北师大版年级上册一次函数的性质与图像含答案
北师大版初二一次函数的图像和性质
…
… …
比一比: 正比例函数 y=-2x 与一次函数 y=-2x+3 、y=-2 x-3图象有什么异同点. y
6 5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1 -2 -3 o 1
y=-2x+3
2 3 4
5
6
x
y=-2x-3
-4
-5 -6
y=-2x
观察:比较上面三个函数的相同点与不同点,根 据你的观察结果回答下列问题: 一条直线 (1)这三个函数的图象形状都是___ (2)函数y=-2x图象经过原点,一次函数y=-2x+3 (0,3) 的图象与y轴交于点____,即它可以看作由直线 上 3个 y=-2x向__平移__单位长度而得到;
y=kx+b中,k与b的取值范围:
K
<
0,
b
>
0,
o
5.下列函数中,y的值随x值的增大而增大的函数
是________. C
A.y=-2x C.y=x-2
B.y=-2x+1 D.y=-x-2
6.直线y=3x-2可由直线y=3x向 得到。
7.直线y=x+2可由直线y=x-1向 得到。
下 平移 2 单位
※※※一次函数y=kx+b的图象是一条直线,我 们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度而得到(当b>0,向上平移; 当b<0时,向下平移)。
2、用两点法画一次函数图像 实践:用两点法在同一坐标系中画出函数y=2x-1
与y=-0.5x+1的图象.
x y=2x-1
y 6 5
探索新知
1、认识一次函数的图象
2019-2020学年度北师大版八年级上册第四章一次函数 一次函数图像与性质培优题(解析版)
2019-2020一次函数图像与性质培优题(解析版)一、单选题1.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .2.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( ) A.2k <B.2k >C.0k >D.k 0<3.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A.24y x =-B.24y x =+C.22y x =+D.22y x =-4.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A.5B.2C.52D.255.在平面直角坐标系中,过点(1,2)作直线l ,若直线l 与两坐标轴围成的三角形面积为4,则满足条件的直线l 的条数是( ) A.5B.4C.3D.26.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+37.已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是下图中的()A. B. C. D.8.如图所示,表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象是()A. B.C. D.9.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在平面直角坐标系内它的大致图象是( )A .B .C .D .10.两个一次函数y=ax+b 与y=bx+a (a ,b 为常数,且ab≠0),它们在同一个坐标系中的图象可能是( )A. B. C. D.11.如图, 直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点, 点P 为OA 上一动点, 当PC PD +最小时, 点P 的坐标为 ()A .(3,0)-B .(6,0)-C .3(2-,0) D .5(2-,0)二、填空题12.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是_____.13.如图,已知()0,2A ,()6,0B ,()2,C m ,当1ABC S ∆=时,m =______.14.将直线33y x =-向右平移2个单位,所得的直线的与坐标轴所围成的面积是_______. 15.一次函数图象过点()0,2-日与直线23y x =-平行,则一次函数解析式__________.16.已知直线y kx b =+与25y x =-平行且经过点(1,3),则y kx b =+的表达式是__________.三、解答题17.如图,A 点的纵坐标为3,过A 点的一次函数的图象与正比例函数2y x =的图象相交于点B .(1)求该一次函数的解析式.(2)若该一次函数的图象与x 轴交于D 点,求BOD 的面积.18.如图,点A、B的坐标分别为(0,2),(1,0),直线132y x=-与y轴交于点C、与x轴交于点D.(1)直线AB解析式为y kx b=+,求直线AB与CD交点E的坐标;(2)四边形OBEC的面积是________;(3)求证:AB CD⊥.19.如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,,且.(1)分别求出这两个函数的解析式;(2)求的面积;(3)点在轴上,且是等腰三角形,请直接写出点的坐标.参考答案1.C【解析】分析:对于各选项,先确定一条直线的位置得到a和b的符号,然后根据此符号判断另一条直线的位置是否符号要求.详解:A、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以A选项错误;B、若经过第一、二、四象限的直线为y=ax+b,则a<0,b>0,所以直线y=bx+a经过第一、三、四象限,所以B选项错误;C、若经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,所以直线y=bx+a经过第一、二、四象限,所以C选项正确;D、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以D选项错误;故选:C.点睛:本题考查了一次函数图象:一次函数y=kx+b经过两点(0,b)、(-bk,0).注意:使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.2.B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,∴k-2>0,∴k>2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.3.A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.4.C【解析】【详解】分析:通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.详解:过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2..∴AD=a.∴12DE•AD=a.∴DE=2.当点F 从D 到B 时,用5s.∴BD=5. Rt △DBE 中, BE=()2222=521BD DE --=,∵四边形ABCD 是菱形, ∴EC=a-1,DC=a , Rt △DEC 中, a 2=22+(a-1)2. 解得a=52. 故选:C .点睛:本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系. 5.C 【解析】【分析】设直线l 解析式为:y=kx+b ,由l 与x 轴交于点A (-bk,0),与y 轴交于点B (0,b ),依题可得关于k 和b 的二元一次方程组,代入消元即可得出k 的值,从而得出直线条数.【详解】设直线l 解析式为:y=kx+b ,则l 与x 轴交于点A (-bk,0),与y 轴交于点B (0,b ), ∴2142AOB k b bS b k +=⎧⎪⎨=⨯-⨯=⎪⎩, ∴(2-k )2=8|k|,∴k 2-12k+4=0或(k+2)2=0, ∴k=6±42或k=-2, ∴满足条件的直线有3条, 故选C.【点睛】本题考查了一次函数图象与坐标轴交点问题,三角形的面积等,解本题的关键是确定出直线y=kx+b 与x 轴、y 轴的交点坐标.6.D 【解析】试题分析:∵B 点在正比例函数y=2x 的图象上,横坐标为1,∴y=2×1=2,∴B (1,2), 设一次函数解析式为:y=kx+b ,∵过点A 的一次函数的图象过点A (0,3),与正比例函数y=2x 的图象相交于点B (1,2), ∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+3. 故选D .考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题. 7.D 【解析】 【分析】根据正比例函数y kx =的图象经过第一,三象限可得: 0k >, 因此在一次函数y kx k =-中0k >, 0b k =-<,根据0k >直线倾斜方向向右上方, 0b <直线与y 轴的交点在y 轴负半轴,画出图象即可求解. 【详解】根据正比例函数y kx =的图象经过第一,三象限可得: 所以0k >,所以一次函数y kx k =-中0k >, 0b k =-<, 所以一次函数图象经过一,三,四象限, 故选D. 【点睛】本题主要考查一次函数图象象限分布性质,解决本题的关键是要熟练掌握一次函数图象图象的象限分布性质. 8.A 【解析】试题分析:A .正比例函数y=abx 过第二、四象限,所以a <0,b >0,而y=ax+b 过第一、二、四象限,所以a <0,b >0,故A 正确;B .