生巩固所学知识,运用一元二次方程解决实际问题。

华师大版-数学-九年级上册- 23.1一元二次方程 巧用一元二次方程根的定义解题

华师大版-数学-九年级上册- 23.1一元二次方程 巧用一元二次方程根的定义解题

巧用一元二次方程根的定义解题巧用一元二次方程根的定义,在解题过程中能够快速找到解题途径,会收到事半功倍的效果,举例说明如下:一、求方程中字母的值例1.已知2是关于x 的方程240x x c -+=的一个根,则c 的值是 .解:由方程根的定义,把2x =+((22420c -++=∴,1c =∴. 二、求代数式的值例2.已知α是方程2200510x x -+=的一个根,求22200520041ααα-++的值. 解:由方程根的定义,得2200510(0)ααα-+=≠, 222005112005αααα∴-=-+=,,2222200520052004200511ααααααα-+=-++++∴ 20051112005αααα=-++=-++ 211120052004αα+=-+=-+=. 例3.已知12x x ,是方程290x x --=的两个实根,求代数式321227366x x x ++-的值.解:由已知条件根据根的定义,得2211229090x x x x --=--=,,即:22112299x x x x =+=+,,又由根与系数关系,得121x x +=,321227366x x x ++-∴1122(9)7(9)366x x x x =++++-11299103x x x =+++-1210()6x x =++16=.三、求公共根的问题例4.已知关于方程20x px q ++=与20x qx p ++=只有一个公共根,求2005()p q +的值.解:设α是已知两个方程的一个公共根,那么2200p q q p αααα++=++=,, 22p q q p αααα++=++∴,()p q p q α-=-∴,1α=∴.把1α=代入20x px q ++=得1p q +=-, 20052005()(1)1p q +=-=-∴.四、逆用方程根的定义构造一元二次方程解决问题例5.已知221010p p q q --=--=,且1pq ≠,求:q pq 1+的值. 解:由210p p --=及210q q --=,可知00p q ≠≠,,又1pq ≠,1p q≠∴. 210q q --=∴可变形为21110q q ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,根据210p p --=和21110q q ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭的特征,所以p 与q1是方程210x x --=的两个不相等的实数根. 则11p q +=,11pq q+=∴. 五、用于证明题例6.已知12x x ,是方程20ax bx c ++=的两个实根,112s x x =+,22212s x x =+,33312s x x =+. 求证:3210as bs cs ++=.证明:由方程根的定义,得22112200ax bx c ax bx c ++=++=,,3322321121212()()()as bs cs a x x b x x c x x ++=+++++∴3322121212ax ax bx bx cx cx =+++++323111222()()ax bx cx ax bx cx =+++++22111222()()x ax bx c x ax bx c =+++++12000x x =+=.。

华师版数学九年级上册强化专训-用一元二次方程解一般应用问题

华师版数学九年级上册强化专训-用一元二次方程解一般应用问题

华师版数学九年级上册阶段强化专训用一元二次方程解一般应用问题一、学习目标1、继续探索实际问题中的数量关系,列出一元二次方程并求解,能根据问题的实际意义,检验所得结果是否合理,进一步培养分析问题和解决问题的能力。

2、会运用方程模型解决增长率问题,二、学习重点重点:运用一元二次方程知识解决一般应用问题。

难点:设辅助未知数。

(2)自主预习1.某磷肥厂今年一月份的磷肥产量为4万吨,若二月份的产量增长率为x,则二月份产量为 ,若三月份的产量的增长率是二月份的两倍,则三月份的产量为。

2.某林场现有的木材蓄积量为a立方米,预计在今后两年内木材蓄积量的年平均增长率为p0,那么两年后该临场木材蓄积量为立方米。

3.学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为x,则今年年底的图书数是________万册;同样,明年年底的图书数是万册,则可列得方程:____________ ________=7.2四、合作探究某药品经过两次降价,每瓶零售价由56元降为31.5元。

已知两次降价的百分率相同,求每次降价的百分率。

五、巩固反馈1.某工厂一月份的产值是50000元,3月份的产值达到60000元,这两个月的产值平均月增长的百分率是多少?2.某商店二月份营业额为50万元,春节过后三月份下降了30%,四月份有回升,五月份又比四月份增加了5个百分点(即增加了5%),营业额达到48.3万元.求四、五两个月平均增长的百分率。

3.市第四中学初三年级初一开学时就参加课程改革试验,重视学生能力培养.初一阶段就有48人在市级以上各项活动中得奖,之后逐年增加,到三年级结束共有183人次在市级以上得奖.求这两年中得奖人次的平均年增长率。

4.为了绿化学校附近的荒山,某校初三年级学生连续三年春季上山植树,至今已成活了2000棵.已知这些学生在初一时种了400棵,若平均成活率95%,求这个年级两年来植树数的平均年增长率.(精确到1%)。

华师版数学九年级上册强化专训-因式分解法

华师版数学九年级上册强化专训-因式分解法

华师版数学九年级上册阶段强化专训因式分解法解一元二次方程说课稿一、教材分析1、教材的地位和作用一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。

我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学生学习可化为一元二次方程的分式方程、二次函数等知识的基础。

初中数学中,一些常用的解题方法、计算技巧以及主要的数学思想,在本章教材中都有比较多的体现、应用和提升。

我们从知识的横向上来看,学习一元二次方程对其它学科有重要意义。

很多实际问题都需要通过列、解一元二次方程来解决。

而我们想通过一元二次方程来解决实际问题,首先就要学会一元二次方程的解法。

解二次方程的基本策略是将其转化为一次方程,这就是降次。

本节课由简到难的展开学习,使学生认识即配方法、公式法后又一种新的解法因式分解法的基本原理并掌握其具体方法。

2、学生学情任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。

这就要求我们教师必须从学生的认知结构和心理特征出发。

分析初中学生的心理特征,他们有强烈的好奇心和求知欲。

当他们在解决实际问题时,发现要解的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的配方法问题。

而从学生的认知结构上来看,前面我们已经系统的研究了完全平方公式、二次根式,用配方法公式法后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。

3、教学目标根据大纲的要求、本节教材的内容和学生的心理特征及已有的知识经验,本节课的三维目标主要体现在:知识与能力目标:(1)理解因式分解法的思想,掌握用因式分解法解一元二次方程;(2)能利用方程解决实际问题,并增强学生的数学应用意识和能力。

过程与方法目标:通过利用因式分解法将一元二次方程变形的过程,体会“等价转化”的数学思想方法。

情感与态度目标:培养学生主动探究的精神与积极参与的意识。

22.1 一元二次方程九年级数学上册同步教学辅导讲义(华师大版)

22.1 一元二次方程九年级数学上册同步教学辅导讲义(华师大版)

