状态监测与故障诊断的基本图谱
(完整版)设备状态监测与故障诊断技术
新技术专题报告学院:电子与信息工程学院班级:电气11姓名:张健康学号:120113303018设备状态监测与故障诊断技术1 前言设备状态监测与故障诊断技术是一种了解和掌握设备在使用过程中的状态,确定其整体或局部正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。
通俗地讲,它是一种给设备“看病”的技术。
本文联系高线厂预精轧机在实际工况条件下的状态监测,以及根据采集到的振动故障信号,对高线厂预精轧机进行故障诊断,并简单介绍一下设备状态监测与故障诊断技术在高速线材轧机上的应用。
2 状态监测表1是预轧机16#锥箱轴承参数。
图2、3是2006年5月30日和6月13日测得的频谱分析图是16#立式轧机分别在转速为610rpm和666rpm的转速下测得的,两图有明显的差异。
虽然两副频谱中显示的振动幅值都表1 预精轧机16#锥箱轴承参数轴承序号滚动体数Z 节径D(″)滚动体直径d(″)接触角α1 18 6.4961 0.8661 02 20 6.5679 0.8125 293 18 6.4961 0.88238 04 12 3.7402 0.8268 05 11 3.4449 0.8437 406 10 2.2638 0.5 30图1 预精轧立式机架锥箱结构没有进入ISO3495旋转机械的振动烈度标准危险区域,但两次测得的结果一次基波振动副值逐渐增加,且两图中二、三、四、五次谐波都有明显的突起。
证明锥箱内运转情况逐渐劣化,存在设备隐患。
由于传感器安装位置上的差异,机械振动烈度未超出ISO3495标准并不能说明设备是正常的。
因此状态监测需要每天进行记录,并要求将监测到的结果与历史记录比对,从中找出变化趋势,才能判断出真实的设备状态。
0 500 1000 1500 2000 Hz Lin图2 劣化前期频谱分析MagRMSmm/secLin 4321⑥⑤④③②①ⅢⅡⅠ0 500 1000 1500 2000 Hz Lin图3 劣化中频谱分析3 故障诊断高速线材轧机具有运转速度高、载荷变化频繁、所轧制轧件温度低的特点,设备的主要故障是主传动设备的轴承、齿轮失效故障,占了总设备故障时间的50%以上。
设备状态监测与故障诊断
1.设备监测目的意义保障设备安全,防止突发故障。
保障设备精度,提高产品质量和经济效益。
推进设计理念和维修制度的革新。
避免设备事故、人员伤亡、环境污染。
维护社会稳定。
2.故障分类按故障对机械工作能力的影响分类:完全性故障局部性故障按故障发生速度及演变过程分类:突发性故障渐进性故障按其发生的原因分类:磨损性故障错用性故障先天性故障按造成的后果分类:危害性故障安全性故障3.故障规律浴盆曲线:磨合期,正常使用期,耗损期4.故障发生的原因宏观上分析1.设计错误2 原材料缺陷3 制造过程的缺陷4 运转缺陷微观上分析:疲劳,磨损,断裂,腐蚀5.零件磨损的一般规律磨合阶段,正常磨损阶段,急剧磨损阶段6.零件变形失效塑性变形失效,弹性变形失效,蠕变变形失效,翘曲变形失效7.断裂失效塑性断裂,脆性断裂8.状态监测与故障诊断的技术方法1.振动、噪声诊断技术2. 油液分析技术3. 温度检测技术4. 无损检测技术9.振动的危害降低机器及仪表的精度,引起机械设备及土木结构的破坏10.机械振动的分类按振动系统本身的特点分类: 离散系统连续系统按振动系统所受的激励类型分类: 自由振动强迫振动自激振动参数振动按系统的响应(振动规律)分类: 确定性振动随机振动按描述系统运动的微分方程分类:线性振动非线性振动11.机械振动要研究的内容和步骤1. 建立物理力学模型2.建立数学模型3.方程的求解4.结果的阐述12. 随机振动非确定而又具有统计规律,它们的规律不能用时间的确定性函数来描述,但又具有一定的统计规律性。
平稳随机过程与各态历经过程13. 自相关函数∑=∞→+=+nk k k Tx t x t x n t t R 11111)()(1),(lim ττ同一点不同的两个时间函数乘积称为随机过程 X(t)于时刻 t 1与 t 1+ τ的自相关函数。
它是时差 的函数,在一般情况下,它也依赖于采样时刻 t 1,反映这两个时刻的随机变量的X k (t 1)与X (t1+τ)统计联系。
故障诊断与状态监测
详细描述
基于信号处理的故障诊断方法是一种实时监 测和诊断技术,它通过采集设备运行过程中 的各种信号,如振动、声音、温度等,利用 信号处理和分析技术,提取出反映设备状态 的参数和特征,识别出异常模式,判断设备 的运行状态和潜在故障。
03
状态监测技术
振动监测技术
总结词
通过监测设备或结构的振动情况,分析其振 动特征,判断设备或结构的运行状态。
故障树分析
总结词
通过构建故障树,分析系统故障的成因和相互关联,找出导致系统故障的关键因素。
详细描述
故障树分析是一种自上而下的逻辑分析方法,通过构建故障树,将系统故障的成因逐级展开,分析各 因素之间的逻辑关系,找出导致系统故障的关键因素,为改进设计和降低故障概率提供依据。
故障诊断专家系统
总结词