正比例函数y=abx 过第一、三象限,所以a >0,b <0,而y=ax+b 过第一、二、四象限,所以a <0,b >0,所以矛盾,故B 错误;C .正比例函数y=abx 过第二、四象限,所以a <0,b >0,而y=ax+b 过第一、二、三象限,所以a >0,b >0,所以矛盾,故C 错误;D .正比例函数y=abx 过第一、三象限,所以a >0,b <0,而y=ax+b 过第一、三、四象限,所以a <0,<0,所以矛盾,故D 错误,故选:A . 考点:一次函数的图象性质. 9.A 【解析】 【分析】先根据函数图象得出其经过的象限,由一次函数图象与系数的关系即可得出结论. 【详解】解:因为y随x的增大而减小,可得:k<0,因为kb<0,可得:b>0,所以图象经过一、二、四象限.故选:A.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.10.B【解析】【分析】本题主要考查一次函数的图象与性质,根据函数图象得出一次函数各系数的正负是解题的关键;【详解】解:(1)对于y=ax+b,当a>0时,图像经过一三象限,则b>0,y=bx+a也要过一三象限,即A错误.(2) 对于y=ax+b,当a>0时,图像经过一三象限,且b<0,y=bx+a经过二四象限,与y轴交点在x轴上方,即B 正确.(3) 对于y=ax+b,当a>0时,图像经过一三象限,且b>0,y=bx+a经过一三象限,即C错误.(4) 对于y=ax+b,当a<0时,图像经过二四象限,若b>0,则y=bx+a经过一三象限,即D错误.【点睛】掌握一次函数的图像与性质,根据函数猜图像时要善于抓住增减性,特殊值等重点.11.C【解析】【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.(方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.【详解】解:(方法一)如图所示作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,令y=23x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=23x+4中y=0,则23x+4=0,解得:x=-6,∴点A的坐标为(-6,0).∵点C、D分别为线段AB、OB的中点,∴点C(-3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,-2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(-3,2),D′(0,-2),∴有232k bb==-+⎧⎨-⎩,解得:432kb⎧-⎪⎨⎪-⎩==,∴直线CD′的解析式为y=42 3x--,令y=423x--中y=0,则0=423x--解得:x=32-,∴点P的坐标为3 (0)2 -,.故选C.(方法二)如图所示连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,令y=243x+中x=0,则y=4,∴点B的坐标为(0,4);令y=243x+中y=0,则243x+=0,解得:x=-6,∴点A的坐标为(-6,0).∵点C、D分别为线段AB、OB的中点,∴点C(-3,2),点D(0,2),CD∥x轴,∵点D′和点D关于x轴对称,∴点D′的坐标为(0,-2),点O为线段DD′的中点.又∵OP∥CD,∴点P为线段CD′的中点,∴点P的坐标为(32, ).故选:C.【点睛】本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是找出点P的位置.12.x=2【解析】【分析】一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.【详解】∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2,故答案为:x=2.【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.13.1或5 3【解析】【分析】求出直线AB的解析式,设直线x=2交直线AB于点E,可得4(2,)3E,再根据三角形面积公式列出方程求解即可.【详解】解:如图,∵A(0,2),B(6,0),∴直线AB的解析式为123y x=-+设直线x=2交直线AB于点E,则可得到4 (2,)3 E,由题意:1461 23m⋅-⋅=解得m=1或5 3故答案为:1或5 3【点睛】本题考查了坐标与图形的性质,解题的关键是学会构建一次函数解决问题,学会利用参数构建方程解决问题,属于中考常考题型.14.27 2【解析】【分析】先求出平移后的直线的解析式,再求出平移后的直线与两坐标轴的交点即可求得结果. 【详解】解:直线33y x =-向右平移2个单位后的解析式为3(2)339y x x =--=-, 令x =0,则y =-9,令y =0,则3x -9=0,解得x =3,所以直线39y x =-与x 轴、y 轴的交点坐标分别为(3,0)、(0,-9),所以直线39y x =-与坐标轴所围成的三角形面积是1273922⨯⨯=. 故答案为:272. 【点睛】本题考查了一次函数的平移和一次函数与坐标轴的交点问题,一次函数的平移遵循“上加下减,左加右减”的规律,正确求出平移后一次函数的解析式是解此题的关键. 15.32y x =-- 【解析】 【分析】设一次函数解析式为y=kx+b ,先把(0,-2)代入得b=-2,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式. 【详解】解:设一次函数解析式为y=kx+b , 把(0,-2)代入得b=-2,∵直线y=kx+b 与直线y=2-3x 平行, ∴k=-3,∴一次函数解析式为y=-3x-2. 故答案为:y=-3x-2. 【点睛】本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k 值相同.16.21y x =+ 【解析】 【分析】先根据两直线平行的问题得到k=2,然后把(1,3)代入y=2x+b 中求出b 即可. 【详解】∵直线y=kx+b 与y=2x+1平行, ∴k=2,把(1,3)代入y=2x+b 得2+b=3,解得b=1, ∴y=kx+b 的表达式是y=2x+1. 故答案为:y=2x+1. 【点睛】此题考查一次函数中的直线位置关系,解题关键在于求k 的值. 17.(1)3y x =-+;(2)3BODS =.【解析】 【分析】(1)利用正比例函数,求得点B 坐标,再利用待定系数法即可求得一次函数解析式; (2)利用一次函数解析式求得点D 坐标,即可求BOD 的面积. 【详解】(1)把1x =代入2y x =中,得2y =, 所以点B 的坐标为()1,2,设一次函数的解析式为y kx b =+,把()0,3A 和()1,2B 代入,得32b k b =⎧⎨+=⎩,解得13k b =-⎧⎨=⎩,所以一次函数的解析式是3y x =-+;(2)在3y x =-+中,令0y =,则03x =-+, 解得3x =,则D 的坐标是()3,0,所以13232BODS=⨯⨯=. 【点睛】本题为考查一次函数基础题,考点涉及利用待定系数法求一次函数解析式以及求一次函数与坐标轴交点坐标,熟练掌握一次函数相关知识点是解答本题的关键. 18.(1)(2,2)E - (2)4 (3)证明见解析 【解析】 【分析】(1)运用待定系数法即可得到直线AB 解析式,再根据方程组的解,即可得到直线AB 与CD 交点E 的坐标; (2)根据坐标轴上点的特征求出C 、D 两点的坐标,然后根据S OBEC S DOC S DBE ∆∆=-Y 面积公式计算即可;(3)作EF ⊥y 轴于点F ,根据勾股定理分别求出222AE CE AC 、、,利用勾股定理的逆定理判断即可. 【详解】解:(1)点A 、B 的坐标分别为(0,2),(1,0),∴02k b b +=⎧⎨=⎩,解得22k b =-⎧⎨=⎩,故直线AB 的解析式是22y x =-+,则22132y x y x =-+⎧⎪⎨=-⎪⎩,解得22x y =⎧⎨=-⎩ ∴(2,2)E -;(2直线CD 的解析式为132y x =-, 当x=0时,y=-3,当y=0时,x=6,则点C 的坐标是(0,-3),点D 的坐标是(6,0).S OBEC S DOC S DBE ∆∆=-Y =11635222⨯⨯-⨯⨯=4;(3)作EF y ⊥轴于点F ,由(0,2)A ,(2,2)E -,(0,3)C - ∴4AF =,1CF =,2EF =,5AC =222224220AE AF EF =+=+=, 22222215CE CF EF =+=+=, 22525AC ==,∴222AE CE AC +=,∴ACE ∆是直角三角形,且90AEC ∠=︒ ∴AB CD ⊥.【点睛】此题考查一次函数的综合运用,解题关键在于运用待定系数法,勾股定理的逆定理. 19.(1);;(2)10;(3)或或或【解析】【分析】(1)根据点A坐标,可以求出正比例函数解析式,再求出点B坐标即可求出一次函数解析式.(2)如图1中,过A作AD⊥y轴于D,求出AD即可解决问题.(3)分三种情形讨论即可①OA=OP,②AO=AP,③PA=PO.【详解】解:(1)正比例函数的图象经过点,,,正比例函数解析式为如图1中,过作轴于,在中,,解得一次函数解析式为(2)如图1中,过作轴于,(3))如图2中,当OP=OA时,P(−5,0 ,P(5,0),当AO=AP时,P(8,0),当PA=PO时,线段OA的垂直平分线为y=−,∴P,∴满足条件的点P的坐标或或或【点睛】此题考查一次函数综合题,解题关键在于作辅助线.。
北师大版八年级数学上册第4章 一次函数 一次函数的图象和性质
次函数的图象吗?
