浙江省宁波市南三县2020届九年级上学期期末考试数学试题
浙江宁波南三县初三上期末数学考试卷(解析版)(初三)期末考试.doc
浙江宁波南三县初三上期末数学考试卷(解析版)(初三)期末考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】若2a=3b,则=()A. B . C . D .【答案】B【解析】试题分析:根据等式的性质,两边都除以同一个不为零的整式,结果不变,可得答案.解:两边都除以2b,得=,故选:B.【点评】本题考查了比例的性质,利用等式的性质是解题关键.【题文】抛物线y=﹣2x2+4的顶点坐标为()A.(4,0) B.(0,4) C.(4,2) D.(4,﹣2)【答案】B【解析】试题分析:形如y=ax2+k的顶点坐标为(0,k),据此可以直接求顶点坐标.解:抛物线y=﹣2x2+4的顶点坐标为(0,4).故选B.【点评】本题考查了二次函数的性质.二次函数的顶点式方程y=a(x﹣k)2+h的顶点坐标是(k,h),对称轴方程是x=k.【题文】已知粉笔盒里只有2支黄色粉笔和3支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,则取出黄色粉笔的概率是()A. B. C. D.【答案】B【解析】试题分析:让黄色粉笔的支数除以粉笔的总支数即为所求的概率.解:∵粉笔盒里只有2支黄色粉笔和3支红色粉笔共有2+3=5支粉笔,其中黄色粉笔有2支,∴从中任取一支粉笔,取出黄色粉笔的概率是=.故选B.【点评】用到的知识点为:概率等于所求情况数与总情况数之比.【题文】河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是()A.5米 B.10米 C.15米 D.10米【答案】A【解析】试题分析:Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.解:Rt△ABC中,BC=5米,tanA=1:;∴AC=BC÷tanA=5米;故选A.【点评】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.【题文】把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3 B.y=﹣(x+1)2﹣3 C.y=﹣(x﹣1)2+3 D.y=﹣(x+1)2+3 【答案】D【解析】试题分析:利用二次函数平移的性质.解:当y=﹣x2向左平移1个单位时,顶点由原来的(0,0)变为(﹣1,0),当向上平移3个单位时,顶点变为(﹣1,3),则平移后抛物线的解析式为y=﹣(x+1)2+3.故选:D.【点评】本题主要考查二次函数y=ax2、y=a(x﹣h)2、y=a(x﹣h)2+k的关系问题.【题文】如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A. B.2 C. D.【答案】D【解析】试题分析:根据AH=2,HB=1求出AB的长,根据平行线分线段成比例定理得到=,计算得到答案.解:∵AH=2,HB=1,∴AB=3,∵l1∥l2∥l3,∴==,故选:D.【点评】本题考查平行线分线段成比例定理,掌握定理的内容、找准对应关系列出比例式是解题的关键.【题文】如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b【答案】B【解析】试题分析:根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解.解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选B.【点评】本题考查了相似多边形对应边成比例的性质,准确表示出小长方形的长和宽是解题的关键.【题文】若二次函数y=﹣x2+6x+c的图象过点A(﹣1,y1),B(1,y2),C(4,y3)三点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3 C.y3>y2>y1 D.y3>y1>y2【答案】C【解析】试题分析:先根据二次函数的性质得到抛物线的对称轴为直线x=3,然后比较三个点都直线x=3的远近得到y1、y2、y3的大小关系.解:∵二次函数的解析式为y=﹣x2+6x+c,∴抛物线的对称轴为直线x=3,∵A(﹣1,y1),B(1,y2),C(4,y3),∴点A离直线x=3最远,点C离直线x=3最近,而抛物线开口向下,∴y3>y2>y1;故选C.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.【题文】与图中的三角形相似的是()A. B. C. D.【答案】B【解析】试题分析:本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A、三角形三边2,,3,与给出的三角形的各边不成比例,故选项A错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故选项B正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故选项C错误;D、三角形三边,4,,与给出的三角形的各边不成比例,故选项D错误.故选B.【点评】此题主要考查学生对相似三角形三边对应成比例的两个三角形相似这一判定方法的运用.【题文】如图,抛物线y=ax2+bx+c与x轴的负半轴交于点A,B(点A在点B的右边),与y轴的正半轴交于点C,且OA=OC=1,则下列关系中正确的是()A.a+b=1 B.b<2a C.a﹣b=﹣1 D.ac<0【答案】C【解析】试题分析:由抛物线与y轴相交于点C,就可知道C点的坐标(0,1)以及A的坐标,然后代入函数式,即可得到答案.解:A不正确:由图象可知,直线AC:y=x+1,当x=1时,a+b+1>1+1,即a+b>1;B不正确:由图象可知,﹣<﹣1,解得b>2a;C正确:由抛物线与y轴相交于点C,就可知道C点的坐标为(0,c),又因为OC=OA=1,所以C(0,1),A(﹣1,0),把它代入y=ax2+bx+c,即a•(﹣1)2+b•(﹣1)+1=0,即a﹣b+1=0,所以a﹣b=﹣1.D不正确:由图象可知,抛物线开口向上,所以a>0;又因为c=1,所以ac>0.故选:C.【点评】本题考查了二次函数的图象与系数的关系,解题的关键是了解各系数对函数的图象的影响.【题文】将一副三角板按如图方法摆放在一起,连接AC,则tan∠DAC值为()A.1 B. C. D.【答案】C【解析】试题分析:先过点C作CE⊥AD于E,设CD=a,在Rt△BDC中,利用三角函数,可求BD,在Rt△DBA中,利用三角函数,可求AD,易证△CED是等腰直角三角形,从而利用三角函数可求CE、DE,于是在Rt△CAE中,可求tan∠EAC==,即tan∠DAC的值.解:如图所示,过点C作CE⊥AD于E,设CD=a,在Rt△BDC中,∠DBC=30°,则BD=cot30°×CD=a,在Rt△DBA中,AD=sin45°×BD=a,又∵CE⊥AD,∠BDA=45°,∴DE=CE=sin45°×a=a,∴在Rt△CAE中,tan∠EAC====.即tan∠DAC=.故选:C.【点评】本题考查了直角三角形的性质、特殊三角函数值.解本题最关键的是作辅助线CE,构造直角三角形.【题文】如图,在△ABC中,已知∠C=90°,AC=60,AB=100,a,b,c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行.若各矩形在AC 上的边长相等,矩形a的一边长是72,则这样的矩形a、b、c…的个数是()A.7 B.8 C.9 D.10【答案】C【解析】试题分析:根据勾股定理可以求出每阶台阶的宽,依据BC的长,即可解答.易证△BDE≌△EFG≌△GKH≌△HLM,可得BD=EF=GK=HL=BC﹣DC=﹣72=8.根据此规律,共有80÷8﹣1=9个这样的矩形.故选C.【点评】本题将勾股定理和规律的探索与实际问题相结合,有一定的难度,善于观察题目的信息是解题以及学好数学的关键.【题文】若sinα=,α是锐角,则α=度.【答案】30°【解析】试题分析:根据特殊角的三角函数值解答.解:∵sinα=,α是锐角,∴α=30°.【点评】熟记特殊角的三角函数值是解题的关键.【题文】线段a、b的长度分别是2cm和8cm,则a、b的比例中项长为 cm.【答案】4.【解析】试题分析:比例的基本性质:两外项之积等于两内项之积.解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方l∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ABC=125°,故答案为:125.【点评】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.【题文】将一块正五边形纸片(图①)做成一个底面仍为正五边形且高相等的无盖纸盒(侧面均垂直于底面,见图②),需在每一个顶点处剪去一个四边形,例如图①中的四边形ABCD,则∠BAD的大小是度.【答案】72.试题分析:由于以A为顶点的一个周角是360°,根据∠BAD=360°﹣正五边形的一个角的度数﹣矩形的一个内角的度数×2作答.解:∵一个无盖的直五棱柱的侧面是矩形,∴每一个内角都是90°,又∵正五边形的每个角的度数为,∴∠BAD=360°﹣108°﹣90°×2=72°.故答案为:72.【点评】本题主要考查根据多边形的内角和计算公式求正五边形的内角.【题文】为美化校园,学校决定将花园边墙上的矩形门ABCD改为以AC为直径的圆弧形门,如图所示,量得矩形门宽为1m,对角线AC的长为2m,则要打掉墙体的面积为 m2.【答案】﹣【解析】试题分析:要打掉墙体的面积是圆的面积减矩形面积减弓形BC的面积.解:在Rt△ABC中,∵AC=2m,BC=1m.∴∠BAC=30°,BC=1m,AB=m.∴∠BCO=60°,即△OBC是等边三角形.∠BOC所对的弧与弦BC所围成的弓形的面积S1=﹣=﹣{{7l【解析】试题分析:连接MN,根据中位线定理,可得出MN=DE=5cm;图中阴影部分的面积就是图中三个三角形的面积,由图可知,这三个三角形的底相等都是5cm,这三个三角形的高之和是从A点到BC的垂线段的长,利用勾股定理可求得高的值,据此可求出图中阴影部分的面积.解:连接MN,则MN是△ABC的中位线,因此MN=BC=5cm;过点A作AF⊥BC于F,则AF==12cm.∵图中阴影部分的三个三角形的底长都是5cm,且高的和为12cm;因此S阴影=×5×12=30cm2.故答案为:30.【点评】本题主要考查了中位线定理、等腰三角形的性质等知识,综合性较强.【题文】计算:(sin30°﹣1)2﹣×sin45°+tan60°×cos30°.【答案】【解析】试题分析:此题涉及有理数的乘方、特殊角的三角函数值的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.解:(sin30°﹣1)2﹣×sin45°+tan60°×cos30°=1﹣×+×=1﹣1+=【点评】此题主要考查了实数的综合运算能力,解决此类题目的关键是熟练掌握有理数的乘方、特殊角的三角函数值的运算.【题文】已知二次函数的图象经过点(0,﹣3),且顶点坐标为(﹣1,﹣4).(1)求该二次函数的解析式;(2)设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.【答案】(1)函数解析式y=(x+1)2﹣4或y=x2+2x﹣3;(2)6【解析】试题分析:(1)先设所求函数解析式是y=a(x+1)2﹣4,再把(0,﹣3)代入,即可求a,进而可得函数解析式;(2)令函数等于0,解关于x一元二次方程,即可求A、B两点的坐标;(3)△ABC的面积等于AB×OC的一半.解:(1)设y=a(x+1)2﹣4,把点(0,﹣3)代入得:a=1,∴函数解析式y=(x+1)2﹣4或y=x2+2x﹣3;(2)∵x2+2x﹣3=0,解得x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),C(0,﹣3),∴△ABC的面积=.【点评】本题考查了待定系数法求函数解析式、抛物线与x轴的交点、三角形的面积,解题的关键是先求出函数解析式.【题文】如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.【答案】(1)见解析(2)9【解析】试题分析:(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,然后利用等腰三角形的性质即可得到BE=CE;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和圆周角定理.【题文】A、B两地相距20km,B在A的北偏东45°方向上,一森林保护中心P在A的北偏东30°和B的正西方向上,现计划修建的一条高速公路将经过AB(线段),已知森林保护区的范围在以点P为圆心,半径为4km的圆形区域内,请问这条高速公路会不会穿越保护区?为什么?(sin15°=0.259,cos15°=0.966,tan15°=0.268)【答案】不会【解析】试题分析:过P作PM⊥AB于M,延长BP作BC⊥AC于C.在直角△APC中,运用三角函数用求出AC,BC的长.在直角△PCA中,运用三角函数求出PC的长,从而得到PB的长.在直角△PMB中,运用三角函数求出PM,比较PM与4km的大小关系即可.解:延长BP作BC⊥AC于C,过P作PM⊥AB于M.因为B在A的北偏东45°方向上,所以A在B的南偏西45°方向.在Rt△ABC中,∵∠CBA=∠CAB=45°,∴AC=BC=10.在直角△PCA中,∠PAC=30°,则PC=,∴PB=10﹣,在直角△PMB中,PM=(10﹣)×=10﹣≈4.226.∵4.226>4,∴这条高速铁路不会穿越保护区.【点评】考查了解直角三角形的应用﹣方向角问题,根据三角函数求出PM的长是解决本题的关键.【题文】有两个可以自由转动的均匀转盘A、B,都被分成了3等份,并在每份内均标有数字,如图所示,规则如下:①分别转动转盘A、B.②两个转盘停止后,将两个指针所指份内的数字相乘(若指针停在等分线上,那么重转一次,直到指针指向某一份为止).(1)用列表法(或树状图)分别求出数字之积为3的倍数和为5的倍数的概率;(2)小亮和小芸想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小亮得2分;数字之积为5的倍数时,小芸得3分.这个游戏对双方公平吗?请说明理由;认为不公平的,试修改得分规定,使游戏双方公平.【答案】见解析【解析】试题分析:游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.转盘B的数字转盘A的数字 4 5 61(1,4)(1,5)(1,6)2(2,4)(2,5)(2,6)3(3,4)(3,5)(3,6)解:(1)每次游戏可能出现的所有结果列表如下:表格中共有9种等可能的结果,则数字之积为3的倍数的有五种,其概率为;数字之积为5的倍数的有三种,其概率为=.(2)这个游戏对双方不公平.∵小亮平均每次得分为(分),小芸平均每次得分为(分),∵,∴游戏对双方不公平.修改得分规定为:若数字之积为3的倍数时,小亮得3分;若数字之积为5的倍数时,小芸得5分即可.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.【题文】某商品公司为指导某种应季商品的生产和销售,在对历年市场行情和生产情况进行调查基础上,对今年这种商品的市场售价和生产成本进行了预测并提供了两个方面的信息:如图(1)(2).注:两图中的每个实心黑点所对应的纵坐标分别指相应月份一件商品的售价和成本,生产成本6月份最高;图(1)的图象是线段,图(2)的图象是抛物线.(1)在3月份出售这种商品,一件商品的利润是多少?(2)设t月份出售这种商品,一件商品的成本Q(元),求Q关于t的函数解析式.(3)设t月份出售这种商品,一件商品的利润W(元),求W关于t的函数解析式.(4)问哪个月出售这种商品,一件商品的利润最大?简单说明理由.【答案】(1)5元;(2)Q=﹣(t﹣6)2+4=﹣t2+4t﹣8(3)W=(t﹣5)2+(4)元【解析】试题分析:(1)从图易知3月份每件商品售价6元,成本1元,易求利润;(2)根据图象特征设解析式为顶点式易求解析式;(3)根据利润的计算方法,显然需求直线解析式,再求差,(4)运用函数性质计算利润.解:(1)每件商品在3月份出售时的利润为5元;(2)∵抛物线的顶点坐标为(6,4)∴设抛物线的解析式为Q=a(t﹣6)2+4∵抛物线过(3,1)点∴1=a(3﹣6)2+4解得:a=﹣∴Q=﹣(t﹣6)2+4=﹣t2+4t﹣8,其中t=3、4、5、6、7;(3)设每件商品的售价M(元)与时间t(月)之间的函数关系式为M=kt+b∵线段过(3,6)、(6,8)两点∴3k+b=6 6k+b=8解得:k=,b=4∴M=t+4,其中t=3、4、5、6、7;(4)每件商品的利润W(元)与时间t(月)的函数关系式为W=M﹣Q=(t+4)﹣(﹣t2+4t﹣8)=t2﹣t+12∴W=(t﹣5)2+,其中t=3、4、5、6、7∴当t=3或7时,W的最大值为元.【点评】此题是二次函数综合题,主要考查了待定系数法,解本题的关键是读懂题意,难度在第3个问题:表示利润.运用二次函数的性质求最值常用配方法或公式法.【题文】基本模型:如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC=90°,易得△AFE~△BCF.(1)模型拓展:如图2,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE~△BCF;(2)拓展应用:如图3,AB是半圆⊙O的直径,弦长AC=BC=4,E,F分别是AC,AB上的一点,若∠CFE=45°,若设AE=y,BF=x,求y与x的函数关系式.【答案】(1)见解析(2)y=﹣x2+x(0≤x≤8)【解析】试题分析:(1)利用已知得出∠E=∠CFB,进而利用相似三角形的判定方法得出即可;(2)利用(1)得出△AFE∽△BCF,则=,进而求出y与x的函数关系式.解:(1)证明:如图2,∵∠A=∠EFC,∴∠E+∠EFA=∠EFA+∠CFB,∴∠E=∠CFB,∵∠A=∠B,∴△AFE∽△BCF;(2)解:如图3,∵AB是⊙O的直径,∴∠ACB=90°,∴AB==8,∵AC=BC,∴∠A=∠B=45°,∴∠A=∠B=∠CFE=45°,由(1)可得△AFE∽△BCF,∴,即,∴y=﹣x2+x(0≤x≤8),【点评】此题是圆的综合题,主要考查了相似三角形的判定与性质以及勾股定理以及二次函数最值等知识,根据题意熟练应用相似三角形的判定与性质是解题关键.【题文】如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动,已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG,设E点移动距离为x(x>0).(1)△EFG的边长是(用含有x的代数式表示),当x=2时,点G的位置在;(2)若△EFG与梯形ABCD重叠部分面积是y,求y与x之间的函数关系式;(3)探究(2)中得到的函数y在x取何值时,存在最大值?并求出最大值.【答案】(1)x,D点;(2)y=x2;(3)当x=时,y最大=.【解析】试题分析:(1)根据等边三角形的三边相等,则△EFG的边长是点E移动的距离;根据等边三角形的三线合一和F点移动速度是E点移动速度的2倍,即可分析出BF=4,此时等边三角形的边长是2,则点G和点D 重合;(2)①当0<x≤2时,重叠部分的面积即为等边三角形的面积;②当2<x≤6时,分两种情况:当2<x<3时和当3≤x≤6时,进行计算;(3)分别求得(2)中每一种情况的最大值,再进一步比较取其中的最大值即可.解:(1)∵点E、F同时从B点出发,沿射线BC向右匀速移动,且F点移动速度是E点移动速度的2倍,∴BF=2BE=2x,∴EF=BF﹣BE=2x﹣x=x,∴△EFG的边长是x;过D作DH⊥BC于H,得矩形ABHD及直角△CDH,连接DE、DF.在直角△CDH中,∵∠C=30°,CH=BC﹣AD=3,∴DH=CH•tan30°=3×当x=2时,BE=EF=2,∵△EFG是等边三角形,且DH⊥BC交点H,∴EH=HF=1∴DE=DF==2,∴△DEF是等边三角形,∴点G的位置在D点.故答案为x,D点;(2)①当0<x≤2时,△EFG在梯形ABCD内部,所以y=x2;②分两种情况:Ⅰ.当2<x<3时,如图1,点E、点F在线段BC上,△EFG与梯形ABCD重叠部分为四边形EFNM,∵∠FNC=∠FCN=30°,∴FN=FC=6﹣2x.∴GN=3x﹣6.∵在Rt△NMG中,∠G=60°,GN=3x﹣6,∴GM=(3x﹣6),由勾股定理得:MN=(3x﹣6),∴S△GMN=×GM×MN=×(3x﹣6)×(3x﹣6)=(3x﹣6)2,所以,此时y=x2﹣(3x﹣6)2=﹣;Ⅱ.当3≤x≤6时,如图2,点E在线段BC上,点F在射线CH上,△EFG与梯形ABCD重叠部分为△ECP,∵EC=6﹣x,∴y=(6﹣x)2=x2﹣x+,(3)当0<x≤2时,∵y=x2,在x>0时,y随x增大而增大,∴x=2时,y最大=;当2<x<3时,∵y=﹣在x=时,y最大=;当3≤x≤6时,∵y=,在x<6时,y随x增大而减小,∴x=3时,y最大=.综上所述:当x=时,y最大=.【点评】此题是四边形综合题,主要考查了梯形的性质,等边三角形的性质和判定,勾股定理,图形的面积,解本题的关键是画出图形,是一道动态题,难度较大,注意不同的情况,能够熟练求得二次函数的最值.。
浙江省宁波市九年级上学期数学期末考试试卷
浙江省宁波市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每题4分,共48分) (共12题;共46分)1. (4分) (2019八下·温江期中) 下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .2. (4分) (2020九上·宝安月考) 已知两数x , y ,且3x=2y ,则下列结论一定正确的是()A . ,B .C .D .3. (2分) (2017九上·宜春期末) 抛物线y=(x﹣2016)2+2017的顶点坐标是()A . (2016,﹣2017)B . (﹣2016,2017)C . (2016,2017)D . (﹣2016,﹣2017)4. (4分) (2020九上·镇海期中) 如图,△ABC和△CDE都是等边三角形,点G在CA的延长线上,GB=GE,若BE+CG=10,,则AF的长为()A . 1B .C .D . 25. (4分)(2018·福建) 如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A . 40°B . 50°C . 60°D . 80°6. (4分)若A(a,b),B(b,a)表示同一点,那么这一点在()A . 第一、三象限内两坐标轴夹角平分线上B . 第一象限内两坐标轴夹角平分线上C . 第二、四象限内两坐标轴夹角平分线上D . 平行于y轴的直线上7. (4分) (2018九上·内乡期末) 如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为米,那么这两树在坡面上的距离为()A .B .C .D .8. (4分) (2020九上·海珠期末) 已知:是的直径,,是的切线,是上一动点,若,,,则的面积的最小值是()A . 36B . 32C . 24D . 10.49. (4分) (2019九上·鹿城月考) 如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则的长为()A .B .C . 7D . 610. (4分)(2019·长春模拟) 如图,把一张长方形的纸片ABCD沿EF折叠,若∠AED′=40°,则∠DEF的度数为()A . 40°B . 50°C . 60°D . 70°11. (4分) (2020九上·射阳月考) 如图,点E,F,G,H分别是正方形ABCD边AB,BC,CD,DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A .B .C .D .12. (4分) (2020九上·平顶山期末) 如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC 和△EDC的周长之比为1:2,点C的坐标为(﹣2,0),若点B的坐标为(﹣5,1),则点D的坐标为()A . (4,﹣2)B . (6,﹣2)C . (8,﹣2)D . (10,﹣2)二、填空题(每题4分,共24分) (共6题;共24分)13. (4分)(2020·西安模拟) 若正多边形的一个中心角为,则这个正多边形的一个内角等于________ .14. (4分)若两个相似多边形面积比为4:9,则它们的周长比是________.15. (4分) (2019九下·江阴期中) 若抛物线y=x2+bx+c过点(-3,0)、(2,0),则抛物线的对称轴为________.16. (4分)(2016·雅安) 一书架有上下两层,其中上层有2本语文1本数学,下层有2本语文2本数学,现从上下层随机各取1本,则抽到的2本都是数学书的概率为________.17. (4分)(2017·黑龙江模拟) 已知△ABC,O为AC中点,点P在AC上,若OP= ,tan∠A= ,∠B=120°,BC=2 ,则AP=________.18. (4分) (2020九上·射阳月考) 如图,直线y=kx+b交坐标轴于A、B两点,交抛物线y=ax2于点C(4,3),且C是线段AB的中点,抛物线上另有位于第一象限内的一点P,过P的直线y=k′x+b′交坐标轴于D、E两点,且P恰好是线段DE的中点,若△AOB∽△DOE,则P点的坐标是________.三、解答题(第19题6分,第20、21题各8分,第22、23、2 (共8题;共78分)19. (6分)(2017·龙岗模拟) 计算:|﹣ |+(2016﹣π)0﹣2sin45°+()﹣2 .20. (8分) (2018九上·宁城期末) 在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:(1)两次取的小球的标号相同(2)两次取的小球的标号的和等于421. (8分)(2019·荆州模拟) 如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈ ,tan63.4°≈2)22. (10分) (2018九上·桐乡期中) 已知二次函数的图象的顶点坐标是(1,3),且与x轴的一个交点是(-2,0).(1)求这个二次函数的解析式及图象与x轴的另一个交点坐标;长.(2)根据函数图象,写出函数值y大于0时,自变量x的取值范围.23. (10分) (2020九上·长春月考) 如图,在中,点分别在边上,连接,且.(1)证明:;(2)若,当点D在上运动时(点D不与重合),且是等腰三角形,求此时的长.24. (10.0分)(2019·天台模拟) 为建设美丽家园,某社区将辖区内的-块面积为1000m2的空地进行绿化,-部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用yl(元)与x(m2)的函数关系图象如图所示,栽花所需费用y2(元)与x(m2)的函数关系式为y2=-0.Olx2-20x+30000(0≤x≤1000).(1)求yl(元)与x(m2)的函数关系式;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求绿化总费用W的最大值.25. (12分) (2018九上·花都期末) 如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),且,双曲线经过点D,交BC于点E(1)求双曲线的解析式;(2)求四边形ODBE的面积.26. (14.0分) (2019九上·大冶月考) 如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).(1)求抛物线的解析式;(2)如图,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标.参考答案一、选择题(每题4分,共48分) (共12题;共46分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题(每题4分,共24分) (共6题;共24分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题(第19题6分,第20、21题各8分,第22、23、2 (共8题;共78分)答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:。
浙江省宁波市南三县2019-2020学年九年级上学期期末数学试题(解析版)
浙江省宁波市南三县2019-2020学年九年级上学期期末数学试题一、选择题:1.正五边形的每个内角度数为( )A. 36°B. 72°C. 108°D. 120° 【答案】C【解析】【分析】根据多边形内角和公式:()1802n ︒⨯-,得出正五边形的内角和,再根据正五边形的性质:五个角的角度都相等,即可得出每个内角的度数.【详解】解:()180525=108︒⨯-÷︒故选:C【点睛】本题考查的是多边形的内角和公式以及正五边形的性质,掌握这两个知识点是解题的关键. 2.在同一平面上,O e 外有一定点P 到圆上的距离最长为10,最短为2,则O e 的半径是( )A. 5B. 3C. 6D. 4 【答案】D【解析】【分析】由点P 在圆外,易得到圆的直径为10-2,然后计算圆的半径即可.【详解】解:∵点P 在圆外∴圆的直径为10-2=8∴圆的半径为4故答案为D.【点睛】本题考查了点与圆的位置关系,关键是根据题意确定圆的直径,是解答本题的关键.3.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( )A. 向左平移3个单位B. 向右平移3个单位C. 向上平移3个单位D. 向下平移3个单位【答案】A【解析】【分析】先确定抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.【详解】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),因为点(0,0)向左平移3个单位长度后得到(-3,0),所以把抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选A.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.一个不透明的盒子装有m个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则m的值约为()A. 8B. 10C. 20D. 40【答案】C【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,4m=0.2,解得,m=20,经检验m=20是所列方程的根且符合实际意义,故选:C.【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.5.二次函数2y ax bx c =++部分图象如图所示,有以下结论:①0abc >;②240b ac -<;③30a b -=,其中正确的是( )A. ①②③B. ②③C. ①②D. ①③【答案】D【解析】【分析】 根据函数图像即可得出a 、b 、c 与0的大小关系,从图中可以看出函数与x 轴有2个交点,所以当y=0时,一元二次方程有两个根,对称轴为32x =-,代入对称轴公式即可得出结果. 【详解】解:根据图像可知:ab >0,c >0,所以abc >0,故①正确;函数与x 轴有2个交点,故240b ac ->,故②错误; 对称轴为32x =-,所以322b a -=-,30a b -=,故③正确. 故选:D.【点睛】本题主要考查的是二次函数图像与系数的关系,熟练的掌握函数的基本性质,函数与坐标轴的交点以及对称轴是解题的关键.6.如图,在ABC ∆中,点D ,E ,F 分别在边AB ,AC ,BC 上,且//DE BC ,//EF AB ,若3AB BD =,则:ADE EFC S S ∆∆的值为( )A. 4:1B. 3:2C. 2:1D. 3:1【答案】A【解析】【分析】 根据3AB BD =,//DE BC 得到AC=3EC ,则AE=2EC ,再根据//DE BC ,//EF AB 得到△ADE△△EFC ,再根据面积之比等于相似比的平方即可求解.【详解】△//DE BC ,∴AB :BD=AC :EC ,又△3AB BD =△AC=3EC ,△AE=2EC ,△//DE BC ,//EF AB△△AED=△C ,△ADE=△B=△EFC ,△△ADE△△EFC又AE=2EC△:ADE EFC S S ∆∆=(2:1)2=4:1故选A.【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.7.已知点()11A y ,,()2B y ,()34C y ,在二次函数26y x x c =-+的图象上,则123y y y ,,的大小关系是( )A. 213y y y <<B. 123y y y <<C. 312y y y <<D. 231y y y <<【答案】D【解析】【分析】根据二次函数的解析式,能得出二次函数的图形开口向上,通过对称轴公式得出二次函数的对称轴为x=3,由此可知离对称轴水平距离越远,函数值越大即可求解.【详解】解:∵二次函数26y x x c =-+中a >0∴抛物线开口向上,有最小值. ∵32b x a=-= ∴离对称轴水平距离越远,函数值越大,∵由二次函数图像的对称性可知x=4对称点x=2∴231y y y <<故选:D.【点睛】本题主要考查的是二次函数图像上点的坐标特点,解此题的关键是掌握二次函数图像的性质. 8.在圆内接四边形ABCD 中,¼ADC 与¼ABC 的比为3:2,则B Ð的度数为( )A. 36︒B. 72︒C. 108︒D. 216︒ 【答案】C【解析】【分析】根据圆内接四边形对角互补的性质即可求得.【详解】△在圆内接四边形ABCD 中,¼ADC :¼ABC =3:2,△△B :△D =3:2,△△B +△D =180°,△△B =180°×35=108︒. 故选C.【点睛】本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解题的关键.9.如图,在菱形ABCD 中,已知4AB =,60B ∠=︒,以AC 为直径的O e 与菱形ABCD 相交,则图中阴影部分的面积为( )A. πB. πC. 43πD. 43π 【答案】D【解析】【分析】 根据菱形与的圆的对称性到△AOE 为等边三角形,故可利用扇形AOE 的面积减去△AOE 的面积得到需要割补的面积,再利用圆的面积减去4倍的需要割去的面积即可求解.【详解】∵菱形ABCD 中,已知4AB =,60ABC ∠=︒,连接AO,BO ,∴△ABO=30°,∠AOB=90°,∴△BAO=60°,又AO=EO,∴△AOE 为等边三角形,故AE=EO=12AB=2 ∴r=2△S 扇形AOE =2126π⨯⨯=23πS △AOE 2a 22∴图中阴影部分的面积=π×22-4(23π)=43π 故选D.【点睛】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.10.如图,P 为线段AB 上一点,AD 与BC 交与点E ,CPD A B ∠=∠=∠,BC 交PD 与点F ,AD 交PC 与点G ,则下列结论中错误的是( )A. CGE CBP ∆∆:B. APD PGD ∆∆:C. APG BFP ∆∆:D. PCF BCP ∆∆:【答案】A【解析】【分析】 先根据条件证明△PCF ∽△BCP ,利用相似三角形的性质:对应角相等,再证明△APD ∽△PGD ,进而证明△APG ∽△BFP 再证明时注意图形中隐含的相等的角,故可进行判断.【详解】∵∠CPD=∠B ,∠C=∠C ,∴△PCF ∽△BCP.∵∠CPD=∠A ,∠D=∠D ,∴△APD ∽△PGD.∵∠CPD=∠A=∠B ,∠APG=∠B+∠C ,∠BFP=∠CPD+∠C∴∠APG=∠BFP ,∴△APG ∽△BFP.故结论中错误的是A ,故选A.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理.11.如图,小江同学把三角尺含有60︒角的一端以不同的方向穿入进另一把三角尺(含有45︒角)的孔洞中,已知孔洞的最长边为2cm ,则三角尺穿过孔洞部分的最大面积为( )A. 2B. 2C. 2D. (22cm 【答案】B【解析】【分析】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,故可求解.【详解】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,∵孔洞的最长边为2cm=∴2a=224故选B.【点睛】此题主要考查等边三角形的面积求解,解题的关键是根据题意得到当穿过孔洞三角尺为等边三角形时面积最大.NE AD,分别交DC,HG,12.如图,平行四边形HEFG的四个顶点分别在正方形ABCD的四条边上.//=.要求得平行四边形HEFG的面积,只需知道一条线段的长度.这条AB于点N,M,E,且CG MN线段可以是()A. EHB. AEC. EBD. DH【答案】C【解析】【分析】根据图形证明△AOE△△COG,作KM△AD,证明四边形DKMN为正方形,再证明Rt△AEH△Rt△CGF,Rt△DHG△Rt△BFE,设正方形ABCD边长为a,CG=MN=x,根据正方形的性质列出平行四边形HEFG的面积的代数式,再化简整理,即可判断.