22.1一元二次方程根底知识1.一元二次方程的定义:只含有一个未知数且未知数的最高次数是2的整式方程叫一元二次方程。

可以说,一元二次方程的定义包含三个条件:①整式方程;②只含有一个未知数;③未知数的最高次数是2。

三个条件缺一不可。

2.一元二次方程一般形式:一元二次方程一般形式是:02=++c bx ax 〔c b a a 、、,0≠是常数〕。

其中2ax叫做二次项,bx 叫做一次项,c 叫做常数项,b a 、分别是二次项、一次项的系数;各项及系数要注意包括符号。

【提醒】任何一个一元二次方程不可缺少二次项,即0≠a ;但可以缺一次项和常数项,即c b ,均可以为0。

3.一元二次方程的解的意义:使一元二次方程左右两边相等的值叫做一元二次方程的解。

一元二次方程的解也叫一元二次方程的根。

【注意】①一元二次方程可以无解,但是有解就一定有两个解;②可用代入法检验一个数是否是一元二次方程的解,以及求待定常数。

例题例.x =1是一元二次方程ax 2+bx -40=0的一个根,且a ≠b ,求2222a b a b--的值.【答案】20 【分析】先根据一元二次方程的解得到a+b=40,然后把原式进行化简得到=12〔a+b 〕,再利用整体代入的方法计算; 【详解】把x=1代入方程得a+b-40=0,即a+b=40,所以原式=()()()10222a b a b a b a b +-=+=-() .练习1.以下方程中,是关于x 的一元二次方程的是〔〕. A .2240x x +-= B .2834x x +=- C .32x x -=D .572x x =- 2.方程(25)410x x x -=-化为一元二次方程的一般形式是〔 〕 A .2x 2﹣9x +10=0 B .2x 2﹣x +10=0 C .2x 2+14x ﹣10=0D .2x 2+3x ﹣10=03.方程2310x x --=的二次项系数和一次项系数分别为〔〕 A .1和3B .1和3-C .0和1-D .3-和1-4.关于x 的一元二次方程()22395m x m x x -+=+化为一般形式后不含一次项,那么m的值为〔〕 A .0B .±3C .3D .-35.关于x 的一元二次方程x 2+5x ﹣m =0的一个根是2,那么m 的值为〔〕 A .7B .9C .14D .166.假设a 是关于x 的方程3x 2﹣x ﹣1=0的一个根,那么2021﹣6a 2+2a 的值是〔〕 A .2023B .2022C .2021D .20217.假设关于x 的方程130m x +-=是一元二次方程,那么m =_____.8.假设〔a ﹣2〕x 2﹣6x+1=0是关于x 的一元二次方程,那么a 的取值范围为___. 9.假设m 是方程210x x +-=一个根,那么代数式2222021m m ++的值为________. 10.一元二次方程23670x x --=的二次项系数是_________,常数项是________. 11.a 是方程2310x x --=的一个实数根,那么232021a a -+的值为______. 12.为解决群众看病贵的问题,某区有关部门决定降低药价,对某种原价为280元的药品进行连续两次降价,降价后的价格为240元,设平均每次降价的百分率为x ,由题意可列方程__________.13.关于x 的一元二次方程〔a+1〕x 2+2x+1﹣a 2=0有一个根为﹣1,求a 的值. 14.x =﹣1是一元二次方程20x ax b ++=的一个根,求2222a b ab +--的值. 15.将方程y 2﹣y (﹣4y +1)=1化为一般形式〔要求二次项系数为正数〕,写出二次项的系数,一次项和常数项.参考答案1.A 【分析】此题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案. 【详解】解:A 、本方程符合一元二次方程的定义;故本选项正确. B 、本方程的未知数的最高次数是1;故本选项错误; C 、本方程的未知数的最高次数是3;故本选项错误; D 、本方程不是整式方程,是分式方程;故本选项错误;此题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2. 2.A 【分析】根据一元二次方程一般式的概念即可求出答案. 【详解】解:(25)410x x x -=-,225410x x x ∴-=-, 229100x x ∴-+=,应选:A . 【点睛】此题考查一元二次方程,解题的关键是熟练运用一元二次方程的概念,此题属于根底题型. 3.B 【分析】根据一元二次方程的一般形式确定出二次项系数与一次项系数即可. 【详解】解:方程2310x x --=的二次项系数和一次项系数分别为1和3-. 应选:B . 【点睛】此题考查了一元二次方程的一般形式,且一般形式为ax 2+bx +c =0〔a ,b ,c 为常数且a ≠0〕. 4.D 【分析】把原方程化为一般形式,根据一元二次方程的定义、一次项的概念列式计算即可. 【详解】解:∵()22395m x m x x -+=+, ∴()()223950m x m x -+--=,由题意得:m -3≠0且m 2-9=0, 解得:m =-3,此题主要考查一元二次方程的定义,把一元二次方程化为一般形式,是解题的关键.5.C【分析】根据题意把x=2代入一元二次方程进行求解即可.【详解】解:由题意可把x=2代入一元二次方程x2+5x﹣m=0得:m+-=,4100m;解得:14应选C.【点睛】此题主要考查一元二次方程的解,熟练掌握一元二次方程的解是解题的关键.6.D【分析】先把a代入方程得到3a2-a=1,然前方程两边都乘以-2得-6a2+2a=-2,从而求出答案.【详解】解:由题意得:3a2-a-1=0,∴3a2-a=1,∴-6a2+2a=-2,∴2021﹣6a2+2a =2021-2=2021.应选:D.【点睛】此题考查的是逆用一元二次方程解的定义得出-6a2+2a的值,因此在解题时要重视解题思路的逆向分析.7.1【分析】此题根据一元二次方程的定义求解,一元二次方程必须满足两个条件:〔1〕未知数的最高次数是2;〔2〕二次项系数不为0,据此解答即可.【详解】m,解:由题意得:+1=2m=,那么1故答案为:1. 【点睛】此题主要考查了一元二次方程的概念,只有一个未知数且未知数的最高次数为2的整式方程叫做一元二次方程,一般形式是20ax bx c ++=(且0a ≠),特别要注意0a ≠的条件,这是做题中容易无视的知识点. 8.2a ≠ 【分析】根据一元二次方程的定义,得到关于a 的不等式,解之即可. 【详解】 解:根据题意得:20a -≠,解得:2a ≠, 故答案是:2a ≠. 【点睛】此题考查了一元二次方程的定义,正确掌握一元二次方程的定义是解题的关键. 9.2023 【分析】先根据一元二次方程的根的定义可得21m m +=,再作为整体代入即可得. 【详解】解:由题意得:210m m +-=,即21m m +=, 当21m m +=时,代入原式可得: 原式212021=⨯+2023=,故答案为:2023. 【点睛】此题考查了一元二次方程的根、代数式求值,掌握理解一元二次方程的根的定义是解题关键. 10.3-7 【分析】根据一元二次方程的一般形式找出二次项系数和常数项即可. 【详解】解:一元二次方程23670x x --=的二次项系数为3;常数项为-7, 故答案为:3;-7. 【点睛】此题主要考查了一元二次方程的一般形式,且形式为20(,,ax bx c a b c ++=为常数且0a ≠).11.2022 【分析】根据一元二次方程的解的定义,将a 的值代入方程,即可求得2(3)a a -的值,从而求得232021a a -+的值.【详解】解:a 是方程2310x x --=的一个实数根,∴将a 的值代入2310x x --=中得,2310a a --=,即231a a -=,232021*********a a ∴-+=+=,故答案为:2022. 【点睛】此题主要考查一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值. 12.2280(1)240x -= 【分析】设平均每次的降价率为x ,那么经过两次降价后的价格是280〔1-x 〕2,根据关键语句“连续两次降价后为240元,〞可得方程2280(1)240x -=. 【详解】解:设平均每次的降价率为x ,那么经过两次降价后的价格是280〔1-x 〕2,根据题意得: 故答案为:2280(1)240x -=. 【点睛】此题主要考查了一元二次方程平均变化率的问题.假设设变化前的量为a ,变化后的量为b ,平均变化率为x ,那么经过两次变化后的数量关系为a 〔1±x 〕2=b . 13.a =0或a =1 【分析】将x =﹣1代入原方程可求出a 的值. 【详解】解:将x =﹣1代入原方程,得〔a+1〕﹣2+1﹣a 2=0, 整理得:a 2﹣a =0, 即:a 〔a ﹣1〕=0 解得:a =0或a =1. 【点睛】此题考查了一元二次方程的解,将x=-1代入原方程求出a 值是解题的关键. 14.﹣1. 【分析】将x =﹣1代入20x ax b ++=可得1a b -=,再将所求代数式化简即可得. 【详解】解:∵x =﹣1是一元二次方程20x ax b ++=的一个根,1a b ∴-=.222222)2(21a b ab a b ∴+-=-=-=--(1)-.【点睛】此题考查了一元二次方程根的特征、用完全平方差公式化简求值;关键在于知道方程的根是满足方程的条件.15.二次项的系数为5,一次项和常数项分别是﹣y 、﹣1. 【分析】先把方程整理,根据整理的方程写出二次项系数、一次项和常数项. 【详解】解:去括号,得y 2+4y 2﹣y =1, 整理,得5y 2﹣y ﹣1=0.所以二次项的系数为5,一次项和常数项分别是﹣y 、﹣1. 【点睛】此题考查了一元二次方程的一般形式和二次项系数、一次项及常数项的定义.解决此题的关键是根据要求把方程化为一元二次方程的一般形式.。

华师版数学九年级上册强化专训-用一元二次方程解一般应用问题(2)

华师版数学九年级上册强化专训-用一元二次方程解一般应用问题(2)

华师版数学九年级上册阶段强化专训用一元二次方程解一般问题【学习目标】1. 根据实际问题会列一元二次方程,并求出实际问题的解;2. 根据具体问题的实际意义,检验结果的合理性;3.体会通过建立方程解决实际问题的意义和方法。

【过程与方法】让学生经历由实际问题转化为数学模型的过程,领悟数学建模思想,体会如何寻找实际问题中的等量关系.【情感态度】通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神.【学习重点】体会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力。

【学习难点】如何把实际问题转化为数学模型。

一、知识回顾知识点1:基本知识(1)一元二次方程的一般形式:(2)一元二次方程的解法:开平方法;分解因式法;配方法;公式法。

(3)判别式:①当判别式时,方程有两个不相等的实数根;②当时,方程没有实数根;当判别式时,方程有两个相等的实数根.(4)根与系数的关系:设一元二次方程的二根分别为,则,.知识点2:列方程解决问题的一般步骤(1)“审”。