利用专家知识和推理规则进行故障诊断,提供专业化的故障解决方案。
复杂系统与多源异构数据的集成处理
复杂系统
随着工业设备的复杂度增加,故 障诊断与状态监测需要处理来自 不同系统、不同部件的多源异构 数据。
数据集成
为了全面分析设备的运行状态, 需要将不同来源、不同格式的数 据进行集成,形成统一的数据视 图。
数据处理方法
针对多源异构数据的特性,需要 发展新的数据处理方法,包括数 据清洗、融合、转换等,以提取 有价值的信息。
故障诊断与状态监测技术的发展历程
第一季度
第二季度
第三季度
第四季度
初步探索阶段
20世纪50年代以前, 主要依靠人工观察和经 验判断,缺乏科学依据 和技术手段。
初步发展阶段
20世纪50年代至70年 代,开始出现简单的振 动和温度监测技术,初 步形成了基于信号处理 和模式识别的故障诊断
状态监测与故障诊断PPT课件
设备维护的重要性
1.提高设备运行的可靠性 2.减少设备故障导致的维修费用 3.提高产品的质量
常用的设备维护体制
1.故障后维修
故障后维修是指允许设备运行到故障损坏为止, 而不预先采取措施。它也被称为事后维修。 其维修理念是:任其损坏。
常用的设备维护体制
2.计划维修
计划维修是指按企业的维修计划进行的维修 其维修理念是:
A I 级:小型机械 例15kW以下电机
II级:中型机械 B 例15~75kW以下电机
和300kW以下机械 C
III级:大型机械,刚性基础 D 600~12000r/min
71
45
A-优,B-良,C-可,D-不可
IV 级:大型机械,柔性基础 600~12000r/min
转
机
振 动 标 准
)
(
轴 振 动
大型机械柔性基础60012000rminbbbaaabbbaaacccbbbcccbbbdddddddddddd02804507111218284571112182845vdi德国工程师协会iec国际电工协会api美国石油协会19相对法确定振劢限值报警值危险值正常值正常值20类比法确定振劢限值振动烈度cms006006006006007005007007006007014005007006017007c泵的振劢超过同类诸泵的振劢一倍c泵应定为有故障21故障频率带频率范围报警值040r88mmspk基频亚同步012r76mmspk倍频1535r63mmspk轴承带i3515r33mmspk轴承带ii1540r33mmspk叶片通过频率叶片数r25mmspk很高频40r20khz301015202530354022故障频率带频率范围报警值010r88mmspk亚同步008r254mmspk0818r76mmspk倍频1535r63mmspk410倍频3510r50mmspk叶片通过频率叶片数r25mmspk基频相位3023最后在维修完成以后我们还需要采取一些措施来检验故障是否排除确定维修的效果以及设备的继续工作能力
故障诊断与状态监测
维修费用化了多少? 维修费用化了多少?
• 美国1980年税收总额 $7500亿,维修费为 $2460亿, 估计其中过剩维修费为 $750亿。 • 我国1987年国营公交企业40万个,固定资产¥7000亿, 维修费约为固定资产的 3~5%。 • 我国2002年规模以上企业共有固定资产¥8800万亿, 维修费有多少?能节省多少?
强 迫 振 动 类 故
松 动 转子内阻
自
正进动
激 振 动 类
正进动
内腔积液
正进动
正进动
故 障
障
齿轮故障
径向摩擦
反进动
滚动轴承
轴向摩擦
R: 转动频率
转子不平衡故障的频谱
TO TI
轴向很小
透平
齿轮箱 风机
1X频率(铅垂) 1X频率(水平)
波形为简谐波,少毛刺。 轴心轨迹为圆或椭圆。
轴向很小
1X频率为主。
微积分
选频网络
传感器
灵敏度 调节
电池
数据采集器的外形 和工作框图
电 池 放 大
数据采集器 时 钟 管理环节 显 示 贮 口 存 接
屏 幕 计算机 打印机 软件 存贮器 计算机及外部设备
数据采集器的工作流程
新开巡检组 组 态 打印 增减巡检组 增减设备和测点 更改测量参数 组态表 主 巡检准备 输入组态信息 清除内存 数据比较 频谱分析 轨迹分析 趋势分析和 趋势分析 调用存储数据 谱趋势分析 显示和打印 校对时钟 巡检报表 频谱图 轨迹图 显示和打印 出发巡检 定巡检路线 定设备和测点 定测量参数
简易诊断和精密诊断
状态监测(简易诊断) 状态监测(简易诊断)
内容:
识别有无故障 明确故障严重程度 作出故障趋势分析
状态监测和故障诊断基础知识
8. 涡动、正进动和反进动 9. 电气偏差、机械偏差 10. 偏心和轴心位置 11. 间隙电压、油膜压力 二、传感器的基本知识 1. 振动传感器 2. 电涡流振动位移传感器的工作原理 3. 电动力式振动速度传感器的工作原理 ⒋ 压电式加速度传感器的工作原理
第二章 状态监测常用图谱 1.波德图 2.极坐标图 3.频谱瀑布图 4.极联图 5.轴心位置图 6.轴心轨迹图 7.振动趋势图 8.波形频谱图
3. 电动力式振动速度传感器的工作原理
图1-6 振动速度传感器的结构示意图