【详解】连接AC,EG,交于O点,∵四边形HEFG是平行四边形,四边形ABCD是正方形,∴GO=EO,AO=CO,又△AOE=△COG△△AOE△△COG,∴GC=AE,△NE△AD,∴四边形AEND为矩形,△AE=DN,△DN=GC=MN作KM△AD ,△四边形DKMN 为正方形,在Rt△AEH 和Rt△CGF 中,AE CG HE FG =⎧⎨=⎩∴Rt△AEH△Rt△CGF ,△AH=CF,△AD -AH=BC -CF△DH=BF,同理Rt△DHG△Rt△BFE ,设CG=MN=x ,设正方形ABCD 边长为a则S △HDG =12DH×x+12DG×x=S △FBE S △HAE =12AH×x =S △GCF S 平行四边形EFGH =a 2-2S △HDG -2S △HAE = a 2-(DH+DG+AH)×x,∵DG=a -x△S 平行四边形EFGH = a 2-(a+a -x)×x= a 2-2ax+x 2= (a -x)2故只需要知道a -x 就可以求出面积BE=a -x ,故选C.【点睛】此题主要考查正方形的性质,解题的关键是根据题意设出字母,表示出面积进行求解.二、填空题:13.若53a b =,则332a b a b--的值为__________.【答案】43【解析】【分析】 直接利用已知得出53b a =,代入332a b a b --进而得出答案. 【详解】∵53a b = ∴53b a = ∴332a b a b --=552b b b b --=43故填:43. 【点睛】此题主要考查了比例的性质,正确运用已知变形是解题关键.14.从1-,0,π,1.6中随机取一个数,取到无理数的概率是__________. 【答案】25【解析】【分析】由题意可得共有5种等可能的结果,其中无理数有:π共2种情况,则可利用概率公式求解.【详解】∵共有5种等可能的结果,无理数有:π共2种情况,∴取到无理数概率是:25. 故答案为:25. 【点睛】此题考查了概率公式的应用与无理数的定义.此题比较简单,注意用到的知识点为:概率=所求情况数与总情况数之比.15.如图,某河堤的横截面是梯形ABCD ,BC AD ∥,迎水面AB 长26m ,且斜坡AB 的坡比(即BE AE )为12:5,则河堤的高BE 为__________.【答案】24cm 的【解析】【分析】 根据坡比(即BE AE)为12:5,设BE=12x ,AE=5x ,因为AB=26cm ,根据勾股定理列出方程即可求解. 【详解】解:设BE=12x ,AE=5x ,∵AB=26cm ,222AE BE AB +=∴()()22212526x x += 2x =∴BE=2×12=24cm故答案为:24cm.【点睛】本题主要考查的是坡比以及勾股定理,找出图中的直角三角形在根据勾股定理列出方程即可求解.16.如图,O e 的直径CD 垂直弦AB 于点E ,且3cm CE =,7cm DE =,则弦AB =__________cm .【答案】【解析】【分析】先根据题意得出⊙O 的半径,再根据勾股定理求出BE 的长,进而可得出结论.【详解】连接OB ,∵3cm CE =,7cm DE =,∴OC =OB =12(CE +DE )=5, ∵CE =3,∴OE =5−3=2,∵CD ⊥AB ,∴BE =∴AB =2BE =故答案为:【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.17.如图,已知点(),M a b 是函数22y x x =-++图象上的一个动点.若1a <,则b 的取值范围是__________.【答案】904b <≤【解析】【分析】 根据1a <得-1<a <1,再根据二次函数的解析式求出对称轴,再根据函数的图像与性质即可求解. 【详解】∵1a <∴-1<a <1,∵函数22y x x =-++对称轴x=221b a = ∴当a=12,y 有最大值94 当a=-1时,2(1)120y =---+=∴则b 的取值范围是904b <≤故填:904b <≤. 【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据题意函数图像进行求解.18.如图,已知等边ABC ∆的边长为4,BD AB ⊥,且3BD =.连结AB ,CD 并延长交于点E ,则线段BE 的长度为__________.【答案】1【解析】【分析】作CF ⊥AB ,根据等边三角形的性质求出CF ,再由BD ⊥AB ,由CF ∥BD ,得到△BDE ∽△FCE ,设BE 为x ,再根据对应线段成比例即可求解.【详解】作CF ⊥AB ,垂足为F ,∵△ABC 为等边三角形,∴AF=12AB=2, ∴CF==又∵BD ⊥AB ,∴CF ∥BD ,∴△BDE ∽△FCE ,设BE 为x , ∴EF EB CF DB =,3= 解得x=1故填:1.【点睛】此题主要考查相似三角形的判定与性质,解题的根据是根据题意构造相似三角形进行求解.三、解答题:19.计算:22sin30cos60cos 45︒+︒-︒;【答案】1【解析】【分析】根据特殊角的三角函数值代入即可求解.【详解】22sin30cos60cos 45︒+︒-︒211222=⨯+-⎝⎭ 11122=+- 1=【点睛】此题主要考查实数的计算,解题的关键是熟知特殊角的三角函数值.20.小王准备给小李打电话,由于保管不善,电话本上的小李手机号中,有两个数字已经模糊不清,如果用X ,Y 表示这两个看不清的数字,那么小李的号码为187781752X Y (手机号码由11个数字组成),小王记得这11个数字之和是20的整数倍.(1)求X Y +值;(2)求出小王一次拨对小李手机号的概率.【答案】(1)14;(2)15. 【解析】【分析】(1)根据题意求出11个数字之和,再根据和是20的整数倍进行求解;(2)先求出X 、Y 的可能值,再根据概率公式进行求解.【详解】(1)11个数字之和为187781752X Y ++++++++++=46+X Y +=20n ,∵这11个数字之和是20的整数倍,2<X Y +<18∴当n=3时,14X Y +=即14X Y +=;(2)∵14X Y +=X 、Y 的可能值为9和5,8和6,7和7,6和8,5和9, 的∴小王一次拨对小李手机号码的概率15 【点睛】此题主要考查概率求解,解题的关键是熟知概率公式.21.某工厂生产某种多功能儿童车,根据需要可变形为图1的滑板车或图2的自行车,已知前后车轮半径相同,30cm AD BD DE ===,40cm CE =,车杆AB 与BC 所成的53ABC ∠=︒,图1中B 、E 、C 三点共线,图2中的座板DE 与地面保持平行.问变形前后两轴心BC 的长度有没有发生变化?若不变,请写出BC 的长度;若变化,请求出变化量?(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈) 【答案】BC 的长度发生了改变,减少了4cm .【解析】【分析】 根据图形的特点构造直角三角形利用三角函数求出变化前BC 与变化后的BC 长度即可求解.【详解】图1:作DF ⊥BC 于F 点,△30cm BD DE ==∴BF=EF=BDcos ABC ∠≈30×35=18 ∴BC=2BF+CE 18184076cm ≈++=图2:作DF ⊥BC 于F 点,由图1可知△DE’F=53°,∴△DE’C=180°-△DE’F=127°∵DE ∥BC ,△△E’DE=△DE’F=53°根据题意可知DE’=DE,CE’=CE,连接CD ,△△DCE ≌△DCE’∴△DEC=△DE’C=127°∴△ECB=360°-△DEC -△DE’C -△E’DE=53°,作EG ⊥BC 于G 点∴BC=BF+FG+GC= BDcos ABC ∠+DE+CE cos △ECB ≈30×35+30+40×35=18302472cm ++= 的76-72=4cm ,答:BC 的长度发生了改变,减少了4cm .【点睛】此题主要考查解直角三角形,解题的关键是熟知三角函数的运用.22.如图,有一座圆弧形拱桥,它的跨度AB 为60m ,拱高PM 为18m ,当洪水泛滥到跨度只有30m 时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m ,即4m PN =时,试通过计算说明是否需要采取紧急措施.【答案】不需要采取紧急措施,理由详见解析.【解析】【分析】连接OA ′,OA .设圆的半径是R ,则ON =R−4,OM =R−18.根据垂径定理求得AM 的长,在直角三角形AOM 中,根据勾股定理求得R 的值,在直角三角形A ′ON 中,根据勾股定理求得A ′N 的值,再根据垂径定理求得A ′B ′的长,从而作出判断.【详解】设圆弧所在圆的圆心为O ,连结OA ,OA ',如图所示设半径为()m x 则()m OA OA OP x '===由垂径定理可知AM BM =,A N B N ''=△60m AB =,△30m AM =,且()18m OM OP PM x =-=-在Rt AOM ∆中,由勾股定理可得222AO OM AM =+即()2221830x x =-+,解得34x =△()34430m ON OP PN =-=-=在A ON '∆中,由勾股定理可得()16m A N '===△32m 30m A B ''=>△不需要采取紧急措施.【点睛】此类题综合运用了勾股定理和垂径定理,解题的关键是熟知垂径定理的应用.23.如图二次函数的图象与x 轴交于点()30A -,和()10B ,两点,与y 轴交于点()0,3C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象经过B 、D(1)求二次函数的解析式;(2)写出使一次函数值大于二次函数值的x 的取值范围;(3)若直线BD 与y 轴的交点为E 点,连结AD 、AE ,求ADE ∆的面积;【答案】(1)()()31y x x =-+-;(2)2x <-或1x >;(3)4.【解析】【分析】(1)直接将已知点代入函数解析式求出即可;(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x 的取值范围;(3)分别得出EO ,AB 的长,进而得出面积.【详解】(1)△二次函数与x 轴的交点为()30A -,和()10B ,△设二次函数的解析式为:()()31y a x x =+-△()0,3C 在抛物线上,△3=a(0+3)(0-1),解得a=-1,所以解析式为:()()31y x x =-+-;(2)()()31y x x =-+-=−x 2−2x +3,△二次函数的对称轴为直线1x =-;△点C 、D 是二次函数图象上的一对对称点;()0,3C△()2,3D -;△使一次函数大于二次函数的x 的取值范围为2x <-或1x >;(3)设直线BD :y =mx +n ,代入B (1,0),D (−2,3)得023m n m n ⎧⎨-⎩+=+=, 解得:11m n -⎧⎨⎩==, 故直线BD 的解析式为:y =−x +1,把x =0代入()()31y x x =-+-得,y=3,所以E (0,1),△OE =1,又△AB =4,△S △ADE =12×4×3−12×4×1=4. 【点睛】此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键.24.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.【答案】(1)w=﹣x2+90x﹣1800;(2)当x=45时,w有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【解析】【分析】(1)每天的销售利润=每天的销售量×每件产品的利润;(2)根据配方法,可得答案;(3)根据自变量与函数值的对应关系,可得答案.【详解】(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>42,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【点睛】本题考查的知识点是二次函数的应用,解题的关键是熟练的掌握二次函数的应用.25.定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.(1)如图1,在对半四边形ABCD 中,()12A B C D ∠+∠=∠+∠,求A ∠与B Ð的度数之和; (2)如图2,O 为锐角ABC ∆的外心,过点O 的直线交AC ,BC 于点D ,E ,30OAB ∠=︒,求证:四边形ABED 是对半四边形;(3)如图3,在ABC ∆中,D ,E 分别是AC ,BC 上一点,3CD CE ==,3CE EB =,F 为DE 的中点,120AFB ∠=︒,当AB 为对半四边形ABED 的对半线时,求AC 的长.【答案】(1)120A B ∠+∠=︒;(2)详见解析;(3)5.25.【解析】【分析】(1)根据四边形内角和与对半四边形的定义即可求解;(2)根据三角形外心的性质得OA OB OC ==,得到30OAB OBA ==︒∠∠,从而求出ACB ∠=60°,再得到120CAB CBA ∠+∠=︒,根据对半四边形的定义即可证明;(3)先根据AB 为对半四边形ABED 对半线得到120CAB CBA ∠+∠=︒,故可证明CDE ∆为等边三角形,再根据一线三等角得到DAF EFB ∠=∠,故FDA BEF ∆∆:,列出比例式即可求出AD ,故可求解AC 的长.【详解】(1)∵四边形内角和为360︒∴360A B C D ∠+∠+∠+∠=, ∵()12A B C D ∠+∠=∠+∠ ∴C D ∠+∠=()2A B ∠+∠则()2360A B A B ∠+∠+∠+∠=,∴120A B ∠+∠=︒(2)连结OC ,由三角形外心的性质可得OA OB OC ==,所以30OAB OBA ==︒∠∠,OCA OAC ∠=∠,OCE OBC ∠=∠所以()1803030260ACB ∠=︒-︒-︒÷=︒,的则120CAB CBA ∠+∠=︒在四边形ABED 中,120CAB CBA ∠+∠=︒,则另两个内角之和为240︒,所以四边形ABED 为对半四边形;(3)若AB 为对半线,则120CAB CBA ∠+∠=︒,△60C ∠=°所以CDE ∆为等边三角形△120AFB ∠=︒∴60AFD BFE ∠+∠=︒又60AFD DAF ∠+∠=︒△DAF EFB ∠=∠∵120ADF FEB ∠=∠=︒△FDA BEF ∆∆:, ∴DF AD BE EF= ∵F 为DE 中点,3CE EB = 故1.51 1.5AD = ∴2.25AD =△ 2.253 5.25CA =+=【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知根据题意弄懂对半四边形,利用相似三角形的性质进行求解.26.如图1,在平面直角坐标系中,已知M e 的半径为5,圆心M 的坐标为()3,0,M e 交x 轴于点D ,交y 轴于A ,B 两点,点C 是¼ADB 上的一点(不与点A 、D 、B 重合),连结AC 并延长,连结BC ,CD ,AD .(1)求点A 的坐标;(2)当点C 在»AD 上时.△△△△BCD HCD ∠=∠;△△△2,在CB 上取一点G ,使CA CG =,连结AG .求证:ABG ADC ∆∆:;(3)如图3,当点C 在»BD 上运动的过程中,试探究AC BC CD-的值是否发生变化?若不变,请直接写出该定值;若变化,请说明理由.【答案】(1)(0,4);(2)①详见解析;②详见解析;(3. 【解析】【分析】 (1)连结MA ,在Rt OMA ∆中,AM 为圆的半径5,3OM =,由勾股定理得4OA =(2)△根据圆的基本性质及圆周角定理即可证明;△根据等腰三角形的性质得到CAG CGA ∠=∠,根据三角形的外角定理得到AGC CAG HCB ∠+∠=∠,由△证明HCD BCD ∠=∠得到AGB ACD ∠=∠,即可根据相似三角形的判定进行求解;(3)分别求出点C 在B 点时和点C 为直径AC 时,AC BC CD-的值,即可比较求解. 【详解】(1)连结MA ,在Rt OMA ∆中,AM =5,3OM =,△4OA =△A (0,4).(2)连结AB ,BD故AD BD =,则BAD DBA ∠=∠∵∠ABD+∠ACD=180°,∠HCD+∠ACD=180°,∴ABD HCD ∠=∠∵BAD ∠与BCD ∠是弧BD 所对的圆周角∴BAD ∠=BCD ∠又BAD DBA ∠=∠△BCD BAD ABD HCD ∠=∠=∠=∠即BCD HCD ∠=∠△△AC CG =△CAG CGA ∠=∠△AGC CAG HCB ∠+∠=∠,且由(2)得HCD BCD ∠=∠△AGC BCD ∠=∠△AGB ACD ∠=∠AGB ∆与ACD ∆中ABG ADC AGB ACI ∠=∠⎧⎨∠=∠⎩△AGB ACD ∆∆:(3)△点C 在B 点时,如图,AC=2AO=8,BC=0,==△AC BCCD-; 当点C 为直径AC 与圆的交点时,如图△AC=2r=10△O,M 分别是AB 、AC 中点,△BC=2OM=6,△C (6,-4)△D (8,0)=△AC BC CD-故AC BC CD. 【点睛】此题主要考查圆的综合题,解题的关键是熟知圆周角定理、勾股定理及相似三角形的判定.。
2019-2020学年浙江省宁波市奉化区等南三县九年级(上)期末数学试卷 (解析版)
2019-2020学年浙江省宁波市奉化区等南三县九年级(上)期末数学试卷一、选择题(共12小题).1.(4分)正五边形的每个内角度数为( ) A .36︒B .72︒C .108︒D .120︒2.(4分)在同一平面上,O 外有一定点P 到圆上的距离最长为10,最短为2,则O 的半径是( ) A .5B .3C .6D .43.(4分)由抛物线2y x =平移得到抛物线2(3)y x =+,则下列平移方式可行的是( ) A .向上平移3个单位长度 B .向下平移3个单位长度C .向左平移3个单位长度D .向右平移3个单位长度4.(4分)一个不透明的盒子装有m 个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则m 的值约为( ) A .8B .10C .20D .405.(4分)二次函数2y ax bx c =++部分图象如图所示,有以下结论:①0abc >;②240b ac ->;③30a b -=,其中正确的是( )A .①②③B .②③C .①②D .①③6.(4分)如图,在ABC ∆中,点D ,E ,F 分别在边AB ,AC ,BC 上,且//DE BC ,//EF AB ,若3AB BD =,则:ADE EFC S S ∆∆的值为( )A .4:1B .3:2C .2:1D .3:17.(4分)已知点1(1,)A y ,(22B ,2)y ,3(4,)C y 在一次函数26y x x c =-+的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .123y y y <<C .312y y y <<D .231y y y <<8.(4分)在圆内接四边形ABCD 中,ADC 与ABC 的比为3:2,则B ∠的度数为( ) A .36︒B .72︒C .108︒D .216︒9.(4分)如图,在菱形ABCD 中,已知4AB =,60B ∠=︒,以AC 为直径的O 与菱形ABCD 相交,则图中阴影部分的面积为( )A .43π+B .23π+C .4233π+D .4433π+10.(4分)如图,P 为线段AB 上一点,AD 与BC 交与点E ,CPD A B ∠=∠=∠,BC 交PD 与点F ,AD 交PC 于点G ,则下列结论中错误的是( )A .CGE CBP ∆∆∽B .APD PGD ∆∆∽C .APG BFP ∆∆∽D .PCF BCP ∆∆∽11.(4分)如图,小江同学把三角尺含有60︒角的一端以不同的方向穿入进另一把三角尺(含有45︒角)的孔洞中,已知孔洞的最长边为2cm ,则三角尺穿过孔洞部分的最大面积为( )A .2233cm B .23cm C .223cm D .2(23)cm +12.(4分)如图,平行四边形HEFG 的四个顶点分别在正方形ABCD 的四条边上.//NE AD ,分别交DC ,HG ,AB 于点N ,M ,E ,且CG MN =.要求得平行四边形HEFG 的面积,只需知道一条线段的长度.这条线段可以是( )A .EHB .AEC .EBD .DH二、填空题(每小题4分,共24分) 13.(4分)若53a b =,则332a ba b--的值为 . 14.(4分)从1-,0,π,2,1.6中随机取一个数,取到无理数的概率是 . 15.(4分)如图所示,某河堤的横断面是梯形ABCD ,//BC AD ,迎水坡AB 长26米,且斜坡AB 的坡度为125,则河堤的高BE 为 米.16.(4分)如图,O 的直径CD 垂直弦AB 于点E ,且3CE cm =,7DE cm =,则弦AB = cm .17.(4分)如图,已知点(,)M a b 是函数22y x x =-++图象上的一个动点.若||1a <,则b 的取值范围是 .18.(4分)如图,已知等边ABC ∆的边长为4,BD AB ⊥,且233BD =.连结AB ,CD 并延长交于点E ,则线段BE 的长度为 .三、解答题(第19题6分,第20、21题各8分,第22-24题各10分,第踮5题12分,第26题14分,共78分)19.(6分)计算:22sin 30cos60cos 45︒+︒-︒20.(8分)小王准备给小李打电话,由于保管不善,电话本上的小李手机号中,有两个数字已经模糊不清,如果用X ,Y 表示这两个看不清的数字,那么小李的号码为187781752X Y (手机号码由11个数字组成),小王记得这11个数字之和是20的整数倍. (1)求X Y +的值;(2)求出小王一次拨对小李手机号的概率.21.(8分)某工厂生产某种多功能儿童车,根据需要可变形为图1的滑板车或图2的自行车,已知前后车轮半径相同,30AD BD DE cm ===,40CE cm =,车杆AB 与BC 所成的53ABC ∠=︒,图1中B 、E 、C 三点共线,图2中的座板DE 与地面保持平行.问变形前后两轴心BC 的长度有没有发生变化?若不变,请写出BC 的长度;若变化,请求出变化量?(参考数据:4sin 535︒≈,3cos535︒≈,4tan 53)3︒≈22.(10分)如图,在一座圆弧形拱桥,它的跨度AB 为60m ,拱高PM 为18m ,当洪水泛滥到跨度只有30m 时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m ,即4PN m=时,试通过计算说明是否需要采取紧急措施.23.(10分)如图,二次函数的图象与x轴交于(3,0)A-和(1,0)B两点,交y轴于点(0,3)C,点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求二次函数的解析式;(2)根据图象直接写出使一次函数值大于二次函数值的x的取值范围;(3)若直线与y轴的交点为E,连结AD、AE,求ADE∆的面积.24.(10分)某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:60(3060)y x x=-+.设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(12分)定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.(1)如图1,在对半四边形ABCD中,1()2A B C D∠+∠=∠+∠,求A∠与B∠的度数之和;(2)如图2,O为锐角ABC∆的外心,过点O的直线交AC,BC于点D,E,30OAB∠=︒,求证:四边形ABED是对半四边形;(3)如图3,在ABC∆中,D,E分别是AC,BC上一点,3CD CE==,3CE EB=,F 为DE的中点,120AFB∠=︒,当AB为对半四边形ABED的对半线时,求AC的长.26.(14分)如图1,在平面直角坐标系中,已知M的半径为5,圆心M的坐标为(3,0),M交x轴于点D,交y轴于A,B两点,点C是ADB上的一点(不与点A、D、B重合),连结AC并延长,连结BC,CD,AD.(1)求点A的坐标;(2)当点C在AD上时.①求证:BCD HCD∠=∠;②如图2,在CB上取一点G,使CA CG=,连结AG.求证:~ABG ADC∆∆;(3)如图3,当点C在BD上运动的过程中,试探究||AC BCCD-的值是否发生变化?若不变,请直接写出该定值;若变化,请说明理由.参考答案一、选择题(每小题4分,共48分) 1.(4分)正五边形的每个内角度数为( ) A .36︒B .72︒C .108︒D .120︒解:正五边形的每个外角360725︒==︒, ∴正五边形的每个内角18072108=︒-︒=︒,故选:C .2.(4分)在同一平面上,O 外有一定点P 到圆上的距离最长为10,最短为2,则O 的半径是( ) A .5B .3C .6D .4解:如图,PA 的长是P 到O 的最长距离,PB 的长是P 到O 的最短距离,圆外一点P 到O 的最长距离为10,最短距离为2, ∴圆的直径是1028-=,∴圆的半径是4,. 故选:D .3.(4分)由抛物线2y x =平移得到抛物线2(3)y x =+,则下列平移方式可行的是( ) A .向上平移3个单位长度 B .向下平移3个单位长度C .向左平移3个单位长度D .向右平移3个单位长度解:抛物线2y x =的顶点坐标为(0,0),抛物线2(3)y x =+的顶点坐标为(3,0)-, 因为点(0,0)向左平移3个单位长度后得到(3,0)-,所以把抛物线2y x =向左平移3个单位得到抛物线2(3)y x =+. 故选:C .4.(4分)一个不透明的盒子装有m 个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则m 的值约为( ) A .8B .10C .20D .40解:根据题意得: 40.2m=, 解得:20m =,经检验:20m =是分式方程的解, 答:m 的值约为20; 故选:C .5.(4分)二次函数2y ax bx c =++部分图象如图所示,有以下结论:①0abc >;②240b ac ->;③30a b -=,其中正确的是( )A .①②③B .②③C .①②D .①③解:①0c >,0ab >,故①正确,符合题意;②函数与x 轴有两个交点,故240b ac ->,正确,符合题意; ③函数的对称轴为:322b x a =-=-,故3b a =,故③正确,符合题意; 故选:A .6.(4分)如图,在ABC ∆中,点D ,E ,F 分别在边AB ,AC ,BC 上,且//DE BC ,//EF AB ,若3AB BD =,则:ADE EFC S S ∆∆的值为( )A .4:1B .3:2C .2:1D .3:1解:3AB BD =,2AD BD ∴=,//DE BC ,//EF AB , ∴四边形BDEF 是平行四边形,BD EF ∴=, 2AD EF ∴=,//DE BC ,//EF AB , AED C ∴∠=∠,FEC A ∠=∠, ADE EFC ∴∆∆∽,:ADE EFC S S ∆∆∴的2()4:1AD EF==, 故选:A .7.(4分)已知点1(1,)A y ,(22B ,2)y ,3(4,)C y 在一次函数26y x x c =-+的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .123y y y <<C .312y y y <<D .231y y y <<解:二次函数26y x x c =-+中10a =>, ∴抛物线开口向上,有最小值.32bx a=-=, ∴离对称轴水平距离越远,函数值越大,由二次函数图象的对称性可知3224331-<-<-, 231y y y ∴<<.故选:D .8.(4分)在圆内接四边形ABCD 中,ADC 与ABC 的比为3:2,则B ∠的度数为( )A.36︒B.72︒C.108︒D.216︒解:ADC与ABC的比为3:2,:3:2B D∴∠∠=,设B∠、D∠分别为3x、2x,四边形ABCD是圆内接四边形,180B D∴∠+∠=︒,即32180x x+=︒,解得,36x=︒,则3108B x∠==︒,故选:C.9.(4分)如图,在菱形ABCD中,已知4AB=,60B∠=︒,以AC为直径的O与菱形ABCD 相交,则图中阴影部分的面积为()A.43π+B.23π+C.4233π+D.4433π+解:在菱形ABCD中,已知4AB=,60B∠=︒,以AC为直径的O与菱形ABCD相交,60EAO∴∠=︒,60OCF∠=︒,2OA OE OF OC OG OH======,60EOF FOC COG GOH HOA AOE∴∠=∠=∠=∠=∠=∠=︒,∴阴影部分的面积为:222sin606024424323603ππ⨯︒⨯+⨯=+,故选:D.10.(4分)如图,P为线段AB上一点,AD与BC交与点E,CPD A B∠=∠=∠,BC交PD 与点F,AD交PC于点G,则下列结论中错误的是()A .CGE CBP ∆∆∽B .APD PGD ∆∆∽C .APG BFP ∆∆∽D .PCF BCP ∆∆∽ 解:CPD A B ∠=∠=∠,且APD B PFB APC CPD ∠=∠+∠=∠+∠,APC BFP ∴∠=∠,且A B ∠=∠,APG BFP ∴∆∆∽,故选项C 不合题意,A CPD ∠=∠,D D ∠=∠,APD PGD ∴∆∆∽,故选项B 不合题意,B CPD ∠=∠,C C ∠=∠,PCF BCP ∴∆∆∽,故选项D 不合题意,由条件无法证明CGE CBP ∆∆∽,故选项A 符合题意,故选:A .11.(4分)如图,小江同学把三角尺含有60︒角的一端以不同的方向穿入进另一把三角尺(含有45︒角)的孔洞中,已知孔洞的最长边为2cm ,则三角尺穿过孔洞部分的最大面积为( )A 223B 23cmC .223cmD .2(23)cm + 解:由题意可知当三角尺穿过孔洞部分为等边三角形时,面积最大,孔洞的最长边为2cm ,∴三角尺穿过孔洞部分的最大面积22323()cm ==; 故选:B .12.(4分)如图,平行四边形HEFG 的四个顶点分别在正方形ABCD 的四条边上.//NE AD ,分别交DC ,HG ,AB 于点N ,M ,E ,且CG MN =.要求得平行四边形HEFG 的面积,只需知道一条线段的长度.这条线段可以是( )A .EHB .AEC .EBD .DH 解:四边形ABCD 是正方形,CD BC ∴=,//CD AB ,//NE AD ,NE AD BC ∴==,CG MN =,DG EM ∴=,连接EG ,FM ,过M 作MP BC ⊥于P ,四边形EFGH 是平行四边形,GH EF ∴=,//GH EF ,EGH FEG ∴∠=∠,//DC AB ,DGE BEG ∴∠=∠,DGH BEF ∴∠=∠,在GDH ∆和EBF ∆中,90D B DGH BEF GH EF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()GDH EBF AAS ∴∆≅∆,DG BE ∴=,EM BE ∴=,∴四边形MEBP 是正方形, 1122EFM GHEF MEBP S S S ∆∴==正方形, GHEF MEBP S S ∴=正方形,∴求得平行四边形HEFG 的面积,只需知道BE 即可;故选:C .二、填空题(每小题4分,共24分)13.(4分)若53a b =,则332a b a b --的值为 43 . 解:设53a b k ==,则5a k =,3b k =, 所以31531243215693a b k k k a b k k k --===--. 故答案为43. 14.(4分)从1-,0,π,2,1.6中随机取一个数,取到无理数的概率是25 . 解:在所列的5个数中,无理数是π和2,∴随机取一个数,取到无理数的概率是25, 故答案为:25. 15.(4分)如图所示,某河堤的横断面是梯形ABCD ,//BC AD ,迎水坡AB 长26米,且斜坡AB 的坡度为125,则河堤的高BE 为 24 米.解:由已知斜坡AB 的坡度125,得: :12:5BE AE =, 设5AE x =,则12BE x =,在直角三角形AEB 中,根据勾股定理得:222265(12)x x =+,即2169676x =,解得:2x =或2x =-(舍去),510x =,1224x =即河堤高BE 等于24米.故答案为:24.16.(4分)如图,O 的直径CD 垂直弦AB 于点E ,且3CE cm =,7DE cm =,则弦AB = 221 cm .解:连接OA ,如图,3CE =,7DE =,10CD ∴=,5OC OA ∴==,2OE =, AB CD ⊥, AE BE ∴=, 在Rt AOE ∆中,225221AE =-=,2221()AB AE cm ∴==.故答案为221.17.(4分)如图,已知点(,)M a b 是函数22y x x =-++图象上的一个动点.若||1a <,则b 的取值范围是 904b < .解:函数22y x x =-++中,令0y =,则220x x -++=,解得1x =-或2,∴抛物线与x 轴的交点为(1,0)-,(2,0),点(,)M a b 是函数22y x x =-++图象上的一个动点.||1a <,11a ∴-<<,22192()24y x x x =-++=--+, ∴当12x =时,有最大值94, b ∴的取值范围是904b<, 故答案为904b <. 18.(4分)如图,已知等边ABC ∆的边长为4,BD AB ⊥,且233BD =.连结AB ,CD 并延长交于点E ,则线段BE 的长度为 1 .解:如图,作CT AB ⊥于T .ABC ∆是等边三角形,CT AB ⊥,60CBT ∴∠=︒,2BT AT ==,sin 6023CT BC ∴=︒=DB AB ⊥,//DB CT ∴,EBD ETC ∴∆∆∽, ∴BD BE CT ET=,∴2BE BE =+, 1BE ∴=,故答案为1.三、解答题(第19题6分,第20、21题各8分,第22-24题各10分,第踮5题12分,第26题14分,共78分)19.(6分)计算:22sin 30cos60cos 45︒+︒-︒解:2211112sin 30cos60cos 452112222︒+︒-︒=⨯+-=+-= 20.(8分)小王准备给小李打电话,由于保管不善,电话本上的小李手机号中,有两个数字已经模糊不清,如果用X ,Y 表示这两个看不清的数字,那么小李的号码为187781752X Y (手机号码由11个数字组成),小王记得这11个数字之和是20的整数倍.(1)求X Y +的值;(2)求出小王一次拨对小李手机号的概率.解:(1)设这11个数字之和是20的a 倍,根据题意,得187********X Y a ++++++++++=,即2046X Y a +=-,018X Y +,0204618a ∴-,解得2.3 3.2a , a 是整数,3a ∴=,2046604614X Y a ∴+=-=-=;(2)X 、Y 的可能值为9和5,8和6,7和7,6和8,5和9,小王一次拨对小李手机号码的概率15. 21.(8分)某工厂生产某种多功能儿童车,根据需要可变形为图1的滑板车或图2的自行车,已知前后车轮半径相同,30AD BD DE cm ===,40CE cm =,车杆AB 与BC 所成的53ABC ∠=︒,图1中B 、E 、C 三点共线,图2中的座板DE 与地面保持平行.问变形前后两轴心BC 的长度有没有发生变化?若不变,请写出BC 的长度;若变化,请求出变化量?(参考数据:4sin 535︒≈,3cos535︒≈,4tan 53)3︒≈解:如图1,过点D 作DF BE ⊥于点F ,由题意知30BD DE cm ==,3cos 3018()5BF BD ABC cm ∴=∠=⨯=, 236BE BF cm ∴==, 则76BC BE CE cm =+=,如图2,过点D 作DM BC ⊥于M ,过点E 作EN BC ⊥于点N ,由题意知四边形DENM 是矩形,30MN DE cm ∴==,在Rt DBM ∆中,3cos 3018()5BM BD ABC cm =∠=⨯=,4sin 3024()5EN DM BD ABC cm ==∠=⨯=, 在Rt CEN ∆中,40CE cm =,∴由勾股定理可得32CN cm =,则18303280()BC cm =++=,答:BC 的长度发生了改变,增加了4cm .22.(10分)如图,在一座圆弧形拱桥,它的跨度AB 为60m ,拱高PM 为18m ,当洪水泛滥到跨度只有30m 时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m ,即4PN m =时,试通过计算说明是否需要采取紧急措施.解:设圆弧所在圆的圆心为O ,连接OA 、OA ',设半径为x 米,则OA OA OP ='=,由垂径定理可知AM BM =,A N B N '=',60AB =米,30AM ∴=米,且(18)OM OP PM x =-=-米,在Rt AOM ∆中,由勾股定理可得222AO OM AM =+,即222(18)30x x =-+,解得34x =,34430ON OP PN ∴=-=-=(米),在Rt △A ON '中,由勾股定理可得2222343016A N OA ON '='-=-=(米), 32A B ∴''=米30>米,∴不需要采取紧急措施.23.(10分)如图,二次函数的图象与x 轴交于(3,0)A -和(1,0)B 两点,交y 轴于点(0,3)C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D .(1)求二次函数的解析式;(2)根据图象直接写出使一次函数值大于二次函数值的x 的取值范围;(3)若直线与y 轴的交点为E ,连结AD 、AE ,求ADE ∆的面积.解:(1)设二次函数解析式为2y ax bx c =++,220(3)(3)0113a b c a b cc ⎧=⨯-+⨯-+⎪=⨯+⨯+⎨⎪=⎩, 解得,1a =-,2b =-,3c =,即二次函数的解析式是223y x x =--+;(2)223y x x =--+,∴该函数的对称轴是直线1x =-,点(0,3)C ,点C 、D 是二次函数图象上的一对对称点,∴点(2,3)D -,∴一次函数值大于二次函数值的x 的取值范围是2x <-或1x >;(3)点(3,0)A -、点(2,3)D -、点(1,0)B ,设直线DE 的解析式为y kx m =+,则230k m k m -+=⎧⎨+=⎩,解得,11k m =-⎧⎨=⎩, ∴直线DE 的解析式为1y x =-+,当0x =时,1y =,∴点E 的坐标为(0,1),设直线AE 的解析式为y cx d =+,则301c d d -+=⎧⎨=⎩,得131c d ⎧=⎪⎨⎪=⎩, ∴直线AE 的解析式为113y x =+,当2x=-时,11 (2)133y=⨯-+=,ADE∴∆的面积是:1(3)|3|342-⨯-=.24.(10分)某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:60(3060)y x x=-+.设这种双肩包每天的销售利润为w 元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?解:(1)(30)w x y=-(60)(30)x x=-+-230601800x x x=-++-2901800x x=-+-,w与x之间的函数解析式2901800w x x=-+-;(2)根据题意得:22901800(45)225w x x x=-+-=--+,10-<,当45x=时,w有最大值,最大值是225.(3)当200w=时,2901800200x x-+-=,解得140x=,250x=,5042>,250x=不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.25.(12分)定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.(1)如图1,在对半四边形ABCD中,1()2A B C D∠+∠=∠+∠,求A∠与B∠的度数之和;(2)如图2,O为锐角ABC∆的外心,过点O的直线交AC,BC于点D,E,30OAB∠=︒,求证:四边形ABED是对半四边形;(3)如图3,在ABC∆中,D,E分别是AC,BC上一点,3CD CE==,3CE EB=,F 为DE的中点,120AFB∠=︒,当AB为对半四边形ABED的对半线时,求AC的长.解:(1)由四边形内角和为360︒,可得360A B C D∠+∠+∠+∠=︒,则2()360A B A B∠+∠+∠+∠=︒,120A B∴∠+∠=︒;(2)如图2,连结OC,由三角形外心的性质可得,OA OB OC==,30OAB OBA∴∠=∠=︒,OCA OAC∠=∠,OCE OBC∠=∠,(1803030)260ACB∴∠=︒-︒-︒÷=︒,则120CAB CBA∠+∠=︒,在四边形ABED中,120CAB CBA∠+∠=︒,则另两个内角之和为240︒,∴四边形ABED为对半四边形;(3)若AB为对半线,则120CAB CBA∠+∠=︒,60C∴∠=︒,又CD CE=,CDE ∴∆为等边三角形,60CDE CED ∠==︒,3DE DC ==,120ADF FEB ∴∠=∠=︒,120AFB =︒,60DFA EFB ∴∠+∠=︒,又60DAF DFA ∠+∠=︒,DAF EFB ∴∠=∠,ADF FEB ∴∆∆∽, ∴AD DF FE EB =, 3CEDE ==,3CE BE =,F 是DE 的中点,1BE ∴=,32DF EF ==, ∴32312AD =, 94AD ∴=, 921344CA CD AD ∴=+=+=.26.(14分)如图1,在平面直角坐标系中,已知M的半径为5,圆心M的坐标为(3,0),M交x轴于点D,交y轴于A,B两点,点C是ADB上的一点(不与点A、D、B重合),连结AC并延长,连结BC,CD,AD.(1)求点A的坐标;(2)当点C在AD上时.①求证:BCD HCD∠=∠;②如图2,在CB上取一点G,使CA CG=,连结AG.求证:~ABG ADC∆∆;(3)如图3,当点C在BD上运动的过程中,试探究||AC BCCD-的值是否发生变化?若不变,请直接写出该定值;若变化,请说明理由.解:(1)如图1,连结MA,在Rt OMA∆中,AM为圆的半径5,3OM=,224OA AM OM∴=-=,∴点A的坐标为(0,4);(2)①如图21-,连接BD,由圆的对称性可得AD BD=,则BAD DBA∠=∠,180ACD DBA∠+∠=︒,180ACD HCD∠+∠=︒,DBA HCD∴∠=∠,又BAD BCD ∠=∠,BCD HCD ∴∠=∠;②在图22-中,AC CG =,CAG CGA ∴∠=∠,AGC CAG HCB ∠+∠=∠,且由(2)得HCD BCD ∠=∠AGC HCD ∴∠=∠,180180AGC HCD ∴︒-∠=︒-∠,即AGB ACD ∠=∠,AC AC =,ABG ADC ∴∠=∠,~AGB ACD ∴∆∆,(3)当点C 在BD 上运动的过程中,||AC BC CD-,理由如下: 如图31-,当点C 在BD 上时,在AC 上截取AN ,使AN BC =,连接BD ,DN , 由圆的对称性可得AD BD =, 又DC DC =,DAN DBC ∴∠=∠,()DAN DBC SAS ∴∆≅∆,DN DC ∴=,ADN BDC ∠=∠,ADN NDB BDC NDB ∴∠+∠=∠+∠,即ADB NDC ∠=∠,1AD ND BD CD==, ADB NDC ∴∆∆∽, ∴NC AB DC BD=, 4AO BO ==,8OD OM DM =+=,BD ∴==∴825545NC ABDC BD===,NC AC AN AC BC =-=-,∴255AC BCCD-=,∴||AC BCCD-的值不发生变化,为255.。