阅读理解题意,确定已知,未知,以及它们之间的数量关系。

(2)“设”。

在审题的基础上设立未知数帮助理解,建立相等的数量关系。

(3)“列”。

根据题意,列出含有未知数的等式。

(4)“解”。

就是求出所列方程的解。

(5)“检”。

就是解应用题既要检验有无增根,又要检验是否符合题意。

(6)“答”。

就是书写答案。

但要注意,求出解后,要进行检验。

知识点3:列一元二次方程解决实际问题的常见题型(1)平均增长(降低)率问题(包括百分率,折旧率,利息率)(2)数字问题(3)开放题型的讨论二、学习新知例1:小明同学将100元压岁钱第一次按一年期储蓄存入“少儿银行”,到期后将本金和利息取出,并将其中50元捐给“希望工程”,剩余的全部按一年定期存入,这时存款的年利率调到第一次存款时年利率的一半,这样到期后,可得本金和利息共63元,求第一次存款时的年利率.解:设第一次存款时间利率为.解之:,(舍去)答:第一次存款的年利率为10%.例2:汽车交易市场有一辆原价为12万元的车,但已使用三年,如果第一年的折旧率为20%,以后其折旧率有所变化,现知第三年这辆轿车值7.776万元,求这辆轿车第二年,第三年平均的折旧率.解:设这辆轿车的第二、第三年平均折旧率为.∴,(舍去)答:平均折旧率为10%.例3:一个容器中盛满的纯药液,倒出纯药液后,用水加满,再倒出等量的液体,再用水加满,此时容器中的药液与水之比为,问每次倒出液体多少升?解:设每次倒出液体∴(舍去)答:每次倒出液体为6升.。

数学九年级上册考点强化专训一元二次方程

数学九年级上册考点强化专训一元二次方程

数学九年级上册阶段强化专训一元二次方程一、学习目标1.会根据具体问题列出一元二次方程,体会方程的模型思想.2.理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项.二、学习重点重点:由实际问题列出一元二次方程和一元二次方程的概念.难点:准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项.三、自主预习小明把一张边长为10cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子,如果要求长方体的底面积为81cm2,那么剪去的正方形的边长是多少?列出的方程是练习:根据题意列出方程:1.一个正方形的面积的2倍等于50,这个正方形的边长是多少?2.一个数比另一个数大3,且这两个数之积为这个数,求这个数.3.一块面积是150cm2长方形铁片,它的长比宽多5cm,则铁片的长是多少?四、合作探究探究1.判断下列方程是否为一元二次方程。

小结:只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程.探究2.将下列一元二次方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数.(1)8142 x (2))2(5)1(3 x x x 小结:一元二次方程的一般形式: ,其中 二次项, 是一次项, 是常数项, 二次项系数 , 一次项系数.五、巩固反馈1.将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)3x 2-x =2 (2)7x -3=2x 2(3)(2x -1)-3x (x -2)=0 (4)2x (x -1)=3(x +5)-42.要使02)1()1(1 x k x k k 是一元二次方程,则k=_______.3.关于x 的一元二次方程043)2(22 m x x m 有一个解是0,求m 的值.4.已知关于x 的方程1222 x kx x k )(,问:(1)当k 为何值时,方程为一元二次方程?(2)当k 为何值时,方程为一元一次方程?。

华东师大初中数学九年级上册《一元二次方程》全章复习与巩固—知识讲解(提高)

华东师大初中数学九年级上册《一元二次方程》全章复习与巩固—知识讲解(提高)

《一元二次方程》全章复习与巩固—知识讲解(提高)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念 1. 一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2. 一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. 要点二、一元二次方程的解法 1.基本思想一元二次方程−−−→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法.要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆. (1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根.【高清ID 号:388528 关联的位置名称(播放点名称):根系关系】 2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释:1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题: (1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数; (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程. 要点四、列一元二次方程解应用题 1.列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等); 设 (设未知数,有时会用未知数表示相关的量); 列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义); 答 (写出答案,切忌答非所问). 4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.已知(m -1)x |m|+1+3x -2=0是关于x 的一元二次方程,求m 的值. 【答案与解析】依题意得|m|+1=2,即|m|=1, 解得m =±1,又∵m -1≠0,∴m ≠1, 故m =-1.【总结升华】依题意可知m -1≠0与|m|+1=2必须同时成立,因此求出满足上述两个条件的m 的值即可.特别是二次项系数应为非零数这一隐含条件要注意.举一反三:【变式】若方程2(310m m xmx --=是关于x 的一元二次方程,求m 的值.【答案】根据题意得22,0,m m ⎧=⎪⎨≠⎪⎩ 解得所以当方程2(310m m x mx --=是关于x的一元二次方程时,m =类型二、一元二次方程的解法2.解下列一元二次方程.(1)224(3)25(2)0x x ---=; (2)225(3)9x x -=-; (3)2(21)4(21)40x x ++++=. 【答案与解析】(1)原方程可化为:22[2(3)][5(2)]0x x ---=,即(2x-6)2-(5x-10)2=0,∴ (2x-6+5x-10)(2x-6-5x+10)=0, 即(7x-16)(-3x+4)=0,∴ 7x-16=0或-3x+4=0,∴ 1167x =,243x =. (2)25(3)(3)(3)x x x -=+-,25(3)(3)(3)0x x x --+-=, ∴ (x-3)[5(x-3)-(x+3)]=0,即(x-3)(4x-18)=0,∴ x-3=0或4x-18=0,∴ 13x =,292x =. (3)2(21)4(21)40x x ++++=,∴ 2(212)0x ++=.即2(23)0x +=,∴ 1232x x ==-. 【总结升华】 (1)方程左边可变形为22[2(3)][5(2)]x x ---,因此可用平方差公式分解因式;(2)中方程右边分解后为(x-3)(x+3),与左边中的(x-3)2有公共的因式,可移项后提取公因式(x-3)后解题;(3)的左边具有完全平方公式的特点,可用公式变为(2x+1+2)2=0再求解.举一反三:【变式】解方程: (1)3x+15=-2x 2-10x ; (2)x 2-3x =(2-x)(x-3). 【答案】(1)移项,得3x+15+(2x 2+10x)=0,∴ 3(x+5)+2x(x+5)=0, 即(x+5)(3+2x)=0,∴ x+5=0或3+2x =0,∴ 15x =-,232x =-. (2)原方程可化为x(x-3)=(2-x)(x-3),移项,x(x-3)-(2-x)(x-3)=0, ∴ (x-3)(2x-2)=0,∴ x-3=0或2x-2=0,∴ 13x =,21x =.类型三、一元二次方程根的判别式的应用3.关于x 的方程2(5)410a x x ---=有实数根.则a 满足( ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5【答案】A ;【解析】①当50a -=,即5a =时,有410x --=,14x =-,有实数根; ②当50a -≠时,由△≥0得2(4)4(5)(1)0a --⨯-⨯-≥,解得1a ≥且5a ≠.综上所述,使关于x 的方程2(5)410a x x ---=有实数根的a 的取值范围是1a ≥.答案:A【总结升华】注意“关于x 的方程”与“关于x 的一元二次方程”的区别,前者既可以是一元一次方程,也可以是一元二次方程,所以必须分类讨论,而后者隐含着二次项系数不能为0.【高清ID 号:388528 关联的位置名称(播放点名称):一元二次方程的根的判别式】4. k 为何值时,关于x 的二次方程2690kx x -+= (1)k 满足 时,方程有两个不等的实数根; (2)k 满足 时,方程有两个相等的实数根; (3)k 满足 时,方程无实数根. 【答案】(1)10k k ≠<,且;(2)1k =;(3)1k >. 【解析】求判别式,注意二次项系数的取值范围. 【总结升华】根据判别式ac b 42-=∆及k ≠0求解.类型四、一元二次方程的根与系数的关系5.(2016•凉山州)已知x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,则x 1﹣x 1x 2+x 2的值是( ) A .B .C .D .【思路点拨】由x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,结合根与系数的关系可得出x 1+x 2=﹣,x 1•x 2=﹣2,将其代入x 1﹣x 1x 2+x 2中即可算出结果.【答案】D . 【解析】解:∵x 1、x 2是一元二次方程3x 2=6﹣2x 的两根, ∴x 1+x 2=﹣=﹣,x 1•x 2==﹣2,∴x 1﹣x 1x 2+x 2=﹣﹣(﹣2)=. 故选D .【总结升华】本题考查了根与系数的关系,解题的关键是得出x 1+x 2=﹣,x 1•x 2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键. 举一反三:【变式】已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根1x 、2x . (1)求k 的取值范围;(2)是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在, 请说明理由. 【答案】(1)根据题意,得△=(2k-3)2-4(k-1)(k+1)=224129412130k k k k -+-=-+>,所以1312k <.由k-1≠0,得k ≠1. 当1312k <且k ≠1时,方程有两个不相等的实数根;(2) 不存在.如果方程的两个实数根互为相反数,则122301k x x k -+=-=-,解得32k =. 当32k =时,判别式△=-5<0,方程没有实数根. 所以不存在实数k ,使方程的两个实数根互为相反数.类型五、一元二次方程的应用6.(2015•青岛模拟)随着青奥会的临近,青奥特许商品销售逐渐火爆.甲、乙两家青奥商品专卖店一月份销售额分别为10万元和15万元,三月份销售额甲店比乙店多10万元.已知甲店二、三月份销售额的月平均增长率是乙店二、三月份月平均增长率的2倍,求甲店、乙店这两个月的月平均增长率各是多少? 【答案与解析】解:设乙店销售额月平均增长率为x ,由题意得:10(1+2x )2﹣15(1+x )2=10, 解得 x 1=60%,x 2=﹣1(舍去). 2x=120%.答:甲、乙两店这两个月的月平均增长率分别是120%、60%.【总结升华】此题考查了一元二次方程的应用,为运用方程解决实际问题的应用题型. 举一反三:【变式】某工程队在我市实施棚户区改造过程中承包了一项拆迁工程。