例1 画出一次函数 y = -2x+1 的图象
x y = –2x+1
–2
–1
5
3
y = –2x+1
0
1
1 –1 y
5
01 23 4 5
4
2 列表
–3
一次函数的图 象是什么?
01 23 4 5 01 23 4 5
01 23 4 5 01 23 4 5
思考:观察它们的图象有什么特点?
y y=x+2
.
.
..
.O.
.
.
.
y
.
2
=
x
-
2
x
探究归纳
观察三个函数图象的平移情况:
y y=x+2 y=x
2●
y=x-2
O2
x
●
把一次函数y = x+2,y = x-2的图象与y = x比较,发现: 1. 这三个函数的图象形状都是 直线 ,并且倾斜程度
_相__同___. 2. 函数 y = x 的图象经过原点,函数 y = x + 2 的图象与
y 随 x 的增大而增大. ① b>0 时,直线经过第一、二、三象限;
② b<0 时,直线经过第一、三、四象限. 当 k<0 时,直线 y = kx+b 从左到右逐渐下降,
y 随 x 的增大而减小. ① b>0 时,直线经过第一、二、四象限;
② b<0 时,直线经过第二、三、四象限.
练一练 两个一次函数 y1 = ax+b 与 y2 = bx+a,它们在
要点归纳
思考:与 x 轴的 交点坐标是什么?
b k
北师版数学八年级上册第2课时 一次函数的图象和性质课件
y=-x+3
y=-x
3 2 -3 -2 -1 1
-1 -2
y=2x+3 -3
y=5x-2
123
( 3) 直线 y=2x+3与 直 线 y=-x+3 有 什 么 共 同 点 ? 一 般地,你能从函数y=kx+b数 y=kx+b 的图象经过点(0,b).当 k>0时,y 的值随着 x 值的增大而增大;当 k<0时,y 的值随着 x 值的增大而减小
y=-x+3
y=-x
3 2 -3 -2 -1 1
-1 -2
y=2x+3 -3
y=5x-2
123
(1)上述四个函数中, 随着 x 值的增大,y 的值 分别如何变化?相应图象 上点的变化趋势如何?
y=-x+3
y=-x
3 2 -3 -2 -1 1
-1 -2
y=2x+3 -3
y=5x-2
123
(2)直线y=-x与y=-x+3的 位置关系如何?你能通过 适当的移动将直线y=-x变 为直线y=-x+3吗?一般地, 直 线 y=kx+b 与 y=kx 又 是 怎 样的位置关系呢?
课后作业
布置作业:习题4.4 1、2、3、4 。 完成练习册中本课时的习题。
►If I had not been born Napoleon, I would have liked to have been born Alexander. 如果今天我不是拿破仑的话,我想成为亚历山大。
►Never underestimate your power to change yourself! 永远不要低估你改变自我的能力!
4.3.2 一次函数的图象与性质 课件 2024-2025学年北师大版八年级数学上册
同,图象都经过点 (0 , 3))
y = 5x - 2 的图象经过点 ( 0 , -2 )
一次函数 y = kx+ b 的图象经过点 ( 0 , b )
图象与 y 轴交点的纵坐标就是 b 的值
y = -x + 3
y = 5x - 2
y = -x
归纳总结
一次函数 y = kx + b 的图象是一条经过 ( 0 , b
一次函数 y=kx+b图像有什么特点?
一次函数的图象:一次函数y=kx+b的图象是一条经过点(0,b)的直线,
通常也称为直线y=kx+b.
y=kx+b
y
b
( k , 0)
(0, b)
O
x
一次函数图象的画法
画图时通常取两点(0,b)与( b ,0)(k≠0),有时也可取横、纵坐标均为
整数的点.
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
B )
3. 在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k,b的
取值范围为(
C
)
A. k>0,b>0
B. k>0,b<0
C. k<0,b<0
D. k<0,b>0
第3题图
4.在平面直角坐标系中,一次函数y=-x-4的图象与y轴交于点A.
y = -2x向上平移一个单位得到y = -2x + 1;
y = -2x向下平移一个单位得到y = -2x - 1;
y = -2x - 1
(3)平移直线y = -2x+ 1,能得到y = -2x,y = -2x - 1吗?