固定在壳体内部的永久磁铁,随着外壳与振动物体一起振 动,同时,由于内部由弹簧固定着的线圈不能与磁铁同步运动, 磁铁的磁力线被线圈以一定的速度切割,从而产生了电动势输 出。而所输出的电动势的大小则与磁通量的大小和线圈参数 (在此处均系常数)以及线圈切割磁力线的速度成正比,所以 我们可以得到和磁铁的运动速度成正比的输出电动势,即:传 感器的输出电压与被测物体的振动速度成正比。
35
9.极联图
极联图是在启停机转速连续变化时,不同转速下得到的频谱图 依次组成的三维谱图。它的Z轴是转速,工频和各个倍频及分频的 轴线在图中是都以0点为原点相外发射的倾斜的直线。在分析振动 与转速有关的故障时是很直观的。该图常用来了解各转速下振动频 谱变化情况,可以确定转子临界转速及其振动幅值、半速涡动或油 膜振荡的发生和发展过程等。
c.频率:是指振动物体在单位时间(1秒)内所产生振动 的次数,即Hz,以f0表示。很显然,f0=1/T0。对于旋转 机械的振动来说,存在下述令人感兴趣的频率:a)转动 轴的旋转频率;b)各种振动分量的频率;c)机器自身和 基础或其它附着物的固有频率。
d.相位:是指旋转机械测量中某一瞬间机器的选频振动信 号(如基频)与轴上某一固定标志(如键相器)之间的相 位差。相位可用来描述某一特定时刻机器转子的位置,一 个好的相位测量系统能够确定每一个传感器所在的机器转 子上“高点”相对机器轴系上某一固定的标志点的位置。 通常振动相位在0°~360°范围之间变化。振动的相位在 振动分折中十分重要,它不仅反映了不平衡分量的相对位 置,在动平衡中必不可少,而且在故障诊断中也能发挥重 要作用。
设备状态监测与故障诊断
5 设备状态监测与故障诊断所谓“状态监测与故障诊断”,就是对运行中的设备实施定期或连续监测、有关参数分析、有效地对设备运行状态进行系统自动监测分析或人工分析,读取相应的自诊断状态报告,以便尽早发现潜伏性故障,提出预防性措施,避免发生严重事故,保证设备的安全、稳定和经济运行,并以此指导设备检修。
设备状态监测和故障诊断技术也称为预测维修技术,是新兴的一门包含很多新科技的多学科性综合技术。
简单地说就是通过一些技术手段,对设备的振动、噪声、电流、温度、油质等进行监测和技术分析,掌握设备的运行状态,判断设备未来的发展趋势,诊断故障发生的部位、故障的原因,进而具体指导维修工作。
传统的耳听、手摸等也可以算是其中的一种比较简单的手段。
5.1 设备故障的规律设备故障是一个非常广义的概念。
简单地说,设备故障就是设备系统或其中的元件/部件丧失了规定的功能或精度。
与故障意义相近的还有“失效”的概念,失效通常指的是不可修复的对象;故障指的是可以修复的对象。
早期故障:这种故障的产生可能是设计、加工或材料上的缺陷,在设备投入运行初期暴露出来。
或者是有些零部件如齿轮箱中的齿轮及其他摩擦副需经过一段时期“跑合” , 使工作情况逐渐改善。
这种早期故障经过暴露、处理、完善后,故障率开始下降。
使用期故障:这是产品有效寿命期内发生的故障,这种故障是由于载荷(外因,指运行条件等)和系统特性(内因,指零部件故障、结构损伤等)无法预知的偶然因素引起的。
设备大部分时间处于这种工作状态。
这时的故障率基本上是恒定的。
对这个时期的故障进行监测与诊断具有重要意义。
后期故障(耗散期故障):它往往发生在设备的后期,由于设备长期使用,甚至超过设备的使用寿命后,设备的零部件由于逐渐磨损、疲劳、老化等原因使系统功能退化,最后可能导致系统发生突发性的、危险性的、全局性的故障。
这期间设备故障率是上升趋势,通过监测、诊断,发现失效零部件应及时更换,以避免发生事故。
设备故障的规律可分为以下六种模式。
设备状态监测与诊断诊断基础理论PPT课件
介绍数据采集系统的组成和工作原理,包括数据采集卡、数据采集 软件等。
数据传输技术
阐述数据传输的常用方式和技术,如有线传输、无线传输、网络传 输等,以及它们的特点和适用场景。
数据存储与管理
讲解如何对采集的数据进行存储和管理,以便后续分析和处理。同时 介绍数据压缩、加密等技术在数据存储和管理中的应用。
振动监测、温度监测、油液分析等
诊断技术
频谱分析、时域分析、轴心轨迹分析等
应用实例
汽轮机、离心压缩机、风机等旋转机械的故障诊断
往复机械状态监测与诊断
1 2
监测方法
振动监测、气阀动态压力监测、示功图分析等
诊断技术
时域分析、频域分析、气阀故障诊断技术等
3
应用实例
内燃机、往复压缩机等往复机械的故障诊断
电气设备状态监测与诊断
参数辨识
识别设备模型中的关键参 数,通过监测这些参数的 变化来诊断设备状态。
残差分析
比较设备实际输出与模型 预测输出之间的差异,分 析残差以诊断设备故障。
基于数据的诊断方法
数据挖掘
利用数据挖掘技术从大量设备监测数据中提取有 用的信息和模式。
机器学习
应用机器学习算法训练模型,根据设备监测数据 自动诊断设备状态。
借助互联网技术,实现设备状态的远 程实时监测与诊断。
多源信息融合
融合多传感器、多源信息,提高设备 状态监测与诊断的准确性。
预测性维护与健康管理
通过设备状态监测与诊断,实现预测 性维护与健康管理,提高设备运行效 率。
THANKS.