2020-2021学年最新华东师大版九年级数学上册《一元二次方程》阶段强化专题训练及解析-精编试题

2020-2021学年最新华东师大版九年级数学上册《一元二次方程》阶段强化专题训练及解析-精编试题

阶段强化专训一:巧用一元二次方程的定义及相关概念求字母或代数式的值名师点金:巧用一元二次方程的定义及相关概念求值主要体现在:利用定义或项的概念求字母的值,利用根的概念求字母或代数式的值,利用根的概念解决探究性问题等.利用一元二次方程的定义确定字母的取值1.已知(m-3)x2+m+2x=1是关于x的一元二次方程,则m的取值范围是( )A.m≠3 B.m≥3C.m≥-2 D.m≥-2且m≠32.已知关于x的方程(m+1)xm2+1+(m-2)x-1=0.(1)m取何值时,它是一元二次方程?并写出这个方程;(2)m取何值时,它是一元一次方程?利用一元二次方程的项的概念求字母的取值3.若关于x的一元二次方程(2a-4)x2+(3a+6)x+a-8=0没有常数项,则a的值为________.4.已知关于x的一元二次方程(m-1)x2+5x+m2-1=0的常数项为0,求m 的值.利用一元二次方程的根的概念求字母或代数式的值5.已知关于x的方程x2+bx+a=0的一个根是-a(a≠0),则a-b的值为( )A.-1 B.0 C.1 D.26.已知关于x的一元二次方程(k+4)x2+3x-16=0的一个根为0,求k的值.7.已知实数a是一元二次方程x2-2 016x+1=0的根,求代数式a2-2 015a-a2+12 016的值.利用一元二次方程根的概念解决探究性问题8.已知m,n是方程x2-2x-1=0的两个根,是否存在实数a使(7m2-14m +a)(3n2-6n-7)的值等于8?若存在,求出a的值;若不存在,请说明理由.阶段强化专训二:一元二次方程的解法名师点金:解一元二次方程时,主要考虑降次,其解法有直接开平方法、因式分解法、配方法和公式法等.在具体的解题过程中,结合方程的特点选择合适的方法,往往会达到事半功倍的效果.限定方法解一元二次方程方法1 形如(x+m)2=n(n≥0)的一元二次方程用直接开平方法求解1.方程4x2-25=0的解为( )A.x=25B.x=52C.x=±52D.x=±252.用直接开平方法解下列一元二次方程,其中无实数解的方程为( ) A.x2-5=5 B.-3x2=0C.x2+4=0 D.(x+1)2=0方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解3.用配方法解方程x2+3=4x,配方后的方程变为( )A.(x-2)2=7 B.(x+2)2=1C.(x-2)2=1 D.(x+2)2=24.解方程:x2+4x-2=0.5.已知x2-10x+y2-16y+89=0,求xy的值.方法3 能化成形如(x+a)(x+b)=0的一元二次方程用因式分解法求解6.(中考·宁夏)一元二次方程x(x-2)=2-x的根是( )A.-1 B.0C.1和2 D.-1和27.解下列一元二次方程:(1)x2-2x=0;(2)16x2-9=0;(3)4x2=4x-1.方法4 如果一个一元二次方程易化为它的一般式,则用公式法求解8.用公式法解一元二次方程x2-14=2x,方程的解应是( )A.x=-2±52B.x=2±52C.x=1±52D.x=1±329.用公式法解下列方程.(1)3(x2+1)-7x=0;(2)4x2-3x-5=x-2.选择合适的方法解一元二次方程10.方程4x2-49=0的解为( )A.x=27B.x=72C.x1=72,x2=-72D.x1=27,x2=-2711.一元二次方程x2-9=3-x的根是( )A.3 B.-4 C.3和-4 D.3和4 12.方程(x+1)(x-3)=5的解是( )A.x1=1,x2=-3 B.x1=4,x2=-2C.x1=-1,x2=3 D.x1=-4,x2=213.解下列方程.(1)3y2-3y-6=0;(2)2x2-3x+1=0.用特殊方法解一元二次方程方法1 构造法14.解方程:6x2+19x+10=0.方法2 换元法a.整体换元15.已知x2-2xy+y2+x-y-6=0,则x-y的值是( ) A.-2或3 B.2或-3C.-1或6 D.1或-616.解方程:(x-1)(x-2)(x-3)(x-4)=48.b.降次换元17.解方程:6x4-35x3+62x2-35x+6=0. c.倒数换元18.解方程:x-2x-3xx-2=2.配方法解方程19.若m,n,p满足m-n=8,mn+p2+16=0,求m+n+p的值.特殊值法解一元二次方程20.解方程:(x-2 013)(x-2 014)=2 015×2 016.阶段强化专训三:根的判别式的四种常见应用名师点金:对于一元二次方程ax2+bx+c=0(a≠0),式子b2-4ac的值决定了一元二次方程的根的情况,利用根的判别式可以不解方程直接判断方程根的情况,反过来,利用方程根的情况可以确定方程中待定系数的值或取值范围.利用根的判别式判断一元二次方程根的情况1.(中考·潍坊)已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是( )A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=-1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解2.已知关于x的方程x2-2x-m=0没有实数根,试判断关于x的方程x2+2mx+m(m+1)=0的根的情况.利用根的判别式求字母的值或取值范围3.(2015·咸宁)已知关于x的一元二次方程mx2-(m+2)x+2=0,(1)证明:不论m为何值,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.利用根的判别式求代数式的值4.(2015·福州改编)已知关于x的方程x2+(2m-1)x+4=0有两个相等的实数根,求m-1(2m-1)2+2m的值.利用根的判别式确定三角形的形状5.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程(a +c)x 2+bx +a -c 4=0有两个相等的实数根,试判断此三角形的形状.阶段强化专训四: 一元二次方程与三角形的综合名师点金:一元二次方程是初中数学重点内容之一,常常与其他知识结合,其中一元二次方程与三角形的综合应用就是非常重要的一种,主要考查一元二次方程的根的概念、根的判别式的应用、一元二次方程的解法及与等腰三角形、直角三角形的性质等知识的综合运用.一元二次方程与三角形三边关系的综合1.三角形的两边长分别为4和6,第三边长是方程x 2-7x +12=0的解,则第三边的长为( )A.3 B.4 C.3或4 D.无法确定2.根据一元二次方程根的定义,解答下列问题.一个三角形两边长分别为3 cm和7 cm,第三边长为a cm,且整数a满足a2-10a+21=0,求三角形的周长.解:由已知可得4<a<10,则a可取5,6,7,8,9.(第一步)当a=5时,代入a2-10a+21得52-10×5+21=-4≠0,故a=5不是方程的根.同理可知a=6,a=8,a=9都不是方程的根,a=7是方程的根.(第二步) ∴三角形的周长是3+7+7=17(cm).上述过程中,第一步是根据_____________________________________________________________________ ____________________________________________________________________ _______,第二步应用的数学思想是__________,确定a值的大小是根据______________.一元二次方程与直角三角形的结合3.已知一个直角三角形的两条直角边的长恰好是方程x2-17x+60=0的两个根,则这个直角三角形的斜边长为________.4.已知a,b,c分别是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2max=0有两个相等的实数根,试判断△ABC的形状,并说明理由.5.已知△ABC的三边a,b,c中,a=b-1,c=b+1,又已知关于x的方程4x2-20x+b+12=0的根恰为b的值,求△ABC的面积.(∠A,∠B,∠C的对边分别为a,b,c)一元二次方程与等腰三角形的综合6.等腰三角形一条边的长为3,另两条边的长是关于x的一元二次方程x2-12x+k=0的两个根,则k的值是( )A.27 B.36 C.27或36 D.187.已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC的三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.阶段强化专训五:可化为一元二次方程的分式方程的应用名师点金:可化为一元二次方程的分式方程的实际应用较广泛,一般应用于营销、行程、工程等问题中,解分式方程的基本思路就是化归,去掉分母后转化为一元二次方程,但最后一定要验根,有时可能会产生增根或不符合题意的根.营销问题1.某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完,第二次去采购时发现批发价每件上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件,两批玩具的售价均为2.8元,问:第二次采购玩具多少件?(说明:根据销售常识,批发价应该低于销售价)2.小明的爸爸下岗后,做起了经营水果的生意,一天,他先去水果批发市场,用100元购甲种水果,用150元购乙种水果,乙种水果比甲种水果多购进10千克,乙种水果的批发价比甲种水果的批发价每千克高0.50元,然后到零售市场,都按每千克2.8元零售,结果乙种水果很快售完,甲种水果售出45时,出现滞销,他便按原售价的5折售完剩下的水果,请你帮小明的爸爸算一算,这天卖水果是赔钱了还是赚钱了(不考虑其他因素)?若赔钱,赔多少?若赚钱,赚多少?行程问题3.从甲站到乙站有150千米,一列快车和一列慢车同时从甲站匀速开出,1小时后快车在慢车前12千米,快车到达乙站比慢车早25分钟,快车和慢车每小时各行驶多少千米?工程问题4.某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天才能完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天;(2)若甲工程队单独施工a天后,再由甲、乙两工程队合作________天(用含a的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需收取施工费1万元,乙工程队施工每天需收取施工费2.5万元,那么甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?答案阶段强化专训一1.D 点拨:由题意,得⎩⎪⎨⎪⎧m -3≠0,m +2≥0,解得m ≥-2且m ≠3. 2.解:(1)当⎩⎪⎨⎪⎧m 2+1=2,m +1≠0时,它是一元二次方程,解得m =1. 当m =1时,原方程可化为2x 2-x -1=0.(2)当⎩⎪⎨⎪⎧m -2≠0,m +1=0或者当m +1+(m -2)≠0且m 2+1=1时,它是一元一次方程.解得m =-1或m =0.