浙江省宁波市南三县2019-2020学年九年级上学期期末数学试题(解析版)
浙江省宁波市南三县2019-2020学年九年级上学期期末数学试题一、选择题:1.正五边形的每个内角度数为( )A. 36°B. 72°C. 108°D. 120° 【答案】C【解析】【分析】根据多边形内角和公式:()1802n ︒⨯-,得出正五边形的内角和,再根据正五边形的性质:五个角的角度都相等,即可得出每个内角的度数.【详解】解:()180525=108︒⨯-÷︒故选:C【点睛】本题考查的是多边形的内角和公式以及正五边形的性质,掌握这两个知识点是解题的关键. 2.在同一平面上,O e 外有一定点P 到圆上的距离最长为10,最短为2,则O e 的半径是( )A. 5B. 3C. 6D. 4 【答案】D【解析】【分析】由点P 在圆外,易得到圆的直径为10-2,然后计算圆的半径即可.【详解】解:∵点P 在圆外∴圆的直径为10-2=8∴圆的半径为4故答案为D.【点睛】本题考查了点与圆的位置关系,关键是根据题意确定圆的直径,是解答本题的关键.3.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( )A. 向左平移3个单位B. 向右平移3个单位C. 向上平移3个单位D. 向下平移3个单位【答案】A【解析】【分析】先确定抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.【详解】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),因为点(0,0)向左平移3个单位长度后得到(-3,0),所以把抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选A.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.一个不透明的盒子装有m个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则m的值约为()A. 8B. 10C. 20D. 40【答案】C【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,4m=0.2,解得,m=20,经检验m=20是所列方程的根且符合实际意义,故选:C.【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.5.二次函数2y ax bx c =++部分图象如图所示,有以下结论:①0abc >;②240b ac -<;③30a b -=,其中正确的是( )A. ①②③B. ②③C. ①②D. ①③【答案】D【解析】【分析】 根据函数图像即可得出a 、b 、c 与0的大小关系,从图中可以看出函数与x 轴有2个交点,所以当y=0时,一元二次方程有两个根,对称轴为32x =-,代入对称轴公式即可得出结果. 【详解】解:根据图像可知:ab >0,c >0,所以abc >0,故①正确;函数与x 轴有2个交点,故240b ac ->,故②错误; 对称轴为32x =-,所以322b a -=-,30a b -=,故③正确. 故选:D.【点睛】本题主要考查的是二次函数图像与系数的关系,熟练的掌握函数的基本性质,函数与坐标轴的交点以及对称轴是解题的关键.6.如图,在ABC ∆中,点D ,E ,F 分别在边AB ,AC ,BC 上,且//DE BC ,//EF AB ,若3AB BD =,则:ADE EFC S S ∆∆的值为( )A. 4:1B. 3:2C. 2:1D. 3:1【答案】A【解析】【分析】 根据3AB BD =,//DE BC 得到AC=3EC ,则AE=2EC ,再根据//DE BC ,//EF AB 得到△ADE△△EFC ,再根据面积之比等于相似比的平方即可求解.【详解】△//DE BC ,∴AB :BD=AC :EC ,又△3AB BD =△AC=3EC ,△AE=2EC ,△//DE BC ,//EF AB△△AED=△C ,△ADE=△B=△EFC ,△△ADE△△EFC又AE=2EC△:ADE EFC S S ∆∆=(2:1)2=4:1故选A.【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.7.已知点()11A y ,,()2B y ,()34C y ,在二次函数26y x x c =-+的图象上,则123y y y ,,的大小关系是( )A. 213y y y <<B. 123y y y <<C. 312y y y <<D. 231y y y <<【答案】D【解析】【分析】根据二次函数的解析式,能得出二次函数的图形开口向上,通过对称轴公式得出二次函数的对称轴为x=3,由此可知离对称轴水平距离越远,函数值越大即可求解.【详解】解:∵二次函数26y x x c =-+中a >0∴抛物线开口向上,有最小值. ∵32b x a=-= ∴离对称轴水平距离越远,函数值越大,∵由二次函数图像的对称性可知x=4对称点x=2∴231y y y <<故选:D.【点睛】本题主要考查的是二次函数图像上点的坐标特点,解此题的关键是掌握二次函数图像的性质. 8.在圆内接四边形ABCD 中,¼ADC 与¼ABC 的比为3:2,则B Ð的度数为( )A. 36︒B. 72︒C. 108︒D. 216︒ 【答案】C【解析】【分析】根据圆内接四边形对角互补的性质即可求得.【详解】△在圆内接四边形ABCD 中,¼ADC :¼ABC =3:2,△△B :△D =3:2,△△B +△D =180°,△△B =180°×35=108︒. 故选C.【点睛】本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解题的关键.9.如图,在菱形ABCD 中,已知4AB =,60B ∠=︒,以AC 为直径的O e 与菱形ABCD 相交,则图中阴影部分的面积为( )A. πB. πC. 43πD. 43π 【答案】D【解析】【分析】 根据菱形与的圆的对称性到△AOE 为等边三角形,故可利用扇形AOE 的面积减去△AOE 的面积得到需要割补的面积,再利用圆的面积减去4倍的需要割去的面积即可求解.【详解】∵菱形ABCD 中,已知4AB =,60ABC ∠=︒,连接AO,BO ,∴△ABO=30°,∠AOB=90°,∴△BAO=60°,又AO=EO,∴△AOE 为等边三角形,故AE=EO=12AB=2 ∴r=2△S 扇形AOE =2126π⨯⨯=23πS △AOE 2a 22∴图中阴影部分的面积=π×22-4(23π)=43π 故选D.【点睛】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.10.如图,P 为线段AB 上一点,AD 与BC 交与点E ,CPD A B ∠=∠=∠,BC 交PD 与点F ,AD 交PC 与点G ,则下列结论中错误的是( )A. CGE CBP ∆∆:B. APD PGD ∆∆:C. APG BFP ∆∆:D. PCF BCP ∆∆:【答案】A【解析】【分析】 先根据条件证明△PCF ∽△BCP ,利用相似三角形的性质:对应角相等,再证明△APD ∽△PGD ,进而证明△APG ∽△BFP 再证明时注意图形中隐含的相等的角,故可进行判断.【详解】∵∠CPD=∠B ,∠C=∠C ,∴△PCF ∽△BCP.∵∠CPD=∠A ,∠D=∠D ,∴△APD ∽△PGD.∵∠CPD=∠A=∠B ,∠APG=∠B+∠C ,∠BFP=∠CPD+∠C∴∠APG=∠BFP ,∴△APG ∽△BFP.故结论中错误的是A ,故选A.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理.11.如图,小江同学把三角尺含有60︒角的一端以不同的方向穿入进另一把三角尺(含有45︒角)的孔洞中,已知孔洞的最长边为2cm ,则三角尺穿过孔洞部分的最大面积为( )A. 2B. 2C. 2D. (22cm 【答案】B【解析】【分析】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,故可求解.【详解】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,∵孔洞的最长边为2cm=∴2a=224故选B.【点睛】此题主要考查等边三角形的面积求解,解题的关键是根据题意得到当穿过孔洞三角尺为等边三角形时面积最大.NE AD,分别交DC,HG,12.如图,平行四边形HEFG的四个顶点分别在正方形ABCD的四条边上.//=.要求得平行四边形HEFG的面积,只需知道一条线段的长度.这条AB于点N,M,E,且CG MN线段可以是()A. EHB. AEC. EBD. DH【答案】C【解析】【分析】根据图形证明△AOE△△COG,作KM△AD,证明四边形DKMN为正方形,再证明Rt△AEH△Rt△CGF,Rt△DHG△Rt△BFE,设正方形ABCD边长为a,CG=MN=x,根据正方形的性质列出平行四边形HEFG的面积的代数式,再化简整理,即可判断.【详解】连接AC,EG,交于O点,∵四边形HEFG是平行四边形,四边形ABCD是正方形,∴GO=EO,AO=CO,又△AOE=△COG△△AOE△△COG,∴GC=AE,△NE△AD,∴四边形AEND为矩形,△AE=DN,△DN=GC=MN作KM△AD ,△四边形DKMN 为正方形,在Rt△AEH 和Rt△CGF 中,AE CG HE FG =⎧⎨=⎩∴Rt△AEH△Rt△CGF ,△AH=CF,△AD -AH=BC -CF△DH=BF,同理Rt△DHG△Rt△BFE ,设CG=MN=x ,设正方形ABCD 边长为a则S △HDG =12DH×x+12DG×x=S △FBE S △HAE =12AH×x =S △GCF S 平行四边形EFGH =a 2-2S △HDG -2S △HAE = a 2-(DH+DG+AH)×x,∵DG=a -x△S 平行四边形EFGH = a 2-(a+a -x)×x= a 2-2ax+x 2= (a -x)2故只需要知道a -x 就可以求出面积BE=a -x ,故选C.【点睛】此题主要考查正方形的性质,解题的关键是根据题意设出字母,表示出面积进行求解.二、填空题:13.若53a b =,则332a b a b--的值为__________.【答案】43【解析】【分析】 直接利用已知得出53b a =,代入332a b a b --进而得出答案. 【详解】∵53a b = ∴53b a = ∴332a b a b --=552b b b b --=43故填:43. 【点睛】此题主要考查了比例的性质,正确运用已知变形是解题关键.14.从1-,0,π,1.6中随机取一个数,取到无理数的概率是__________. 【答案】25【解析】【分析】由题意可得共有5种等可能的结果,其中无理数有:π共2种情况,则可利用概率公式求解.【详解】∵共有5种等可能的结果,无理数有:π共2种情况,∴取到无理数概率是:25. 故答案为:25. 【点睛】此题考查了概率公式的应用与无理数的定义.此题比较简单,注意用到的知识点为:概率=所求情况数与总情况数之比.15.如图,某河堤的横截面是梯形ABCD ,BC AD ∥,迎水面AB 长26m ,且斜坡AB 的坡比(即BE AE )为12:5,则河堤的高BE 为__________.【答案】24cm 的【解析】【分析】 根据坡比(即BE AE)为12:5,设BE=12x ,AE=5x ,因为AB=26cm ,根据勾股定理列出方程即可求解. 【详解】解:设BE=12x ,AE=5x ,∵AB=26cm ,222AE BE AB +=∴()()22212526x x += 2x =∴BE=2×12=24cm故答案为:24cm.【点睛】本题主要考查的是坡比以及勾股定理,找出图中的直角三角形在根据勾股定理列出方程即可求解.16.如图,O e 的直径CD 垂直弦AB 于点E ,且3cm CE =,7cm DE =,则弦AB =__________cm .【答案】【解析】【分析】先根据题意得出⊙O 的半径,再根据勾股定理求出BE 的长,进而可得出结论.【详解】连接OB ,∵3cm CE =,7cm DE =,∴OC =OB =12(CE +DE )=5, ∵CE =3,∴OE =5−3=2,∵CD ⊥AB ,∴BE =∴AB =2BE =故答案为:【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.17.如图,已知点(),M a b 是函数22y x x =-++图象上的一个动点.若1a <,则b 的取值范围是__________.【答案】904b <≤【解析】【分析】 根据1a <得-1<a <1,再根据二次函数的解析式求出对称轴,再根据函数的图像与性质即可求解. 【详解】∵1a <∴-1<a <1,∵函数22y x x =-++对称轴x=221b a = ∴当a=12,y 有最大值94 当a=-1时,2(1)120y =---+=∴则b 的取值范围是904b <≤故填:904b <≤. 【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据题意函数图像进行求解.18.如图,已知等边ABC ∆的边长为4,BD AB ⊥,且3BD =.连结AB ,CD 并延长交于点E ,则线段BE 的长度为__________.【答案】1【解析】【分析】作CF ⊥AB ,根据等边三角形的性质求出CF ,再由BD ⊥AB ,由CF ∥BD ,得到△BDE ∽△FCE ,设BE 为x ,再根据对应线段成比例即可求解.【详解】作CF ⊥AB ,垂足为F ,∵△ABC 为等边三角形,∴AF=12AB=2, ∴CF==又∵BD ⊥AB ,∴CF ∥BD ,∴△BDE ∽△FCE ,设BE 为x , ∴EF EB CF DB =,3= 解得x=1故填:1.【点睛】此题主要考查相似三角形的判定与性质,解题的根据是根据题意构造相似三角形进行求解.三、解答题:19.计算:22sin30cos60cos 45︒+︒-︒;【答案】1【解析】【分析】根据特殊角的三角函数值代入即可求解.【详解】22sin30cos60cos 45︒+︒-︒211222=⨯+-⎝⎭ 11122=+- 1=【点睛】此题主要考查实数的计算,解题的关键是熟知特殊角的三角函数值.20.小王准备给小李打电话,由于保管不善,电话本上的小李手机号中,有两个数字已经模糊不清,如果用X ,Y 表示这两个看不清的数字,那么小李的号码为187781752X Y (手机号码由11个数字组成),小王记得这11个数字之和是20的整数倍.(1)求X Y +值;(2)求出小王一次拨对小李手机号的概率.【答案】(1)14;(2)15. 【解析】【分析】(1)根据题意求出11个数字之和,再根据和是20的整数倍进行求解;(2)先求出X 、Y 的可能值,再根据概率公式进行求解.【详解】(1)11个数字之和为187781752X Y ++++++++++=46+X Y +=20n ,∵这11个数字之和是20的整数倍,2<X Y +<18∴当n=3时,14X Y +=即14X Y +=;(2)∵14X Y +=X 、Y 的可能值为9和5,8和6,7和7,6和8,5和9, 的∴小王一次拨对小李手机号码的概率15 【点睛】此题主要考查概率求解,解题的关键是熟知概率公式.21.某工厂生产某种多功能儿童车,根据需要可变形为图1的滑板车或图2的自行车,已知前后车轮半径相同,30cm AD BD DE ===,40cm CE =,车杆AB 与BC 所成的53ABC ∠=︒,图1中B 、E 、C 三点共线,图2中的座板DE 与地面保持平行.问变形前后两轴心BC 的长度有没有发生变化?若不变,请写出BC 的长度;若变化,请求出变化量?(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈) 【答案】BC 的长度发生了改变,减少了4cm .【解析】【分析】 根据图形的特点构造直角三角形利用三角函数求出变化前BC 与变化后的BC 长度即可求解.【详解】图1:作DF ⊥BC 于F 点,△30cm BD DE ==∴BF=EF=BDcos ABC ∠≈30×35=18 ∴BC=2BF+CE 18184076cm ≈++=图2:作DF ⊥BC 于F 点,由图1可知△DE’F=53°,∴△DE’C=180°-△DE’F=127°∵DE ∥BC ,△△E’DE=△DE’F=53°根据题意可知DE’=DE,CE’=CE,连接CD ,△△DCE ≌△DCE’∴△DEC=△DE’C=127°∴△ECB=360°-△DEC -△DE’C -△E’DE=53°,作EG ⊥BC 于G 点∴BC=BF+FG+GC= BDcos ABC ∠+DE+CE cos △ECB ≈30×35+30+40×35=18302472cm ++= 的76-72=4cm ,答:BC 的长度发生了改变,减少了4cm .【点睛】此题主要考查解直角三角形,解题的关键是熟知三角函数的运用.22.如图,有一座圆弧形拱桥,它的跨度AB 为60m ,拱高PM 为18m ,当洪水泛滥到跨度只有30m 时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m ,即4m PN =时,试通过计算说明是否需要采取紧急措施.【答案】不需要采取紧急措施,理由详见解析.【解析】【分析】连接OA ′,OA .设圆的半径是R ,则ON =R−4,OM =R−18.根据垂径定理求得AM 的长,在直角三角形AOM 中,根据勾股定理求得R 的值,在直角三角形A ′ON 中,根据勾股定理求得A ′N 的值,再根据垂径定理求得A ′B ′的长,从而作出判断.【详解】设圆弧所在圆的圆心为O ,连结OA ,OA ',如图所示设半径为()m x 则()m OA OA OP x '===由垂径定理可知AM BM =,A N B N ''=△60m AB =,△30m AM =,且()18m OM OP PM x =-=-在Rt AOM ∆中,由勾股定理可得222AO OM AM =+即()2221830x x =-+,解得34x =△()34430m ON OP PN =-=-=在A ON '∆中,由勾股定理可得()16m A N '===△32m 30m A B ''=>△不需要采取紧急措施.【点睛】此类题综合运用了勾股定理和垂径定理,解题的关键是熟知垂径定理的应用.23.如图二次函数的图象与x 轴交于点()30A -,和()10B ,两点,与y 轴交于点()0,3C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象经过B 、D(1)求二次函数的解析式;(2)写出使一次函数值大于二次函数值的x 的取值范围;(3)若直线BD 与y 轴的交点为E 点,连结AD 、AE ,求ADE ∆的面积;【答案】(1)()()31y x x =-+-;(2)2x <-或1x >;(3)4.【解析】【分析】(1)直接将已知点代入函数解析式求出即可;(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x 的取值范围;(3)分别得出EO ,AB 的长,进而得出面积.【详解】(1)△二次函数与x 轴的交点为()30A -,和()10B ,△设二次函数的解析式为:()()31y a x x =+-△()0,3C 在抛物线上,△3=a(0+3)(0-1),解得a=-1,所以解析式为:()()31y x x =-+-;(2)()()31y x x =-+-=−x 2−2x +3,△二次函数的对称轴为直线1x =-;△点C 、D 是二次函数图象上的一对对称点;()0,3C△()2,3D -;△使一次函数大于二次函数的x 的取值范围为2x <-或1x >;(3)设直线BD :y =mx +n ,代入B (1,0),D (−2,3)得023m n m n ⎧⎨-⎩+=+=, 解得:11m n -⎧⎨⎩==, 故直线BD 的解析式为:y =−x +1,把x =0代入()()31y x x =-+-得,y=3,所以E (0,1),△OE =1,又△AB =4,△S △ADE =12×4×3−12×4×1=4. 【点睛】此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键.24.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.【答案】(1)w=﹣x2+90x﹣1800;(2)当x=45时,w有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【解析】【分析】(1)每天的销售利润=每天的销售量×每件产品的利润;(2)根据配方法,可得答案;(3)根据自变量与函数值的对应关系,可得答案.【详解】(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>42,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【点睛】本题考查的知识点是二次函数的应用,解题的关键是熟练的掌握二次函数的应用.25.定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.(1)如图1,在对半四边形ABCD 中,()12A B C D ∠+∠=∠+∠,求A ∠与B Ð的度数之和; (2)如图2,O 为锐角ABC ∆的外心,过点O 的直线交AC ,BC 于点D ,E ,30OAB ∠=︒,求证:四边形ABED 是对半四边形;(3)如图3,在ABC ∆中,D ,E 分别是AC ,BC 上一点,3CD CE ==,3CE EB =,F 为DE 的中点,120AFB ∠=︒,当AB 为对半四边形ABED 的对半线时,求AC 的长.【答案】(1)120A B ∠+∠=︒;(2)详见解析;(3)5.25.【解析】【分析】(1)根据四边形内角和与对半四边形的定义即可求解;(2)根据三角形外心的性质得OA OB OC ==,得到30OAB OBA ==︒∠∠,从而求出ACB ∠=60°,再得到120CAB CBA ∠+∠=︒,根据对半四边形的定义即可证明;(3)先根据AB 为对半四边形ABED 对半线得到120CAB CBA ∠+∠=︒,故可证明CDE ∆为等边三角形,再根据一线三等角得到DAF EFB ∠=∠,故FDA BEF ∆∆:,列出比例式即可求出AD ,故可求解AC 的长.【详解】(1)∵四边形内角和为360︒∴360A B C D ∠+∠+∠+∠=, ∵()12A B C D ∠+∠=∠+∠ ∴C D ∠+∠=()2A B ∠+∠则()2360A B A B ∠+∠+∠+∠=,∴120A B ∠+∠=︒(2)连结OC ,由三角形外心的性质可得OA OB OC ==,所以30OAB OBA ==︒∠∠,OCA OAC ∠=∠,OCE OBC ∠=∠所以()1803030260ACB ∠=︒-︒-︒÷=︒,的则120CAB CBA ∠+∠=︒在四边形ABED 中,120CAB CBA ∠+∠=︒,则另两个内角之和为240︒,所以四边形ABED 为对半四边形;(3)若AB 为对半线,则120CAB CBA ∠+∠=︒,△60C ∠=°所以CDE ∆为等边三角形△120AFB ∠=︒∴60AFD BFE ∠+∠=︒又60AFD DAF ∠+∠=︒△DAF EFB ∠=∠∵120ADF FEB ∠=∠=︒△FDA BEF ∆∆:, ∴DF AD BE EF= ∵F 为DE 中点,3CE EB = 故1.51 1.5AD = ∴2.25AD =△ 2.253 5.25CA =+=【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知根据题意弄懂对半四边形,利用相似三角形的性质进行求解.26.如图1,在平面直角坐标系中,已知M e 的半径为5,圆心M 的坐标为()3,0,M e 交x 轴于点D ,交y 轴于A ,B 两点,点C 是¼ADB 上的一点(不与点A 、D 、B 重合),连结AC 并延长,连结BC ,CD ,AD .(1)求点A 的坐标;(2)当点C 在»AD 上时.△△△△BCD HCD ∠=∠;△△△2,在CB 上取一点G ,使CA CG =,连结AG .求证:ABG ADC ∆∆:;(3)如图3,当点C 在»BD 上运动的过程中,试探究AC BC CD-的值是否发生变化?若不变,请直接写出该定值;若变化,请说明理由.【答案】(1)(0,4);(2)①详见解析;②详见解析;(3. 【解析】【分析】 (1)连结MA ,在Rt OMA ∆中,AM 为圆的半径5,3OM =,由勾股定理得4OA =(2)△根据圆的基本性质及圆周角定理即可证明;△根据等腰三角形的性质得到CAG CGA ∠=∠,根据三角形的外角定理得到AGC CAG HCB ∠+∠=∠,由△证明HCD BCD ∠=∠得到AGB ACD ∠=∠,即可根据相似三角形的判定进行求解;(3)分别求出点C 在B 点时和点C 为直径AC 时,AC BC CD-的值,即可比较求解. 【详解】(1)连结MA ,在Rt OMA ∆中,AM =5,3OM =,△4OA =△A (0,4).(2)连结AB ,BD故AD BD =,则BAD DBA ∠=∠∵∠ABD+∠ACD=180°,∠HCD+∠ACD=180°,∴ABD HCD ∠=∠∵BAD ∠与BCD ∠是弧BD 所对的圆周角∴BAD ∠=BCD ∠又BAD DBA ∠=∠△BCD BAD ABD HCD ∠=∠=∠=∠即BCD HCD ∠=∠△△AC CG =△CAG CGA ∠=∠△AGC CAG HCB ∠+∠=∠,且由(2)得HCD BCD ∠=∠△AGC BCD ∠=∠△AGB ACD ∠=∠AGB ∆与ACD ∆中ABG ADC AGB ACI ∠=∠⎧⎨∠=∠⎩△AGB ACD ∆∆:(3)△点C 在B 点时,如图,AC=2AO=8,BC=0,==△AC BCCD-; 当点C 为直径AC 与圆的交点时,如图△AC=2r=10△O,M 分别是AB 、AC 中点,△BC=2OM=6,△C (6,-4)△D (8,0)=△AC BC CD-故AC BC CD. 【点睛】此题主要考查圆的综合题,解题的关键是熟知圆周角定理、勾股定理及相似三角形的判定.。
浙江省宁波市南三县2019-2020学年上学期九年级数学期末试题(扫描版,含答案)
2019学年第一学期期末抽测九年级数学参考答案及评分标准一、选择题(每题4分,共48分) 二、填空题(每题4分,共24分)13.34 14. 5215. 24 16. 212 17. 0<b ≤4918. 1三、解答题(第19题6分,第20、21题各8分,第22~24题各10分,第25题12分, 第26题14分,共78分)19.(本题6分) ︒-︒+︒45cos 60cos 30sin 22=2×21+21-2)22( --------------------4分 = 1+ 21-21--------------------5分=1 --------------------6分 20.(本题8分)(1)14=+Y X --------------------3分(2)X 、Y 的可能值为9和5,8和6,7和7,6和8,5和9,-------------------5-分 小王一次拨对小李手机号码的概率51------- -- ---------8分 21.(本题8分)图1:BC ≈18+18+40=76cm------------------2分图2:BC ≈18+30+32=80 cm ------------------5分 答:BC 的长度发生了改变,增加了4cm-------------------8分 22.(本题10分)设圆弧所在圆的圆心为O ,连结OA,OA’,如图所示 设半径为x (m )则OA=OA ’=OP=x (m ) 由垂径定理可知AM=BM,A ’N=B ’NAB=60m ,∴AM=30m ,且OM=OP-PM=(x-18)m -------------------4分 在Rt AOM ∆中,由勾股定理可得222AM OM AO += 即22230)18(+-=x x ,解得x=34-------------------7分∴)(30434m PN OP ON =-=-=在ON A '∆中,由勾股定理可得)(1630342222''m ON OA N A =-=-=∴A ’B ’=32m>30m -------------------10分 ∴不需要采取紧急措施。
浙江省宁波市2020年九年级上学期数学期末考试试卷A卷(练习)
浙江省宁波市2020年九年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)已知,则的值等于()A . 6B . ﹣6C .D .2. (2分)(2017·岳池模拟) 若关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是()A . a 且a≠0B . aC . aD . a 且a≠03. (2分)在△ABC中,∠C=90°,cosA=,则tanB=()A .B .C .D .4. (2分)(2017·新吴模拟) 某校九年级(1)班全体学生2016年初中毕业体育考试的成绩统计如下表:成绩(分)24252627282930人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A . 该班一共有40名同学B . 该班学生这次考试成绩的众数是28分C . 该班学生这次考试成绩的中位数是28分D . 该班学生这次考试成绩的平均数是28分5. (2分)(2017·石家庄模拟) 已知圆锥的底面半径为6,高为8,则它的侧面积是()A . 30πB . 48πC . 60πD . 96π6. (2分)如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A . 100°B . 90°C . 80°D . 70°7. (2分)用一个5倍的放大镜去观察一个三角形,对此,四位同学有如下说法:甲说:三角形的每个内角都扩大到原来的5倍;乙说:三角形的每条边都扩大到原来的5倍;丙说:三角形的面积扩大到原来的5倍;丁说:三角形的周长都扩大到原来的5倍.上述说法中正确的是()A . 甲和乙B . 乙和丙C . 丙和丁D . 乙和丁8. (2分)(2018·禹会模拟) 如图,在矩形ABCD中,AB=3,AD=4,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为()A .B . 4C . 5D .9. (2分)(2017·深圳) 如图,正方形的边长是3,,连接交于点,并分别与边交于点,连接.下列结论:① ;② ;③ ;④当时,.其中正确结论的个数是()A . 1B . 2C . 3D . 410. (2分)二次函数y=x2-2x-3的图象如图所示.当y<0时,自变量x的取值范围是()A . -1<x<3;B . x<-1;C . x>3;D . x<-1或x>3.二、填空题 (共8题;共9分)11. (2分)(2017·南京) 已知关于x的方程x2+px+q=0的两根为﹣3和﹣1,则p=________,q=________.12. (1分)两个相似比为1:4的相似三角形的一组对应边上的中线比为________13. (1分) (2020八上·长兴期末) 如图,在△ABC中,AB=AC,∠ACD=110°,则∠A=________度。
浙江省宁波市2020年九年级上学期数学期末考试试卷(I)卷