y = -2x
y = -2x + 1
北师大版数学八年级上册《一次函数的图象与性质》说课稿2
北师大版数学八年级上册《一次函数的图象与性质》说课稿2一. 教材分析《一次函数的图象与性质》是北师大版数学八年级上册第五章的内容,本节内容是在学生已经掌握了函数的概念、一次函数的定义和图象的基础知识上进行的。
本节内容的主要目的是让学生了解一次函数的图象与性质,会利用一次函数的图象解决一些实际问题。
本节内容共分为三个部分:一次函数的图象、一次函数的性质和一次函数图象的应用。
一次函数的图象主要让学生了解一次函数图象的形状和特点;一次函数的性质主要让学生了解一次函数的单调性、截距和斜率的关系等;一次函数图象的应用主要是让学生学会利用一次函数图象解决一些实际问题。
二. 学情分析学生在学习本节内容之前,已经掌握了函数的概念、一次函数的定义和图象的基础知识,对于这些基础知识的理解和运用已经比较熟练。
但是,对于一次函数的图象与性质的深入理解和运用还需要加强。
此外,学生对于数学知识的应用能力还需要进一步提高。
三. 说教学目标1.知识与技能:了解一次函数的图象与性质,学会利用一次函数的图象解决一些实际问题。
2.过程与方法:通过观察、分析、归纳等方法,探索一次函数的图象与性质,提高学生的逻辑思维能力。
3.情感态度与价值观:培养学生对数学的兴趣,增强学生的自信心,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:一次函数的图象与性质的理解和运用。
2.教学难点:一次函数图象的应用,学生的实际问题解决能力的培养。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入:通过复习函数的概念和一次函数的定义,引出一次函数的图象与性质的学习。
2.新课导入:介绍一次函数的图象,让学生观察和分析一次函数图象的形状和特点。
3.探索与交流:让学生通过小组合作学习,探索一次函数的性质,包括单调性、截距和斜率的关系等。
4.应用与拓展:让学生通过解决实际问题,学会利用一次函数的图象解决一些实际问题。
北师大版初中八年级数学上册第四章一次函数3一次函数的图象第2课时一次函数的图象及性质课件
选D.
.
8.(易错题)(2023四川成都模拟)已知一次函数y=mx+n的图象 不经过第二象限,则m,n的取值范围为 m>0,n≤0 . 解析 ∵一次函数y=mx+n的图象不经过第二象限,∴m>0. 当此函数图象经过原点时,n=0; 当此函数图象不经过原点时,n<0. 故答案为m>0,n≤0.
9.(2024安徽六安期末)函数y=-x+b的图象与x轴、y轴分别交 于点A、B,△AOB的面积为8,则b的值为 ±4 .
知识点2 一次函数y=kx+b的性质 4.(2024安徽六安期末)下列函数中,y随x的增大而减小的是 ( C) A.y=5x+3 B.y=2x-4 C.y=-3x+4 D.y=x+3 解析 当k<0时,y随x的增大而减小,故选C.
5.(一题多解)(2024江苏淮安期末)已知点(-2,y1),(3,y2)都在直 线y=-2x+1上,则y1与y2的大小关系为 ( A ) A.y1>y2 B.y1=y2 C.y1<y2 D.无法比较 解析 解法一:将点(-2,y1),(3,y2)代入直线y=-2x+1,得y1=-2× (-2)+1=5,y2=-2×3+1=-5, ∴y1>y2. 解法二:∵-2<0,∴y随x的增大而减小, ∵-2<3,∴y1>y2.故选A.
解析 当y=0时,x=b,∴点A(b,0),则OA=|b|,
当x=0时,y=b,∴点B(0,b),则OB=|b|,
∵△AOB的面积为8,
∴ 1 OA·OB=8,即1 b2=8,解得b=±4.
2
2
10.已知函数y=(2m+1)x+m-3. (1)若函数图象经过原点,求m的值. (2)若函数的图象平行于直线y=3x-3,求m的值. (3)若这个函数是一次函数,且y随着x的增大而减小,求m的取 值范围.
北师大版八年级上册数学第4章一次函数 第3节一次函数的图象
的点,所有这些点组成的图形叫做该函数的图象 .
感悟新知
特别提醒 1.函数图象上的任意点P(x,y)中的x,y都满足函数
关系式 . 2.满足函数关系式的任意一对有序实数对 (x,y)所
对应的点一定在函数的图象上. 3.函数图象上的所有点与函数关系式中的两个变量
一一对应.它们是函数两个变量间的关系的两种不 同 (一种是“数”,一种是“形”)呈现方式.
第二、四象限
增减性 y 随 x 的增大而增大 y 随 x 的增大而减小
感悟新知
知3-讲
特别提醒 对于正比例函数y=kx(k≠0),k的符号、图象所
经过的象限、函数的增减性这三者,知其一,则可知 其他两者.
感悟新知
知3-练
例3 [ 中考·珠海 ]已知函数 y=3x 的图象经过点 A(-1, y1),点 B(-2, y2),则 y1_______y2(填“>”“<”或 “=” ) .
在平面直角坐标系中,将直线 l1: y=-3x-2 向左
平移1 个单位长度,再向上平移 3 个单位长度得到直线
l2,则直线 l2对应的函数表达式为(
)
A.y=-3x-9 B.y=-3x-2
C.y=-3x+2
D.y=-3x+9
解题秘方:紧扣“平移规律:上加下减、左加右
减”进行求解 .
感悟新知
知4-练
感悟新知
知识点 4 一次函数的图象
知4-讲
1.一次函数的图象 一次函数 y=kx+b( k, b 是常数,k ≠ 0) 的图象是一条直线,我们称它为直线 y=kx+b.
感悟新知
知4-讲
2. 一次函数的图象与正比例函数的图象的关系 一次函数 y=kx+b(k ≠ 0)的图象可以由直线 y=kx( k ≠ 0)
北师大版八年级上册数学第18讲《一次函数全章》知识点梳理
北师大版八年级上册数学第 18 讲《一次函数全章》知识点梳理【学习目标】1.了解常量、变量和函数的概念,了解函数的三种表示方法(列表法、解析式法和图象法),能利用图象数形结合地分析简单的函数关系.2.理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题.3.通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的再认识.4.通过讨论选择最佳方案的问题,提高综合运用所学函数知识分析和解决实际问题的能力.【知识网络】选择方案要点一、函数的相关概念一般地,在一个变化过程中. 如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值.函数的表示方法有三种:解析式法,列表法,图象法.要点二、一次函数的相关概念一次函数的一般形式为y =kx +b ,其中k 、b 是常数,k ≠0.特别地,当b =0 时,一次函数y =kx +b 即y =kx (k ≠0),是正比例函数.要点三、一次函数的图象及性质1、函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.要点诠释:直线y =kx +b 可以看作由直线y =kx 平移| b |个单位长度而得到(当b >0 时,向上平移;当b <0 时,向下平移).说明通过平移,函数y =kx +b 与函数y =kx 的图象之间可以相互转化.2、一次函数性质及图象特征掌握一次函数的图象及性质(对比正比例函数的图象和性质)要点诠释:理解k 、b 对一次函数y =kx +b 的图象和性质的影响:(1)k 决定直线y =kx +b 从左向右的趋势(及倾斜角α的大小——倾斜程度),b 决定它与y轴交点的位置,k 、b 一起决定直线y =kx +b 经过的象限.