故当m =-1或m =0时,它是一元一次方程.3.8 点拨:由题意得⎩⎪⎨⎪⎧a -8=0,2a -4≠0.解得a =8. 4.解:由题意,得⎩⎪⎨⎪⎧m 2-1=0,m -1≠0,解得m =-1. 5.A 点拨:∵关于x 的方程x 2+bx +a =0的一个根是-a(a ≠0),∴a 2-ab +a =0.∴a(a -b +1)=0.∵a ≠0,∴a -b =-1.6.解:把x =0代入(k +4)x 2+3x -16=0,得k2-16=0,解得k=±4.∵k+4≠0,∴k≠-4,∴k=4.7.解:∵实数a是一元二次方程x2-2 016x+1=0的根,∴a2-2 016a+1=0.∴a2+1=2 016a,a2-2 016a=-1.∴a2-2 015a-a2+12 016=a2-2 015a-2 016a2 016=a2-2 015a-a=a2-2 016a=-1.8.解:由题意可知m2-2m-1=0,n2-2n-1=0,即m2-2m=1,n2-2n =1.∴(7m2-14m+a)(3n2-6n-7)=[7(m2-2m)+a][3(n2-2n)-7]=(7+a)(3-7)=-4(a+7),由-4(a+7)=8得a=-9,故存在满足要求的实数a,且a的值等于-9.阶段强化专训二1.C 2.C 3.C4.解:x2+4x-2=0,x2+4x =2,(x+2)2=6,x+2 =±6,∴x1=-2+6,x2=-2- 6.5.解:x2-10x+y2-16y+89=0,(x2-10x+25)+(y2-16y+64) =0,(x-5)2+(y-8)2=0,∴x=5,y=8,∴xy=58.6.D7.解:(1)x2-2x=0,x(x-2)=0,x1=0,x2=2.(2)16x2-9=0,(4x+3)(4x-3)=0,x1=-34,x2=34.(3)4x2=4x-1,4x2-4x+1=0,(2x-1)2=0,x1=x2=12.8.B9.解:(1)3(x2+1)-7x=0,3x2-7x+3=0,∴b2-4ac=(-7)2-4×3×3=13,∴x=7±132×3=7±136.∴x1=7+136,x2=7-136.(2)4x2-3x-5=x-2,4x2-4x-3=0,∴b 2-4ac =(-4)2-4×4×(-3)=64,∴x =4±642×4,∴x 1=32,x 2=-12.10.C 11.C 12.B13.解:(1)3y 2-3y -6=0,y 2-y -2=0,y 2-y +14-94=0,⎝ ⎛⎭⎪⎫y -122=94,y-12=±32,∴y 1=2,y 2=-1. (2)2x 2-3x +1=0,b 2-4ac =(-3)2-4×2×1=1,∴x =3±12×2,即x 1=1,x 2=12. 14.解:将原方程两边同乘6,得(6x)2+19×(6x)+60=0.解得6x =-15或6x =-4.∴x 1=-52,x 2=-23.15.B16.解:原方程即[(x -1)(x -4)][(x -2)(x -3)]=48, 即(x 2-5x +4)(x 2-5x +6)=48.设y =x 2-5x +5,则原方程变为(y -1)(y +1)=48. 解得y 1=7,y 2=-7. 当x 2-5x +5=7时,解得x1=5+332,x2=5-332;当x2-5x+5=-7时,Δ=(-5)2-4×1×12=-23<0,方程无实数根.∴原方程的根为x1=5+332,x2=5-332.17.解:经验证x=0不是方程的根,原方程两边同除以x2,得6x2-35x+62-35x+6x2=0,即6⎝⎛⎭⎪⎫x2+1x2-35⎝⎛⎭⎪⎫x+1x+62=0.设y=x+1x,则x2+1x2=y2-2,原方程可变为6(y2-2)-35y+62=0.解得y1=52,y2=103.当x+1x=52时,解得x=2或x=12;当x+1x=103时,解得x=3或x=13.经检验,均符合题意.∴原方程的解为x1=2,x2=12,x3=3,x4=13. 18.解:设x-2x=y,则原方程化为y-3y=2,整理得y 2-2y -3=0,∴y 1=3,y 2=-1. 当y =3时,x -2x =3,∴x =-1.当y =-1时,x -2x =-1,∴x =1.经检验,x =±1都是原方程的根, ∴原方程的根为x 1=1,x 2=-1. 19.解:因为m -n =8,所以m =n +8.将m =n +8代入mn +p 2+16=0中,得n(n +8)+p 2+16=0,所以n 2+8n +16+p 2=0,即(n +4)2+p 2=0.又因为(n +4)2≥0,p 2≥0,所以⎩⎪⎨⎪⎧n +4=0,p =0,解得⎩⎪⎨⎪⎧n =-4,p =0.所以m =n +8=4,所以m +n +p =4+(-4)+0=0.20.解:方程组⎩⎪⎨⎪⎧x -2 013=2 016,x -2 014=2 015的解一定是原方程的解,解得x =4 029.方程组⎩⎪⎨⎪⎧x -2 013=-2 015,x -2 014=-2 016的解也一定是原方程的解,解得x =-2.∵原方程最多有两个实数解, ∴原方程的解为x 1=4 029,x 2=-2.点拨:解本题也可采用换元法.设x -2 014=t ,则x -2 013=t +1,原方程可化为t(t +1)=2 015×2 016,先求出t ,进而求出x.阶段强化专训三1.C 点拨:当k=0时,方程为一元一次方程,解为x=1;当k≠0时,因为Δ=(1-k)2-4k·(-1)=k2+2k+1=(k+1)2≥0,所以当k=1时,Δ=4,方程有两个不相等的实数解;当k=-1时,Δ=0,方程有两个相等的实数解;当k≠0时,Δ≥0,方程总有两个实数解.故选C.2.解:∵x2-2x-m=0没有实数根,∴Δ1=(-2)2-4·(-m)=4+4m<0,即m<-1.对于方程x2+2mx+m(m+1)=0,Δ2=(2m)2-4·m(m+1)=-4m>4,∴方程x2+2mx+m(m+1)=0有两个不相等的实数根.3.(1)证明:Δ=[-(m+2)]2-8m=m2-4m+4=(m-2)2.∵不论m为何值,(m-2)2≥0,即Δ≥0.∴不论m为何值,方程总有实数根.(2)解:解关于x的一元二次方程mx2-(m+2)x+2=0,得x=m+2±Δ2m=m+2±(m-2)2m.∴x1=2m,x2=1.∵方程的两个根都是正整数,∴2m是正整数,∴m=1或m=2.又∵方程的两个根不相等,∴m≠2,∴m=1.4.解:∵关于x的方程x2+(2m-1)x+4=0有两个相等的实数根,∴Δ=(2m-1)2-4×1×4=0,即2m-1=±4.∴m=52或m=-32.当m=52时,m-1(2m-1)2+2m=52-116+5=114;当m=-32时,m-1(2m-1)2+2m=-32-116-3=-526.5.解:∵方程(a+c)x2+bx+a-c4=0有两个相等的实数根,∴Δ=b2-4(a+c)·a-c4=b2-(a2-c2)=0,即b2+c2=a2,∴此三角形是直角三角形.阶段强化专训四1.C2.三角形任意两边之和大于第三边,任意两边之差小于第三边;分类讨论;方程根的定义3.134.解:△ABC是直角三角形.理由如下:原方程可化为(b+c)x2-2max+cm-bm=0,Δ=4ma2-4m(c-b)(c+b)=4m(a2+b2-c2).∵m>0,且原方程有两个相等的实数根,∴a2+b2-c2=0,即a2+b2=c2.∴△ABC是直角三角形.5.解:将x=b代入原方程,整理得4b2-19b+12=0,解得b1=4,b2=34.当b=4时,a=3,c=5,∵32+42=52,即a2+b2=c2,∴△ABC为直角三角形,且∠C=90°.∴S△ABC =12ab=12×3×4=6;当b=34时,a=34-1<0,不合题意,舍去.因此,△ABC的面积为6.6.B7.解:(1)△ABC是等腰三角形.理由如下:把x=-1代入原方程,得a+c-2b+a-c=0,所以a=b,故△ABC是等腰三角形.(2)△ABC是直角三角形.理由如下:方程有两个相等的实数根,则Δ=(2b)2-4(a+c)(a-c)=0,所以b2-a2+c2=0,所以a2=b2+c2,故△ABC是直角三角形.(3)如果△ABC是等边三角形,则a=b=c,所以方程可化为2ax2+2ax=0,所以2ax(x+1)=0,所以方程的解为x1=0,x2=-1.阶段强化专训五1.解:方法一:设第二次采购玩具x件,则第一次采购玩具(x-10)件,由题意得100x-10+0.5=150x.整理得x2-110x+3 000=0,解得x1=50,x2=60,经检验x1=50,x2=60都是原方程的解.当x=50时,第二次采购时每件玩具的批发价为150÷50=3(元),高于玩具的售价,不合题意,舍去;当x=60时,第二次采购时每件玩具的批发价为150÷60=2.5(元),低于玩具的售价,符合题意,因此第二次采购玩具60件.方法二:设第一次采购玩具x件,则第二次采购玩具(x+10)件,由题意得100 x+0.5=150x+10,整理得x 2-90x +2 000=0, 解得x 1=40,x 2=50,经检验,x 1=40,x 2=50都是原方程的解.第一次采购40件时,第二次采购40+10=50(件),所以第二次采购每件玩具的批发价为150÷50=3(元),不合题意,舍去;第一次采购50件时,第二次采购50+10=60(件),所以第二次采购每件玩具的批发价为150÷60=2.5(元),符合题意.因此第二次采购玩具60件.2.解:设小明的爸爸购乙种水果x 千克,则购甲种水果(x -10)千克,所以甲种水果的批发价为每千克100x -10元,乙种水果的批发价为每千克150x 元.根据题意得150x -100x -10=0.5.方程两边同乘以x(x -10),整理得x 2-110x +3 000=0, 解之得x 1=50,x 2=60.经检验,x 1=50,x 2=60都是方程的根.当x =50时,乙种水果的批发价为每千克15050=3(元),高于水果零售价,不合题意,舍去.当x =60时,乙种水果的批发价为每千克15060=2.5(元),符合题意;甲种水果的批发价为每千克10060-10=2(元),也符合题意. 因此,小明的爸爸购进乙种水果60千克,购进甲种水果60-10=50(千克),小明的爸爸这一天卖水果盈利:(50×45×2.8+50×15×2.8×12+60×2.8)-(100+150)=44(元).∴小明的爸爸这一天卖水果赚钱了,赚了44元.3.解:设慢车每小时行驶x 千米,则快车每小时行驶(x +12)千米,依题意得150x -150x +12=2560.解得x 1=-72,x 2=60.经检验,x 1=-72,x 2=60都是原方程的解. 但x 1=-72不合题意,应舍去. 故x =60. 所以x +12=72.答:快车每小时行驶72千米,慢车每小时行驶60千米.4.解:(1)设乙工程队单独施工x 天可完成此项工程,则甲工程队单独施工(x +30)天可完成此项工程,由题意得20⎝ ⎛⎭⎪⎫1x +1x +30=1, 整理,得x 2-10x -600=0, 解得x 1=30,x 2=-20.经检验x 1=30,x 2=-20都是分式方程的解,但x 2=-20不符合题意,应舍去,故x =30,x +30=60. 故甲、乙两工程队单独完成此项工程分别需要60天,30天. (2)⎝⎛⎭⎪⎫20-a 3(3)由题意得1×a +(1+2.5)⎝⎛⎭⎪⎫20-a 3≤64,解得a ≥36.故甲工程队至少要单独施工36天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元.。