浙江省宁波市2020年九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·绍兴期末) ﹣2的倒数是()A . 2B . ﹣2C .D . ﹣2. (2分)长方形的对称轴有()A . 2条B . 4条C . 6条D . 无数条3. (2分) (2015九下·深圳期中) 下列计算正确的是()A . a2+a2=a4B . a2•a3=a6C . (﹣a2)2=a4D . (a+1)2=a2+14. (2分) (2015九上·宜昌期中) 抛物线y=﹣2(x﹣1)2+3的顶点坐标是()A . (﹣1,3)B . (1,3)C . (1,﹣3)D . (﹣1,﹣3)5. (2分) (2019九上·辽阳期末) 在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是()A .B .C .D .6. (2分)不等式组的解集,在数轴上表示正确的是()A .B .C .D .7. (2分) (2017七上·西湖期中) 如图,在数轴上有,两个实数,则下列结论中,不正确的是().A .B .C .D .8. (2分) (2020七上·银川期末) 下午14点20分,时钟的时针与分针夹角的度数是()A . 40°B . 50°C . 60°D . 70°9. (2分) (2018九上·柯桥期末) 已知线段a,b,c,求作线段x,使,下列作法中正确的是A .B .C .D .10. (2分)已知二次函数y=2x2+9x+34,当自变量x取两个不同的值x1 , x2时函数值相等,则当自变量x 取x1+x2时函数值与()A . x=1时的函数值相等B . x=0时的函数值相等C . x=时的函数值相等D . x=时的函数值相等二、填空题 (共9题;共9分)11. (1分)(2018·海陵模拟) 泰州市2017年实现地区生产总值约为4745亿元,增长8.2%,增速居全省首位,其中的4745用科学记数法表示为________ .12. (1分)(2018·邗江模拟) 若代数式有意义,则x的取值范围是________.13. (1分) (2017八上·新化期末) 化简:﹣ =________.14. (1分)(2013·嘉兴) 因式分解:ab2﹣a=________.15. (1分) (2018九上·句容月考) 如图,扇形纸扇完全打开后,∠BAC=120°,AB=AC=30厘米,则的长为________厘米.(结果保留π)16. (1分) (2018九上·北京月考) 点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,则y1与y2的大小关系为y1________y2(填“>”、“<”、“=”).17. (1分) (2016·大连) 如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.18. (1分)(2019·台州模拟) 如图,已知△ABC中,∠BAC=90°,AB=AC=6.D为BC边一点,且BD∶DC =1∶2,以D为一个顶点作正方形DEFG,且DE=BC,连接AE,将正方形DEFG绕点D旋转一周,在整个旋转过程中,当AE取得最大值时AG的长为________19. (1分) (2019八下·柳州期末) 如图,两张等宽的纸条交叉叠放在一起,若重叠都分构成的四边形ABCD 中,AB=3,BD=4.则AC的长为________.三、解答题 (共7题;共80分)20. (5分)(2017·桂林模拟) 先化简,再求值:( + )÷ ,其中m= ﹣1.21. (10分) (2019九上·保山期中) 如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC绕点O逆时针旋转90°后的△A1B1C1;并写出A1、B1、C1三点的坐标.(2)求出(1)中C点旋转到C1点所经过的路径长(结果保留π).22. (15分) (2019九下·润州期中) 某校八(1)班同学为了解2018年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题:(1)本次调查采用的调查方式是________(填“普查”或“抽样调查”),样本容量是________;(2)补全频数分布直方图:(3)若将月均用水量的频数绘成扇形统计图,则月均用水量“ ”的圆心角度数是________;(4)若该小区有5000户家庭,求该小区月均用水量超过的家庭大约有多少户?23. (10分)(2018·达州) 矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y= (k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF,求∠EFC的正切值;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.24. (10分)(2020·百色模拟) 随着城际铁路的开通,从甲市到乙市的高铁里程比快车里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?25. (15分)(2017·内江) 如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE(1)求证:AC2=AE•AB;(2)过点B作⊙O的切线交EC的延长线于点P,试判断PB与PE是否相等,并说明理由;(3)设⊙O半径为4,点N为OC中点,点Q在⊙O上,求线段PQ的最小值.26. (15分)(2019·抚顺模拟) 如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,点D为抛物线的顶点,抛物线的对称轴是x=﹣1,且与x轴交于E点.(1)请直接写出抛物线的解析式及顶点D的坐标;(2)如图2,连接AD,设点P是线段AD上的一个动点,过点P作x轴的垂线交抛物线于点G,交x轴于点H,连接AG、GD,当△ADG的面积为1时,①求点P的坐标;②连接PC、PE,探究PC、PE的数量关系和位置关系,并说明理由;(3)设M为抛物线上一动点,N为抛物线的对称轴上一动点,Q为x轴上一动点,当以Q、M、N、E为顶点的四边形为正方形时,请直接写出点Q的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共7题;共80分)20-1、21-1、21-2、22-1、22-2、22-3、22-4、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
浙江省宁波市2020版九年级上学期数学期末考试试卷(I)卷
浙江省宁波市2020版九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018八上·抚顺期末) 以下图标是轴对称图形的是()A .B .C .D .2. (2分)关于x的一元二次方程(k-1)x2-2x+3=0有两相异实根,则k的取值范围是()A . k<B . k<且k≠1C . 0<k<D . k≠13. (2分)反比例函数y= 的图象的两个分支分别位于()象限.A . 一、二B . 一、三C . 二、四D . 一、四4. (2分)如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为()A . 10米B . 15米C . 25米D . 30米5. (2分)如图为二次函数y=ax2+bx+c的图象,此图象与x轴的交点坐标分别为(-1,0)、(3,0).下列说法正确的个数是()①ac<0②a+b+c>0③方程ax2+bx+c=0的根为x1=-1,x2=3④当x>1时,y随着x的增大而增大.A . 1B . 2C . 3D . 46. (2分)一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在0.4,则可判断袋子中黑球的个数为()A . 2个B . 3个C . 4个D . 5个7. (2分) (2020九上·洛宁期末) 对于二次函数 ,下列说法正确的是()A . 当x>0,y随x的增大而增大B . 当x=2时,y有最大值-3C . 图像的顶点坐标为(-2,-7)D . 图像与x轴有两个交点8. (2分)(2017·盘锦模拟) 如图,⊙O的半径为5,弦AB长为8,过AB的中点E有一动弦CD(点C只在弦AB所对的劣弧上运动,且不与A、B重合),设CE=x,ED=y,下列图象中能够表示y与x之间函数关系的是()A .B .C .D .9. (2分)(2019·镇海模拟) 如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A .B .C . 2πD .10. (2分) (2016九上·石景山期末) 将抛物线y=﹣(x+1)2向左平移1个单位后,得到的抛物线的顶点坐标是()A . (﹣2,0)B . (0,0)C . (﹣1,﹣1)D . (﹣2,﹣1)二、填空题 (共8题;共9分)11. (1分)(2011·梧州) 一元二次方程x2+5x+6=0的根是________.12. (1分) (2018九上·衢州期中) 飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是,在飞机着陆滑行中,最后4s滑行的距离是________m.13. (1分)(2017·北区模拟) 两个实数的和为4,积为﹣7,则这两个实数为________.14. (1分)(2017·崇左) 若一次函数的图象经过反比例函数图象上的两点(1,m)和(n,2),则这个一次函数的解析式是________.15. (1分)如图,将Rt△ABC绕点C按顺时针方向旋转90°到△A′B′C的位置,已知斜边AB=10cm,BC=6cm,设A′B′的中点是M,连结AM,则AM=________cm.16. (1分) (2020九上·石城期末) 如图,在Rt△ABC中,∠ACB=90°,AC=BC= ,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是________。
宁波市2020初三数学九年级上册期末试题和答案
宁波市2020初三数学九年级上册期末试题和答案一、选择题1.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .32.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80° 3.两个相似三角形的面积比是9:16,则这两个三角形的相似比是( )A .9︰16B .3︰4C .9︰4D .3︰16 4.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2 B .m>-2C .m≥-2D .m≤-25.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠06.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC = B .AD AEAB AC= C .△ADE ∽△ABCD .:1:2ADEABCS S=7.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;8.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点M 是AB 上的一点,点N 是CB 上的一点,43=BM CN ,当∠CAN 与△CMB 中的一个角相等时,则BM 的值为( )A .3或4B .83或4C .83或6D .4或69.已知52x y =,则x y y-的值是( ) A .12 B .2C .32D .2310.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( ) A .5πB .10πC .20πD .40π11.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值312.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( ) A .-2B .2C .-3D .313.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC的度数等于( )A .50°B .49°C .48°D .47°14.如图,△ABC 中,∠C =90°,∠B =30°,AC =7,D 、E 分别在边AC 、BC 上,CD =1,DE ∥AB ,将△CDE 绕点C 旋转,旋转后点D 、E 对应的点分别为D ′、E ′,当点E ′落在线段AD ′上时,连接BE ′,此时BE ′的长为( )A .3B .3C .7D .715.下表是二次函数y =ax 2+bx +c 的部分x ,y 的对应值: x… ﹣1﹣12 0 121322523 …y … 2 m ﹣1﹣74﹣2 ﹣74 ﹣1 142 …可以推断m 的值为( ) A .﹣2B .0C .14D .2二、填空题16.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)17.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD .若AC =2,则cosD =________.18.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____. 19.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.20.某一时刻,一棵树高15m ,影长为18m .此时,高为50m 的旗杆的影长为_____m . 21.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.22.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________. 23.若32x y =,则x y y+的值为_____. 24.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.25.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.26.一元二次方程x 2﹣3x+2=0的两根为x 1,x 2,则x 1+x 2﹣x 1x 2=______.27.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.28.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.29.如图,∠XOY=45°,一把直角三角尺△ABC 的两个顶点A 、B 分别在OX ,OY 上移动,其中AB=10,那么点O 到顶点A 的距离的最大值为_____.30.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.三、解答题31.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE=ED ;(2)若AB=10,∠CBD=36°,求AC 的长.32.如图1,在平面直角坐标系中,已知抛物线25y ax bx =++与x 轴交于()10A -,,()B 5,0两点,与y 轴交于点C .(1)求抛物线的函数表达式;(2)若点P 是位于直线BC 上方抛物线上的一个动点,求△BPC 面积的最大值; (3)若点D 是y 轴上的一点,且以B,C,D 为顶点的三角形与ABC 相似,求点D 的坐标;(4)若点E 为抛物线的顶点,点F (3,a )是该抛物线上的一点,在x 轴、y 轴上分别找点M 、N ,使四边形EFMN 的周长最小,求出点M 、N 的坐标.33.如图①,BC 是⊙O 的直径,点A 在⊙O 上,AD ⊥BC 垂足为D ,弧AE =弧AB ,BE 分别交AD 、AC 于点F 、G .(1)判断△FAG 的形状,并说明理由;(2)如图②若点E 与点A 在直径BC 的两侧,BE 、AC 的延长线交于点G ,AD 的延长线交BE 于点F ,其余条件不变(1)中的结论还成立吗?请说明理由. (3)在(2)的条件下,若BG =26,DF =5,求⊙O 的直径BC .34.在矩形ABCD 中,3AB =,5AD =,E 是射线DC 上的点,连接AE ,将ADE ∆沿直线AE 翻折得AFE ∆.(1)如图①,点F 恰好在BC 上,求证:ABF ∆∽FCE ∆;(2)如图②,点F 在矩形ABCD 内,连接CF ,若1DE =,求EFC ∆的面积;(3)若以点E 、F 、C 为顶点的三角形是直角三角形,则DE 的长为 . 35.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值. 四、压轴题36.如图1,△ABC 中,AB=AC=4,∠BAC=100,D 是BC 的中点.小明对图1进行了如下探究:在线段AD 上任取一点E ,连接EB .将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ,连接BF ,小明发现:随着点E 在线段AD 上位置的变化,点F 的位置也在变化,点F 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F 在直线AD 上时,连接CF ,猜想直线CF 与直线AB 的位置关系,并说明理由.(2)若点F 落在直线AD 的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E 在线段AD 上运动时,直接写出AF 的最小值.37.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为(3,4),一次函数23y x b =-+的图像与边OC 、AB 分别交于点D 、E ,并且满足OD BE =,M 是线段DE 上的一个动点 (1)求b 的值;(2)连接OM ,若ODM △的面积与四边形OAEM 的面积之比为1:3,求点M 的坐标; (3)设N 是x 轴上方平面内的一点,以O 、D 、M 、N 为顶点的四边形是菱形,求点N 的坐标.38.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与BC 边交于点E 、F ,连接OD ,已知BD=3,tan ∠BOD=34,CF=83.(1)求⊙O 的半径OD ; (2)求证:AC 是⊙O 的切线; (3)求图中两阴影部分面积的和.39.MN 是O 上的一条不经过圆心的弦,4MN =,在劣弧MN 和优弧MN 上分别有点A,B (不与M,N 重合),且AN BN =,连接,AM BM .(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由.40.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB 及线段AB 外一点C ,我们称∠ACB 为点C 关于线段AB 的视角. 如图2,点Q 在直线l 上运动,当点Q 关于线段AB 的视角最大时,则称这个最大的“视角”为直线l 关于线段AB 的“视角”.(1)如图3,在平面直角坐标系中,A(0,4),B(2,2),点C坐标为(﹣2,2),点C关于线段AB的视角为度,x轴关于线段AB的视角为度;(2)如图4,点M是在x轴上,坐标为(2,0),过点M作线段EF⊥x轴,且EM=MF =1,当直线y=kx(k≠0)关于线段EF的视角为90°,求k的值;(3)如图5,在平面直角坐标系中,P3,2),Q3,1),直线y=ax+b(a>0)与x轴的夹角为60°,且关于线段PQ的视角为45°,求这条直线的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP ,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.2.D解析:D【解析】【分析】根据三角形的内接圆得到∠ABC=2∠IBC,∠ACB=2∠ICB,根据三角形的内角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度数即可;【详解】解:∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故选D.【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.3.B解析:B【解析】试题分析:根据相似三角形中,面积比等于相似比的平方,即可得到结果.因为面积比是9:16,则相似比是3︰4,故选B.考点:本题主要考查了相似三角形的性质点评:解答本题的关键是掌握相似三角形面积的比等于相似比的平方4.C解析:C【解析】【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m 值的范围. 【详解】解:抛物线的对称轴为直线221m x m∵10a =-<,抛物线开口向下,∴当x m < 时,y 的值随x 值的增大而增大, ∵当2x <-时,y 的值随x 值的增大而增大, ∴2m ≥- , 故选:C . 【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.5.D解析:D 【解析】∵一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根, ∴△=b 2﹣4ac=4+4k >0,且k≠0. 解得:k >﹣1且k≠0.故选D .考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.6.D解析:D 【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AEAB AC =, ∴21()4ADE ABCS DE SBC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误. 故选D.7.C解析:C 【解析】 【分析】根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案. 【详解】 如图:由勾股定理得:AB=22222133AC BC ++== ,所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC ==,= ,所以只有选项C 正确; 故选:C .【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键. 8.D解析:D【解析】【分析】分两种情形:当CAN B ∠=∠时,CAN CBA ∆∆∽,设3CN k =,4BM k =,可得CN AC AC CB=,解出k 值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,∴CMB CAB CAN ∠>∠>∠,AB=10,CAN CAB ∴∠≠∠,设3CN k =,4BM k =,①当CAN B ∠=∠时,可得CAN CBA ∆∆∽,∴CN AC AC CB=, ∴3668k =, 32k ∴=, 6BM ∴=.②当CAN MCB ∠=∠时,如图2中,过点M 作MH CB ⊥,可得BMH BAC ∆∆∽,∴BM MH BH BA AC BC ==, ∴41068k MH BH ==, 125MH k ∴=,165BH k =, 1685CH k ∴=-, MCB CAN ∠=∠,90CHM ACN ∠=∠=︒,ACN CHM ∴∆∆∽, ∴CN MH AC CH=, ∴123516685k k k =-, 1k ∴=,4BM ∴=.综上所述,4BM =或6.故选:D .【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.9.C解析:C【解析】【分析】设x=5k (k ≠0),y=2k (k ≠0),代入求值即可.【详解】 解:∵52x y = ∴x=5k (k ≠0),y=2k (k ≠0) ∴52322x y k k y k --== 故选:C .【点睛】本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.10.B解析:B【解析】【分析】利用圆锥面积=Rr计算.【详解】Rr=2510,故选:B.【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.11.A解析:A【解析】【分析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.12.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则1•m=2,解得m=2.故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x2=-ba,x1•x2=ca.要求熟练运用此公式解题.13.A解析:A【解析】【分析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.14.B解析:B【解析】【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴CDCA=CECB,∠CDE=∠CAB=∠D′=60°∴'CDCA='CECB,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC7,∠ABC=30°,∴AB=2AC=27,BC=3AC=21,∵DE∥AB,∴CDCA=CECB,∴7=21,∴CE=3,∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=3∴E′H=12CE′=3,CH=3HE′=32,∴BH=22BC CH-=9214-=53∴BE′=HE′+BH=33,故选:B.【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.15.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.二、填空题16.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.17.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.18.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠解析:2m【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.19.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED ∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接D解析:4 5【解析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF∴45 DEDF,∴45 CECF.故答案为:4 5 .【点睛】本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.【解析】【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴,由题意知AB解析:60【解析】【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴AB DCBE CE=,由题意知AB=50,CD=15,CE=18,即,501518x=,解得x=60,经检验,x=60是原方程的解,即高为50m的旗杆的影长为60m.故答案为:60.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例. 21.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红 解析:58【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是55538=+ 故答案为:58. 【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 22.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键.23..【解析】【分析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键. 解析:52. 【解析】【分析】 根据比例的合比性质变形得:325.22x y y ++== 【详解】 ∵32x y =, ∴325.22x y y ++== 故答案为:52. 【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键. 24.74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键. 解析:74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=70560290374523,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.25.8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.26.1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=解析:1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x 1+x 2=3,x 1x 2=2,所以x 1+x 2-x 1x 2=3-2=1.故答案为:1.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 27.6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB 为整数及三角形三边关系,即可解析:6或7【解析】【分析】 因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)+≥2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】 解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)+≥∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB 长度的范围. 28.2+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥O解析:23+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×12=2(km),OD=OAcos∠AOD=4×cos30°=4×32=3km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=32(km),故答案为:32.【点睛】本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.29.10【解析】【分析】当∠ABO=90°时,点O到顶点A的距离的最大,则△ABC是等腰直角三角形,据此即可求解.【详解】解:∵∴当∠ABO=90°时,点O 到顶点A 的距离最大.则OA解析:【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】 解:∵sin 45sin AB AO ABO=∠ ∴当∠ABO=90°时,点O 到顶点A 的距离最大.则.故答案是:.【点睛】本题主要考查了等腰直角三角形的性质,正确确定点O 到顶点A 的距离的最大的条件是解题关键.30.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m =﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m (m +1)=0,∴m =0或m =﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.三、解答题31.(1)证明见解析;(2)2AC π=【解析】【分析】【详解】分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;(2)根据弧长公式解答即可.详证明:(1)∵AB 是⊙O 的直径,∴∠ADB=90°,∵OC ∥BD ,∴∠AEO=∠ADB=90°,即OC ⊥AD ,∴AE=ED ;(2)∵OC ⊥AD ,∴AC BD = ,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴AC =7252180ππ⨯=. 点睛:此题考查弧长公式,关键是根据弧长公式和垂径定理解答.32.(1)245y x x =-++;(2)△BPC 面积的最大值为1258 ;(3)D 的坐标为(0,-1)或(0,-103);(4)M (1117,0),N (0,115) 【解析】【分析】(1)抛物线的表达式为:y=a (x+1)(x-5)=a (x 2-4x-5),即-5a=5,解得:a=-1,即可求解; (2)利用S △BPC =12×PH×OB=52(-x 2+4x+5+x-5)=12(x-52)2+1258,即可求解; (3)B 、C 、D 为顶点的三角形与△ABC 相似有两种情况,分别求解即可; (4)作点E 关于y 轴的对称点E′(-2,9),作点F (2,9)关于x 轴的对称点F′(3,-8),连接E′、F′分别交x 、y 轴于点M 、N ,此时,四边形EFMN 的周长最小,即可求解.【详解】解:(1)把()1,0A -,()5,0B 分别代入25y ax bx =++得:0=502555a b a b -+⎧⎨=++⎩∴14a b =-⎧⎨=⎩∴抛物线的表达式为:245y x x =-++.(2)如图,过点P 作PH ⊥OB 交BC 于点H令x =0,得y =5∴C (0,5),而B (5,0)∴设直线BC 的表达式为:y kx b =+∴505b k b =⎧⎨=+⎩ ∴15k b =-⎧⎨=⎩∴5y x =-+设245P m,m m -++(),则5H m,m -+()∴224555PH m m m m m =-+++-=-+∴21552PBC Sm m =⨯⨯-+() ∴255125228PBC S m =--+() ∴△BPC 面积的最大值为1258. (3)如图,∵ C (0,5),B (5,0)∴OC =OB ,∴∠OBC =∠OCB =45°∴AB =6,BC =52要使△BCD 与△ABC 相似 则有AB BC BC CD =或AB CD BC BC= ①当AB BC BC CD =时 5252= ∴253CD = 则103OD =∴D (0,103-) ② 当AB CD BC BC=时, CD =AB =6,∴D (0,-1)即:D 的坐标为(0,-1)或(0,-103) (4)∵245y x x =-++229y x +=--() ∵E 为抛物线的顶点,∴E (2,9)如图,作点E 关于y 轴的对称点E'(﹣2,9),∵F (3,a )在抛物线上,∴F (3,8),∴作点F 关于x 轴的对称点F'(3,-8),则直线E' F'与x 轴、y 轴的交点即为点M 、N设直线E' F'的解析式为:y mx n =+则9283m n m n =-+⎧⎨-=+⎩ ∴175115m n ⎧=-⎪⎪⎨⎪=⎪⎩∴直线E' F'的解析式为:171155y x =-+ ∴1117M (,0),N (0,115). 【点睛】本题为二次函数综合运用题,涉及到一次函数、对称点性质等知识点,其中(4),利用对称点性质求解是此类题目的一般解法,需要掌握.33.(1)△FAG 是等腰三角形,理由见解析;(2)成立,理由见解析;(3)BC =523. 【解析】【分析】(1)首先根据圆周角定理及垂直的定义得到∠BAD+∠CAD =90°,∠C+∠CAD =90°,从而得到∠BAD =∠C ,然后利用等弧对等角等知识得到AF =BF ,从而证得FA =FG ,判定等腰三角形;(2)成立,同(1)的证明方法即可得答案;(3)由(2)知∠DAC =∠AGB ,推出∠BAD =∠ABG ,得到F 为BG 的中点根据直角三角形的性质得到AF=BF=12BG=13,求得AD=AF﹣DF=13﹣5=8,根据勾股定理得到BD=12,AB=ABC=∠ABD,∠BAC=∠ADB=90°可证明△ABC∽△DBA,根据相似三角形的性质即可得到结论.【详解】(1)△FAG等腰三角形;理由如下:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵AE AB=,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(2)成立,理由如下:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵AE AB=,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,∴AF=BF,∵AF=FG,∴BF=GF,即F为BG的中点,∵△BAG为直角三角形,∴AF=BF=12BG=13,∵DF=5,∴AD =AF ﹣DF =13﹣5=8,∴在Rt △BDF 中,BD 12,∴在Rt △BDA 中,AB =∵∠ABC =∠ABD ,∠BAC =∠ADB =90°,∴△ABC ∽△DBA , ∴BC BA =AB DB ,12, ∴BC =523, ∴⊙O 的直径BC =523. 【点睛】本题考查圆周角定理、相似三角形的判定与性质及勾股定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.34.(1)见解析;(2)EFC ∆的面积为513;(3)53、5、15、5)3【解析】【分析】(1)先说明∠CEF=∠AFB 和90B C ∠=∠=,即可证明ABF ∆∽FCE ∆;(2)过点F 作FG DC ⊥交DC 与点G ,交AB 于点H ,则90EGF AHF ∠=∠=;再结合矩形的性质,证得△FGE ∽△AHF ,得到AH=5GF ;然后运用勾股定理求得GF 的长,最后运用三角形的面积公式解答即可;(3)分点E 在线段CD 上和DC 的延长线上两种情况,然后分别再利用勾股定进行解答即可.【详解】(1)解:∵矩形ABCD 中,∴90B C D ∠=∠=∠=由折叠可得90D EFA ∠=∠=∵90EFA C ∠=∠=∴90CEF CFE CFE AFB ∠+∠=∠+∠=∴CEF AFB ∠=∠在ABF ∆和FCE ∆中∵AFB CEF ∠=∠,90B C ∠=∠=∴ABF ∆∽FCE ∆(2)解:过点F 作FG DC ⊥交DC 与点G ,交AB 于点H ,则90EGF AHF ∠=∠= ∵矩形ABCD 中,∴90D ∠=由折叠可得:90D EFA ∠=∠=,1DE EF ==,5AD AF ==∵90EGF EFA ∠=∠=∴90GEF GFE AFH GFE ∠+∠=∠+∠=∴GEF AFH ∠=∠在FGE ∆和AHF ∆中∵,90GEF AFH EGF FHA ∠=∠∠=∠=∴FGE ∆∽AHF ∆ ∴EF GF FA AH = ∴15GF AH= ∴5AH GF =在Rt AHF ∆中,90AHF ∠=∵222AH FH AF +=∴222(5)(5)5GF GF +-= ∴513GF = ∴EFC ∆的面积为155221313⨯⨯= (3)设DE=x ,以点E 、F 、C 为顶点的三角形是直角三角形,则:①当点E 在线段CD 上时,∠DAE<45°,∴∠AED>45°,由折叠性质得:∠AEF=∠AED>45°,∴∠DEF=∠AED+∠AEF>90°,∴∠CEF<90°,∴只有∠EFC=90°或∠ECF=90°,a,当∠EFC=90°时,如图所示:由折叠性质可知,∠AFE=∠D=90°,∴∠AFE+∠EFC=90°,∴点A,F,C在同一条线上,即:点F在矩形的对角线AC上,在Rt△ACD中,AD=5,CD=AB=3,根据勾股定理得,AC=34,由折叠可知知,EF=DE=x,AF=AD=5,∴CF=AC-AF=34-5,在Rt△ECF中,EF2+CF2=CE2,∴x2+(34-5)2=(3-x)2,解得x=5(345)-即:DE=5(345)-b,当∠ECF=90°时,如图所示: 点F在BC上,由折叠知,EF=DE=x,AF=AD=5,在Rt△ABF中,根据勾股定理得,22AF AB-,∴CF=BC-BF=1,在Rt△ECF中,根据勾股定理得,CE2+CF2=EF2,(3-x)2+12=x2,解得x=53,即:DE=53;②当点E在DC延长线上时,CF在∠AFE内部,而∠AFE=90°,。