(2) 两条直线l 1 : y = k 1 x + b 1 和l 2 : y = k 2 x + b 2 的位置关系可由其系数确定: k 1 ≠ k 2 ⇔ l 1 与l 2 相交;k 1 = k 2 ,且b 1 ≠ b 2 ⇔ l 1 与l 2 平行; k 1 = k 2 ,且b 1 = b 2 ⇔ l 1 与l 2 重合; (3) 直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线 x = a 、直线 y = b 不是一次函数的图象. 要点四、用函数的观点看方程、方程组、不等式【典型例题】 类型一、函数的概念1、下列说法正确的是:( )A.变量 x , y 满足2x + y = 3 ,则 y 是 x 的函数; B.变量 x , y 满足| y |= x ,则 y 是 x 的函数; C.变量 x , D.变量 x , 【答案】A ;y 满足 y 2 = x ,则 y 是 x 的函数; y 满足 y 2 - x 2 = 1,则 y 是 x 的函数. 【解析】B 、C 、D 三个选项,对于一个确定的 x 的值,都有两个 y 值和它对应,不满足单值对应的条2x - 3 x ⎩⎩ 件,所以不是函数.【总结升华】理解函数的概念,关键是函数与自变量之间是单值对应关系,自变量的值确定后,函数值是唯一确定的. 举一反三:【变式】如图的四个图象中,不表示某一函数图象的是( )【答案】B ;2、求函数 的自变量的取值范围.【思路点拨】要使函数有意义,需 或 解这个不等式组即可.【答案与解析】 解:要使函数 有意义,则 x 要符合: 即:或2x -1 ≥ 0x -1解方程组得自变量取值是或.【总结升华】自变量的取值范围是使函数有意义的 x 的集合. 举一反三:【变式】求出下列函数中自变量 x 的取值范围(1) y = x +1 【答案】(2) y =x3x + 2|x -2| (3) y = +⎧x ≠ 0 解:(1)要使 y = x +1 有意义,需⎨x +1 ≠ 0 ,解得 x ≠0 且 x ≠-1;(2)要使 y = 3x + 2有意义,需⎧3x + 2 ≥ 0 ,解得 x ≥ - 2 且x ≠ 2 ;|x -2|⎨x - 2 ≠ 03 3 - 2x(3)要使y = +有意义,需⎧2x - 3 ≥ 0 ,解得x =3 .2x - 33 - 2x ⎨⎩3 - 2x ≥ 0 2类型二、一次函数的解析式3、已知y 与x - 2 成正比例关系,且其图象过点(3,3),试确定y 与x 的函数关系,并画出其图象.【思路点拨】y 与x - 2 成正比例关系,即y =k (x - 2) ,将点(3,3)代入求得函数关系式.【答案与解析】解:设y =k (x - 2) ,由于图象过点(3,3)知k = 3 ,故y = 3(x - 2) = 3x - 6 .其图象为过点(2,0)与(0,-6)的一条直线(如图所示).【总结升华】y 与x 成正比例满足关系式y =kx ,y 与x -2 成正比例满足关系式y =k (x - 2) ,注意区别.举一反三:【变式】直线y =kx +b 平行于直线y = 2x -1,且与x轴交于点(2,0),求这条直线的解析式. 【答案】解:∵直线y =kx +b 平行于直线y = 2x -1∴k = 2∵与x 轴交于点(2,0)∴①将k =2 代入①,得b =-4∴此直线解析式为y = 2x - 4 .类型三、一次函数的图象和性质4、已知正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是图中的().【答案】B;【解析】∵ y 随x 的增大而减小,∴k <0.∵y =x +k 中x 的系数为1>0,k <0,∴经过一、三、四象限,故选B.【总结升华】本题综合考查正比例函数和一次函数图象和性质,k >0 时,函数值随自变量x 的增大而增大.举一反三:【变式】已知正比例函数y =(2m -1)x 的图象上两点A( x1,y1), B( x2, y2),当x1<x2时, 有y 1 >y2, 那么m 的取值范围是( )A.m <1B.m >1C.m < 2D.m > 0 2 2【答案】A;提示:由题意y 随着x 的增大而减小,所以2m -1 < 0 ,选A 答案.类型四、一次函数与方程(组)、不等式5、如图,平面直角坐标系中画出了函数y =kx +b 的图象.(1)根据图象,求k 和b 的值.(2)在图中画出函数y =-2x + 2 的图象.(3)求x 的取值范围,使函数y =kx +b 的函数值大于函数y =-2x + 2 的函数值.【思路点拨】(3)画出函数图象后比较,要使函数y =kx +b 的函数值大于函数y =-2x + 2 的函数值,需y =kx +b 的图象在y =-2x + 2 图象的上方.【答案与解析】解:(1)∵直线y =kx +b 经过点(-2,0),(0,2).∴解得∴y =x + 2 .(2)y=-2x+2经过(0,2),(1,0),图象如图所示.(3)当y =kx +b 的函数值大于y =-2x + 2 的函数值时,也就是x + 2 >-2x + 2 ,解得x >0,即x 的取值范围为x >0.【总结升华】函数图象在上方函数值比函数图象在下方函数值大.举一反三:【变式】(2015•武汉校级模拟)已知一次函数y=kx+b 的图象经过点(3,5)与(﹣4,﹣9).(1)求这个一次函数的解析式;(2)求关于x 的不等式kx+b≤5 的解集.【答案】解:∵一次函数y=kx+b 的图象经过点点(3,5)与(﹣4,﹣9),∴,解得∴函数解析式为:y=2x﹣1;(2)∵k=2>0,∴y 随x 的增大而增大,把y=5 代入y=2x﹣1 解得,x=3,∴当x≤3 时,函数y≤5,故不等式kx+b≤5 的解集为x≤3.类型五、一次函数的应用6、(2015•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12 吨(含12 吨)时,每吨按政府补贴优惠价收费;每月超过12 吨,超过部分每吨按市场调节价收费,小黄家1 月份用水24 吨,交水费42 元.2 月份用水20 吨,交水费32 元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(3)小黄家3 月份用水26 吨,他家应交水费多少元?【答案与解析】解:(1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元.根据题意得,解得:.答:每吨水的政府补贴优惠价为1 元,市场调节价为2.5 元.(2)∵当0≤x≤12 时,y=x;当x>12 时,y=12+(x﹣12)×2.5=2.5x﹣18,∴所求函数关系式为:y= .(3)∵x=26>12,∴把 x=26 代入 y=2.5x ﹣18,得:y=2.5×26﹣18=47(元).答:小英家三月份应交水费 47 元.【总结升华】本题考查了一次函数的应用,题目还考查了二元一次方程组的解法,特别是在求一次函数的解析式时,此函数是一个分段函数,同时应注意自变量的取值范围. 