初三数学第一学期一元二次方程的概念及一元二次方程的解法 华东师大版

初三数学第一学期一元二次方程的概念及一元二次方程的解法 华东师大版

初三数学第一学期一元二次方程的概念及一元二次方程的解法一. 本周教学内容:一元二次方程的概念及一元二次方程的解法二.本周教学难点及重点:重点:一元二次方程的解法。

难点:配方法解一元二次方程。

三. 知识精讲[知识梳理]1. 一元二次方程的定义。

只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程。

[注]:(1)整式方程:方程两边都是关于未知数的整式。

(2)只含一个未知数。

(3)未知数的最高次数是2。

2. 一元二次方程的一般形式。

一般形式是:ax bx c 20++=(a ≠0,a ,b ,c 为常数)其中a 、b 、c 分别叫二次项系数、一次项系数、常数项。

[注]:a ≠03. 一元二次方程的解如果一个数能使一元二次方程左右两边的值相等,那么这个数就是一元二次方程的解。

4. 一元二次方程的解法(1)直接开平方法形如ax b ab 20=>()①,或()()mx n a m a +=≥200≠,②,方程可以利用平方根的定义,用直接开平方法解得其根。

其中①的解是x b a =±,②的解是x n a m=-±。

[注意]因为正数a 的平方根有两个,即±a ,所以利用直接开平方法时要避免丢解。

(2)配方法解一元二次方程把方程变为左边是一个含有未知数的完全平方式,右边是一个非负常数,再利用直接开平方法求解。

[注意]配方的关键是,在二次项系数为1的条件下,方程的两边都加上一次项系数一半的平方。

【典型例题】考查一元二次方程的概念例1. 下列关于x 的方程中,一定是一元二次方程的是()A. ax bx c 20++=B. k x k 2560++=C. 3241202x x --= D. 31202x x+-= 分析:要看一个方程是否为一元二次方程,就要严格按概念来对照,因此解答的关键是理解一元二次方程的概念,在二次项系数不等于零上常会出现错误。

解:A 中最高次项为ax 2,因无法判定a 是否不为零,所以不能确定该方程是否为一元二次方程;B 中最高次项为k 2x ,显然不是关于x 的一元二次方程;C 中方程是一元二次方程;D 中分母含有未知数,所以不是整式方程,从而也一定不是一元二次方程。