浙江省宁波市2020年九年级上学期数学期末考试试卷(I)卷
浙江省宁波市2020年九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2017·奉贤模拟) 下列抛物线中,顶点坐标是(﹣2,0)的是()A . y=x2+2B . y=x2﹣2C . y=(x+2)2D . y=(x﹣2)22. (2分)正比例函数y=2x与反比例函数y=(k≠0)的图象有一个交点为(2,4),则另一个交点坐标为()A . (2,﹣4)B . (﹣2,﹣4)C . (﹣2,4)D . (﹣2,﹣2)3. (2分) (2020九上·洛宁期末) 如图,AB是半圆的直径,点D是的中点,∠ABC=50°,则∠DA B 等于()A . 65°B . 60°C . 55°D . 50°4. (2分)在平面直角坐标系中,点(-1,m2+1)一定在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分)若关于x的一元二次方程kx2-6x+9=0有两个不相等的实数根,则k的取值范围是()A . k<1B . k≠0C . k<1且k≠0D . k>16. (2分)如图,将绕点O逆时针旋转45°后得到,若,则的度数是()A . 25°B . 30°C . 35°D . 40°7. (2分)如图,P是Rt△ABC的斜边BC上异于B、C的一点,过P点作直线截△ABC,使截得的三角形与△ABC 相似,满足这样条件的直线共有()A . 1条B . 2条C . 3条D . 4条8. (2分) (2019八下·封开期末) 如图,菱形ABCD中,∠ABC=60°,AB=6,则BD=()A .B .C .D .二、填空题 (共8题;共8分)9. (1分)如图,在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),将正方形OABC沿着OB方向平移 OB个单位,则点C的对应点坐标为________.10. (1分)一元二次方程x2+bx+c=0的两根互为倒数,则c=________.11. (1分) (2020九上·深圳期末) 如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l 交于点C,D,且∠COD=45°,则k=________.12. (1分) (2019九上·温州月考) 如图,在△ABC中,AC=BC=5,AB=6,点D为AC上一点,作DE∥AB交BC于点E,点C关于DE的对称点为点O,以OA为半径作⊙O恰好经过点C,并交直线DE于点M,N,则MN的值为________。
宁波市2020初三数学九年级上册期末试题和答案
宁波市2020初三数学九年级上册期末试题和答案一、选择题1.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限2.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º3.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cosα的值为( ) A .45B .34C .43D .354.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A .3B .31+C .31-D .23 5.函数y=(x+1)2-2的最小值是( )A .1B .-1C .2D .-2 6.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( ) A .−2B .2C .−4D .47.△ABC 的外接圆圆心是该三角形( )的交点.A .三条边垂直平分线B .三条中线C .三条角平分线D .三条高8.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .9.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A.16B.13C.12D.5610.在△ABC中,∠C=90°,AC=8,BC=6,则sin B的值是()A.45B.35C.43D.3411.如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.73B.234+C.1433D.223312.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C.AD ABAE AC=D.AC BCAE DE=13.如图,点P(x,y)(x>0)是反比例函数y=kx(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是()A.S的值增大B.S的值减小C.S的值先增大,后减小D.S的值不变14.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π- B .8433π- C .8233π- D .843π- 15.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .27二、填空题16.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.17.已知二次函数222y x x -=-,当-1≤x≤4时,函数的最小值是__________. 18.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.19.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____. 20.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣3m+2010的值为_____. 21.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.22.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.23.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____. 24.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为________.25.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.26.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米,母线AB =10米,则该圆锥的侧面积是_____平方米(结果保留π).27.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.28.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.29.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.30.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)三、解答题31.学校为了解九年级学生对“八礼四仪”的掌握情况,对该年级的500名同学进行问卷测试,并随机抽取了10名同学的问卷,统计成绩如下:得分109876人数33211(1)计算这10名同学这次测试的平均得分;(2)如果得分不少于9分的定义为“优秀”,估计这 500名学生对“八礼四仪”掌握情况优秀的人数;(3)小明所在班级共有40人,他们全部参加了这次测试,平均分为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么?32.某网店打出促销广告:最潮新款服装30件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x件时,该网店从中获利y 元.(1)求y与x的函数关系式,并写出自变量x的取值范围.(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值?33.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF 的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)∠C=45°,⊙O的半径为2,求阴影部分面积.34.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A、B,与y 轴相交于点C,B点的坐标为(6,0),点M为抛物线上的一个动点.(1)若该二次函数图象的对称轴为直线x=4时:①求二次函数的表达式;②当点M位于x轴下方抛物线图象上时,过点M作x轴的垂线,交BC于点Q,求线段MQ的最大值;(2)过点M作BC的平行线,交抛物线于点N,设点M、N的横坐标为m、n.在点M运动的过程中,试问m+n的值是否会发生改变?若改变,请说明理由;若不变,请求出m+n 的值.35.2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?四、压轴题36.如图,⊙O的直径AB=26,P是AB上(不与点A,B重合)的任一点,点C,D为⊙O上的两点.若∠APD=∠BPC,则称∠DPC为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠DPC是直径AB的“回旋角”吗?并说明理由;(2)猜想回旋角”∠DPC的度数与弧CD的度数的关系,给出证明(提示:延长CP交⊙O 于点E);(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+133,直接写出AP的长.37.如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.(1)若ED=BE,求∠F的度数:(2)设线段OC=a,求线段BE和EF的长(用含a的代数式表示);(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.38.如图,在正方形ABCD中,P是边BC上的一动点(不与点B,C重合),点B关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.39.如图,已知在矩形ABCD 中,AB =2,BC =23.点P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD . (1)若DQ =3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与圆重叠部分的面积.40.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限. 【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点,∴2a 210x x +-=时无实数根; 即,24440b ac a =-=+<, 解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a-=->; 纵坐标为:()414104a a aa⨯----=<; 故抛物线的顶点在第四象限. 故答案为:D. 【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.2.B解析:B 【解析】 【分析】根据垂径定理可得AB AC =,根据圆周角定理可得∠AOB=2∠ADC ,进而可得答案. 【详解】解:∵OA 是⊙O 的半径,弦BC ⊥OA , ∴AB AC =, ∴∠ADC=12∠AOB=29°. 故选B. 【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.A解析:A【解析】【分析】根据勾股定理求出AB的长,在求出∠ACD的等角∠B,即可得到答案.【详解】如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,∴2222AB AC BC345=+=+=,∵CD⊥AB,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α,∴4cos5BCcos BABα===.故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值.4.B解析:B【解析】【分析】设AC、BD交于点E,过点C作CF⊥BD于点F,过点E作EG⊥CD于点G,则CF∥AB,△CDF和△DEG都是等腰直角三角形,设AB=2,则易求出CF3CEF∽△AEB,可得3EF CFBE AB==,于是设EF3x,则2BE x=,然后利用等腰直角三角形的性质可依次用x的代数式表示出CF、CD、DE、DG、EG的长,进而可得CG的长,然后利用正切的定义计算即得答案.【详解】解:设AC、BD交于点E,过点C作CF⊥BD于点F,过点E作EG⊥CD于点G,则CF∥AB,△CDF和△DEG都是等腰直角三角形,∴△CEF∽△AEB,设AB=2,∵∠ADB=30°,∴BD=3∵∠BDC =∠CBD =45°,CF ⊥BD , ∴CF=DF=BF =12BD =3, ∴32EF CF BE AB ==, 设EF =3x ,则2BE x =,∴()23BF CF DF x ===+, ∴()()2223226CD DF x x ==+=+,()()233223DE DF EF x x x =+=++=+,∴()()222232622EG DG DE x x ===+=+,∴()()226262CG CD DG x x x =-=+-+=,∴()62tan 312x EG ACD CG x+∠===+.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.5.D解析:D 【解析】 【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值. 【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.【点睛】本题考查了二次函数的最值.6.B解析:B【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.7.A解析:A【解析】【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可.【详解】解:△ABC的外接圆圆心是△ABC三边垂直平分线的交点,故选:A.【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.8.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.9.B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π,2共2个,∴卡片上的数为无理数的概率是21 =63.故选B.【点睛】本题考查了无理数的定义及概率的计算.10.A解析:A【解析】【分析】先根据勾股定理计算出斜边AB的长,然后根据正弦的定义求解.【详解】如图,∵∠C=90°,AC=8,BC=6,∴AB222268BC AC+=+10,∴sin B=84105 ACAB==.故选:A.【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.11.C解析:C【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题.【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,∴易证AE ⊥BC ,∵A 、C 关于BD 对称,∴PA =PC ,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b ,∴a +b ==; 故选C .【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12.D解析:D【解析】【分析】先求出∠DAE =∠BAC ,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加AD ABAE AC=可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加AC BCAE DE=不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.13.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14.C解析:C 【解析】 【分析】 连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD ,在Rt △OCD 中,OC =12OD =2, ∴∠ODC =30°,CD =2223OD OC +=∴∠COD =60°, ∴阴影部分的面积=260418223=2336023π⨯-⨯⨯π- , 故选:C .【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.15.D解析:D【解析】【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠【详解】切线性质得到90BAO ∠=903654AOB ∴∠=-=OD OA =OAD ODA ∠=∠∴AOB OAD ODA ∠=∠+∠27ADC ADO ∴∠=∠=故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键二、填空题16.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.17.-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x≤4时,函数的最小值.【详解】解:∵二次函数,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随解析:-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x ≤4时,函数的最小值.【详解】解:∵二次函数222y x x -=-,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小,∵−1≤x≤4,∴当x =1时,y 取得最小值,此时y =-3,故答案为:-3.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答. 18.【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100 解析:9π 【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算S S 半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2,边长为30cm 的正方形ABCD 的面积=302=900cm 2,∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.19.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可. 【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠解析:2m【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键. 20.2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5 m2﹣1=3m,两边同时除以m得:5m﹣=3,然后整体代入即可求得答案.【详解】解解析:2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,然后整体代入即可求得答案.【详解】解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,∴15m﹣3m+2010=3(5m﹣1m)+2010=9+2010=2019,故答案为:2019.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键.21.4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=(1)2n n+,∵当n=63时,前63行共有63642⨯=2016个数字,2020﹣2016=4,∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键. 22.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红解析:5 8【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是55 538= +故答案为: 58.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.23.216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5180n ⨯=6π, 解得n=216.故答案为216°.【点睛】 本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.24.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长.【详解】过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则.【点睛】本题考查勾股定解析:2【解析】【分析】过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.【详解】过A 作AD BC ⊥于D 点,设2AC x =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得223BD AB AD x =-=,因为62BC =+,所以362BC x x =+=+,则2x =.则2AC =.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解.25.【解析】【分析】圆C 过点P 、Q ,且与相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再解析:23【解析】【分析】圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再根据等腰直角三角形的性质即可用r 表示出CD 、NC ,最后根据勾股定理列方程即可求出r .【详解】解:如图所示,圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D∵2OP =,6OQ =,∴PQ=OQ -OP=4根据垂径定理,PN=122PQ = ∴ON=PN +OP=4在Rt △OND 中,∠O=45°∴ON=ND=4,∠NDO=∠O=45°,242ON =设圆C 的半径为r ,即CM=CP=r ∵圆C 与OB 相切于点M ,∴∠CMD=90°∴△CMD 为等腰直角三角形∴CM=DM=r ,22CM r =∴NC=ND -CD=42r根据勾股定理可得:NC 2+PN 2=CP 2即()222422r r -+=解得:124223,4223r r +==DM >OD ,点M 不在射线OB 上,故舍去)故答案为:23.【点睛】此题考查的是等腰直角三角形的判定及性质、垂径定理、勾股定理和切线的性质,掌握垂径定理和勾股定理的结合和切线的性质是解决此题的关键.26.【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的解析:60【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=12lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的底面周长=2×π×6=12π米,∴S扇形=12lr=12×12π×10=60π米2,故答案为60π.【点睛】本题考查圆锥的侧面积,掌握扇形面积的计算方法S=12lr是解题的关键.27.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.28.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=122ba-±-±==−1±2,∵1x<0,∴1x=−1-2<0,∵-4≤-3,∴3222 -≤-≤-,∴-≤ 2.5 -,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式. 29.2【解析】【分析】根据根的判别式,令,可得,解方程求出b =﹣2a ,再把b 代入原方程,根据韦达定理:即可.【详解】当关于x 的一元二次方程ax2+bx+5a =0有两个正的相等的实数根时,,即解析:【解析】【分析】根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a+=-即可. 【详解】当关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根时, =0∆,即2220=0b a -,解得b =﹣a 或b =(舍去),原方程可化为ax 2﹣+5a =0,则这两个相等实数根的和为故答案为:【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。
┃精选3套试卷┃2020届宁波市九年级上学期数学期末学业质量监测试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一个不透明的袋子中装有仅颜色不同的1个红球和3个绿球,从袋子中随机摸出一个小球,记下颜色后,不放回再随机摸出一个小球,则两次摸出的小球恰好是一个红球和一个绿球的概率为( ) A .12B .716C .14D .38【答案】A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球恰好是一个红球和一个绿球的情况,再利用概率公式即可求得答案. 【详解】画树状图为:共有12种等可能的结果数,其中两次摸出的小球恰好是一个红球和一个绿球的结果数为6, 所以两次摸出的小球恰好是一个红球和一个绿球的概率=612=12. 故选A . 【点睛】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.2.如图,A 、D 是⊙O 上的两个点,若∠ADC =33°,则∠ACO 的大小为( )A .57°B .66°C .67°D .44°【答案】A【分析】由圆周角定理定理得出∠AOC ,再由等腰三角形的性质得到答案. 【详解】解:∵∠AOC 与∠ADC 分别是弧AC 对的圆心角和圆周角, ∴∠AOC =2∠ADC =66°, 在△CAO 中,AO=CO, ∴∠ACO=∠OAC =1806126)57(︒-︒=︒, 故选:A 【点睛】本题考查了圆周角定理,此题难度不大,注意在同圆或等圆中,同弧或等弧所对圆周角等于它所对圆心角的一半,注意数形结合思想的应用.3.如图所示,∆ABC的顶点在正方形网格的格点上,则cosB=( )A.12B.2C.2D.5【答案】C【分析】先设小正方形的边长为1,再建构直角三角形,然后根据锐角三角函数的定义求解即可;【详解】解:如图,过A作AD⊥CB于D,设小正方形的边长为1,则BD=AD=3,223332+=∴cos∠B=BDBC=22;故选C.【点睛】本题主要考查了锐角三角函数的定义,勾股定理,掌握锐角三角函数的定义,勾股定理是解题的关键. 4.某旅游景点8月份共接待游客16万人次,10月份共接待游客36万人次,设游客每月的平均增长率为x,则下列方程正确的是()A.16(1+x2)=36 B.16x+16x(x+1)=36C.16(1+x)+16(1+x)2=36 D.16x(x+1)=36【答案】A【分析】设游客每月的平均增长率为x,根据该旅游景点8月份及10月份接待游客人次数,即可得出关于x的一元二次方程,此题得解.【详解】解:设游客每月的平均增长率为x,依题意,得:16(1+x )2=1. 故选:A . 【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 5.方程5x 2=6x ﹣8化成一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是( ) A .5、6、﹣8 B .5,﹣6,﹣8 C .5,﹣6,8 D .6,5,﹣8 【答案】C【解析】根据一元二次方程的一般形式进行解答即可.【详解】5x 2=6x ﹣8化成一元二次方程一般形式是5x 2﹣6x+8=0, 它的二次项系数是5,一次项系数是﹣6,常数项是8, 故选C . 【点睛】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项. 6.若反比例函数ky x=的图像经过点(3,2)-,则下列各点在该函数图像上的为( ) A .(2,3) B .(6,1)C .(1,6)-D .(2,3)--【答案】C【分析】将点(3,2)-代入ky x =求出反比例函数的解析式,再对各项进行判断即可. 【详解】将点(3,2)-代入k y x=得 23k -=解得6k =-∴6y x-=只有点(1,6)-在该函数图象上 故答案为:C . 【点睛】本题考查了反比例函数的问题,掌握反比例函数的性质以及应用是解题的关键.7.如图,小颖为测量学校旗杆AB 的高度,她在E 处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B .已知小颖的眼睛D 离地面的高度CD =1.5m ,她离镜子的水平距离CE =0.5m ,镜子E 离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6 m【答案】D【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴DC CE AB AE=,即1.50.52 AB=,解得:AB=6,故选D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.8.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°【答案】B【解析】连接FB,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB、∠EFB的度数,继而根据∠EFO=∠EBF-∠OFB即可求得答案.【详解】连接FB,则∠FOB=180°-∠AOF=180°-40°=140°, ∴∠FEB =12∠FOB=70°, ∵FO =BO ,∴∠OFB =∠OBF=(180°-∠FOB)÷2=20°, ∵EF =EB ,∴∠EFB =∠EBF=(180°-∠FEB)÷2=55°, ∴∠EFO =∠EBF-∠OFB=55°-20°=35°, 故选B. 【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键. 9.关于抛物线221y x x =-+,下列说法错误的是( )A .开口向上B .与x 轴有唯一交点C .对称轴是直线1x =D .当1x >时,y 随x 的增大而减小【答案】D【分析】先把抛物线化为顶点式,再根据抛物线的性质即可判断A 、C 、D 三项,令y=0,解关于x 的方程即可判断B 项,进而可得答案.【详解】解:()22211y x x x =-+=-;A 、∵a=1>0,∴抛物线的开口向上,说法正确,所以本选项不符合题意;B 、令y=0,则()210x -=,该方程有两个相等的实数根121x x ==,所以抛物线与x 轴有唯一交点,说法正确,所以本选项不符合题意;C 、抛物线的对称轴是直线1x =,说法正确,所以本选项不符合题意;D 、当1x >时,y 随x 的增大而减小,说法错误,应该是当1x >时,y 随x 的增大而增大,所以本选项符合题意. 故选:D. 【点睛】本题考查了二次函数的性质和抛物线与x 轴的交点问题,属于基本题型,熟练掌握抛物线的性质是解题关键.10.把两个大小相同的正方形拼成如图所示的图案.如果可以随意在图中取点.则这个点取在阴影部分的慨率是( )A .13B .12C .37D .38【答案】C【分析】先设图中阴影部分小正方形的面积为x ,则整个阴影部分的面积为3x ,而整个图形的面积为7x.再根据几何概率的求法即可得出答案.【详解】解:设图中阴影部分小正方形的面积为x ,,则整个阴影部分的面积为3x ,而整个图形的面积为7x,∴这个点取在阴影部分的慨率是3377x x = 故答案为:C. 【点睛】本题考查的知识点是事件的概率问题,解题的关键是根据已给图形找出图中阴影部分的面积与整个图形的面积.11.抛物线243y x x =++的对称轴是( ) A .直线1x = B .直线1x =- C .直线2x =- D .直线2x =【答案】C【解析】用对称轴公式2bx a=-即可得出答案. 【详解】抛物线243y x x =++的对称轴4==2221=---⨯b x a , 故选:C . 【点睛】本题考查了抛物线的对称轴,熟记对称轴公式是解题的关键. 12.下列等式从左到右变形中,属于因式分解的是( )A .(x y)ax ay a +=+B .221(2)1x x x x -+=-+C .2(1)(1)1x x x +-=-D .21(1)(1)x x x -=+-【答案】D【分析】直接利用因式分解的定义分析得出答案.【详解】A. (x y)ax ay a +=+,属于整式乘法运算,不符合因式分解的定义,故此选项错误; B. 221(2)1x x x x -+=-+,右边不是整式的积的形式,不符合因式分解的定义,故此选项错误; C. 2(1)(1)1x x x +-=-,属于整式乘法运算,不符合因式分解的定义,故此选项错误; D. 21(1)(1)x x x -=+-),属于因式分解,符合题意; 故选:D . 【点睛】本题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.二、填空题(本题包括8个小题)13.若函数21y x a =-+是正比例函数,则a =__________. 【答案】1【分析】根据正比例函数的定义即可得出答案. 【详解】∵函数21y x a =-+是正比例函数 ∴-a+1=0 解得:a=1 故答案为1. 【点睛】本题考查的是正比例函数,属于基础题型,正比例函数的表达式为:y=kx(其中k≠0).14.如图,为了测量水塘边A 、B 两点之间的距离,在可以看到的A 、B 的点E 处,取AE 、BE 延长线上的C 、D 两点,使得CD ∥AB ,若测得CD =5m ,AD =15m ,ED =3m ,则A 、B 两点间的距离为_____m .【答案】20m 【详解】∵CD ∥AB ,∴△ABE∽△DCE,∴AB AECD DE=,∵AD=15m,ED=3m,∴AE=AD-ED=12m,又∵CD=5m,∴12 53 AB=,∴3AB=60,∴AB=20m.故答案为20m.15.如图,C、D是线段AB的两个黄金分割点,且CD=1,则线段AB的长为_____.【答案】5【分析】设线段AB=x,根据黄金分割点的定义可知AD 35AB,BC35AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可【详解】∵线段AB=x,点C、D是AB黄金分割点,∴较小线段AD=BC=352x -,则CD=AB﹣AD﹣BC=x﹣2×352x-=1,解得:x=5故答案为:5【点睛】本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的352倍.16.如图,抛物线y=﹣13(x+1)(x﹣9)与坐标轴交于A、B、C三点,D为顶点,连结AC,BC.点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交BC于点E,连结AP交BC于点F,则PF AF的最大值为_______.