如何建立准确的故障诊断模型,实现故障的 早期预警和预测。
数据处理与分析
如何从海量数据中提取有用信息,准确判断 设备状态。
电力设备的在线监测与故障诊断PPT课件
变压器绕组变形的监测
变压器绕组变形的监测
离线检测方法:短路阻抗测量法、频响分析法、低 压脉冲法、径向漏磁场测试法
在线监测方法:短路电抗法、振动信号分析法、频 响分析法
短路电抗法
振动法
变压器本体振动来源
硅钢片磁滞伸缩引起铁芯振动 硅钢片接缝处和叠片之间存在因漏磁引起的电磁吸引力,
电气设备状态监测与故障诊断的意义
电气设备的组成:绝缘材料、导电材料、导磁材料等。
绝缘材料大多为有机材料:矿物油、绝缘纸、各种有机合成 材料,运行中受电、热、机械、环境等各种因素的作用,容 易发生劣化,造成设备故障。——设备绝缘结构性能的好坏, 成为决定整台设备寿命的关键。
由于大型电气设备发生故障而造成突发性停电事故,会造成 巨大的经济损失和不良的社会影响。
局部放电监测的意义
局部放电是造成高压电气设备最终发生绝缘击穿的主 要原因。这是一个“日积月累”的过程,可谓“冰冻 三尺非一日之寒”。
刷形树枝
丛林状树枝
变压器中局部放电类型
气隙放电
(1)密封于固体内的气泡。例如:铁芯环氧绑扎带内的气泡。 (2)油和固体包围的气泡。例如:纸板夹层的气泡。
悬浮放电
不同故障类型产生的气体组分
故障类型
主要气体成分
油过热 油和纸过热
CH4、C2H4 CH4、C2H4、CO、CO2
油纸绝缘中局部放电
H2、CH4、C2H2、CO
油中火花放电
C2H2、H2
油中电弧
H2、C2H2
油和纸中电弧
H2、C2H2、CO、CO2
次要气体成分
H2、C2H6 H2、C2H6 C2H6、CO2
动触头的行程可以通过旋转编码器进行监测。
故障诊断与状态监测
声发射监测技术具有非接触 性、实时性等优点。
详细描述
声发射监测技术可以通过传 感器非接触地采集声音信号, 实时监测结构的声发射事件, 并通过数据采集和分析系统 进行远程监测和诊断。
红外监测技术
总结词
红外监测技术通过测量物体或结构的红外辐射来评估其运行状态。
详细描述
红外监测技术广泛应用于电力设备、化工设备、航空航天等领域,可以检测出设备的过 热、泄漏等情况,通过分析红外辐射的特征,可以判断设备的故障类型和严重程度。
故障诊断与状态监测
目录
• 故障诊断与状态监测概述 • 故障诊断技术与方法 • 状态监测技术与应用 • 故障诊断与状态监测的挑战与未来发展 • 案例分析与实践
01
故障诊断与状态监测概 述
定义与目的
定义
故障诊断与状态监测是针对设备或系统的运行状态进行检测、评估和预测的技 术,旨在及时发现潜在故障、分析故障原因,并采取相应的措施进行维修和预 防。
详细描述
油液监测技术可以直接检测润滑 油或液压油的性能和状态,通过 定期取样和分析,可以实时了解 机械设备的润滑和液压系统的工 作状态,及时发现潜在的故障和 问题。
声发射监测技术
总结词
声发射监测技术通过采集和 分析物体或结构在受力时发 出的声音信号来评估其运行 状态。
详细描述
总结词
声发射监测技术广泛应用于 压力容器、管道、桥梁等结 构的监测,可以检测出结构 的裂纹、腐蚀、疲劳等情况, 通过分析声发射信号的特征, 可以判断结构的损伤程度和 故障类型。
故障诊断的准确性与实时性要点一 Nhomakorabea总结词
要点二
详细描述
故障诊断的准确性和实时性是关键,需要不断提高诊断算 法的精度和响应速度,以满足工业应用的需求。
最新状态监测与故障诊断技术PPT课件
目前,美国的诊断技术在航空、航天、军事、 核能等尖端部门处于世界领先地位;英国在摩擦磨 损、汽车和飞机发电机监测和诊断方面处于领先地 位;日本的诊断技术在钢铁、化工和铁路等部门处 于领先地位。正是由于诊断技术能够产生的巨大经 济效益,因此故障诊断技术得到了迅速的发展,各 种监测和故障诊断的商业化产品不断推出,如日本 三菱公司的“旋转机械健康管理系统”、美国西屋 公司的“可移动诊断中心”、美国中心发电部的 “透平监视设备”和“试验设备监测”、美国 Scientific Atlanta公司的CHAMMP6000监测系统、 美国Bently公司的7200、3300及3000系列和CSI公司 的系列监测仪器等设备状态监测和故障诊断设备等。
状态监测与故障诊断技术
• 设备故障是指“设备功能失常”,也就是设备不能达到预 期的工作状态,无法满足应有的性能、功能。产生故障的 原因通常是设备的构造处于不正常状态(劣化状态)。判 断故障的准则是:在给定的工作状态下,设备的功能与约 束条件不能满足正常运行或原设计期望的要求。
• 故障诊断技术是一门集数理统计、力学、计算机工程、信 号处理、模式识别、人工智能等多学科于一体的、生命力 旺盛的新兴学科。它是一种了解和掌握设备在使用过程中 的工作状态,确定其整体或者局部是否正常,及时发现故 障及其原因,预报故障发展趋势的技术。故障诊断的目的 是保证可靠地、高效地发挥设备的应有功能,其最根本的 任务是通过监测设备的信息来识别设备的工作状态。
• (1)故障的危害程度增大。一旦某一部件发生故障,就 可能引起“链式反应”,导致整个生产系统不能正常运行, 从而造成巨大的经济损失,严重的设备故障还会造成灾难 性的事故和人员伤亡,产生不良的社会影响。例如,20世 纪80年代,对全国14个省45个矿务局112个矿井抽样调查, 因矿井提升机发生故障引起停工停产,甚至造成人员伤亡 的事故,共有126例,伤亡272人,经济损失达七千万元。
造纸机械状态监测与故障诊断.pdf
现代造纸机械状态监测与故障诊断复习资料2014/1/3一、名词解释1、数字信号与模拟信号①数字信号:指幅度的取值是离散的,幅值表示被限制在有限个数值之内的信号。