华师大版九年级数学上册第22章 一元二次方程解码专训

华师大版九年级数学上册第22章 一元二次方程解码专训

解码专训一:根与系数的关系的四种应用类型名师点金:利用一元二次方程的根与系数的关系可以不解方程,仅通过系数就反映出方程两根的特征.在实数范围内运用一元二次方程的根与系数的关系时,必须注意Δ≥0这个前提,而应用判别式Δ的前提是二次项系数不为0.因此,解题时要注意分析题目中有没有隐含条件Δ≥0和a ≠0.利用根与系数的关系求代数式的值1.设方程4x 2-7x -3=0的两根为x 1,x 2,不解方程求下列各式的值.(1)(x 1-3)(x 2-3);(2)x 2x 1+1+x 1x 2+1;(3)x 1-x 2.利用根与系数的关系构造一元二次方程2.构造一个一元二次方程,使它的两根分别是方程5x 2+2x -3=0各根的负倒数.利用根与系数的关系求字母的值或取值范围3.已知关于x 的一元二次方程2x 2-mx -2m +1=0的两根的平方和是294,求m 的值.巧用根与系数的关系确定字母系数的存在性4.已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根,是否存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立?若存在,求出k 的值;若不存在,请说明理由.解码专训二:一元二次方程中的常见热门考点名师点金:一元二次方程题的类型非常丰富,常见的有一元二次方程的根、一元二次方程的解法、一元二次方程根的情况、一元二次方程根与系数的关系、一元二次方程的应用等,只要我们掌握了不同类型题的解法特点,就可以使问题变得简单,明了.一元二次方程的根1.(2015·兰州)若一元二次方程ax 2-bx -2 015=0有一根为x =-1,则a +b =________.2.若关于x 的一元二次方程ax 2+bx +c =0有一根为-1,且a =4-c +c -4-2,求(a +b )2 0162 015c 的值.一元二次方程的解法3.用配方法解方程x 2-2x -1=0时,配方后所得的方程为( )A .(x +1)2=0B .(x -1)2=0C .(x +1)2=2D .(x -1)2=24.一元二次方程x2-2x-3=0的解是()A.x1=-1,x2=3 B.x1=1,x2=-3C.x1=-1,x2=-3 D.x1=1,x2=35.选择适当的方法解下列方程:(1)(x-1)2+2x(x-1)=0;(2)x2-6x-6=0;(3)6 000(1-x)2=4 860;(4)(10+x)(50-x)=800;(5)(中考·山西)(2x-1)2=x(3x+2)-7.一元二次方程根的判别式6.(2015·河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥17.在等腰三角形ABC中,三边长分别为a,b,c.其中a=5,若关于x的方程x2+(b+2)x+(6-b)=0有两个相等的实数根,求△ABC的周长.8.(2015·南充)已知关于x的一元二次方程(x-1)(x-4)=p2,p为实数.(1)求证:方程有两个不相等的实数根.(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由).一元二次方程根与系数的关系9.已知α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足1α+1β=-1,则m 的值是( )A .3B .1C .3或-1D .-3或110.关于x 的方程ax 2-(3a +1)x +2(a +1)=0有两个不相等的实数根x 1,x 2,且有x 1+x 2-x 1x 2=1-a ,求a 的值.11.设x 1,x 2是关于x 的一元二次方程x 2+2ax +a 2+4a -2=0的两个实数根,当a 为何值时,x 12+x 22有最小值?最小值是多少?一元二次方程的应用12.(2015·乌鲁木齐)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?13.小林准备进行如下操作实验:把一根长为40 cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,小林该怎么剪?(求出剪成的两段铁丝的长度)(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm 2.”他的说法对吗?请说明理由.新定义问题14.(中考·厦门)若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且|x 1|+|x 2|=2|k|(k 是整数),则称方程x 2+bx +c =0为“偶系二次方程”.如方程x 2-6x -27=0,x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0,x 2+4x +4=0都是“偶系二次方程”.判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由.答案解码专训一1.解:根据一元二次方程根与系数的关系,有x 1+x 2=74,x 1x 2=-34.(1)(x 1-3)(x 2-3)=x 1x 2-3(x 1+x 2)+9=-34-3×74+9=3.(2)x 2x 1+1+x 1x 2+1=x 2(x 2+1)+x 1(x 1+1)(x 2+1)(x 1+1)= x 12+x 22+x 1+x 2x 1x 2+x 1+x 2+1=(x 1+x 2)2-2x 1x 2+(x 1+x 2)x 1x 2+(x 1+x 2)+1= ⎝ ⎛⎭⎪⎫742-2×⎝ ⎛⎭⎪⎫-34+74-34+74+1=10132. (3)∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫742-4×⎝ ⎛⎭⎪⎫-34=9716, ∴x 1-x 2=±9716=±1497.2.解:设方程5x 2+2x -3=0的两根为x 1,x 2,则x 1+x 2=-25,x 1x 2=-35.设所求方程为y 2+py +q =0,其两根为y 1,y 2,令y 1=-1x 1,y 2=-1x 2. ∴p =-(y 1+y 2)=-⎝ ⎛⎭⎪⎫-1x 1-1x 2=1x 1+1x 2=x 1+x 2x 1x 2=23,q =y 1y 2=⎝ ⎛⎭⎪⎫-1x 1⎝ ⎛⎭⎪⎫-1x 2=1x 1x 2=-53. ∴所求的方程为y 2+23y -53=0,即3y 2+2y -5=0.3.解:设方程两根为x 1,x 2,由已知得⎩⎪⎨⎪⎧x 1+x 2=m 2,x 1x 2=-2m +12.∵x 12+x 22=(x 1+x 2)2-2x 1x 2=294, 即⎝ ⎛⎭⎪⎫m 22-2×-2m +12=294, ∴m 2+8m -33=0.解得m 1=-11,m 2=3.当m =-11时,方程为2x 2+11x +23=0,Δ=112-4×2×23<0,方程无实数根,∴m =-11不合题意,舍去;当m =3时,方程为2x 2-3x -5=0,Δ=(-3)2-4×2×(-5)>0,方程有两个不相等的实数根,符合题意.∴m 的值为3.4.解:不存在.理由如下:∵一元二次方程4kx 2-4kx +k +1=0有两个实数根,∴k ≠0,且Δ=(-4k)2-4×4k(k +1)=-16k ≥0,∴k <0.∵x 1,x 2是方程4kx 2-4kx +k +1=0的两个实数根,∴x 1+x 2=1,x 1x 2=k +14k .∴(2x 1-x 2)(x 1-2x 2)=2(x 1+x 2)2-9x 1x 2=-k +94k . 又∵(2x 1-x 2)(x 1-2x 2)=-32,∴-k +94k =-32,∴k =95.又∵k<0,∴不存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立.方法总结:对于存在性问题,先根据方程根的情况,利用根的判别式确定出未知字母的取值范围,再利用根与系数的关系求出已知式子中字母的值,验证字母的值是否在其取值范围内.解码专训二1.2 015 点拨:把x =-1代入方程中得到a +b -2 015=0,即a +b =2 015.2.解:∵a =4-c +c -4-2,∴c -4≥0且4-c ≥0,即c =4,则a =-2.又∵-1是一元二次方程ax 2+bx +c =0的根,∴a -b +c =0,∴b =a +c =-2+4=2.∴原式=(-2+2)2 0162 015×4=0. 3.D 4.A5.解:(1)(x -1)2+2x(x -1)=0,(x -1)(x -1+2x) =0,(x -1)(3x -1) =0,∴x 1=1,x 2=13.(2)x 2-6x -6=0,∵a =1,b =-6,c =-6,∴b 2-4ac =(-6)2-4×1×(-6)=60.∴x =6±602=3±15,∴x 1=3+15,x 2=3-15.(3)6 000(1-x)2=4 860,(1-x)2= 0.81,1-x = ±0.9,∴x 1=1.9,x 2=0.1.(4)(10+x)(50-x)=800,x 2-40x +300= 0,∴x 1=10,x 2=30.(5)(2x -1)2=x(3x +2)-7,4x 2-4x +1 =3x 2+2x -7,x 2-6x +8 =0,∴x 1=2,x 2=4.6.B7.解:∵关于x 的方程x 2+(b +2)x +(6-b)=0有两个相等的实数根, ∴Δ=(b +2)2-4(6-b)=0,∴b 1=2,b 2=-10(舍去).当a 为腰时,△ABC 的周长为5+5+2=12.当b 为腰时,2+2<5,不能构成三角形.∴△ABC 的周长为12.8.(1)证明:原方程可化为x 2-5x +4-p 2=0.Δ=(-5)2-4(4-p 2)=9+4p 2.∵p 为实数,则p 2≥0,∴9+4p 2>0.即Δ>0,∴方程有两个不相等的实数根.(2)解:当p 为0,2,-2时,方程有整数解.(答案不唯一)点拨:(1)先将一元二次方程化为一般形式,由题意得,一元二次方程根的判别式b 2-4ac =(-5)2-4×1×(4-p 2)=9+4p 2,易得,9+4p 2>0,从而得证.(2)一元二次方程的解为x =5±9+4p 22,若方程有整数解,则9+4p 2必须是完全平方数,故当p =0、2、-2时,9+4p 2分别对应9、25、25,此时方程的解分别为整数.9.A10.解:由题意,得x 1+x 2=3a +1a ,x 1x 2=2(a +1)a ,∴3a +1a -2(a +1)a=1-a ,∴a 2-1=0,即a =±1.又∵方程有两个不相等的实数根,∴a ≠0,且Δ=[-(3a +1)]2-4a·2(a +1)>0,即a ≠0,且(a -1)2>0,∴a ≠0,且a ≠1,∴a =-1.11.解:∵方程有两个实数根,∴Δ=(2a)2-4(a 2+4a -2)≥0,∴a ≤12.又∵x 1+x 2=-2a ,x 1x 2=a 2+4a -2,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=2(a -2)2-4.∵a ≤12,∴当a =12时,x 12+x 22的值最小.此时x 12+x 22=2⎝ ⎛⎭⎪⎫12-22-4=12,即最小值为12.点拨:本题中考虑Δ≥0从而确定a 的取值范围这一过程易被忽略.12.解:设每件商品降价x 元,则售价为每件(60-x)元,每星期的销量为(300+20x)件.根据题意,得(60-x -40)(300+20x)=6 080.解得x 1=1,x 2=4.又要顾客得实惠,故取x =4,即销售单价为56元.答:应将销售单价定为56元.13.解:(1)设剪成的较短的一段长为x cm ,则较长的一段长为(40-x) cm ,由题意,得⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫40-x 42=58,解得x 1=12,x 2=28.当x =12时,较长的一段长为40-12=28(cm ),当x =28时,较长的一段长为40-28=12(cm )<28cm (舍去).∴较短的一段长为12 cm ,较长的一段长为28 cm .(2)小峰的说法正确.理由如下:设剪成的较短的一段长为m cm ,则较长的一段长就为(40-m) cm ,由题意得⎝ ⎛⎭⎪⎫m 42+⎝ ⎛⎭⎪⎫40-m 42=48,变形为m 2-40m +416=0.∵Δ=(-40)2-4×416=-64<0,∴原方程无实数解,∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm2.14.解:不是.理由如下:解方程x2+x-12=0,得x1=-4,x2=3.|x1|+|x2|=4+3=2×|3.5|.∵3.5不是整数,∴方程x2+x-12=0不是“偶系二次方程”.。

华师大版初三上一元二次方程复习

华师大版初三上一元二次方程复习

课时训练
4.关于x的方程k2x2+(2k-1)x+1=0有实数根,则下列结论 正确的是 ( D ) A.当k=1/2时,方程两根互为相反数 B.当k=0时,方程的根是x=-1 C.当k=±1时,方程两根互为倒数 D.当k≤1/4时,方程有实数根 5. 若关于 x 的一元二次方程 mx2-2x+1=0 有实数根,则 m 的取值范围是 ( D) A.m<1 B. m<1且m≠0 C.m≤1 D. m≤1且m≠0