【答案】81 40【分析】根据抛物线的解析式求得A、B、C的坐标,进而求得AB、BC、AC的长,根据待定系数法求得直线BC的解析式,作PN⊥BC,垂足为N.先证明△PNE∽△BOC,由相似三角形的性质可知PN=310PE,然后再证明△PFN∽△AFC,由相似三角形的性质可得到PF:AF与m的函数关系式,从而可求得PFAF的最大值.【详解】∵抛物线y=﹣13(x+1)(x﹣9)与坐标轴交于A、B、C三点,∴A(﹣1,0),B(9,0),令x=0,则y=1,∴C(0,1),∴BC222293310OB OC=+=+=,设直线BC的解析式为y=kx+b.∵将B、C的坐标代入得:903k bb+=⎧⎨=⎩,解得k=﹣13,b=1,∴直线BC的解析式为y=﹣13x+1.设点P的横坐标为m,则纵坐标为﹣13(m+1)(m﹣9),点E(m,﹣13m+1),∴PE=﹣13(m+1)(m﹣9)﹣(﹣13m+1)=﹣13m2+1m.作PN⊥BC,垂足为N.∵PE∥y轴,PN⊥BC,∴∠PNE=∠COB=90°,∠PEN=∠BCO.∴△PNE∽△BOC.∴PN PE =OB BC=. ∴PN-13m 2+1m ). ∵AB 2=(9+1)2=100,AC 2=12+12=10,BC 2=90, ∴AC 2+BC 2=AB 2. ∴∠BCA =90°, 又∵∠PFN =∠CFA , ∴△PFN ∽△AFC .∴PF AF =PN AC213)m m -+﹣110m 2+910m =﹣110(m ﹣92)2+8140. ∵1010a =-<, ∴当m 92=时,PF AF 的最大值为8140.故答案为:8140.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数图象上点的坐标特征、一次函数的解析式、等腰三角形的性质、勾股定理的应用以及相似三角形的证明与性质,求得PFAF与m 的函数关系式是解题的关键.17.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N 和0.5m ,则动力F (单位:N )关于动力臂l (单位:m )的函数解析式为______. 【答案】600F l=【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.【详解】∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N 和0.5m ,∴动力F (单位:N )关于动力臂l (单位:m )的函数解析式为:1200×0.5=Fl , 则600F l=. 故答案为:600F l=. 【点睛】此题主要考查了反比例函数的应用,正确读懂题意得出关系式是解题关键.18.如图,在菱形c 中,,,E P Q 分别是边AB ,对角线BD 与边AD 上的动点,连接,EP PQ ,若60,6ABC AB ∠=︒=,则EP PQ +的最小值是___.【答案】33 【分析】作点Q 关于BD 对称的对称点Q’,连接PQ ,根据两平行线之间垂线段最短,即有当E 、P 、Q’在同一直线上且'EQ AB ⊥ 时,'EP PQ +的值最小,再利用菱形的面积公式,求出EP PQ +的最小值.【详解】作点Q 关于BD 对称的对称点Q’,连接PQ .∵四边形ABCD 为菱形∴'PQ PQ = ,//AB CD∴'EP PQ EP PQ +=+当E 、P 、Q’在同一直线上时,'EP PQ +的值最小∵ 两平行线之间垂线段最短∴当'EQ AB ⊥ 时,'EP PQ +的值最小∵60,6ABC AB ∠=︒=∴6AC = ,2cos306=63BD =⨯︒⨯∴11832S ABCD AC BD =⨯= ∵'6'S ABCD AB EQ EQ =⨯=∴6'183EQ =解得'33EQ =∴EP PQ +的最小值是33 . 故答案为:33.【点睛】本题考查了菱形的综合应用题,掌握菱形的面积公式以及两平行线之间垂线段最短是解题的关键.三、解答题(本题包括8个小题)19.先化简,再求值:22222 2111x x xx x x x⎛⎫--+÷⎪-+--⎝⎭,其中1245302x cos sin=︒-︒.【答案】1,x+原式=74.【分析】先把分式进行化简,得到最简代数式,然后根据特殊角的三角函数值,求出x的值,把x代入计算,即可得到答案.【详解】解:原式()()()()21112121x x x xx xx⎡⎤-+-=-⋅⎢⎥---⎢⎥⎣⎦()()112112x xxx x x+-⎛⎫=-⋅⎪---⎝⎭()()11221x xxxx+-⋅---=1x=+;当1211324530222224x cos sin=︒-︒=⨯-⨯=时,原式371144x=+=+=.【点睛】本题考查了特殊值的三角函数值,分式的化简求值,以及分式的加减混合运算,解题的关键是熟练掌握运算法则进行运算.20.(1)某学校“智慧方园”数学社团遇到这样一个题目:如图(1),在ABC∆中,点O在线段BC上,30BAO∠=︒,75OAC∠=︒,3AO=:1:3BO CO=,求AB的长.经过社团成员讨论发现:过点B作//BD AC,交AO的延长线于点D,通过构造ABD∆就可以解决问题,如图(2).请回答:ADB=∠______︒.(2)求AB的长.(3)请参考以上解决思路,解决问题:如图(3),在四边形ABCD中,对角线AC与BD相交于点O,AC AD⊥,3AO=75ABC ACB∠=∠=︒,:1:3BO OD=,求DC的长.【答案】(1)75°;(243(3413.【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°;(2)结合∠BOD=∠COA 可得出△BOD ∽△COA ,利用相似三角形的性质可求出OD 的值,进而可得出AD 的值,由三角形内角和定理可得出∠ABD=75°=∠ADB ,由等角对等边可得出AB 的长;(3)过点B 作BE ∥AD 交AC 于点E ,同(1)可得出AE 的长.在Rt △AEB 中,利用勾股定理可求出BE 的长度,再在Rt △CAD 中,利用勾股定理可求出DC 的长,此题得解.【详解】(1)∵BD ∥AC ,∴∠ADB=∠OAC=75°.(2)∵∠BOD=∠COA ,∠ADB=∠OAC ,∴△BOD ∽△COA , ∴13OD OB OA OC ==.又∵AO =∴OD 13=AO =,∴ ∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD ﹣∠ADB=75°=∠ADB ,∴ (3)过点B 作BE ∥AD 交AC 于点E ,如图所示.∵AC ⊥AD ,BE ∥AD ,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB ,∴△AOD ∽△EOB , ∴BO EO BE DO AO DA==. ∵BO :OD=1:3, ∴13EO BE AO DA ==.∵∴EO =,∴. ∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC ,∴AB=2BE .在Rt △AEB 中,BE 2+AE 2=AB 2,即(433)2+BE 2=(2BE)2, 解得:BE=43, ∴AB=AC=83,AD=1. 在Rt △CAD 中,AC 2+AD 2=CD 2,即2228()43CD +=, 解得:CD=4133.【点睛】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解答本题的关键是:(2)利用相似三角形的性质求出OD 的值;(3)利用勾股定理求出BE 、CD 的长度. 21.如图,正方形ABCD 的顶点A 在x 轴的正半轴上,顶点C 在y 轴的正半轴上,点B 在双曲线4-y x =(x <0)上,点D 在双曲线k y x=(x >0)上,点D 的坐标是 (3,3) (1)求k 的值;(2)求点A 和点C 的坐标.【答案】(1)k=9,(2)A (1,0), C (0,5).【分析】(1)根据反比例函数过点D,将坐标代入即可求值,(2)利用全等三角形的性质,计算AM,AN,CH 的长即可解题.【详解】解:将点D 代入(0)k y x x=>中, 解得:k=9,(2)过点B 作BN⊥x 轴于N, 过点D 作DM ⊥x 轴于M ,∵四边形ABCD 是正方形,∴∠BAD=90°,AB=AD,∵∠BAN+∠ABN=90°,∴∠BAN=∠ADM,∴△ABN ≌△DAM (AAS ),∴DM=AN=3,设A (a,0),∴N (a-3,0),∵B 在4(0)y x x =-< 上, ∴BN=43a --=AM, ∵OM=a 43a --=3,整理得:a 2-6a+5=0, 解得:a=1或a =5(舍去),经检验,a=1是原方程的根,∴A (1,0),过点D 作DH⊥Y 轴于H,同理可证明△DHC ≌△DMA,∴CH=AM=2,∴C (0,5),综上, A (1,0), C (0,5).【点睛】本题考查了反比例函数的性质,三角形的全等,难度较大,作辅助线,通过全等得到长度是解题关键. 22.如图,AG 是∠PAQ 的平分线,点E 在AQ 上,以AE 为直径的⊙0交AG 于点D ,过点D 作AP 的垂线,垂足为点C ,交AQ 于点B .(1)求证:直线BC 是⊙O 的切线;(2)若⊙O 的半径为6,AC=2CD ,求BD 的长【答案】(1)证明见详解;(2)8.【分析】(1)根据角平分线的定义和同圆的半径相等可得OD∥AC,证明OD⊥CB,可得结论;(2))在Rt△ACD中,设CD=a,则AC=2a,AD=5a,证明△ACD∽△ADE,表示a=45r,由平行线分线段成比例定理得:BD ODBC AC=,代入可得结论.【详解】(1)证明:连接OD,∵AG是∠HAF的平分线,∴∠CAD=∠BAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠ACD=90°,∴∠ODB=∠ACD=90°,即OD⊥CB,∵D在⊙O上,∴直线BC是⊙O的切线;(2)解:在Rt△ACD中,设CD=a,则AC=2a,AD=5a,连接DE,∵AE是⊙O的直径,∴∠ADE=90°,由∠CAD=∠BAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴AD ACAE AD=,55aa=,∴45ra=,由(1)知:OD∥AC,=,2=BD OD BD rBC AC BD a a+即,解得BD=4468.33r=⨯=【点睛】本题考查切线的判定、勾股定理、相似三角形的判定与性质,根据相似三角形的性质列方程解决问题是关键.23.已知:二次函数y=x2+bx+c经过原点,且当x=2时函数有最小值;直线AC解析式为y=kx-4,且与抛物线相交于B、C.(1)求二次函数解析式;(2)若S△AOB∶S△BOC=1:3,求直线AC的解析式;(3)在(2)的条件下,点E为线段BC上一动点(不与B、C重合),过E作x轴的垂线交抛物线于F、交x轴于G,是否存在点E,使△BEF和△CGE相似?若存在,请求出所有点E的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x;(2)直线AC的解析式为y=x-4;(1)存在,E点坐标为E(1.-1)或E(2,-2 ) .【分析】(1)根据二次函数y=x2+bx+c经过原点可知c=0,当x=2时函数有最小值可知对称轴是x=2,故可求出b,即可求解;(2)连接OB,OC,过点C作CD⊥y轴于D,过点B作BE⊥y轴于E,根据13AOBCOBSS=得到13ABBC=,14ABAC=,由EB∥DC,对应线段成比例得到14BE ABCD AC==,再联立y=kx-4与y=x2-4x得到方程kx-4=x2-4x,即x2-(k+4)x+4=0,求出x1,x2,根据x1,x2之间的关系得到关于k的方程即可求解;(1)根据(1)(2)求出A,B,C的坐标,设E(m,m-4)(1<m<4)则G(m,0)、F(m,m2-4m),根据题意分∠EFB=90°和∠EBF=90°,分别找到图形特点进行列式求解.【详解】解:(1)∵二次函数y=x2+bx+c经过原点,∴c=0∵当x=2时函数有最小值 ∴221b -=⨯, ∴b=-4,c=0, ∴y=x 2-4x ;(2)如图,连接OB ,OC ,过点C 作CD ⊥y 轴于D ,过点B 作BE ⊥y 轴于E ,∵13AOB COB S S = ∴13AB BC = ∴14AB AC = ∵EB ∥DC ∴14BE AB CD AC == ∵y=kx-4交y=x 2-4x 于B 、C∴kx-4=x 2-4x ,即x 2-(k+4)x+4=0∴2482k k k x +++=,或2482k k k x +-+=∵x B <x C∴EB=x B 248k k k +-+DC=x C 248k k k +++∴248k k k +-+248k k k +++解得 k=-9(不符题意,舍去)或k=1∴k=1∴直线AC 的解析式为y=x-4;(1)存在.理由如下:由题意得∠EGC=90°,∵直线AC的解析式为y=x-4 ∴A(0,-4 ) ,C(4,0)联立两函数得244y x xy x⎧=-⎨=-⎩,解得4xy=⎧⎨=⎩或13xy=⎧⎨=-⎩∴B(1,-1)设E(m,m-4)(1<m<4)则G(m,0)、F(m,m2-4m)①如图,当∠EFB=90°,即CG//BF时,△BFE∽△CGE.此时F点纵坐标与B点纵坐标相等.∴F(m,-1)即m2-4m=-1解得m=1(舍去)或m=1∴F(1,-1)故此时E(1,-1)②如图当∠EBF=90°,△FBE∽△CGE∵C(4,0),A(0 ,4 )∴OA=OC∴∠GCE=45°=∠BEF=∠BFE过B点做BH⊥EF,则H(m,-1)∴BH=m-1又∵∠GCE=45°=∠BEF=∠BFE∴△BEF是等腰直角三角形,又BH⊥EF∴EH=HF,EF=2BH∴(m-4)- (m2-4m) =2(m-1)解得m1=1(舍去)m2=2∴E(2,-2)综上,E点坐标为E(1.-1)或E(2,-2).【点睛】此题主要考查二次函数的图像及几何综合,解题的关键是熟知二次函数的图像与性质、平行线分线段成比例、相似三角形及等腰三角形的性质.24.如图,12310...A A A A 是半径为1的O 的内接正十边形,2A P 平分21OA A ∠(1)求证:21211A A A P OA =⋅;(2)求证:1251A A -= 【答案】(1)详见解析;(2)详见解析【分析】(1)根据题意得出角相等得出△A 1A 2P ∽△A 1OA 2,再根据相似三角形的性质即可得出答案; (2)设A 1A 2=x ,得出OP =PA 2=A 1A 2=x ,A 1 P =1-x ,再代入21211A A A P OA =⋅中即可求出答案.【详解】证明:(1)∵A 1A 2A 3…A 10是半径为1的⊙O 的内接正十边形,A 2P 平分∠OA 2A 1∴∠A 1OA 2=36°,∠A 1=∠OA 2A 1=72°,∠A 1A 2P =∠O =36°∴∠A 1 P A 2=72°,OP =PA 2,∴△A 1A 2P ∽△A 1OA 2,121112A A A P OA A A = ∴A 1A 22=A 1P•O A 1(2)设A 1A 2=x ,则OP =PA 2=A 1A 2=x ,∴A 1 P =1-x ,由(1)得A 1A 22=A 1P•O A 1∴21x x =-,∴210x x +-=,解得,()2114115x=2-±-±--=(负值舍去) ∴512x =-, 即1251A A =- 【点睛】本题考查了正十边形的性质及相似三角形的判定及性质定理,能够根据正十边形的性质得出角的度数是解题的关键.25.如图,在△ABC 中,O 是AB 边上的点,以O 为圆心,OB 为半径的⊙0与AC 相切于点D ,BD 平分∠ABC ,AD =3OD ,AB =12,求CD 的长.【答案】CD =3【分析】由切线的性质得出AC ⊥OD ,求出∠A =30°,证出∠ODB =∠CBD ,得出OD ∥BC ,得出∠C =∠ADO =90°,由直角三角形的性质得出∠ABC =60°,BC =12AB =6,得出∠CBD =30°,再由直角三角形的性质即可得出结果.【详解】∵⊙O 与AC 相切于点D ,∴AC ⊥OD ,∴∠ADO =90°,∵AD 3OD , ∴tanA =OD AD 3 ∴∠A =30°,∵BD 平分∠ABC ,∴∠OBD =∠CBD ,∵OB =OD ,∴∠OBD =∠ODB ,∴∠ODB =∠CBD ,∴OD ∥BC ,∴∠C =∠ADO =90°,∴∠ABC =60°,∴BC =12AB =6, ∴∠CBD =12∠ABC =30°, ∴CD =3BC =3×6=23. 【点睛】本题考查了圆的切线问题,掌握圆的切线的性质以及直角三角形的性质是解题的关键.26.如图,已知反比例函数11k y x=(k 1>0)与一次函数2221(0)y k x k =+≠相交于A 、B 两点,AC ⊥x 轴于点C. 若△OAC 的面积为1,且tan ∠AOC =2 .(1)求出反比例函数与一次函数的解析式;(2)请直接写出B 点的坐标,并指出当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.【答案】(1)12y x=;21y x =+;(2)B 点的坐标为(-2,-1);当0<x <1和x <-2时,y 1>y 2. 【分析】(1)根据tan ∠AOC =AC OC=2,△OAC 的面积为1,确定点A 的坐标,把点A 的坐标分别代入两个解析式即可求解; (2)根据两个解析式求得交点B 的坐标,观察图象,得到当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.【详解】解:(1)在Rt △OAC 中,设OC =m .∵tan ∠AOC =AC OC =2,∴AC =2×OC =2m . ∵S △OAC =12×OC×AC =12×m×2m =1,∴m 2=1.∴m =1(负值舍去).∴A 点的坐标为(1,2).把A 点的坐标代入11k y x=中,得k 1=2. ∴反比例函数的表达式为12y x =. 把A 点的坐标代入221y k x =+中,得k 2+1=2,∴k 2=1.∴一次函数的表达式21y x =+.(2)B 点的坐标为(-2,-1).当0<x <1和x <-2时,y 1>y 2.【点睛】本题考查反比例及一次函数的的应用;待定系数法求解析式;图象的交点等,掌握反比例及一次函数的性质是本题的解题关键.27.已知二次函数y=ax 2+bx+3的图象经过点 (-3,0),(2,-5).(1)试确定此二次函数的解析式;(2)请你判断点P(-2,3)是否在这个二次函数的图象上?【答案】(1)y=﹣x 2﹣2x+1;(2)点P (﹣2,1)在这个二次函数的图象上,【分析】(1)根据给定点的坐标,利用待定系数法求出二次函数解析式即可;(2)代入x=-2求出y 值,将其与1比较后即可得出结论.【详解】(1)设二次函数的解析式为y=ax 2+bx+1;∵二次函数的图象经过点(﹣1,0),(2,﹣5),则有:933428a b a b -=-⎧⎨+=-⎩解得;12a b =-⎧⎨=-⎩∴y=﹣x 2﹣2x+1.(2)把x=-2代入函数得y=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1,∴点P (﹣2,1)在这个二次函数的图象上,【点睛】考查待定系数法求二次函数解析式,二次函数图象上点的坐标特征,掌握待定系数法求二次函数解析式是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列函数中,y 关于x 的二次函数是( )A .y =ax 2+bx+cB .y =x(x ﹣1)C .y=21xD .y =(x ﹣1)2﹣x 2 【答案】B【分析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax 2+bx+c (a ,b ,c 为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时, y=ax 2+bx+c= bx+c ,不是二次函数,故不符合题意; B. y=x (x ﹣1)=x 2-x ,是二次函数,故符合题意;C. 21y x = 的自变量在分母中,不是二次函数,故不符合题意; D. y=(x ﹣1)2﹣x 2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax 2+bx+c (a ,b ,c 为常数,a≠0)的函数叫做二次函数,据此求解即可.2.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( )A .43B .23C .33D .322【答案】C【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积. 【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO ,∴1DO 2=,32AD =, ∴223BD 2OB OD =-=,∴BC =∴13224ABC S =⨯=. 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.3.若点()()()1233,,1,,1,A y B y C y --在反比例函数3y x =的图象上,则123,,y y y 的大小关系是( )A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y << 【答案】B【分析】将横坐标代入反比例函数求出纵坐标,即可比较大小关系.【详解】当x=−3时,y 1=−1,当x=−1时,y 2=−3,当x=1时,y 3=3,∴y 2<y 1<y 3故选:B.【点睛】本题考查反比例函数值的大小比较,将横坐标代入函数解析式求出纵坐标是解题的关键.4.关于x 的一元二次方程2(3)(2)0x x p ---=的根的情况是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .不确定【答案】A【分析】将方程化简,再根据24b ac ∆=-判断方程的根的情况.【详解】解:原方程可化为22560x x p -+-=, 222(5)4(6)10p p ∴∆=---=+>所以原方程有两个不相等的实数根.故选:A【点睛】本题考查了一元二次方程根的情况,灵活利用∆的正负进行判断是解题的关键.当>0∆时,方程有两个不相等的实数根;当0∆=时,方程有两个不相等的实数根;当∆<0时,方程5.寒假即将来临,小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明选择到甲社区参加实践活动的可能性为()A.12B.13C.14D.19【答案】B【解析】由小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,直接利用概率公式求解即可求得答案.【详解】解:∵小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,∴小明选择到甲社区参加实践活动的可能性为:13.故选:B.【点睛】本题考查概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.6.从数据12-,﹣6,1.2,π,2-中任取一数,则该数为无理数的概率为()A.15B.25C.35D.45【答案】B【分析】从题中可以知道,共有5个数,只需求出5个数中为无理数的个数就可以得到答案.【详解】从12-,-6,1.2,π,2-中可以知道π和2-为无理数.其余都为有理数.故从数据12-,-6,1.2,π,2-中任取一数,则该数为无理数的概率为25,故选:B.【点睛】此题考查概率的计算方法,无理数的识别.解题关键在于掌握:概率=所求情况数与总情况数之比.7.一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()A.B.C.D.【解析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3, 则符合题意的是D ;故选D .考点:1.由三视图判断几何体;2.作图-三视图.8.一元二次方程()22110a x ax a +++-=有一根为零,则a 的值为( ) A .1-B .1C .1-或0D .1-或1【答案】B 【分析】把0x =代入一元二次方程,求出a 的值,然后结合一元二次方程的定义,即可得到答案.【详解】解:∵一元二次方程()22110a x ax a +++-=有一根为零, ∴把0x =代入一元二次方程,则210a -=,解得:1a =±,∵10a +≠,∴1a ≠-,∴1a =;故选:B.【点睛】本题考查了一元二次方程的解,以及一元二次方程的定义,解题的关键是熟练掌握解一元二次方程的方法,正确求出a 的值.9.下列事件不属于...随机事件的是( ) A .打开电视正在播放新闻联播B .某人骑车经过十字路口时遇到红灯C .抛掷一枚硬币,出现正面朝上D .若今天星期一,则明天是星期二【答案】D【分析】不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.据此可判断出结论.【详解】A . 打开电视正在播放新闻联播,是随机事件,不符合题意;B . 某人骑车经过十字路口时遇到红灯,是随机事件,不符命题意;C . 抛掷一枚硬币,出现正面朝上,是随机事件,不符合题意,D . 若今天星期一,则明天是星期二,是必然事件,符合题意.故选:D .【点睛】此题考查了必然事件、不可能事件、随机事件的概念.关键是理解不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.方程x (x ﹣1)=0的解是( ).A .x =1B .x =0C .x 1=1,x 2=0D .没有实数根【答案】C【解析】根据因式分解法解方程得到x=0或x ﹣1=0,解两个一元一次方程即可.【详解】解:x (x ﹣1)=0x=0或x ﹣1=0∴x 1=1,x 2=0,故选C.【点睛】本题考查因式分解法解一元二次方程,熟练掌握一元二次方程的解法是关键.11.如图,△ABO ∽△CDO ,若6BO =,3DO =,2CD =,则AB 的长是( )A .2B .3C .4D .5【答案】C 【分析】根据相似三角形的性质,列出对应边的比,再根据已知条件即可快速作答.【详解】解:∵△ABO ∽△CDO ∴OB AB OD CD= ∴632AB = 解得:AB=4 故答案为C.【点睛】本题主要考查了相似三角形的性质,解题的关键是找对相似三角形的对应边,并列出比例进行求解. 12.如图,在Rt △ABC 中,∠BAC=90°,将Rt △ABC 绕点C 按逆时针方向旋转46°得到Rt △A′B′C ,点A 在边B′C 上,则∠ACB 的大小为( )A .23°B .44°C .46°D .54°【答案】C 【分析】根据题意:Rt △ABC 绕点C 按逆时针方向旋转46°得到Rt △A′B′C ,即旋转角为46°,则∠ACB=46°。
★试卷3套精选★宁波市2020届九年级上学期数学期末达标测试试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.对于二次函数y =-(x +1)2+3,下列结论:①其图象开口向下;②其图象的对称轴为直线x =1;③其图象的顶点坐标为(-1,3);④当x>1时,y 随x 的增大而减小.其中正确结论的个数为( ) A .1B .2C .3D .4 【答案】C【解析】由抛物线解析式可确定其开口方向、对称轴、顶点坐标,可判断①②③,再利用增减性可判断④,可求得答案.【详解】∵2(1)3y x =-++,∴抛物线开口向上,对称轴为直线x=−1,顶点坐标为(−1,3),故②不正确,①③正确,∵抛物线开口向上,且对称轴为x=−1,∴当x>−1时,y 随x 的增大而增大,∴当x>1时,y 随x 的增大而增大,故④正确,∴正确的结论有3个,故选:C.【点睛】考查二次函数的图象与性质,掌握二次函数的开口方向、对称轴、顶点坐标的求解方法是解题的关键.2.一元二次方程2310x x -+=的两个根为12,x x ,则2121232x x x x ++-的值是( ) A .10B .9C .8D .7【答案】D 【分析】利用方程根的定义可求得21131x x ∴=-,再利用根与系数的关系即可求解.【详解】1x 为一元二次方程2310x x -+=的根,21131x x ∴=-,2121232x x x x ∴++-=()12121212313233x x x x x x x x -++-=++-.根据题意得123x x +=,121=x x ,212123233137x x x x ∴++-=⨯+-=.故选:D .【点睛】本题主要考查了一元二次方程的解,根与系数的关系以及求代数式的值,熟练掌握根与系数的关系12b x x a +=-,12c x x a=是解题的关键. 3.若()2723my m x -=-+是二次函数,且开口向下,则m 的值是( ) A .3±B .3C .3-D .2- 【答案】C【分析】根据二次函数的定义和开口方向得到关于m 的关系式,求m 即可.【详解】解:∵()2723my m x -=-+是二次函数,且开口向下,∴272,20m m -=-<,∴3,2m m =±<,∴3m =-.故选:C【点睛】本题考查了二次函数的定义和二次函数的性质,熟练掌握二次函数的定义和性质是解题关键. 4.下列图形中,是中心对称图形但不是轴对称图形的是 ( ) A . B . C . D .【答案】D【分析】根据中心对称图形和轴对称图形的定义即可得解.【详解】A 、不是中心对称图形,也不是轴对称图形,此项错误B 、是中心对称图形,也是轴对称图形,此项错误C 、不是中心对称图形,是轴对称图形,此项错误D 、是中心对称图形,但不是轴对称图形,此项正确故选:D .【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A.25°B.40°C.45°D.50°【答案】B【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P =90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.6.反比例函数y=1mx在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣1【答案】D【解析】∵在每个象限内的函数值y随x的增大而增大,∴m+1<0,∴m<-1.7.如图,在△ABC中,DE∥BC,BE和CD相交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC的值为()A.1:3 B.1:8 C.1:9 D.1:4【答案】C【分析】根据题意,易证△DEF∽△CBF,同理可证△ADE∽△ABC,根据相似三角形面积比是对应边比例的平方即可解答.【详解】∵S△EFC=3S△DEF,∴DF:FC=1:3 (两个三角形等高,面积之比就是底边之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故选:C.【点睛】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形面积比是对应边比例的平方.8.方程2x x=的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-1【答案】C【分析】根据因式分解法,可得答案.=,【详解】解:2x x方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.9.如图,已知点E(﹣4,2),点F(﹣1,﹣1),以O为位似中心,把△EFO放大为原来的2倍,则E点的对应点坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,4)C.(2,﹣1)D.(8,﹣4)【答案】B【分析】E(﹣4,1)以O为位似中心,按比例尺1:1,把△EFO放大,则点E的对应点E′的坐标是E (﹣4,1)的坐标同时乘以1或﹣1.【详解】解:根据题意可知,点E的对应点E′的坐标是E(﹣4,1)的坐标同时乘以1或﹣1.所以点E′的坐标为(8,﹣4)或(﹣8,4).故选:B.【点睛】本题主要考查根据位似比求对应点的坐标,分情况讨论是解题的关键.10.若n <n+1,则整数n 为( )A .2B .3C .4D .5 【答案】B的大小,从而得出整数n 的值.【详解】∵23,∴3<4,∴整数n 为3;故选:B .【点睛】本题主要考查算术平方根的估算,理解算术平方根的定义,是解题的关键.11.抛物线的顶点为(1,4)-,与y 轴交于点(0,3)-,则该抛物线的解析式为( )A .223y x x =--B .223y x x =+-C .223y x x =-+D .2233y x x =--【答案】A【分析】设出抛物线顶点式,然后将点(0,3)-代入求解即可.【详解】解:设抛物线解析式为2(1)4y a x =--, 将点(0,3)-代入得:23(01)4a -=--,解得:a=1,故该抛物线的解析式为:223y x x =--,故选:A.【点睛】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.12.一人乘雪橇沿如图所示的斜坡(倾斜角为30°)笔直滑下,滑下的距离为24米,则此人下滑的高度为( )A .24B .123C .12D .6【答案】C 【分析】由题意运用解直角三角形的方法根据特殊三角函数进行分析求解即可.【详解】解:因为斜坡(倾斜角为30°),滑下的距离即斜坡长度为24米, 所以下滑的高度为0124sin 3024122⨯=⨯=米. 故选:C.【点睛】本题考查解直角三角形相关,结合特殊三角函数进行求解是解题的关键,也可利用含30°的直角三角形,其斜边是30°角所对直角边的2倍进行分析求解.二、填空题(本题包括8个小题)13.观察下列各式: 2(1)(1)1x x x -+=-; 23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-; 4325(1)(1)1x x x x x x -++++=-则2019201820172222...221++++++=_______________________.【答案】202021-【分析】由所给式子可知,(1x -)(122...1n n n x x x x x --++++++)=11n x +-,根据此规律解答即可.【详解】由题意知(21-)(2019201820172222...221++++++)=202021-,∴20192018201722020222...22121++++++=-.故答案为202021-.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.14.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.【答案】25 4【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF22AD DF+221554⎛⎫+ ⎪⎝⎭254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF 的最小值.15.抛物线y=x 2-2x+3,当-2≤x≤3时,y 的取值范围是__________【答案】211y ≤≤【分析】先把一般式化为顶点式,根据二次函数的最值,以及对称性,即可求出y 的最大值和最小值,即可得到取值范围.【详解】解:∵2223(1)2y x x x =-+=-+,又∵10a =>,∴当1x =时,抛物线有最小值y=2;∵抛物线的对称轴为:1x =,∴当2x =-时,抛物线取到最大值,最大值为:2(21)211y =--+=;∴y 的取值范围是:211y ≤≤;故答案为:211y ≤≤.【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.16.如图,有一张直径(BC )为1.2米的圆桌,其高度为0.8米,同时有一盏灯A 距地面2米,圆桌的影子是DE ,AD 和AE 是光线,建立图示的平面直角坐标系,其中点D 的坐标是(2,0).那么点E 的坐标是____.【答案】(4,0)【分析】如图延长CB 交y 轴于F ,由桌面与x 轴平行△AFB ∽△AOD ,求FB=1.2,由△AFC ∽△AOE ,可求OE 即可.【详解】如图,延长CB 交y 轴于F ,∵桌面与x 轴平行即BF ∥OD ,∴△AFB ∽△AOD ,∵OF=0.8,∴AF=AO-OF=2-0.8=1.2,∵OA=OD=2,则AF=FB=1.2,BC =1.2,FC=FB+BC=1.2+1.2=2.4,∵FC ∥x 轴,∴△AFC ∽△AOE , ∴AF FC =AO OE, ∴AO FC 2 2.4OE==AF 1.2⨯=4, E (4,0).故答案为:(4,0)..【点睛】本题考查平行线截三角形与原三角形相似,利用相似比来解,关键是延长CB 与y 轴相交,找到了已知与未知的比例关系从而解决问题.17.计算211a a a ---的结果是_______. 【答案】11a - 【分析】根据分式的加减运算法则,先通分,再加减.【详解】解:原式=()211a a a -+- =()()21111a a a a a -+--- =2211a a a -+- =11a -.故答案为:11a -. 【点睛】 本题考查了分式的加减运算,解题的关键是掌握运算法则和运算顺序. 18.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则 99a =________.【答案】1009999. 【解析】试题解析:等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3; 等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=1.所以a 99=991100991019999+=⨯. 考点:规律型:数字的变化类.三、解答题(本题包括8个小题)19.如图,二次函数y =﹣34x 2+94x+3的图象与x 轴交于点A 、B (B 在A 右侧),与y 轴交于点C .