②模拟信号:指信息参数在给定范围内表现为连续的信号。
2、确定性信号与非确定性信号①确定性信号:可用数学关系描述的信号;②非确定性信号:不能用确切的数学关系式描述的信号,也无法预知其将来的幅值,又称随机信号。
3、统计分析法的三个标准:绝对标准、相对标准和类比标准①绝对标准:将测量的数据或统计量直接与标准阀值相比较,以判断设备所处的状态。
②相对标准:以正常状态的测定值为初值,以当前实际测定的值达到初值的倍数为阀值来判断设备所处的状态。
③类比标准:对同规格、同运行工况的若干台设备,采用量化值的比较,以判断设备所处的状态。
三种判别标准的优先顺序为:绝对标准>相对标准>类比标准。
4、时域分析与频域分析时域:一个或多个信号的取值大小,想互关系等特征,可定义很多不同的时间函数或参数,这些时间函数或参数的集合。
①时域分析:一个或多个信号的取值大小、相互关系等特征,可定义为很多不同的时间函数或参数,这些时间函数或参数的集合称为时域。
对这样的函数或参数集合计算处理并进行分析称为时域分析。
②频域分析:对于周期信号,频域是指周期信号展开为傅立叶级数,研究其中每个正弦谐波信号的幅值和相位等;对于非周期信号或各态历经随机信号进行傅立叶变换,变换后的信号是频率的函数,这些频率的函数的集合称为频域。
频域分析是指计算这些傅立叶级数或频域函数并进行分析,故频域分析也称为傅立叶分析。
5、频谱图:基频、临界转速①临界转速:当转子转速达到横向振动的一阶频率时发生一阶共振,这时的转速称为(一阶)临界转速。
②基频:工作频率(对应转速下的振动)。
6、在线处理与离线处理①在线处理:也称实时处理,是指信号的采集和获得处理结果几乎是在同时完成,这样既不舍弃测量信号,又不造成数据“积压”。
大型旋转机械的状态检测与故障诊断
大型旋转机械的状态检测与故障诊断第六期全国设备状态监测与故障诊断实用技术培训班讲义大型旋转机械的状态检测与故障诊断沈立智中国设备管理协会设备管理专题交流中心2008年9月南京目录第一节状态监测与故障诊断的基本知识 (10)一、状态监测与故障诊断的意义及发展现状.. 101. 状态监测与故障诊断的定义 (10)2. 状态监测与故障诊断的意义 (11)3. 状态监测与故障诊断的发展与现状 (12)二、大机组状态监测与故障诊断常用的方法.. 131. 振动分析法 (14)2. 油液分析法 (14)3. 轴位移的监测 (15)4. 轴承回油温度及瓦块温度的监测 (15)5. 综合分析法 (15)三、有关振动的常用术语 (16)1. 机械振动 (16)2. 涡动、进动、正进动、反进动 (16)3. 振幅 (16)3.1 振幅 (16)3.2 峰峰值、单峰值、有效值 (17)3.3 振动位移、振动速度、振动加速度 (17)3.4 振动烈度 (18)4. 频率 (19)4.1 频率、周期 (19)4.2倍频、一倍频、二倍频、0.5倍频、工频、基频、转频 (19)4.3 通频振动、选频振动 (20)4.4 故障特征频率 (20)5. 相位 (23)5.1 相位 (23)5.2 键相器 (23)5.3 绝对相位 (24)5.4 相位差、相对相位 (24)5.4 同相振动、反相振动 (25)5.5 相位的应用 (25)6. 刚度、阻尼、临界阻尼 (27)7. 临界转速 (28)8. 挠度、弹性线、主振型、轴振型 (29)9. 相对轴振动、绝对轴振动、轴承座振动. 3010. 横向振动、轴向振动、扭转振动 (31)11.刚性转子、挠性转子、圆柱形振动、圆锥形振动、弓状回转(弯曲振动) (31)12. 高点、重点 (32)13. 机械偏差、电气偏差、晃度 (32)14. 同步振动、异步振动、亚异步振动、超异15. 谐波、次谐波(分数谐波) (33)16. 共振、高次谐波共振、次谐波共振 (34)17. 简谐振动、周期振动、准周期振动、瞬态振动、冲击振动、随机振动 (34)18. 自由振动、受迫振动、自激振动、参变振动 (37)19. 旋转失速、喘振 (38)20. 半速涡动、油膜振荡 (40)四、振动传感器的基本知识 (41)1. 振动传感器的构成及工作原理 (41)2. 振动传感器的类型 (42)3. 磁电式速度传感器 (42)4. 压电式加速度传感器 (43)5. 电涡流式位移传感器 (44)6. 常用振动传感器主要性能及优缺点 (45)第二节状态监测与故障诊断的基本图谱 (46)一、常规图谱 (46)1. 机组总貌图 (46)2. 单值棒图 (46)3. 多值棒图 (47)4. 波形图 (48)6. 轴心轨迹图 (52)7. 振动趋势图 (53)8. 过程振动趋势图 (58)9. 极坐标图 (58)10. 轴心位置图 (59)11. 全息谱图 (59)二、启停机图谱 (60)1. 转速时间图 (60)2. 波德图 (61)3. 奈奎斯特图 (63)4. 频谱瀑布图 (64)5. 级联图 (65)第三节大型旋转机组常见振动故障的机理与诊断 (66)一、不平衡 (66)二、转子弯曲 (68)三、不对中 (70)四、轴横向裂纹 (75)五、支承系统连接松动 (77)第四节故障诊断的具体方法及步骤 (79)一、故障真伪的诊断 (80)1. 首先应查询故障发生时生产工艺系统有无大的波动或调整 (80)2. 其次应查看仪表、主要是探头的间隙电压是否真实可信 (81)3. 应查看相关的运行参数有无相应的变化. 844. 应察看现场有无人可直接感受到的异常现象 (84)二、故障类型的诊断 (86)1. 振动故障类型的诊断 (87)1. 1主要异常振动分量频率的查找步骤及方法 (87)1.2 根据异常振动分量的频率进行振动类型诊断 (89)2. 