举一反三:【变式】一报刊销售亭从报社订购某晚报的价格是每份 0.7 元,销售价是每份 1 元,卖不掉的报纸还可以以 0.20 元的价格返回报社,在一个月内(以 30 天计算),有 20 天每天可卖出 100 份,其余 10 天,每天可卖出 60 份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为 ,每月所获得的利润为 .(1) 写出 与 之间的函数关系式,并指出自变量 的取值范围;(2) 报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?【答案】解:(1).类型六、一次函数综合7、如图所示,直线l 1 的解析表达式为 y = -3x + 3 ,且l 1 与 x 轴交于点 D ,直线l 2 经过 A 、B 两点, 直线l 1 、l 2 交于点 C .(1) 求点 D 的坐标; (2) 求直线l 2 的解析表达式; (3) 求△ADC 的面积;(4) 在直线l 2 上存在异于点 C 的另一点 P ,使得△ADP 与△ADC 的面积相等,请直接写出点 P 的坐标.⎨ ⎪ ⎨ ⎨ y = -3.【答案与解析】解: (1)由 y = -3x + 3 ,当 y =0,得-3x + 3 =0,得 x =l .∴ D(1,0).(2) 设直线l 2 的解析表达式为 y = kx + b ,由图象知, x = 4 , y = 0 ; x = 3 , y = - 3.2⎧4k + b = 0, 将这两组值代入,得方程组⎪33k + b = - . ⎩ 2⎧k = 3 ,解得⎪2⎪⎩b = -6. ∴ 直线l 2 的解析表达式为 y = 3x - 6 .2⎧y = -3x + 3, (3) ∵ 点 C 是直线l 与l 的交点,于是有⎪312⎨ y = ⎩ x - 6. 2解得⎧x = 2,⎩ ∴ C(2,-3). ∴ △ADC 的 AD 边上的高为 3. ∵ OD =1,OA =4, ∴ AD =3. ∴ S= 1 ⨯ 3⨯ | -3 |= 9. △ADC2 2(4)P(6,3).【总结升华】这是一道一次函数图象与性质的综合应用问题,求直线的函数解析式,一般运用待定系数法,但运用过程中,又要具体问题具体分析;求底边在坐标轴上三角形的面积的关键是探求该三角形的高.。
北师大版八年级数学上册一次函数图像和性质课件
一次函数图像和性质
一、复习提问
1、正比例函数的解析式为: 当x=0时,y= 当x=1时,y=所以,它的图像必经过点( )( )
y= kx,(k≠0)
2、一次函数的解析式为:
y=kx+b(k≠0)
0
b
0 , b
当x=0时,y= 当y=0时,x= 或当x=1时,y= 所以,它的图像必经过点( )和点( )或( )
y
x
o
K<<0, b<0
y
x
o
K<0, b>0
1已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )
八.一次函数中k,b的意义
1. 当a___时, 一次函数 y=(a-2)x+1 不过第三象限.
<2
c
4.已知函数y=ax的图象如图甲所示,则函数y=-ax-a2的图象可能是( )
A B C D
增大
考考大家: 填一填
y=2x
做一做
1.已知一次函数y=(3 – k)x –2k2+18 (1) k为何值时,它的图象经过点(0, – 2); (2)k为何值时,它的图象经过原点; (3) k为何值时,它的图象与y轴的交点在x轴上方.
5. 已知函数 y=kx 的图像经过第二、四象限, 那么函数 y=-kx+1的图像不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
D
八.一次函数中k,b的意义
C
6、直线y=kx+b经过一、二、四象限,则K 0, b 0.
以坐标轴上坐标特点来确定两点
提出问题形成思路
完整)北师大版八年级数学上册一次函数
完整)北师大版八年级数学上册一次函数基础知识回顾】一次函数的定义:一般地,如果y=kx+b,那么y就是x 的一次函数。
特殊地,当b=0时,y就是x的正比例函数;当k=0时,y就是常数函数。
一次函数与二元一次方程组:两条直线的交点坐标即为两个一次函数列二元一次方程组的解,反之根据方程组的解可求两条直线的交点坐标。
名师提醒:1、一次函数与三者之间的关系问题一定要结合图像去解决。
2、在一次函数中讨论交点问题即是讨论一元一次不等式的解集或二元一次方程组解的问题。
】一次函数的同象及性质:一次函数y=kx+b的图像经过点(0,b)和(-b/k,0);正比例函数y=kx的图像经过原点;当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小。
名师提醒:正比例函数是一次函数,反之不一定成立,只有当b=0时,它才是正比例函数。
】用系数法求一次函数解析式:关键是确定一次函数y=kx+b中的k和b的值。
步骤:1、设一次函数表达式;2、将x,y的对应值或点的坐标代入表达式;3、解关于系数的方程或方程组;4、将所求的系数代入等设函数表达式中。
一次函数与一元一次方程、一元一次不等式和二元一次方程组:一般地,将x=或y=解一元一次方程求直线与坐标轴的交点坐标,代入y=kx+b中;对于一元一次不等式kx+b>0或kx+b<0,即一次函数同象位于x轴上方或下方,利用函数性质解决问题;对于二元一次方程组,求解两条直线的交点坐标即为方程组的解。
名师提醒:一次函数的应用多与二元一次方程组或一元一次不等式(组)相联系,经常涉及交点问题、方程涉及问题等。
】重点考点例析】考点一:一次函数的同象和性质例1(2012•黄石)已知反比例函数y=x/b,若一次函数y=kx+2与其同象,则k的取值范围是多少?解析:反比例函数y=x/b的图像经过点(b,1)和(1,b),因此一次函数y=kx+2的图像也经过这两点。
将这两点代入一次函数的解析式,得到k的取值范围为k≠-2b。
北师大版八年级数学上册一次函数的图象 第1课时正比例函数的图象和性质
13.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的 增大而__减__小____.(填“增大”或“减小”) 14.若点A(-5,y1)和点B(-2,y2)都在函数y=2x的图象上,则 y1__<__y2.(填“>”“<”或“=”)
15.已知函数y=(k+3)x. (1)k为何值时,函数为正比例函数?
7.若点A(2,4)在函数y=kx的图象上,则下列各点在此函数图象上的 是( A )
A.(1,2) B.(-2,-1)
C.(-1,2) D.(2,-1) 8.函数y=-4x的图象是经过点(0,__0__)与点(1,_-__4_)的一条直线.
9.已知函数y=(2-m)x+2m-3,当m为何值时? (1)此函数为一次函数; 解:m≠2. (2)此函数为正比例函数.
序号)
4.当x<0时,函数y=-2x在(B ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5.如果y=mxm2-8是正比例函数,且其图象在第二、四象限,那么m的 值是_-__3_. 6.函数y=6x的图象是经过点(0,__0__)和点(__1__,6)的一条直线,点A(2 ,4)_不__在_(填“在”或“不在”)直线y=6x上.
图象时,只要再确定_一___个点,过这点与原点作直线就可以了.
练习1:函数y=-
1 2
x的图象在第
二、四
象限.
4.在正比例函数y=kx中,当k>0时,y的值随着x值的增大而_增__大_;当k<0
时,y的值随着x值的增大而_减__小_.