(1)求点A 、B 、C 的坐标;(2)求△ABC 的面积.【答案】(1)点A 的坐标为(﹣1,0),点B 的坐标为(4,0),点C 的坐标为(0,3);(2)152 【分析】(1)根据题目中的函数解析式可以求得点A 、B 、C 的坐标;(2)根据(1)中点A 、点B 、点C 的坐标可以求得△ABC 的面积.【详解】解:(1)∵二次函数y =34-x 2+94x+3=34-(x ﹣4)(x+1), ∴当x =0时,y =3,当y =0时,x 1=4,x 2=﹣1,即点A 的坐标为(﹣1,0),点B 的坐标为(4,0),点C 的坐标为(0,3);(2)∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0),点C 的坐标为(0,3),∴AB=5,OC=3,∴△ABC的面积是:·5322AB OC⨯==152,即△ABC的面积是152.【点睛】本题考查的是二次函数与x轴的交点,分别令x、y为0,即可求出函数与坐标轴的交点,进而求解三角形的面积.20.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1) 请画出△ABC向左平移5个单位长度后得到的△A B C;(2) 请画出△ABC关于原点对称的△A B C;(3) 在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.【答案】(1)图形见解析;(2)图形见解析;(3)图形见解析,点P的坐标为:(2,0)【分析】(1)按题目的要求平移就可以了关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可(3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.【详解】(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,点P的坐标为:(2,0)【点睛】1、图形的平移;2、中心对称;3、轴对称的应用21.《九章算术》是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右.在其“勾股”章中有这样一个问题:“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB,AD的中点,EG⊥AB,FH⊥AD.EG=15里,HG经过点A,则FH等于多少里?请你根据上述题意,求出FH的长度.【答案】1.1里【分析】通过证明△HFA∽△AEG,然后利用相似比求出FH即可.【详解】∵四边形ABCD是矩形,EG⊥AB,FH⊥AD,∴∠HFA=∠DAB=∠AEG=90°,∴FA∥EG.∴∠HAF=∠G.∴△HFA∽△AEG,∴FHAF =AFEG,即4.5FH=3.515,解得FH=1.1.答:FH等于1.1里.【点睛】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求线段的长度.22.如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为(3,2)、(1,3).△AOB绕点O逆时针旋转90º后得到△A1OB1.(1)在网格中画出△A1OB1,并标上字母;(2)点A关于O点中心对称的点的坐标为;(3)点A1的坐标为;(4)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为.【答案】(1)见解析;(2)(-3,-2);(3)(-2,3);(4)5【分析】(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可;(2)根据关于O点中心对称的点的坐标的特点直接写出答案即可;(3)根据平面直角坐标系写出点A1的坐标即可;(4)利用勾股定理列式求出OB,再根据弧长公式列式计算即可得解.【详解】(1)△A1OB1如图所示;(2)点A关于O点中心对称的点的坐标为(-3,-2);(3)点A1的坐标为(﹣2,3);(4)由勾股定理得,OB=223110+=,弧BB1的长为:9010101802ππ⋅=.考点:1.作图-旋转变换;2.弧长的计算.23.已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.(1)求证:△ABE∽△DEA;(2)若AB=4,求AE•DE的值.【答案】(1)见解析;(2)2【解析】试题分析:(1)根据菱形的对边平行,可得出∠1=∠2,结合∠AED=∠B即可证明两三角形都得相似.(2)根据(1)的结论可得出AE ABDA DE=,进而代入可得出AE•DE的值.试题解析:(1)如图,∵四边形ABCD是菱形,∴AD∥BC.∴∠1=∠2. 又∵∠B=∠AED,∴△ABE∽△DEA.(2)∵△ABE∽△DEA,∴AE ABDA DE=.∴AE•DE=AB•DA.∵四边形ABCD是菱形,AB=1,∴AB=DA=1.∴AE•DE=AB2=2.考点:1.菱形的性质;2.相似三角形的判定和性质.24.小红想利用阳光下的影长测量学校旗杆AB的高度.如图,他在某一时刻在地面上竖直立一个2米长的标杆CD,测得其影长DE=0.4米.(1)请在图中画出此时旗杆AB在阳光下的投影BF.(2)如果BF=1.6,求旗杆AB的高.【答案】 (1)见解析 (2) 8m【详解】试题分析:(1)利用太阳光线为平行光线作图:连结CE,过A点作AF∥CE交BD于F,则BF为所求;(2)证明△ABF∽△CDE,然后利用相似比计算AB的长.试题解析:(1)连结CE,过A点作AF∥CE交BD于F,则BF为所求,如图;(2)∵AF∥CE,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴AB BF CDDE=,即1.620.4AB=,∴AB=8(m),答:旗杆AB的高为8m.25.如图,在ABC∆中,点D,E分别在AB,AC上,DE BC∥,:2:5AD AB=,4ADES∆=.求四边形BCED的面积.【答案】21.【分析】利用平行判定ADE ABC∆∆∽,然后利用相似三角形的性质求得425ADEABCSS∆∆=,从而求得25ABCS∆=,使问题得解.【详解】解:∵DE BC∥,∴ADE B∠=∠,AED C∠=∠.∴ADE ABC∆∆∽.∵25ADAB=,∴425ADEABCSS∆∆=.∵4ADES∆=,∴25ABC S ∆=.∴=21BCED S 四边形.【点睛】本题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是本题的解题关键. 26.如图,点A 在y 轴正半轴上,点()4,2B 是反比例函数图象上的一点,且tan 1OAB ∠=.过点A 作AC y ⊥轴交反比例函数图象于点C .(1)求反比例函数的表达式;(2)求点C 的坐标.【答案】(1)8y x =;(2)4,63⎛⎫ ⎪⎝⎭【分析】(1)设反比例函数的表达式为k y x=,将点B 的坐标代入即可; (2)过点B 作BD AO ⊥于点D ,根据点B 的坐标即可得出4BD =,2DO =,然后根据tan 1OAB ∠=,即可求出AD ,从而求出AO 的长即点C 的纵坐标,代入解析式,即可求出点C 的坐标.【详解】解:(1)设反比例函数的表达式为k y x =, ∵点()4,2B 在反比例函数图象上, ∴24k =. 解得8k . ∴反比例函数的表达式为8y x =. (2)过点B 作BD AO ⊥于点D .∵点B 的坐标为()4,2,∴4BD =,2DO =.在Rt ABD △中,tan 1BD OAB AD ∠==, ∴4AD BD ==.∴6AO AD DO =+=.∵AC y ⊥轴,∴点C 的纵坐标为6.将6y =代入8y x =,得43x =. ∴点C 的纵坐标为4,63⎛⎫ ⎪⎝⎭.【点睛】此题考查的是反比例函数与图形的综合题,掌握用待定系数法求反比例函数的解析式和利用锐角三角函数解直角三角形是解决此题的关键.27.已知布袋中有红、黄、蓝色小球各一个,用画树状图或列表的方法求下列事件的概率.(1)如果摸出第一个球后,不放回,再摸出第二球,求摸出的球颜色是“一黄一蓝”的概率.(2)随机从中摸出一个小球,记录下球的颜色后,把球放回,然后再摸出一个球,记录下球的颜色,求得到的球颜色是“一黄一蓝”的概率.【答案】(1)13;(2)29 【分析】运用画树状图或列表的方法列举出符合题意的各种情况的个数,再根据概率公式:概率=所求情况数与总情况数之比解答即可.【详解】解:(1)画树状图如图所示.共有6种等可能的情况,其中摸到的球是“一黄一蓝”的情况有2种,因此球颜色是“一黄一蓝”的概率为13. (2)画树状图如图所示.共有9种等可能的情况,其中摸到的球是“一黄一蓝”的情况有2种,因此球颜色是“一黄一蓝”的概率为2 9 .【点睛】本题主要考查的是用画树状图法或列表法求概率.着重考查了用画树状图法或列表法列举随机事件出现的所有情况,并求出某事件的概率,应注意认真审题,注意不放回再摸和放回再摸的区别.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC 相切于点D,连接BD.若BD平分∠ABC,AD=23,则线段CD的长是()A.2 B.3C.32D.332【答案】B【分析】连接OD,得Rt△OAD,由∠A=30°,AD=23,可求出OD、AO的长;由BD平分∠ABC,OB=OD 可得OD 与BC间的位置关系,根据平行线分线段成比例定理,得结论.【详解】连接OD∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,∴OD⊥AC在Rt△AOD中,∵∠A=30°,3,∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD∥CB,∴AD AOCD OB=2342,∴3故选B.【点睛】本题考查了圆的切线的性质、含30°角的直角三角形的性质及平行线分线段成比例定理,解决本题亦可说明∠C=90°,利用∠A=30°,AB=6,先得AC的长,再求CD.遇切点连圆心得直角,是通常添加的辅助线.2.《孙子算经》是我国古代重要的数学著作,其有题译文如下:“有一根竹竿在太阳下的影子长15尺.同时立一根1.5尺的小标杆,它的影长是0.5尺。
〖汇总3套试卷〗宁波市2020年九年级上学期数学期末监测试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.抛物线y=x 2+2x-2最低点坐标是( )A .(2,-2)B .(1,-2)C .(1,-3)D .(-1,-3)【答案】D【分析】利用配方法把抛物线的一般式转化为顶点式,再写出顶点坐标即可.【详解】∵()22222211213y x x x x x =+-=++--=+-,且10a =>, ∴最低点(顶点)坐标是()13--,. 故选:D .【点睛】此题考查利用顶点式求函数的顶点坐标,注意根据函数的特点灵活运用适当的方法解决问题. 2.如图图形中,是中心对称图形的是( )A .B .C .D .【答案】D【分析】根据中心对称图形的概念和识别.【详解】根据中心对称图形的概念和识别,可知D 是中心对称图形,A 、C 是轴对称图形,D 既不是中心对称图形,也不是轴对称图形.故选D .【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形. 3.平面直角坐标系中,抛物线(1)(3)y x x =-+经变换后得到抛物线(3)(1)y x x =-+,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移4个单位D .向右平移4个单位【答案】B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】解:2(1)(3)(1)4y x x x =-+=+-,顶点坐标是(-1,-4). 2(3)(1)(1)4y x x x =-+=--,顶点坐标是(1,-4).所以将抛物线(1)(3)y x x =-+向右平移2个单位长度得到抛物线(3)(1)y x x =-+,故选:B .此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律和变化特点.4.若关于x 的一元二次方程220x x m --= 有实数根,则m 的值不可能是( )A .2-B .1-C .0D .2018 【答案】A【分析】由题意直接根据一元二次方程根的判别式,进行分析计算即可求出答案.【详解】解:由题意可知:△=24b ac -=4+4m ≥0,∴m ≥-1, m 的值不可能是-2.故选:A .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式进行分析求解.5.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t (单位:小时)关于行驶速度v (单位:千米/小时)的函数关系式是( )A .t=20vB .t=20vC .t=20vD .t=10v 【答案】B【解析】试题分析:根据行程问题的公式路程=速度×时间,可知汽车行驶的时间t 关于行驶速度v 的函数关系式为t=20v. 考点:函数关系式6.已知如图,ABC 中,AB AC =,点D 在AB 边上,且AD BD BC ==,则A ∠的度数是( ).A .18︒B .36︒C .54︒D .72︒【答案】B 【分析】根据等腰三角形性质和三角形内角和定理可列出方程求解.【详解】设∠A=x .∵AD=BD ,∴∠ABD=∠A=x ;∵BD=BC ,∴∠BCD=∠BDC=∠ABD+∠A=2x ;∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°故选:B【点睛】考核知识点:等腰三角形性质.熟练运用等腰三角形基本性质是关键.7.如图,正六边形的边长是1cm,则线段AB和CD之间的距离为()A.23cm B.3cm C.23cm D.1cm【答案】B【分析】连接AC,过E作EF⊥AC于F,根据正六边形的特点求出∠AEC的度数,再由等腰三角形的性质求出∠EAF的度数,由特殊角的三角函数值求出AF的长,进而可求出AC的长.【详解】如图,连接AC,过E作EF⊥AC于F,∵AE=EC,∴△AEC是等腰三角形,∴AF=CF,∵此多边形为正六边形,∴∠AEC=18046=120°,∴∠AEF=1202=60°,∴∠EAF=30°,∴AF=AE ×cos30°=1×32=32, ∴AC=3,故选:B .【点睛】本题考查了正多边形的应用,等腰三角形的性质和锐角三角函数,掌握知识点是解题关键.8.将抛物线265y x x =-+向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析是( )A .()246y x =+-B .()242y x =--C .()242y x =-+D .()213y x =--【答案】B【分析】把265y x x =-+配成顶点式,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线()2265=34y x x x =-+--向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式为:()()22-3-1-4+2=-4-2y x x =故选:B【点睛】考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.9.如图,学校的保管室有一架5m 长的梯子斜靠在墙上,此时梯子与地面所成的角为45°如果梯子底端O 固定不变,顶端靠到对面墙上,此时梯子与地面所成的角为60°,则此保管室的宽度AB 为( )A .522+1 ) mB .522+3 ) mC .(32+ ) mD .523+1 ) m 【答案】A【分析】根据锐角三角函数分别求出OB 和OA ,即可求出AB.【详解】解:如下图所示,OD=OC=5m ,∠DOB=60°,∠COA=45°,在Rt △OBD 中,OB=OD ·cos ∠DOB=52m 在Rt △OAC 中,OA=OC ·cos ∠52∴AB=OA+OB=522+1 )m 故选:A.【点睛】 此题考查的是解直角三角形,掌握用锐角三角函数解直角三角形是解决此题的关键.10.一元二次方程220x x a -+=有实数解的条件( )A .1a ≥B .1a ≤C .1a >D .1a <【答案】B【分析】根据一元二次方程的根的判别式240b ac ∆=-≥即可得.【详解】一元二次方程220x x a -+=有实数解则2(2)410a ∆=--⨯⋅≥,即440a -≥解得1a ≤故选:B .【点睛】本题考查了一元二次方程的根的判别式,熟记根的判别式是解题关键.对于一般形式20(a 0)++=≠ax bx c 有:(1)当240b ac ∆=->时,方程有两个不相等的实数根;(2)当240b ac ∆=-=时,方程有两个相等的实数根;(3)当240b ac ∆=-<时,方程没有实数根. 11.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( ) A .5d <B .5d >C .5d =D .5d ≤ 【答案】B【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【详解】解:∵直线l 与半径为5的O 相离,∴圆心O 与直线l 的距离d 满足:5d >.故选:B.【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d>r 时,直线与圆相离;当d=r 时,直线与圆相切;当d<r 时,直线与圆相交.12.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形111OA B C .依此方式,绕点O 连续旋转2020次,得到正方形202020202020OA B C ,如果点A 的坐标为()2,0,那么点2020A 的坐标为( )A .()2,0-B .()1,1C .()0,2D .()1,1-【答案】A 【分析】根据图形可知:点B 在以O 为圆心,以OB 为半径的圆上运动,由旋转可知:将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45°,可得对应点B 的坐标,根据规律发现是8次一循环,可得结论.【详解】解:∵四边形OABC 是正方形,且OA=2,∴A 1(1,1),如图,由旋转得:OA=OA 1=OA 2=OA 3=…2,∵将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,相当于将线段OA 绕点O 逆时针旋转45°,依次得到∠AOA 1=∠A 1OA 2=∠A 2OA 3=…=45°,∴A 1(1,1),A 2(02),A 3(1-,1-),A 4(2-,0)…,发现是8次一循环,所以2020÷8=252 (4)∴点A 2020的坐标为(2-,0);故选:A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.二、填空题(本题包括8个小题)13.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm ,则此圆锥的底面圆的半径为 cm .【答案】1.【解析】试题分析:设此圆锥的底面半径为r ,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,1πr=1206180π⋅, 解得:r=1cm .故答案是1.考点:圆锥的计算.14.如图,抛物线y=﹣x 2﹣2x+3与x 轴交于点A 、B ,把抛物线在x 轴及其上方的部分记作C 1,将C 1关于点B 的中心对称得C 2,C 2与x 轴交于另一点C ,将C 2关于点C 的中心对称得C 3,连接C 1与C 3的顶点,则图中阴影部分的面积为 .【答案】1【分析】将x 轴下方的阴影部分沿对称轴分成两部分补到x 轴上方,即可将不规则图形转换为规则的长方形,则可求出.【详解】∵抛物线223y x x =--+与x 轴交于点A 、B , ∴当0y =时,则2x 2x 30--+=,解得3x =-或1x =,则A ,B 的坐标分别为(-3,0),(1,0),∴AB 的长度为4,从1C ,3C 两个部分顶点分别向下作垂线交x 轴于E 、F 两点.根据中心对称的性质,x 轴下方部分可以沿对称轴平均分成两部分补到1C 与2C ,如图所示,阴影部分转化为矩形,根据对称性,可得422BE CF ==÷=,则8EF =,利用配方法可得()222314y x x x =---=-++,则顶点坐标为 (-1,4),即阴影部分的高为4, 8432S =⨯=阴.故答案为:1.【点睛】本题考查了中心对称的性质、配方法求抛物线的顶点坐标及求抛物线与x 轴交点坐标,解题关键是将不规则图形通过对称转换为规则图形,求阴影面积经常要使用转化的数学思想.15.如图,直线m ∥n ,以直线m 上的点A 为圆心,适当长为半径画弧,分别交直线m ,n 于点B 、C ,连接AC 、BC ,若∠1=30°,则∠2=_____.【答案】75°【解析】试题解析:∵直线l 1∥l 2,∴130.A ∠=∠=,AB AC =75.ACB B ∴∠=∠=2180175.ACB ∴∠=-∠-∠=故答案为75.16.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.【答案】145 2【分析】先在CB上取一点F,使得CF=12,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.【详解】解:如图:在CB上取一点F,使得CF=12,再连接PF、AF,∵∠DCE=90°,DE=4,DP=PE,∴PC=12DE=2,∵14CFCP=,14CPCB=∴CF CP CP CB=又∵∠PCF=∠BCP,∴△PCF∽△BCP,∴14 PF CFPB CP==∴PA+14PB=PA+PF,∵PA+PF≥AF,2222114562CF AC⎛⎫+=+=⎪⎝⎭∴PA+14145∴PA+14PB145故答案为1452.【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.17.某物体对地面的压强P(Pa)与物体和地面的接触面积S(m2)成反比例函数关系(如图),当该物体与地面的接触面积为0.25m2时,该物体对地面的压强是______Pa.【答案】1【分析】直接利用函数图象得出函数解析式,进而求出答案.【详解】设P=ks,把(0.5,2000)代入得:k=1000,故P=1000 s,当S=0.25时,P=10000.25=1(Pa).故答案为:1.【点睛】此题主要考查了反比例函数的应用,正确求出函数解析会死是解题关键.18.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外其它都相同,任意摸出一个球,摸到黑球的概率是__________.【答案】2 3【解析】袋子中一共有3个球,其中有2个黑球,根据概率公式直接进行计算即可. 【详解】袋子中一共有3个球,其中有2个黑球,所以任意摸出一个球,摸到黑球的概率是23,故答案为:23. 【点睛】 本题考查了简单的概率计算,熟练掌握概率的计算公式是解题的关键. 三、解答题(本题包括8个小题) 19.(1)计算:031323tan 3082020x ⎛⎫-+++ ⎪-⎝⎭. (2)解方程:()()2252x x -=⨯-. 【答案】(1)5;(2)122,25x x ==-【分析】(1)按顺序先分别进行绝对值化简,0次幂运算,代入特殊角的三角函数值,进行立方根运算,然后再按运算顺序进行计算即可.(2)根据()()2222x x =--化简方程,从而求得方程的解.【详解】(1)031323tan 3082020x ⎛⎫-+++ ⎪-⎝⎭23132=-+++5=(2)()()2252x x -=⨯- ()()22520x x -⨯-=- ()()225=0x x --- 解得12x = ,2x 25=-【点睛】 本题考查了实数的混合运算以及一元二次方程的解法,掌握实数的混合运算法则以及一元二次方程化简运算方法是解题的关键.20.如图,数学活动小组为了测量学校旗杆AB 的高度,使用长为2m 的竹竿CD 作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O 处重合,测得OD=3m ,BD=9m ,求旗杆AB 的高.【答案】旗杆AB 的高为2m【分析】证明△OAB ∽△OCD 利用相似三角形对应线段成比例可求解.【详解】解:由题意可知:∠B=∠ODC=90°,∠O=∠O.∴△OAB∽△OCD.∴AB OD CD OB=.而OB=OD+BD=3+9=1.∴12 23 AB=.∴AB=2.∴旗杆AB的高为2m.【点睛】本题考查了相似三角形的判定和性质,熟练利用已知条件判定三角形相似是解题的关键. 21.如图,△ABC的高AD、BE相交于点F.求证:AF FD EF BF⋅=⋅.【答案】见解析【分析】由题意可证△AEF∽△BDF,可得AF EFBF FD=,即可得AF FD EF BF⋅=⋅.【详解】解:证明:∵AD,BE是△ABC的高,∴∠ADB=∠AEF=90°,且∠AFE=∠BFD,∴△AEF∽△BDF,∴AF EF BF FD=,∴AF FD EF BF⋅=⋅.【点睛】本题考查了相似三角形的判定与性质,熟练运用相似三角形的性质是本题的关键.22.图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:3≈1.73,结果精确到0.01米)【答案】(1)3.9米;(2)货车能安全通过.【解析】(1)过M作MN⊥AB于N,交BA的延长线于N,在Rt△OMN中,求出ON的长,即可求得BN的长,即可求得点M到地面的距离;(2)左边根据要求留0.65米的安全距离,即取CE=0.65,车宽EH=2.55,计算高GH的长即可,与3.5作比较,可得结论.【详解】(1)如图,过M作MN⊥AB于N,交BA的延长线于N,在Rt△OMN中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ON12=OM=0.6,∴NB=ON+OB=3.3+0.6=3.9,即点M到地面的距离是3.9米;(2)取CE=0.65,EH=2.55,∴HB=3.9﹣2.55﹣0.65=0.7,过H作GH⊥BC,交OM于G,过O作OP⊥GH于P,∵∠GOP=30°,∴tan30°GP3 OP==,∴GP33=OP1.730.73⨯=≈0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.【点睛】本题考查了解直角三角形的应用、锐角三角函数等知识,正确添加辅助线,构建直角三角形是解题的关键. 23.如图,AB为⊙O的直径,弦AC的长为8cm.(1)尺规作图:过圆心O作弦AC的垂线DE,交弦AC于点D,交优弧ABC于点E;(保留作图痕迹,不要求写作法);(2)若DE的长为8cm,求直径AB的长.【答案】(1)见解析;(2)10cm.【分析】(1)以点A,点C为圆心,大于12AC为半径画弧,两弧的交点和点O的连线交弦AC于点D,交优弧ABC于点E;(2)由垂径定理可得AD=CD=4cm,由勾股定理可求OA的长,即可求解.【详解】(1)如图所示:(2)∵DE⊥AC,∴AD=CD=4cm,∵AO2=DO2+AD2,∴AO2=(DE﹣AO)2+16,∴AO=5,∴AB =2AO =10cm .【点睛】本题考查了圆的有关知识,勾股定理,灵活运用勾股定理求AO 的长是本题的关键.24.如图,抛物线21y=x bx c 2-++与x轴交于A 、B 两点,与y 轴交于点C ,且OA=2,OC=1. (1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P ,使得△BDP 的周长最小,若存在,请求出点P 的坐标,若不存在,请说明理由.注:二次函数2y ax bx c =++(a ≠0)的对称轴是直线x =b 2a-.【答案】(2)211y=x x 322-++(2)P (12,54) 【详解】解:(2)∵OA=2,OC=2,∴A (-2,0),C (0,2).将C (0,2)代入21y=x bx c 2-++得c=2. 将A (-2,0)代入21y=x bx 32-++得,()()210=22b 32-⋅-+-+, 解得b=12, ∴抛物线的解析式为211y=x x 322-++; (2)如图:连接AD ,与对称轴相交于P ,由于点A 和点B 关于对称轴对称,则BP+DP=AP+DP ,当A 、P 、D 共线时BP+DP=AP+DP 最小. 设直线AD 的解析式为y=kx+b ,将A (-2,0),D (2,2)分别代入解析式得, 2k b 0?2k b 2-+=⎧⎨+=⎩,解得,1k ?2b 1⎧=⎪⎨⎪=⎩,∴直线AD 解析式为y=12x+2. ∵二次函数的对称轴为1 12x 1222=-=⎛⎫⨯- ⎪⎝⎭, ∴当x=12时,y=12×12+2=54. ∴P (12,54). 25.如图,在Rt ACB △中,∠ACB ﹦90°CD AB ⊥(1)求证.ADC ∽ACB △(2)若13BC =, 12BD =, 求AB 的长.【答案】(1)见解析;(2)16912【解析】(1)由题意直接根据相似三角形的判定定理,进行分析求证即可;(2)方法一:根据题意运用射影定理进行分析;方法二:根据题意利用锐角三角函数进行分析求值.【详解】解:(1)证明:∵CD ⊥AB ,∴∠ADC=∠ACB=90°,又∵∠A=∠A ,∴△ADC ∽△ACB.(2)方法一:运用射影定理.∵∠ACB=90°,CD ⊥AB .∴BC 2=BD •BA ,∴2131691212AB ==. ∴方法二:巧用锐角三角函数.在直角三角形BDC 中cosB=BD BC, 在直角三角形BCA 中cosB=BC AB, 代入得出AB=16912,∴BC BD AB BC=, 代入得出AB=16912. 【点睛】本题考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.注意掌握射影定理即在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.26.解方程:(1)()11x x x +-=;(2)23440x x --=.【答案】(1)11x =,21x =-;(2)123x =-,22x =. 【分析】(1)先去括号,再利用直接开平方法解方程即可;(2)利用十字相乘法解方程即可.【详解】(1)()11x x x +-=,210x x x +--=,21x =,∴11x =,21x =-.(2)23440x x --=,(3x+2)(x-2)=0, ∴123x =-,22x =. 【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的解法是解题关键.27.已知a b =34,求a b a b+-的值. 【答案】-7【分析】根据等式的性质可得a =34b ,再根据分式的性质可得答案. 【详解】解:由a b =34,得a =34b .∴374473144b b ba ba b b b b++===----【点睛】本题考查了比例的性质和分式性质,利用等式性质求得a=34b是解题关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在⊙O 中,若点C 是AB 的中点,∠A=50°,则∠BOC=( )A .40°B .45°C .50°D .60°【答案】A【解析】试题解析:50,,A OA OB ∠==50OBA OAB ∴∠=∠=,180505080AOB ∴∠=--=,∵点C 是AB 的中点, 140.2BOC AOB ∴∠=∠=故选A.点睛:垂直于弦的直径,平分弦并且平分弦所对的两条弧.2.如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是()A .③—④—①—②B .②—①—④—③C .④—①—②—③D .④—①—③—②【答案】B【分析】根据一天中影子的长短和方向判断即可.【详解】众所周知,影子方向的变化是上午时朝向西边,中午时朝向北边,下午时朝向东边; 影子长短的变化是由长变短再变长,结合方向和长短的变化即可得出答案故选B【点睛】本题主要考查影子的方向和长短变化,掌握影子的方向和长短的变化规律是解题的关键. 3.用配方法解方程x 2+2x ﹣1=0时,配方结果正确的是( )A .(x+2)2=2B .(x+1)2=2C .(x+2)2=3D .(x+1)2=3【答案】B【分析】把常数项移到方程右边,再把方程两边加上1,然后把方程作边写成完全平方形式即可.【详解】解:∵x 1+1x ﹣1=0,∴x 1+1x+1=1,∴(x+1)1=1.故选B .【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m )1=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.4.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是( )A .极差是6B .众数是7C .中位数是5D .方差是8【答案】D 【分析】根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.【详解】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,1.A .极差1138=-=,结论错误,故A 不符合题意;B .众数为5,7,11,3,1,结论错误,故B 不符合题意;C .这5个数按从小到大的顺序排列为:3,5,7,1,11,中位数为7,结论错误,故C 不符合题意;D .平均数是()57113957++++÷=,方差()()()()()2222221577711737975S ⎡⎤=-+-+-+-+-⎣⎦8=.结论正确,故D 符合题意. 故选D .【点睛】本题考查了折线统计图,重点考查了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.5.抛物线y=(x+2)2-3的对称轴是( )A .直线 x=2B .直线x=-2C .直线x=-3D .直线x=3【答案】B【解析】试题解析:在抛物线顶点式方程2()y a x h k =-+中,抛物线的对称轴方程为x=h ,2(2)3y x =+-,∴抛物线的对称轴是直线x=-2,故选B.6.一个不透明的袋子装有除颜色外其余均相同的2个白球和n个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在1.2附近,则n的值为()A.2 B.4 C.8 D.11【答案】C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:依题意有:22n+=1.2,解得:n=2.故选:C.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn是解题关键.7.如图,△AOB缩小后得到△COD,△AOB与△COD的相似比是3,若C(1,2),则点A的坐标为()A.(2,4)B.(2,6)C.(3,6)D.(3,4)【答案】C【解析】根据位似变换的性质计算即可.【详解】由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点A的坐标为(1×3,2×3),即(3,6),故选:C.【点睛】本题考查的是位似变换的性质,掌握在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k是解题的关键.8.已点A(﹣1,y1),B(2,y2)都在反比例函数y=1kx-的图象上,并且y1<y2,那么k的取值范围是()A.k>0 B.k>1 C.k<1 D.k≠1【答案】B【分析】利用反比例函数的性质即可得出答案.【详解】∵点A(﹣1,y1),B(1.y1)都在反比例函数y=1kx的图象上,并且y1<y1,∴k﹣1>0,∴k>1,故选:B.【点睛】本题考查反比例函数的图象上的点的坐标特征,解题的关键是熟练掌握基本知识,属于中考常考题型.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y>0时,x的取值范围是( )A.-1<x<2B.x>2C.x<-1D.x<-1或x>2【答案】D【分析】根据已知图象可以得到图象与x轴的交点是(-1,0),(2,0),又y>0时,图象在x轴的上方,由此可以求出x的取值范围.【详解】依题意得图象与x轴的交点是(-1,0),(2,0),当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,注意数形结合思想的运用.10.有三张正面分别标有数字-2,3, 4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.16【答案】C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:21 63 .故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.11.如图,将命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写成“已知……求证……”的形式,下列正确的是()A.已知:在⊙O中,∠AOB=∠COD,弧AB=弧CD.求证:AB=CDB.已知:在⊙O中,∠AOB=∠COD,弧AB=弧BC.求证:AD=BCC.已知:在⊙O中,∠AOB=∠COD.求证:弧AD=弧BC,AD=BCD.已知:在⊙O中,∠AOB=∠COD.求证:弧AB=弧CD,AB=CD【答案】D【分析】根据命题的概念把原命题写成:“如果...求证...”的形式.【详解】解:“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”,改写成:已知:在⊙O中,∠AOB=∠COD.求证:弧AB=弧CD,AB=CD故选:D【点睛】本题考查命题,掌握将命题改写为“如果...求证...”的形式,是解题的关键.12.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是()A.310B.925C.425D.110【答案】A【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=310.故选:A.【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.二、填空题(本题包括8个小题)13.如图,扇形ABC的圆心角为90°,半径为6,将扇形ABC绕A点逆时针旋转得到扇形ADE,点B、C 的对应点分别为点D、E,若点D刚好落在AC上,则阴影部分的面积为_____.【答案】3π+93.【分析】直接利用旋转的性质结合扇形面积求法以及等边三角形的判定与性质得出S阴影=S扇形ADE﹣S弓形AD =S扇形ABC﹣S弓形AD,进而得出答案.【详解】解:连接BD,过点B作BN⊥AD于点N,∵将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,∴∠BAD=60°,AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,则∠ABN=30°,故AN=3,BN=3,S阴影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD=2906360π••﹣(2606360π••﹣12×6×3=3π+93. 故答案为3π+93.【点睛】本题主要考查了扇形的面积求法以及等边三角形的判定与性质. 正确得出△ABD 是等边三角形是关键. 14.圆锥的侧面展开图是一个_____形,设圆锥的母线长为3,底面圆的半径为2,则这个圆锥的全面积为_____.【答案】扇 10π【分析】圆锥的侧面展开图是一个扇形,利用圆锥的全面积=圆锥的侧面积+底面积即可得答案.【详解】圆锥的侧面展开图是一个扇形,圆锥的侧面积=rl π=π×2×3=6π,底面积为2r π=4π,∴全面积为6π+4π=10π.故答案为:扇,10π【点睛】本题考查圆锥的侧面展开图及侧面积的计算,熟记圆锥侧面积公式是解题关键.15.若439x =,则x =_______. 【答案】12【分析】根据比例的性质即可求解.【详解】∵439x =, ∴49123x ⨯==, 故答案为:12.【点睛】本题考查了比例的性质,解答本题的关键是明确比例的性质的含义.16.如图,在ABC ∆中,D 在AC 边上,:1:2AD DC =,O 是BD 的中点,连接AO 并延长交BC 于E ,则:BE EC =______.【答案】1:3【分析】过O 作BC 的平行线交AC 与G ,由中位线的知识可得出AD :DC=1:2,根据已知和平行线分线段成比例得出AD=DG=GC ,AG :GC=2:1,AO :OE=2:1,再由同高不同底的三角形中底与三角形面积的关系可求出BE :EC 的比.【详解】解:如图,过O 作OG ∥BC ,交AC 于G ,∵O 是BD 的中点,∴G 是DC 的中点.又AD :DC=1:2,∴AD=DG=GC ,∴AG :GC=2:1,AO :OE=2:1,∴S △AOB :S △BOE =2设S △BOE =S ,S △AOB =2S ,又BO=OD ,∴S △AOD =2S ,S △ABD =4S ,∵AD :DC=1:2,∴S △BDC =2S △ABD =8S ,S 四边形CDOE =7S ,∴S △AEC =9S ,S △ABE =3S , ∴ABEAEC BE EC S S ∆∆= =39s s =13【点睛】本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.17.从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数, 则这个两位数能被3整除的概率是__________. 【答案】13【分析】从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,得出组成的两位数总个数及能被3整除的数的个数,求概率.【详解】∵从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,共有6种情况,它们分别是56、57、65、67、75、76,其中能被3整除的有57、75两种,∴组成两位数能被3整除的概率为:2163= 故答案为:13【点睛】本题考查的是直接用概率公式求概率问题,找对符合条件的个数和总个数是关键.18.在ABC ∆中,()23tan 3cos 02A B -+-=,则∠C 的度数为____. 【答案】90︒【分析】先根据平方、绝对值的非负性求得tan A 、cos B ,再利用锐角三角函数确定A ∠、B 的度数,最后根据直角三角形内角和求得90C ∠=︒.【详解】解:∵()23tan 3cos 02A B -+-= ∴tan 303cos 02A B ⎧-=⎪⎨-=⎪⎩ ∴tan 33cos A B ⎧=⎪⎨=⎪⎩∴6030A B ∠=︒⎧⎨∠=︒⎩∴90C ∠=︒.故答案是:90︒【点睛】本题考查了平方、绝对值的非负性,锐角三角函数以及三角形内角和,熟悉各知识点是解题的关键.三、解答题(本题包括8个小题)19.如图,抛物线2y ax 2ax c =-+(a≠0)交x 轴于A 、B 两点,A 点坐标为(3,0),与y 轴交于点C (0,4),以OC 、OA 为边作矩形OADC 交抛物线于点G .(1)求抛物线的解析式;(2)抛物线的对称轴l 在边OA (不包括O 、A 两点)上平行移动,分别交x 轴于点E ,交CD 于点F ,交。