轴位移故障原因的诊断 (95)三、故障程度的评估 (96)四、故障部位的诊断 (99)五、故障趋势的预测 (100)附件一齿轮的故障诊断 (101)一、齿轮的常见故障 (101)1. 断齿 (101)2. 点蚀 (101)3. 磨损 (102)二、齿轮故障的特征信息 (102)1. 啮合频率及其谐波 (103)2. 信号调制和边带分析 (104)1) 幅值调制 (105)2) 频率调制 (106)3. 齿轮振动信号的其它成分 (107)1) 附加脉冲 (107)2) 隐含成分 (108)3) 滚动轴承信号及交叉调制 (108)4. 齿轮常见故障与特征频率及其谐波、以及边频带的小结 (109)三、齿轮故障的诊断方法 (110)1. 细化谱分析法 (111)2. 倒频谱分析法 (111)3. 时域同步平均法 (114)4. 自适应消噪技术 (115)附件二滚动轴承的故障诊断 (115)一、滚动轴承的常见故障 (115)1. 疲劳剥落(点蚀) (115)2. 磨损 (116)3. 胶合 (116)5. 锈蚀 (116)6. 电蚀 (116)7. 塑性变形(凹坑及压痕) (116)8. 保持架损坏 (117)二、引起滚动轴承振动的原因及其特征频率 1171. 由于结构特点引起的振动——滚动体通过载荷方向时产生的通过频率 (117)2. 由于轴承刚度非线性引起的振动 (118)3. 由于制造及装配等原因引起的振动 (118)1) 由于表面加工波纹引起的振动 (118)2) 由于滚动体大小不均匀引起的振动 (118)3) 由于轴承偏心引起的振动 (118)4) 由于轴承装歪或轴弯曲引起的振动 (118)5) 由于轴承装配过紧或过松引起的振动 (118)4. 由于润滑不良引起的振动 (119)5. 由于轴承工作表面上的缺陷引起的振动 (119)三、滚动轴承振动的固有频率和缺陷间隔频率 (121)1. 滚动轴承的固有频率 (121)1) 滚动轴承内、外圈固有频率的计算公式 (121)2) 钢球固有频率的计算公式 (122)2. 滚动轴承的缺陷间隔频率 (122)四、滚动轴承故障振动的诊断方法 (123)1. 合理选择分析频段的范围 (123)1) 低频段(0 ~ 1 kHz) (123)2) 中频段(1 ~ 20 kHz) (124)3) 高频段(20 ~ 80 kHz) (124)2. 传感器位置的选择 (124)3. 滚动轴承故障波形的评定指标及因数判断法 (125)1) 有效值X rms (125)2) 峰值X p (126)3) 波峰因数C f (126)4) 峭度β与峭度系数K (127)4. 滚动轴承的诊断方法 (128)1) 低频信号接收法 (128)2) 冲击脉冲法(SPM) (128)3) 共振解调法(IFD) (129)5. 轴承失效的四个阶段及各阶段内的主要特征频率成分 (131)第一节状态监测与故障诊断的基本知识一、状态监测与故障诊断的意义及发展现状1. 状态监测与故障诊断的定义通俗地说,状态监测与故障诊断就是给机器看病。
机电设备状态监测与故障诊断(最新版)
07.05.2021
天津大学机电科技中心
7
机电设备状态监测与故障诊断
国外诊断技术的发展概况:
涡流传感器测量的是被测 物体与传感器探头端面之间的 距离。
07.05.2021
天津大学机电科技中心
22
机电设备状态监测与故障诊断
一、状态信息的获取
➢ 模拟信号的采集
传感器输出的信号一般都是诸如电压、电荷、电阻变化值、电容 变化值等模拟信号,在利用计算机对其进行处理之前必须对其进行离 散量化成数字信号。模拟信号到数字信号转换的过程如下图所示。
07.05.2021
天津大学机电科技中心
28
机电设备状态监测与故障诊断
二、状态特征的提取(时域分析)
应用:正常运行状态—机器噪声是大
量的、无序的、大小接近的随机冲击结 果,有宽而均匀的频谱。
运行不正常状态—随机噪声将出现有
规则、周期性的脉冲,其大小比随机冲 击大的多。
例如;机构中轴承磨损间隙增大时,
监控箱
计算机 记录、文件
07.05.2021
天津大学机电科技中心
15
机电设备状态监测与故障诊断
状态监测与故障诊断系统:
❖ 前瞻性的故障诊断模式:
以网络技术和计算机技术为基础,开发出主从分布式网络化集 成在线监控与诊断系统。
特点:充分挖掘和发挥网络信息交换、资源共享的优点,充分 利用科研院所的专家资源,实现“移动的是数据而不是人”,在网 络层面上实现故障信息的挖掘和故障类型的确诊。
第四讲 状态监测与诊断基本知识2
在对振动信号进行分析时,在时域波形图上可以得到一些相关的信息, 如振幅、周期(即频率)、相位和波形的形状及其变化。这些数据有 助于对振动起因的分析及振动机理的研究。但由于从波形图上不能直 接得到我们所需要的精确数据,现在已经很少有人用它来确定振动参 数。但它可以在实时监测中作为示波器用来观察振动的形态和变化。
7.振动趋势图
在机组运行时,可利用趋势图来显示、 记录机器的通频振动、各频率分量的振 动、相位或其它过程参数是如何随时间 变化的。
这种图形以不同长度的时间为横坐标, 以振幅、相位或其它参数为纵坐标。在 分析机组振动随时间、负荷、轴位移或 其它工艺参数的变化时,这种图给出的 曲线十分直观,对于运行管理人员来说, 用它来监视机组的运行状况是非常有用 的。
5.1.3 多值棒图