练习2:若正比例函数y=kx(k为常数,且k≠0)的函数值y随着x的增大而减 小,则k的值可能是_-__1_.(写出一个即可)
t(分) … 2 4 6 8 10 … Q(m3) … 4 8 12 16 20 …
北师大版八年级数学上册《一次函数的图象》一次函数PPT课件(第2课时)
4.画出函数y=x+1的图象,并根据图象回答: (1)x为何值时,y的值为0? (2)y为何值时,x的值为0? (3)x为何值时,y随x的增大而增大?
解:过点(0,1),(-1,0)画出函数图象如图所示.
(1)当x=-1时,y=0. (2)当y=1时,x=0. (3)x取任意实数,y都随x的增大而增大.
y
y=x+1
1
-1 O -1
1
x
课堂小结
一次函数的图象
一次函数y=kx+b的图象是_一__条__直__线___,只要确定两个点,就可画 出一次函数图象. 一次函数y=kx+b的图象也称为__直__线__y_=_k_x_+_b___.
课堂小结
一次函数的性质
一次函数y=kx+b的图象经过__点__(_0_,b_)_. 当_k_>__0__时,y的值随着x值的增大而增大; 当__k_<__0_时,y的值随着x值的增大而减小.
-2
-3
-4 -5
y=-2x+1
2.在同一坐标系中画出函数y=-2x的图象. 比较两个函数图象.
这两个函数的图象形状都是__一__条__直__线_, 并且倾斜程度_相__同___. 函数y=-2x的图象经过原点,函数y=-2x+1 的图象与y轴交于点__(__0_,__1_),它可以看作 由直线y=-2x向___上___平移___1___个单位长 度得到.
k的符号决定直线从左到右呈上升趋势还是下降趋势,
k>0时,呈上升趋势;k<0时,呈下降趋势. b的符号决定直线与y轴交点的位置, b>0时,直线与y轴的交点在x轴的上方; b<0时,直线与y轴的交点在x轴的下方; b=0时,直线经过原点.
北师大版数学八年级上册《一次函数的图象与性质》教学设计2
北师大版数学八年级上册《一次函数的图象与性质》教学设计2一. 教材分析《一次函数的图象与性质》是北师大版数学八年级上册第五章的内容,本节内容是在学生已经掌握了函数的概念、一次函数的定义和图象的基础上进行讲授的。
本节内容的主要目的是让学生了解一次函数的图象与性质,包括斜率、截距、图象的形状和位置等,从而能够更好地理解和运用一次函数。
二. 学情分析八年级的学生已经具备了一定的函数基础,对于一次函数的概念和图象已经有了一定的了解。
但是,学生对于一次函数的性质的理解和运用还不够熟练,需要通过本节课的学习来进行进一步的巩固和提升。
三. 教学目标1.让学生理解一次函数的斜率和截距的概念,能够读取和描述一次函数图象上的斜率和截距。
2.让学生掌握一次函数图象的性质,包括图象的形状、位置等,能够运用一次函数的性质解决实际问题。
3.培养学生的观察能力、分析能力和解决问题的能力。
四. 教学重难点1.一次函数的斜率和截距的概念。
2.一次函数图象的性质的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题引导学生思考和探索,激发学生的学习兴趣和主动性。
2.采用案例教学法,通过具体的案例让学生理解和掌握一次函数的图象与性质。
3.采用小组合作学习的方式,让学生通过合作交流,共同解决问题,提高学生的合作能力和解决问题的能力。
六. 教学准备1.PPT课件2.教学案例和实例3.练习题和测试题七. 教学过程1.导入(5分钟)通过提出问题“你能用一次函数来描述小明的身高随着年龄的增长的变化吗?”引导学生思考和探索一次函数的应用,激发学生的学习兴趣和主动性。
2.呈现(10分钟)通过PPT课件呈现一次函数的斜率和截距的概念,以及一次函数图象的性质。
让学生初步了解和掌握一次函数的图象与性质。
3.操练(10分钟)让学生通过小组合作,利用给出的实例和案例,运用一次函数的性质解决问题,巩固和提升学生对一次函数图象与性质的理解和运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OxyOxyOxyyxOA.B .C . D.课前小测1、一次函数21y x =-的图象大致是( B )2、过点(2,3)的正比例函数的表达式是( C )A .B .C .D .3、若y 与x 的关系式为y=3x+6,当x=时,y 的值为 (A )A .7B .10C .4D .-44、下列各点中,在函数y=-2x+5的图象上的是( D )A.(0,―5)B.(2,9)C.(–2,–9)D.(4,―3) 5、若一次函数y=kx-4的图象经过点(–2,4),则k 等于( A )A.–4B.4C.–2D.26、下列说法中不正确的是( D )A.一次函数不一定是正比例函数B. 不是一次函数就一定不是正比例函数C.正比例函数是特殊的一次函数D.不是正比例函数就一定不是一次函数 ★7、若点A (2,4)在函数的图象上,则下列各点在此函数图象上的是( A )A .(0,-2)B .(32|,0)C .(8,20)D .(12|,12|)8、一枝铅笔0.2元,买x 枝铅笔应付款y 元,则y 与x 之间的函数表达式是________.9、直线通过二、三、四象限,则k ________0,b ________0;若通过一、三、四象限,则k ________0,b ________0;若通过一、二、三象限,则k ________0,b ________0.★10、请你写出一个经过点(1,1)的函数表达式___ _____.一次函数的图像与性质1.一次函数的概念:函数 (k ,b 为常数,k ≠0)叫做x 的一次函数。
yxO.AB.学习这个定义应明确下面几点:函数y=kx +b (k ≠0)中b 可以为任意常数,当b=0时,一次函数y=kx +b 就成y=kx (k 为常数,且(k ≠0)),这时y 叫做x 的 ,因此正比例函数是一次函数的特例,但一次函数不一定是正比例函数。
2.一次函数的图像:一般,作正比例函数y =kx 的图像常取点(0,0)和(1,k );作一次函数)0(≠+=b b kx y 的图像常取(0, )和( ,0 )两点,这两点是直线与坐标轴的交点。
3.一次函数的性质: k____0 k____0 b___0b___0b___0b___0b___0b___0图像增减性 y 随x 增大而_________y 随x 增大而_________经过的象限(1)参数k 、b 的意义和对一次函数y =kx +b 的图像与性质的影响。
当k>0时,图像一定过 一。
三 象限,y 随x 的增大而 ,这时函数的图像从左到右呈上升趋势;当k<0时,图像一定过 二、四 象限,y 随x 的增大而 ,这时函数的图像从左到右呈下降趋势;(因此,k 的符号与直线的方向、函数的增减性是相互决定的。
)(2)b 是一次函数y =kx +b 中,当x =0时所对应的函数值,因此直线y =kx +b 与y 轴交于点(0,b ),b 是直线y =kx +b 与y 轴上的交点的纵坐标,所以,b 的符号和直线与 交点位置是相互对应的。