〖汇总3套试卷〗宁波市2020年九年级上学期数学期末达标测试试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,嘉淇一家驾车从A地出发,沿着北偏东60︒的方向行驶,到达B地后沿着南偏东50︒的方向行驶来到C地,且C地恰好位于A地正东方向上,则下列说法正确的是()A.B地在C地的北偏西40︒方向上B.A地在B地的南偏西30方向上C.3cos2BAC∠=D.50∠=°ACB【答案】C【分析】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.【详解】解:如图所示,由题意可知,∠4=50°,∴∠5=∠4=50°,即B地在C地的北偏西50°方向上,故A错误;∵∠1=∠2=60°,∴A地在B地的南偏西60°方向上,故B错误;∵∠1=∠2=60°,∴∠BAC=30°,∴3cos BAC∠=C正确;∵∠6=90°−∠5=40°,即∠ACB=40°,故D错误.故选C.【点睛】本题考查的是方向角,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.2.若二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,则c应满足的条件是()A.c=0 B.c=1 C.c=0或c=1 D.c=0或c=﹣1【答案】C【分析】根据二次函数y =x 2﹣2x+c 的图象与坐标轴只有两个公共点,可知二次函数y =x 2﹣2x+c 的图象与x 轴只有一个公共点或者与x 轴有两个公共点,其中一个为原点两种情况,然后分别计算出c 的值即可解答本题.【详解】解:∵二次函数y =x 2﹣2x+c 的图象与坐标轴只有两个公共点,∴二次函数y =x 2﹣2x+c 的图象与x 轴只有一个公共点或者与x 轴有两个公共点,其中一个为原点, 当二次函数y =x 2﹣2x+c 的图象与x 轴只有一个公共点时, (﹣2)2﹣4×1×c =0,得c =1;当二次函数y =x 2﹣2x+c 的图象与轴有两个公共点,其中一个为原点时, 则c =0,y =x 2﹣2x =x(x ﹣2),与x 轴两个交点,坐标分别为(0,0),(2,0); 由上可得,c 的值是1或0, 故选:C . 【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键. 3.下列方程中不是一元二次方程的是( ) A .2449x = B .2523x x -=C .()()21819123y y y +=-+ D .20.012t t =【答案】C【分析】根据一元二次方程的定义进行排除选择即可,一元二次方程的关键是 方程中只包含一个未知数,且未知数的指数为2.【详解】根据一元二次方程的定义可知含有一个未知数且未知数的指数是2的方程为一元二次方程,所以A ,B ,D 均符合一元二次方程的定义,C 选项展开移项整理后不含有未知数,不符合一元二次方程的定义,所以错误,故选C. 【点睛】本题考查的是一元二次方程的定义,熟知此定义是解题的关键. 4.如图,在O 中,点C 为弧AB 的中点,若ADC α∠=(α为锐角),则APB ∠=( )A .180α︒-B .1802α︒-C .75α︒+D .3α【答案】B【分析】连接BD ,如图,由于点C 为弧AB 的中点,根据圆周角定理得到∠BDC=∠ADC=α,然后根据圆内接四边形的对角互补可用α表示出∠APB . 【详解】解:连接BD ,如图,∵点C为弧AB的中点,∴弧AC=弧BC,∴∠BDC=∠ADC=α,∴∠ADB=2α,∵∠APB+∠ADB=180°,∴∠APB=180°-2α.故选:B.【点睛】本题考查了弧、弦、圆心角的关系,以及圆内接四边形的性质,熟练掌握圆的性质定理是解答本题的关键.5.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.310B.925C.920D.35【答案】A【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红红红绿绿红﹣﹣﹣(红,红)(红,红)(绿,红)(绿,绿)红(红,红)﹣﹣﹣(红,红)(绿,红)(绿,红)红(红,红)(红,红)﹣﹣﹣(绿,红)(绿,红)绿(红,绿)(红,绿)(红,绿)﹣﹣﹣(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)﹣﹣﹣∵所有等可能的情况数为20种,其中两次都为红球的情况有6种, ∴63P 2010==两次红, 故选A.6.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角的内部到角的两边的距离相等的点在角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .以上均不正确 【答案】A【分析】过两把直尺的交点C 作CF ⊥BO 与点F ,由题意得CE ⊥AO ,因为是两把完全相同的长方形直尺,可得CE=CF ,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP 平分∠AOB 【详解】如图所示:过两把直尺的交点C 作CF ⊥BO 与点F ,由题意得CE ⊥AO ,∵两把完全相同的长方形直尺, ∴CE=CF ,∴OP 平分∠AOB (角的内部到角的两边的距离相等的点在这个角的平分线上), 故选A . 【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定7.如图,从半径为5的⊙O 外一点P 引圆的两条切线PA ,PB (A ,B 为切点),若∠APB =60°,则四边形OAPB 的周长等于( )A .30B .40C .10(31)-D .10(31)+【答案】D【分析】连接OP ,根据切线长定理得到PA =PB ,再得出∠OPA =∠OPB =30°,根据含30°直角三角形的性质以及勾股定理求出PB ,计算即可. 【详解】解:连接OP , ∵PA ,PB 是圆的两条切线, ∴PA =PB ,OA ⊥PA ,OB ⊥PB ,又OA=OB ,OP=OP ,∴△OAP ≌△OBP (SSS ), ∴∠OPA =∠OPB =30°, ∴OP=2OB=10,∴PB =22OP OB -=53=PA ,∴四边形OAPB 的周长=5+5+53+53=10(3+1), 故选:D .【点睛】本题考查的是切线的性质、切线长定理、勾股定理以及全等三角形的性质等知识,作出辅助线构造直角三角形是解题的关键.8.已知⊙O 的半径为13,弦AB//CD ,AB =24,CD =10,则AB 、CD 之间的距离为 A .17 B .7C .12D .7或17【答案】D【解析】①当弦AB 和CD 在圆心同侧时,如图1,∵AB=24cm,CD=10cm ,∴AE=12cm,CF=5cm ,∵OA=OC=13cm,∴EO=5cm,OF=12cm ,∴EF=12﹣5=7cm ;②当弦AB 和CD 在圆心异侧时,如图2,∵AB=24cm,CD=10cm ,∴AE=12cm,CF=5cm ,∵OA=OC=13cm,∴EO=5cm,OF=12cm ,∴EF=OF+OE=17cm,∴AB 与CD 之间的距离为7cm 或17cm .点睛:本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.9.如果2a b =(a ,b 均为非零向量),那么下列结论错误的是( ) A .a //b B .a -2b =0C .b =12a D .2ab =【答案】B【解析】试题解析:向量最后的差应该还是向量.20.a b -= 故错误. 故选B.10.下列实数中,介于23与32之间的是( ) A .2 B .3C .157D .π【答案】A【解析】估算无理数的大小问题可解.【详解】解:由已知23≈0.67,3=2 1.5,∵因为2 1.414≈,3 1.732≈,152.1437≈,π>3 ∴2介于23与32之间故选:A . 【点睛】本题考查了无理数大小的估算,解题关键是对无理数大小进行估算.11.如图,⊙O 的弦CD 与直径AB 交于点P ,PB =1cm ,AP =5cm ,∠APC =30°,则弦CD 的长为( )A .4cmB .5cmC .22D .42【答案】D【分析】作OH ⊥CD 于H ,连接OC ,如图,先计算出OB =3,OP =2,再在Rt △OPH 中利用含30度的直角三角形三边的关系得到OH=1,则可根据勾股定理计算出CH,然后根据垂径定理得到CH=DH,从而得到CD的长.【详解】解:作OH⊥CD于H,连接OC,如图,∵PB=1,AP=5,∴OB=3,OP=2,在Rt△OPH中,∵∠OPH=30°,∴OH=12OP=1,在Rt△OCH中,CH=223122-=,∵OH⊥CD,∴CH=DH=22,∴CD=2CH=42.故选:D.【点睛】本题考查了含30度角的直角三角形的性质、勾股定理以及垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.12.两个相似三角形对应高之比为1:2,那么它们的对应中线之比为()A.1:2B.1:3C.1:4D.1:8【答案】A【分析】根据相似三角形对应高的比等于相似比,对应中线的比等于相似比解答.【详解】∵两个相似三角形对应高之比为1:2,∴它们的相似比是1:2,∴它们对应中线之比为1:2.故选A.【点睛】此题考查相似三角形的性质,解题关键在于掌握其性质.二、填空题(本题包括8个小题)13.如图,BA是⊙C的切线,A为切点,AC=1,AB=2,点D是⊙C上的一个动点,连结BD并延长,交AC的延长线于E,则EC的最大值为_______.【答案】53【分析】连接BC ,过C 作CF BD ⊥于点F ,由图易知,当CF r =,即BD 与圆相切时,CE 最大,设EC最大值为x ,根据相似三角形的性质得到CE BECF AB=,代入求值即可; 【详解】连接BC ,过C 作CF BD ⊥于点F ,由图易知,当CF r =,即BD 与圆相切时,CE 最大,设EC 最大值为x , ∵△△CDE BAE ,∴CE BECF AB =, ∴12CEBE=,∴2BE CE =,即()22122x x ++=,解得53x =; 故答案是53.【点睛】本题主要考查了相似三角形对应线段成比例和圆的切线性质,准确计算是解题的关键. 14.如图,在Rt ABC 中,390,2,,4ACB AC tanB CD ∠=︒==平分ACB ∠交AB 于点,D DE BC ⊥,垂足为点E ,则DE =__________.【答案】87【分析】首先解直角三角形得出BC ,然后根据DE BC ⊥判定DE ∥AC ,再根据平行线分线段成比例即可得出BE DEBC AC=,再利用角平分线的性质,得出CE=DE ,然后构建方程,即可得出DE. 【详解】∵390,2,,4ACB AC tanB ∠=︒==∴382,43AC BC tanB ==÷= 又∵DE BC ⊥ ∴DE ∥AC ∴BE DE BC AC= 又∵CD 平分ACB ∠ ∴∠ACD=∠BCD=∠CDE=45° ∴CE=DE∴BC DE DEBC AC -=∴87DE =故答案为87.【点睛】此题主要考查利用平行线分线段成比例的性质构建方程,即可解题.15.在矩形ABCD 中,24AB AD ==,以点A 为圆心,AB 为半径的圆弧交CD 于点E ,交AD 的延长线于点F ,连接AE ,则图中阴影部分的面积为:__________.【答案】8233π-【分析】首先利用三角函数求的∠DAE 的度数,然后根据S 阴影=S 扇形AEF −S △ADE 即可求解. 【详解】解:∵24AB AD ==,AE=AB , ∴22AE AD -3∴Rt △ADE 中,cos ∠DAE=DA AE =12, ∴∠DAE=60°,则S△ADE=12AD⋅DE=12×2×23=23,S扇形AEF=2604360⨯π=83π,则S阴影=S扇形AEF−S△ADE=83π-23.故答案为823 3π-.【点睛】本题考查了扇形的面积公式和三角函数,求的∠DAE的度数是关键.16.小北同学掷两面质地均匀硬币,抛5次,4次正面朝上,则掷硬币出现正面概率为_____.【答案】1 2【分析】根据抛掷一枚硬币,要么正面朝上,要么反面朝上,可以求得相应的概率.【详解】无论哪一次掷硬币,都有两种可能,即正面朝上与反面朝上,则掷硬币出现正面概率为:12;故答案为:12.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.17.如图,建筑物BC上有一旗杆AB,从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为__________m.(结果取整数.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【答案】1【分析】根据正切的定义分别求出AC、BC,结合图形计算即可.【详解】解:由题意,CD=10,∠BDC=45°,∠ADC=51°,在Rt△BCD中,tan∠BDC=BC CD,则BC=CD•tan45°=10,在Rt△ACD中,tan∠ADC=AC CD,则AC=CD•tan∠ADC≈10×1.11=11.1,∴AB=AC-BC=1.1≈1(m),故答案为:1.【点睛】本题考查的是解直角三角形的应用——仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.18.已知234x y z x z y+===,则_______ 【答案】2 【分析】设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z.三、解答题(本题包括8个小题)19.一段路的“拥堵延时指数”计算公式为:拥堵延时指数=高峰时段通过该路段的时间平峰时段通过该路段的时间,指数越大,道路越堵。
浙江省宁波市2020版九年级上学期数学期末考试试卷C卷
浙江省宁波市2020版九年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)方程(x-1)(x+2)=0的两根分别为()A . x1=-1,x2=2B . x1=1,x2=2C . x1=-1,x2=-2D . x1=1,x2=-22. (2分) (2018九上·宜城期中) 下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转90°后,能与原图形完全重合的是()A .B .C .D .3. (2分)如图,把一个量角器放在∠BAC的上面,请你根据量角器的读数判断∠BAC的度数是()A . 30°B . 60°C . 15°D . 20°4. (2分)在△ABC和△A1B1C1中,有下列条件:①②③∠A=∠A1④∠B=∠B1⑤∠C=∠C1 ,如果从中任取两个条件组成一组,那么能判断△ABC∽△A1B1C1的有()A . 4组B . 5组C . 6组D . 7组5. (2分)(2016·济南) 某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是()A .B .C .D .6. (2分)如图,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=2AA′,S△ABC=8,则S△A′B′C′=()A . 9B . 16C . 18D . 247. (2分)(2017·槐荫模拟) 如图,△ABC和△DEF的各顶点分别在双曲线y= ,y= ,y= 在第一象限的图象上,若∠C=∠F=90°,AC∥DF∥x轴,BC∥EF∥y轴,则S△ABC﹣S△DEF=()A .B .C .D .8. (2分)如图:若弦BC经过圆O的半径OA的中点P,且PB=3,PC=4,则圆O的直径为()A . 7B . 8C . 9D . 109. (2分)(2012·绵阳) 在同一直角坐标系中,正比例函数y=2x的图象与反比例函数y= 的图象没有交点,则实数k的取值范围在数轴上表示为()A .B .C .D .10. (2分)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是()A . a>0B . b<0C . c<0D . a+b+c>0二、填空题 (共6题;共7分)11. (1分) (2016九上·牡丹江期中) 如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB绕点O旋转150°得到△OA′B′,则点A′的坐标为________.12. (1分) (2018八下·长沙期中) 二次函数()的图象如图所示,对称轴为,给出下列结论:① ;②当时,;③ ;④ ,其中正确结论有________.13. (1分) (2017九上·余姚期中) 已知线段a=1,c=5,线段b是线段a,c的比例中项,则线段b的值为________14. (1分)下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果. 随着实验次数的增加,“钉尖向上”的频率总在一常数附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是________15. (1分)(2017·宁波模拟) 如图,小明用2m长的标杆测量一棵树的高度.根据图示条件,树高为________m.16. (2分)某段公路全长200km,一辆汽车要行驶完这段路程,则所行速度v(km/h)和时间t(h)间的函数关系为v=________ .若限定汽车行驶速度不超过80km/h,则所用时间至少要________ h.三、解答题 (共8题;共80分)17. (15分)(2017·兴庆模拟) 在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,5≤m<10时为B级,当0≤m<5为C级.现随机抽取30个符合年龄条件的青年人开展“每人日均发微博条数”的调查,所有抽青年人的“日均发微博条数”的数据如表:11106159161312082810176 1375731210711368141512(1)求样本数据中为A级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;(3)从样本数据为C级的人中随机抽取两人,用列举法求抽得两个人的“日均发微博条数”都是3的概率.18. (10分) (2016九上·山西期末) 在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2)。
(汇总3份试卷)2020年宁波市九年级上学期数学期末复习检测试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2【答案】Bx+≥,再解不等式即可.【分析】根据二次根式有意义的条件可得20x+≥,【详解】解:由题意得:20x≥-,解得:2故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.若点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,则当y≥0时,x的取值范围是()A.﹣1<x<3 B.x<﹣1或x>3 C.﹣1≤x≤3 D.x≤﹣1或x≥3【答案】C【分析】根据点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,可以求得c的值,从而可以得到该抛物线的解析式,然后令y=0,求得抛物线与x轴的交点,然后根据二次函数的性质即可得到当y≥0时,x的取值范围.【详解】解:∵点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,∴0=﹣3(﹣1﹣1)2+c,得c=12,∴y=﹣3(x﹣1)2+12,当y=0时,﹣3(x﹣1)2+12=0,解得:x1=﹣1,x2=3,又∵-3<0,抛物线开口向下,∴当y≥0时,x的取值范围是﹣1≤x≤3,故选:C.【点睛】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.3.电影《流浪地球》一上映就获得追捧,第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,设第一天到第三天票房收入平均每天增长的百分率为x,则可列方程()A.8(1+x)=11.52 B.8(1+2x)=11.52C.8(1+x)2=11.52 D.8(1﹣x)2=11.52【答案】C【分析】设平均每天票房的增长率为x,根据第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,即可得出关于x 的一元二次方程.【详解】解:设平均每天票房的增长率为x ,根据题意得:28(1)11.52x +=.故选:C .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 4.某楼盘的商品房原价12000元/2m ,国庆期间进行促销活动,经过连续两次降价后,现价9720元/2m ,求平均每次降价的百分率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019学年第一学期期末抽测九年级数学试题卷一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.正五边形的每个内角度数为( )A .36°B .72°C .108°D .120°2.在同一平面上,⊙O 外有一点P 到圆上的最大距离是10,最小距离为2,则⊙O 的半径为( ) A .5 B .3 C .6 D .43.由抛物线2x y =平移的到抛物线()23+=x y ,则下列平移方式可行的是( )A .向上平移3个单位长度B .向下平移3个单位长度C .向左平移3个单位长度D .向右平移3个单位长度4.一个不透明的盒子装有m 个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则m 的值约为( )A .8B .10C .20D .405.二次函数c bx ax y ++=2部分图象如图所示,有以下结论:①0>abc ;②042<-ac b ;③03=-b a ,其中正确的是( )A .①②③B .②③C .①②D .①③6.如图,在ABC ∆中,点F E D ,,分别在边BC AC AB 、、上,且BC DE ∥,AB EF ∥,若BD AB 3=,则EFC ADE S S ∆∆:的值为( )A .4 : 1B .3 : 2C .2 : 1D .3 : 17.已知点()11y A ,,()222y B ,,()34y C ,在二次函数c x x y +-=62的图象上,则321y y y ,,的大小关系是( )A .312y y y <<B .321y y y <<C .213y y y <<D .132y y y <<8.在圆内接四边形ABCD 中,¼ADC 与¼ABC 的比为3:2,则B ∠的度数为( ) A .36° B .72° C .108° D .216°9.如图,在菱形ABCD 中,已知4=AB ,ο60=∠B ,以AC 为直径的⊙O 与菱形ABCD 相交,则图中阴影部分的面积为( )A .π+34B .π+32C .π3432+D .π3434+ 10.如图,P 为线段AB 上一点,AD 与BC 交于点E ,B A CPD ∠=∠=∠,BC 交PD 于点F ,AD 交PC 于点G ,则下列结论中错误的是( )A .CBP CGE ∆∆∽B .PGD APD ∆∆∽C .BFP APG ∆∆∽D .BCP PCF ∆∆∽11.如图,小江同学把三角尺含有60°角的一端以不同的方向传入进另一把三角尺(含有45°角)的孔洞中.已知孔洞的最长边为2cm ,则三角尺穿过孔洞部分的最大面积为( )A .2332cm B .23cm C .232cm D .()232cm + 12.如图,平行四边形HEFG 的四个顶点分别在正方形ABCD 的四条边上.AD NE ∥,分别交AB HG DC ,,于点E M N ,,,且MN CD =.要求得平行四边形HEFG 的面积,只需知道一条线段的长度.这条线段可以是( )A .EHB .AEC .EBD .DH第Ⅱ卷(共90分)二、填空题(每题4分,满分24分)13.若35b a =,则ba b a 233--的值为 . 14.从-1,0,π,2,1.6中随机取一个数,取到无理数的概率是 .15.如图,某河堤的横截面是梯形ABCD ,AD BC ∥,迎水面AB 长26m ,且斜坡AB 的坡比(即AEBE)为12:5,则河堤的高BE 为 .16.如图,⊙O 的直径CD 垂直弦AB 于点E ,且3=CE ,7=DE ,则弦AB 的长为 .17.如图,已知点()b a M ,是函数22++-=x x y 的图象上的一个动点.若1<a ,则b 的取值范围是 .18.如图,已知等边ABC ∆的边长为4,AB BD ⊥,且332=BD ,连结CD 并延长交AB 的延长线于点E ,则线段BE 的长度为 .三、解答题:第19题6分,第20、21题各8分,第22-24题各10分,第25题12分,第26题14分,共78分.19.计算:οοο45cos 60cos 30sin 22-+.20.小王准备给小你打电话,由于保管不善,电话本上的小李手机号码中,有两个数字已经模糊不清,如果用Y X ,表示这两个看不清的数字,那么小李的号码为1877X817Y52(手机号码由11个数字组成),小王记得这11个数字之和是20的整数倍. (1)求Y X+的值;(2)求出小王一次拨对小李手机号码的概率.21.某工厂生产某种多功能儿童车,根据需要可变形为图1的滑板车或图2的自行车,已知前后车轮半径相同,cm DE BD AD 30===,cm CE 40=,车杆AB 与BC 所成的ο53=∠ABC ,图1中C E B 、、三点共线,图2中的座板DE 与地面保持平行.问变形前后两轴心BC 的长度有没有发生变化?若不变,请写出BC 的长度;若变化,请求出变化量?(参考数据:5453sin ≈ο,5353cos ≈ο,3453tan ≈ο)22.如图,在一座圆弧形拱桥,它的跨度AB 为60m ,拱高PM 为18m ,当洪水泛滥到跨度只有30m 时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m ,即4=PN m 时,试通过计算说明是否需要采取紧急措施.23.如图二次函数的图象与x 轴交于点()03,-A 和()01,B 两点,与y 轴交于点()30,C ,点D C 、是二次函数图象上的一对对称点,一次函数的图象经过D B 、. (1)求二次函数的表达式;(2)写出使一次函数值大于二次函数值的x 的取值范围;(3)如直线BD 与y 轴的交点为E 点,连结AE AD 、,求ADE ∆的面积.24.某商店经销一种垃圾桶,已知这种垃圾桶的成本价为每个30元,市场调查发现,这种垃圾桶每天的销售量y (个)与销售单价x (元)有如下关系:()603060≤≤+-=x x y .设这种垃圾桶每天的销售利润为w 元. (1)求w 与x 的函数表达式;(2)这种垃圾桶销售单价定位多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种垃圾桶的销售单价不高于42元,该商店销售这种垃圾桶每天要获得200元的销售利润,销售单价应定为多少元?25.定义:有两个相邻内角和等于另两个内角和的一半的四边形称为对半四边形,这两个相邻内角的夹边称为对半线.(1)如图1,在对半四边形ABCD 中,()D C B A ∠+∠=∠+∠21,求A ∠与B ∠的度数之和; (2)如图2,O 为锐角ABC ∆的外心,过点O 的直线交BC AC ,于点E D ,,ο30=∠OAB , 求证:四边形ABED 是对半四边形;(3)如图3,在ABC ∆中,E D ,分别是BC AC ,上一点,3==CE CD ,EB CE 3=,F 为DE 的中点,ο120=∠AFB ,当AB 为对半四边形ABED 的对半线时,求AC 的长.26.如图1,在平面直角坐标系中,已知⊙M 的半径为5,圆心M 的坐标为(3,0),⊙M 交x 轴于点D ,交y 轴于B A ,两点,点C 是¼ADB 上的一点(不与B D A 、、重合),连结AC 并延长,连结BC ,CD ,AD .(1)求点A 的坐标;(2)当点C 在»AD 上时 ①求证:HCD BCD ∠=∠;②如图2,在CB 上取一点G ,使CG CA =,连结AG .求证:ADC ABG ∆∆∽;(3)如图3,当点C 在»BD上运动的过程中,试探究CDBC AC -的值是否发生变化?若不变,请直接写出该定值;若变化,请说明理由.2019学年第一学期期末抽测九年级数学参考答案及评分标准一、选择题(每题4分,共48分)二、填空题(每题4分,共24分)13.34 14. 5215. 24 16. 212 17. 0<b ≤4918. 1 三、解答题(第19题6分,第20、21题各8分,第22~24题各10分,第25题12分, 第26题14分,共78分)19.︒-︒+︒45cos 60cos 30sin 22=2×21+21-2)22( = 1+21-21 =1 20.(1)14=+Y X(2)X 、Y 的可能值为9和5,8和6,7和7,6和8,5和9, 小王一次拨对小李手机号码的概率5121.图1:BC ≈18+18+40=76cm图2:BC ≈18+30+32=80 cm 答:BC 的长度发生了改变,增加了4cm22.设圆弧所在圆的圆心为O ,连结OA,OA ’,如图所示 设半径为x (m )则OA=OA ’=OP=x (m ) 由垂径定理可知AM=BM,A ’N=B ’NΘAB=60m ,∴AM=30m ,且OM=OP-PM=(x-18)m在Rt AOM ∆中,由勾股定理可得222AM OM AO += 即22230)18(+-=x x ,解得x=34∴)(30434m PN OP ON =-=-=在ON A '∆中,由勾股定理可得)(1630342222''m ON OA N A =-=-=∴A ’B ’=32m>30m ∴不需要采取紧急措施。
23.(1)∵二次函数与x 轴的交点为)0,3(-A 和)0,1(B∴设二次函数的解析式为:)1)(3(-+=x x a y ∵)3,0(C 在抛物线上∴代入可得)1)(3(-+-=x x y(2))1)(3(-+-=x x y ;∴二次函数的对称轴为直线1-=x ;∵点C 、D 是二次函数图象上的一对对称点;∴)3,2(-D ;∴使一次函数大于二次函数的x 的取值范围为12>-<x x 或;(3)BD 所在直线解析式为:y=-x+1 ∴E (0,1),426=-=-=∴∆∆ABE ABD ADE S S S24.(1))30)(60()30(-+-=⋅-=x x y x w1800902-+-=x x即1800902-+-=x x w(2)由题意得 1800902-+-=x x w 225)45(2+--=x w 因此x=45时,w 取到最大值,最大值为225(3)当w=200时, 2001800902=-+-=x x w 解得50,4021==x x (舍去)答:每天要获得200元的销售利润,销售单价应定为40元25.(1)由四边形内角和为360°可得∠A+∠B+∠C+∠D=360°,则∠A+∠B+2(∠A+∠B )=360°,所以∠A+∠B=120°(2)有三角形外心的性质可得,连结OC 则有OA=OB=OC ,可得∠OAB=∠OBA=30°,∠OCA=∠OAC ,∠OCE=∠OBC所以∠ACB=(180°-30°-30°)÷2=60°,则∠CAB+∠CBA=120°在四边形ABED 中,∠CAB+∠CBA=120°,则另两个内角之和为240°,所以四边形ABED 为对半四边形 (3)∵AB 为对半线,则∠CAB+∠CBA=120,∴∠C=60° 所以△CDE 为等边三角形. ∴∠ADF=∠BEF=120° ∵∠AFB=120° ∴∠DAF=∠EFB∴△FDA ∽△BEF ,则AD=2.25 ∴CA=2.25+3=5.2526.(1)在Rt △OMA 中,AM 为圆的半径5,OM=3,由勾股定理得OA=4 A(0,4) (2)连结BD,由圆的对称性可得AD=BD ,则∠BAD=∠DBA 由圆内接四边形ABDC 的性质可得∠ABD=∠HCD 且∠BAD 与∠BCD 是弧BD 所对的圆周角 ∴∠BCD=∠HCD ② ∵AC=CG∴∠CAG=∠CGA∵∠AGC+∠CAG=∠HCB ,且由(2)得∠HCD=∠BCD∴∠AGC=∠BCD ∴∠AGB=∠ACD 在△AGB 与△ACD 中⎩⎨⎧∠=∠∠=∠ACDAGB ADC ABG ∴△AGB ∽△ACD(3)不变,为552。