多值棒图是将选定监测分站选定机组键相的各个振动通道的总振值和各倍频 幅值以及残余量都用棒图的形式表示出来。显示实时通频值及各主要振动分量的 振动值,可大致了解机组运行是否正常。 ①通频值——通频值即总振动值,为各频率下振动分量相互迭加后的总和。 ②一倍频——又称基频、工频,为转子实际工作转速的频率, f = n /60 [Hz];转子动不平衡、轴承工作不良、热态对中不良等均会引起一倍频 增大,发生概率依次降低。 ③二倍频——二倍工频,转子热态对中不良、裂纹、松动等都会引起二倍频增大, 主要是对中不良。 ④0.5倍频——0.5倍工频,油膜失稳会引起该频率段增大,轴承工作不良(如间 隙、紧力、接触、摇摆、油档等)也会引起该段频率增大;旋转失速(喘振的先 兆)的频率为(0.4~0.8)倍工频,也有可能。 ⑤可选频段——用户根据机组的特点,自己定义的频段。 ⑥残余量——剩余频率成分振动分量的总和。该部分振值高时,转子有可能发生 摩擦、气流脉动等。 正常运转状态下的多值棒图通常是,一倍频最大,二倍频小于一倍频的一半,0.5 倍频微量或无,残余量不大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
状态监测与故障诊断的基本图谱一、常规图谱常规图谱又称稳态图谱,是在转速相对稳定、没有大幅度变化情况下的有关图谱,因此其不含开停车信息。
1. 机组总貌图机组总貌图显示了机组的总貌,可了解机型、转子支撑方式、轴承位置、运行转速等,主要是查看探头的位置及位号。
2. 单值棒图较为形象、直观地显示实时振动值,并可知低报、高报报警值及转速。
3. 多值棒图多值棒图显示实时通频值及各主要振动分量的振动值,可大致了解机组运行是否正常。
正常运转状态下的多值棒图通常是:一倍频最大、且与通频相差不大,二倍频小于一倍频的一半,0.5倍频微量或无,可选频段很小,残余量不大。
其中:(1)通频值~即总振动值,为各频率振动分量相互矢量迭加后的总和。
(2)一倍频~为转子实际运行转速n下的频率f,又称工频、基频、转频, f = n/60 [Hz];转子动不平衡及轴弯曲、轴承不良(偏心)、热态对中不良、支承刚度异常、在临界转速区运行、电机气隙偏心等,都会引起一倍频振动分量的增大,发生概率依次降低。
(3)二倍频~二倍工频,转子热态不对中、裂纹、松动、水平方向上支承刚度过差等,都会引起二倍频振动分量增大,绝大多数是轴系不对中。
(4)0.5倍频~0.5倍工频,又称半频,油膜涡动会引起该频率段增大,轴承工作不良也会引起该段频率增大;旋转失速、摩擦也都有可能。
(5)可选频段~由用户根据机组常见故障自己定义的频段,一般可选择(0.4~0 .6)倍工频或(0.3~0 .8)倍工频,用来监测是否发生亚异步振动,如油膜涡动、旋转失速、密封流体激振、进汽(气)脉动、摩擦、松动等。
主要是轴承因紧力、接触、摇摆、油档及油温等问题引起的油膜失稳、摩擦、旋转失速、进汽脉动。
(6)残余量~除上述频率成分外,剩余频率成分振动分量的总和,该部分振值高时,转子有可能发生摩擦、高频气流脉动等。
4. 波形图波形图显示了振动位移与时间的关系,又称幅值时域图。
波形图显示了振幅、周期(即频率)、相位,特别是波形的形状和状态。
图中:① 振幅为正峰与负峰之间的位移量,比较各周期对应的峰高,即可知振幅值是否稳定;② 二个亮点之间为一个旋转周期,波形图的周期数可以选取,想了解波形重复性时周期数选多一点,想了解波形细节时周期数选少一点;③ 亮点为振动的初相位、即零位,比较各周期对应峰与零位的间隔,可以粗略了解振动相位(发生的时间、位置)是否稳定。
波形图既可以是通频波形图,即显示通频总振值与时间(周期)的关系;也可以是选频波形图,即一倍频波形、二倍频波形、0.5倍频波形、…等。
波形图也可以作为示波器对振动波形的形态和变化进行实时监测。
由于从波形图上不能直接得频率及相位的精确数据,现在很少用它来确定振动参数。
但是,其形象、具体的波形及其变化状态,特别是波形在各周期下的重复性状况,仍非常有助于对振动故障、尤其是干扰信号的分析、界定。
例如:(1)正常运转状态下的波形图,因工频为主,所以为近似的正弦波,如上图;(2)动不平衡时,为近似的等幅正弦波,见下图;(3)对中不良时,波峰翻倍,波形光滑、稳定、重复性好,见下图;(4)摩擦时,波峰多,波形毛糙、不稳定,或有削波,见下图;(5)自激振荡时,波形杂乱、重复性差、波动性大;(6)严重油膜涡动时,因接近半频,振幅大小间隔,反而有点规律,见下图; 瞬态振动时,波形为若干周期的连续衰减;冲击振动时,通频波形上出现小于一个周期的突起后又衰减的波形;虚假信号干扰时,波形瞬间急剧变化,甚至呈直线状,见下图。
动不平衡时,为近似的等幅正弦波不对中时,波峰翻倍,波形稳定、重复性好对中不良时,通频波形图肯定要受到二倍频正弦波的影响,二倍频在通频的一个周期内变化二次,迭加后的波形自然是波峰翻倍。
在上图中,由于工频本身较低,只有16μm,从而使略微偏高的二倍频(18μm)显得较高;此外,由于还存在一些不太大的高次谐波,所以波形不够光滑;各频率成分的幅值较为稳定,波形的重复性好。
总体上看,机组存在对中不良,但程度并不严重。
冲击振动时,在通频波形上出现小于一个周期的突起后又衰减的波形。
虚假信号干扰时,波形瞬间急剧变化,甚至呈直线状。
主要为动不平衡、并存在摩擦的波形频谱图上图为某催化烟机严重结垢时的波形频谱图。
波形主要为较典型的正弦波,幅值很大,为122.5μm ;此外,还存在波峰多、波形毛糙以及单边(正峰)削波现象。
根据烟机运行特点,该烟机主要存在着因催化剂在转子轮盘上粘结而形成的动不平衡,以及催化剂在气封处堆积而产生的较严重局部摩擦。
x (t严重油膜涡动时的波形频谱图油膜涡动严重时,接近于半频的波形必然会对通频波形产生重要影响。
半频的波形是正弦波、周期为通频的二倍,在半频的正峰、负峰分别间隔影响下,迭加后形成了周期内振幅正、负值悬殊大、各周期振幅大小间隔的通频波形,一个周期振幅大,另一个周期振幅小。
5. 频谱图频谱图显示了各振动分量的频率及其振幅值。