经典例题:例1、写出下列各题中x 与y 之间的关系式,并判断y 是否为x 的一次函数?是否为正比例函数?(1)小红去商店买笔记本,每个笔记本2.5元,小红所付买本款y (元)与买本的个数x (个)之间的关系.答:__________________________________________________________________(2)有一个长为120米,宽为110米的矩形场地准备扩建,使长增加x 米,宽增加y 米,且使矩形的周长为500米,则y 与x 的关系.答:__________X+Y=20________________________________________________________(3)一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3) 与放水时间t (时)的函数关系用图表示为( D )变式练习1、(1)、一个正比例函数的图象经过点A (-2,4),写出这个正比例函数的表达式 .(2)、一辆汽车和一辆摩托车分别从A ,B 两地去同一城市,它们离A 地的路程随时间变化的图象如图所示.则下列结论错误..的是( C ) A.摩托车比汽车晚到1 h B. A , B 。
两地的路程为20 km C.摩托车的速度为45 km/h D.汽车的速度为60 km/h 解:分析图象可知A 、4-3=1,摩托车比汽车晚到1h ,正确;B 、因为汽车和摩托车分别从A ,B 两地去同一城市,从y 轴上可看出A ,B 两地的路程为20km ,正确;C 、摩托车的速度为(180-20)÷4=40km/h,故C 错误;D 、汽车的速度为180÷3=60km/h,正确. 故选C .(3)、已知弹簧的长度 y (厘米)在一定的限度内是所挂重物质量 x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米.则这个一次函数的解析式必是 , Y=KX+B未加重物时为6CM 即(0,6)带入公式得B=6 =>Y=KX+6挂4Kg 重物时为7.2CM 即(4,7.2) 带入公式7.2=4K+6 得K=0.4 得一次函数:Y=0.3X+6第4★(4)、某市自来水公司为了鼓励市民节约用水,采取分段收费标准,某市居民每月交水费y (元)与 水量x (吨)的函数关系如图所示,请你通过观察函数图象,回答自来水公司收费标准:若用水不超过5吨,水费为 0.72 元/吨;若用水超过5吨,超过部分的水费为 0.9 元/吨。
例2、(1)下列函数关系中表示一次函数的有( D )①②③④⑤A.1个B.2个C.3个D.4个★(2)已知3m 22x)2m m (y -+=,如果y 是x 的正比例函数,则m 的值为( B )A.2B.-2 C 2,-2 D.0变式练习2-1、已知函数是一次函数,则m=__-1_。
★变式练习2-2、已知函数y=(2m-1)x+1-3m ,m 为何值时,①这个函数为正比例函数?1/3 ②这个函数是一次函数?例3、在同一坐标系中作出, y=2x+4,x y 3=,的图像变式练习3--1:有下列函数:①y=2x+1, ②y=-3x+4, ③y=0.5x, ④y=x-6; 其中过原点的直线是________;函数y 随x 的增大而增大的是__________; 函数y 随x 的增大而减小的是___________;图象在第一、二、三象限的是________变式练习3—2:一次函数的图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 , 直线与两坐标轴所围成的三角形面积为_________.课堂练习1、函数y =kx 的图象经过点P (3,-1),则k 的值为( D )A.3B.-3C.D.-2、已知一次函数2y x b =+的图像与y 轴相交负半轴,则图像肯定会过(D )A. 一、二、三象限B. 二、三、四象限C. 一、二、四象限D. 一、三、四象限3、一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧时剩下的长度为y(cm)与燃烧时间x (小时)的函数关系用图象表示为下图中的(B )4、在函数y =x -1的图象上的点是( B )A.(-3,-2)B.(-4,-3)C.(,)D.(5,)★5、已知点(,),(2,)都在直线上,则,大小关系是( A )A .B .C .D .不能比较6、如果点A (—2,a )在函数y=x+3的图象上,那么a 的值等于(D )A 、—7B 、3C 、—1D 、4 7、一次函数y=kx+b 图象如图:( B )A 、k>0,b >0B 、k>0,b <0C 、k<0,b>0D 、k<0,b <0AO x 4 y20 BO x 4 y 20CO x4 y 20DOx4 y 20OxyOxyOxyyxOA.B .C . D.8、一次函数y=kx+6,y 随x 的增大而减小,则这个一次函数的图象不经过( C )A.第一象限B.第二象限C.第三象限D.第四象限9、一次函数21y x =-的图象大致是( B )★10、某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟内收2.4元,每加一分钟加收1元.则表示电话费y (元)与通话时间x (分)之间的函数关系正确的是( A )二、你能填得又快又对吗?★11、如果y=3x -2+3k 的图像经过原点,那么k= 。
12、一次函数y=-5x+的图像与x 轴的交点坐标是 ,与y 轴的交点坐标是 。
13、对于函数y=x -4,函数值y 随x 的增大而 。
14、一次函数y =kx +b ,k <0,b >0,则图像经过第 象限。
15、函数y =5x -10,当x =2时,y =______;当x =0时,y =______. 16、函数y =mx -(m -2)的图象经过点(0,3),则m =______.★17、点(1,m ),(2,n )在函数y =-x +1的图象上,则m 、n 的大小分别是______.★18、 已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.★19、 如果直线y=kx+b 经过第一、三、四象限,那么直线y=-bx+k 经过第 象限。
三、解答题20、已知一次函数的图象如下图,写出它的关系式.★21、容积为800公升的水池内已贮水200公升,若每分钟注入的水量是15公升,设池内的水量为Q(公升),注水时间为t(分).(1)请写出Q与t的函数关系式.(2)注水多长时间可以把水池注满?(3)当注水时间为0.2小时时,池中水量是多少?★22、小明是个小读书谜,他经常去市图书馆租书.星期天他又来到这里租书,图书管理员李叔叔告诉小明,现在图书馆正在开展两种方式的租书业务:一种是使用会员卡,一种是使用租书卡.使用这两种卡,租书金额y(元)与租书天数x(天)之间的关系如下图:你能帮小明算一算吗?(1)如果小明办理“租书卡”,那么他租书一个月(都按30天计算)应付费多少元?(2)如果小明办理“会员卡”,那么他第一个月租书应付费多少元?★★24、(1)在同一坐标系中作出, y=3x+6,x y 3 ,y=3x-3的图像。
(2)观察图像,它们之间有怎么样的位置关系?由什么决定的呢?课后练习1、直线与x 轴交点的横坐标为_(_-3,0)_____,与y 轴交点的纵坐标为_(0,-2)_______。
2、如果点M 在直线1y x =-上,则M 点的坐标可以是( C )A .(-1,0)B .(0,1)C .(1,0)D .(1,-1) ★3、点(-3,2),(,)在函数的图像上,则★4、 已知正比例函数y =(m -1)的图象在第二、四象限,则m 的值为_________,函数的解析式为__________5、 一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的解析式可以是 .(任写出一个符合题意即可)★6、一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?解(1):根据图像,农民自带的零钱是5元。