=0
(2)3x² - y -1=0 (4)x +1/x=0
(3)ax² +bx+c=0
注意:一元二次方程 的三个要素及一个条 件
问题1、方程xy +y² =2是一元二次方程吗?是关于x的一 元二次方程吗?是关于y的一元二次方程吗? 巩固提高:
1、已知关于x的方程(m² --1)x² +(m--1)x--2m+1=0,当m= 次方程,当m= 时是一元一次方程,当m= 时,x=0。
2、若(m+2) x² +(m-2)x--2=0是关于x的一元二次方程则m=
一元二次方程(关于x)
一般形式 二次项系数 一次项系数
时是一元二

常数项
3x² -1=0 3x(x-2)=2(x-2)
二、一元二次方程的解法
你还记得吗?请你选择最恰当的方法解下列一元二次方程 1、3x² -1=0 3、x² -4x-2=0 2、x(2x +3)=5(2x +3) 4、2 x ² -5x+1=0
点评:1、形如(x-k)² =h的方程可以用直接开平方法求解
2、千万记住:方程的两边有相同的含有未知数的因式的时候不能两边都除以这个因式, 因为这样能把方程的一个跟丢失了。要利用因式分解法求解 3、当方程的一次项系数是方程的二次项系数的两倍的时候可以用配方法求解,

最新华东师大初中数学九年级上册《一元二次方程》全章复习与巩固—知识讲解(基础)

最新华东师大初中数学九年级上册《一元二次方程》全章复习与巩固—知识讲解(基础)

《一元二次方程》全章复习与巩固—知识讲解(基础)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.要点二、一元二次方程的解法 1.基本思想一元二次方程−−−→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法. 要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆(1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根.【高清ID 号:388528 关联的位置名称(播放点名称):根系关系】 2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释:1.一元二次方程的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数; (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程. 要点四、列一元二次方程解应用题 1.列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等); 设 (设未知数,有时会用未知数表示相关的量); 列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰); 验 (检验方程的解能否保证实际问题有意义); 答 (写出答案,切忌答非所问). 4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.(2016•诏安县校级模拟)关于x 的一元二次方程(a ﹣1)x 2+x +a 2﹣1=0的一个根是0,则a 的值为( ) A .1B .﹣1C .1或﹣1D .【思路点拨】根据方程的解的定义,把x=0代入方程,即可得到关于a 的方程,再根据一元二次方程的定义即可求解. 【答案】B ;【解析】解:根据题意得:a 2﹣1=0且a ﹣1≠0, 解得:a=﹣1.故选B .【总结升华】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.举一反三:【高清ID 号:388528 关联的位置名称(播放点名称):利用定义求字母的值】 【变式】关于x 的方程22(28)(2)10a a x a x --++-=,当a 时为一元一次方程;当a 时为一元二次方程. 【答案】a =4;a ≠4且a ≠-2.类型二、一元二次方程的解法2.用适当的方法解一元二次方程 (1) 0.5x 2-=0; (2) (x+a)2=;(3) 2x 2-4x-1=0; (4) (1-)x 2=(1+)x .【答案与解析】(1)原方程可化为0.5x2=∴x2=用直接开平方法,得方程的根为∴x1=,x2=-.(2)原方程可化为x2+2ax+a2=4x2+2ax+∴x2=a2用直接开平方法,得原方程的根为∴x1=a,x2=-a.(3) a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1=,x2=.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0∴ x1=0,x2=-3-2.【总结升华】在以上归纳的几种解法中,因式分解法是最简便、最迅捷的方法,但只有一部分方程可以运用这种方法,所以要善于及时观察标准的二次三项式在有理数范围内是否能直接因式分解,凡能直接因式分解的,应首先采取这种方法.公式法是可以解任何类型的一元二次方程,但是计算过程较繁琐,所以只有选择其他解法不顺利时,才考虑用这种解法.虽然先配方,再开平方的方法也适用于任何类型的一元二次方程,但是对系数复杂的一元二次方程,配方的过程比运用公式更繁琐,所以,配方法适用于系数简单的一元二次方程的求解.举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0; (2)2(t-1)2+t=1.【答案】(1)原方程可化为:(3x-2)2-(3x-2)=0,∴ (3x-2)(3x-2-1)=0.∴ 3x-2=0或3x-3=0,∴12 3x=,21x=.(2)原方程可化为:2(t-1)2+(t-1)=0.∴ (t-1)[2(t-1)+1]=0.∴ (t-1)(2t-1)=0,∴ t-1=0或2t-1=0.∴ 11t =,212t =.类型三、一元二次方程根的判别式的应用3.(2015•荆门)若关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,则a 的取值范围是( ) A .a ≥1 B . a >1 C . a ≤1 D .a <1 【答案】A ;【解析】∵关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,∴△=(﹣4)2﹣4(5﹣a )≥0, ∴a ≥1. 故选A .【总结升华】本题考查的是一元二次方程根的判别式,根据方程有两个实数根,得到判别式大于等于零,求出a 的取值范围.类型四、一元二次方程的根与系数的关系4.已知x 1、x 2是关于x 的方程2220x x t -++=的两个不相等的实数根,(1)求t 的取值范围; (2)设2212s x x =+,求s 关于t 的函数关系式.【答案与解析】(1)因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,即t <-1.(2)由一元二次方程根与系数的关系知:122x x +=,122x x t =+,从而2212s x x =+21212()2x x x x =+-222(2)2t t =-+=-,即2(1)s t t =-<-.【总结升华】利用根与系数关系求函数解析式综合题. 举一反三:【变式】已知关于x 的一元二次方程222(1)x m x m =--的两实数根为1x ,2x .(1)求m 的取值范围;(2)设12y x x =+,当y 取得最小值时,求相应m 的值,并求出最小值.【答案】(1)将原方程整理为222(1)0x m x m +-+=. ∵ 原方程有两个实数根.∴ 22[2(1)]4840m m m =--=-+≥△,∴ 12m ≤. (2) 1222y x x m =+=-+,且12m ≤. 因为y 随m 的增大而减小,故当12m =时,取得最小值1.类型五、一元二次方程的应用5.如图所示,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.【答案与解析】设小正方形的边长为xcm,由题意得4x2=10×8×(1-80%).解得x1=2,x2=-2.经检验,x1=2符合题意,x2=-2不符合题意舍去.∴ x=2.答:截去的小正方形的边长为2cm.【总结升华】设小正方形的边长为x cm,因为图中阴影部分面积是原矩形面积的80%,所以4个小正方形面积是原矩形面积的20%.举一反三:【变式】(2015春•启东市月考)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在欲砌50m长的墙,砌成一个面积300m2的矩形花园,则BC的长为多少m?【答案】解:设AB=x米,则BC=(50﹣2x)米.根据题意可得,x(50﹣2x)=300,解得:x1=10,x2=15,当x=10,BC=50﹣10﹣10=30>25,故x1=10(不合题意舍去),50﹣2x=50﹣30=20.答:BC的长为20m.6.某旅行社有100张床位,每床每晚收费10元,空床可全部租出;若每床每晚提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了每晚获得1120元的利润,每床每晚应提高多少元?【答案与解析】设每床每晚提高x个2元,则每床每晚收费为(10+2x)元,每晚出租出去的床位为(100-10x)张,根据题意,得(10+2x)(100-10x)=1120.整理,得x2-5x+6=0.解得,x1=2,x2=3.∴当x=2时,2x=4;当x=3时,2x=6.答:每床每晚提高4元或6元均可.【总结升华】这是商品经营问题,总利润=每张床费×床数.可设每床每晚提高x个2元,则床费为(10+2x)元,由于每晚每床提高2元,出租出去的床位减少10张,则出租出去的总床位为(100-10x)张,据此可列方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阶段强化专训一:巧用一元二次方程的定义及相关概念求字
母或代数式的值
名师点金:巧用一元二次方程的定义及相关概念求值主要体现在:利用定义或项的概念求字母的值,利用根的概念求字母或代数式的值,利用根的概念解决探究性问题等.
利用一元二次方程的定义确定字母的取值
1.已知(m-3)x2+m+2x=1是关于x的一元二次方程,则m的取值范围是()
A.m≠3 B.m≥3
C.m≥-2 D.m≥-2且m≠3
2.已知关于x的方程(m+1)xm2+1+(m-2)x-1=0.
(1)m取何值时,它是一元二次方程?并写出这个方程;
(2)m取何值时,它是一元一次方程?
利用一元二次方程的项的概念求字母的取值
3.若关于x的一元二次方程(2a-4)x2+(3a+6)x+a-8=0没有常数项,则a的值为________.
4.已知关于x的一元二次方程(m-1)x2+5x+m2-1=0的常数项为0,求m的值.
利用一元二次方程的根的概念求字母或代数式的值5.已知关于x的方程x2+bx+a=0的一个根是-a(a≠0),则a-b的值为()
A.-1 B.0 C.1 D.2
6.已知关于x的一元二次方程(k+4)x2+3x-16=0的一个根为0,求k的值.
1。

相关文档
最新文档