横坐标可选择“阶比”或“频率” 。
各种频率所对应的故障可参照前面在多值棒图中的介绍。
正常运转状态下的频谱图通常是:一倍频最大,二倍频次之、约小于一倍频的一半,三倍频、四倍频…x倍频逐步参差递减,低频(即小于一倍频的成份)微量或无,其它频率成分基本上不存在。
看频谱图不能就图论图,因为大多数情况下总是一倍频最大,一定要与历史及正常运转下的频谱图相比较,查找哪些频率成份发生了增大变化,增大的倍率有多大,是否出现新的异常频率成分,各分量的能量水平大不大,等等。
该频谱图中各频率分量的能量水平实际上很小,工频也相对较小。
6. 轴心轨迹图轴心轨迹图显示了转子轴心相对于轴承座涡动时的运动轨迹。
正常的轴心轨迹应该是一个较为稳定的、长短轴相差不大的椭圆。
不对中时,轴心轨迹为月牙状、香蕉状,严重时为8字形;发生摩擦时,会出现多处锯齿状尖角或小环;轴承间隙或刚度差异过大时,为一个很扁的椭圆;可倾瓦瓦块安装间隙相互偏差较大时,会出现明显的凹凸状。
不对中时,轴心轨迹为月牙状、香蕉状、8字形某烟机因催化剂在气封底部堆积造成局部碰摩时前轴承(重载瓦)的轴心轨迹如果轴心轨迹的形状及大小的重复性好,则表明转子的涡动是稳定的;否则,就是不稳定的。
转子发生亚异步自激振动时,其轴心轨迹往往很不稳定,不仅形状及大小时刻在发生较大的变化,而且还会出现大圈套小圈的情况。
轴心轨迹图有原始、提纯、平均、一倍频、二倍频、0.5倍频等多种轴心轨迹,主要看提纯、一倍频、二倍频的轴心轨迹图。
这是因为转子振动信号中不可避免地包含了噪声、电磁信号干扰等超高次谐波分量,使得轴心轨迹的形状变得十分复杂,有时甚至是非常地混乱。
而提纯的轴心轨迹排除了噪声和电磁干扰等超高次谐波信号的影响,突出了工频、0.5倍频、二倍频等主要因素,便于清晰地看到问题的本质;一倍频轴心轨迹可以看出轴承的间隙及刚度是否存在问题,因为不平衡量引起的工频振动是一个弓状回转涡动,工频的轴心轨迹就应该是一个圆或长短轴相差不大的椭圆,而如果轴承间隙或刚度存在方向上的较大差异,那么工频的轴心轨迹就会变成一个很扁、很扁的椭圆,从而把同为工频的不平衡故障和轴承间隙或刚度差异过大很简便地区别开来;二倍频轴心轨迹则可以看出严重不对中时的影响方向等。
通过轴心轨迹图,还可以判断转子的涡动是正进动、还是反进动。
7. 振动趋势图振动趋势图显示了振幅及相位与时间的关系。
通过振动趋势图可以看到异常振动的起始时间、终止时间、持续时间,特别是工频、二倍频、0.5倍频等主要频率的幅值随不间断时间的变化形态,这一点是频谱图、波形图、轴心轨迹图等其它图形都难以实现的,是在线监测的优势。
此外,还可以调看探头间隙电压的趋势,从而确定一次仪表本身有无故障。
例如,由上图中可见,同一轴承处二个测点的工频振幅值及相位一直在同起同落、能上能下地变化,变化过程是由许多小的变化所组成,其中既有渐变(较均匀结垢)、又有小的突变(突然掉落一块),但总体上是缓慢的渐变,振幅值能回落到靠近原正常振动值附近,因此是较典型的转子结垢。
下面是某发电汽轮机高压转子1#、2#轴承的一倍频振动趋势图及探头间隙电压趋势图。
从振动趋势图上看,1#轴承的1X、1Y振动值及相位多次同时发生较大变化,另一端的2Y也同时变化,似乎是真的发生了振动,然而相位反复变化后终回到原值又令人生疑。
但再看间隙电压趋势图,1X、1Y、2Y的间隙电压都在对应的同一时间也发生了较大的变化,根据探头特性,在振动值变化50μm时,间隙电压变化不应超过0.2V,而实际都远远超过(约为0.5~3V),另外2X早已从10V变成了5V而处于失灵状态。
此外,其它各种频率成分也都在同一时间发生了变化。
因此可以认为,这可能是测振系统受到干扰而产生的假象。
某汽轮机测点1X、1Y、2X、2Y一倍频振动趋势图某汽轮机测点1X、1Y、2X、2Y间隙电压趋势图下面二张图是某烟机断叶片时的振动趋势图,上面是通频趋势图,下面是工频趋势图。
从图中可以看到,该烟机于2005年8月3日上午9时39分12秒振动值突然增大,两端轴承4个测点的振动值由正常运转下的15~30μm同时剧烈上升到197~222μm,此变化过程是一个极为明显的突变过程。
通过调看工频、二倍频、0.5倍频、可选频段趋势图,发现工频振动值的变化相对最大,特别是工频的相位也在同一时刻发生了突变,因此是典型的断叶片。
另外,还可以看到,在三分钟内又发生了不很明显的二次、三次振幅和相位变化过程,即断叶片在掉落过程中又引起了其它叶片损伤、断裂、掉落的二次扩大过程。
某烟机断叶片时的通频振动趋势图某烟机断叶片时的工频振动趋势图下面二张图是某空压机透平断叶片的工频趋势图和波形频谱图。
由图可见,此空压机透平于2004年9月27日中午12时18分9秒振动值突然增大,二个轴承四个测点的工频振值同时由30μm左右急剧突变上升到60~90μm左右,相位也同时发生了突变,显然是发生了突发性不平衡,即断叶片故障。
波形图清晰地记录了这一时刻的突变过程,频谱图上丰富、活跃的低频成分佐证了断叶片过程中的碰摩。
然而与上一例的不同之处是,在随后的24小时中并未发生振幅和相位的二次变化,即二次扩大故障。
因此,故障的程度比上一例要轻。
某空压机透平断叶片的工频振动趋势图某空压机透平断叶片时的波形频谱图8. 过程振动趋势图过程振动趋势图显示了机组的过程参数以及振动值与时间的关系。
过程参数为工作介质的进出口压力、温度、流量以及油温、油压、瓦温、轴位移、转速、…、等等。
将过程参数与振动值都放在同一的时间坐标上对故障诊断是非常有帮助的。
上图是汽轮机转子轴位移与振动值的趋势图。
图中显示,在轴位移发生变化的同时,进汽侧轴承两振动值同时发生变化,而排汽侧轴承振动值无变化,因此可以判断这是进汽侧调节汽门动作而引起的正常变化。