关于重积分对称性的结论

合集下载

对称性在积分计算中的应用

对称性在积分计算中的应用

㊀㊀㊀137㊀数学学习与研究㊀2022 17对称性在积分计算中的应用对称性在积分计算中的应用Һ姚晓闺㊀陈俊霞㊀丁小婷㊀(陆军炮兵防空兵学院基础部数学教研室,安徽㊀合肥㊀230031)㊀㊀ʌ摘要ɔ在数学范围内,特别是在积分方面,对称性的应用极为普遍.在研究和计算积分类的问题时,对称性的应用对简化解题过程㊁优化计算步骤的作用十分显著,这也使其成为积分计算中一种不可或缺的手段.利用对称性计算积分主要包括两方面:一是积分区域关于坐标面㊁坐标轴和原点对称的情况下被积函数具有奇偶性的积分;二是积分区域关于积分变量具有轮换对称性的情况下的积分.本文通过对各类积分的对称性进行归纳总结,使读者能够有效理解和掌握.ʌ关键词ɔ对称性;积分区域;被积函数;积分计算;积分一㊁定积分的对称性及其应用定理㊀若f(x)在[-a,a]上可积,则(1)当f-x()=-f(x)时,ʏa-af(x)dx=0;(2)当f-x()=f(x)时,ʏa-af(x)dx=2ʏa0f(x)dx.例㊀求ʏπ0xsinx1+cos2xdx.解㊀令x=π2+t,则原式=ʏπ2-π2π2+t()cost1+sin2tdt=ʏπ2-π2tcost1+sin2tdt+π2ʏπ2-π2cost1+sin2tdt=0+πʏπ20cost1+sin2tdt=πarctansintπ20=π24.二㊁重积分的对称性及其应用1.二重积分的对称性原理二重积分具有以下对称性:定理1㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴对称,则1)当f(x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0}.当D关于y轴对称时,也有类似结论.定理2㊀设二元函数f(x,y)在平面区域D内连续,且D关于x轴和y轴都对称,则1)当f(x,-y)=-f(x,y)或f-x,y()=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(x,-y)=f-x,y()=f(x,y)时,∬Df(x,y)dxdy=4∬D1f(x,y)dxdy,其中D1={(x,y)ɪDxȡ0,yȡ0}.定理3㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于原点对称,则1)当f(-x,-y)=-f(x,y)时,∬Df(x,y)dxdy=0;2)当f(-x,-y)=f(x,y)时,∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.定理4㊀设二元函数f(x,y)在平面区域D内连续,D=D1ɣD2,且D1,D2关于直线y=x对称,则1)∬Df(x,y)dxdy=∬Df(y,x)dxdy;2)当f(y,x)=-f(x,y)时,有∬Df(x,y)dxdy=0;3)当f(y,x)=f(x,y)时,有∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.当D1,D2关于直线y=-x对称时,也有类似结论.例1㊀求∬D(|x|+|y|)dxdy,其中D={(x,y)|x|+|y|ɤ1}.解㊀易知题中被积函数|x|+|y|为x,y的偶函数,且D区域具有对称性.记D1={(x,y)|x|+|y|ɤ1,且xȡ0,yȡ0},于是㊀㊀㊀㊀㊀138数学学习与研究㊀2022 17∬D(|x|+|y|)dxdy=4∬D1(x+y)dxdy=4ʏ10dxʏ1-x0(x+y)dy=2ʏ101-x2()dx=43.例2㊀求∬Dx1+yf(x2+y2)[]dxdy,其中D为y=x3㊁y=1㊁x=-1所围区域,f是连续函数.解㊀此题积分区域D关于坐标轴不具有对称性,根据积分区域的特点,做辅助曲线y=-x3,将D分为D1和D2,它们分别关于y轴和x轴对称,而xyf(x2+y2)关于x是奇函数,关于y也是奇函数.故∬Dxyf(x2+y2)dxdy=∬D1xyf(x2+y2)dxdy+∬D2xyf(x2+y2)dxdy=0.原式=∬Dx1+yf(x2+y2)[]dxdy=∬Dxdxdy=ʏ0-1dxʏ-x3x3xdy=-25.2.三重积分的对称性原理定理1㊀设f(x,y,z)在区域Ω上可积,Ω关于xOy面对称,Ω1是Ω在xOy面上方部分,则有∭Ωf(x,y,z)dV=0,f(x,y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(x,y,-z)=f(x,y,z).当Ω关于其他坐标面对称时,也有类似结论.定理2㊀设f(x,y,z)在区域Ω上可积,Ω关于原点对称,Ω1是Ω位于过原点O的平面一侧的部分.则有∭Ωf(x,y,z)dV=0,f(-x,-y,-z)=-f(x,y,z);∭Ωf(x,y,z)dV=2∭Ω1f(x,y,z)dV,f(-x,-y,-z)=f(x,y,z).例㊀计算三重积分∭Ω(x+z)2dV,其中Ω为区域{(x,y,z)x2+y2+z2ɤ1,zȡ0}.解㊀设Ω1表示开球{(x,y,z)x2+y2+z2ɤ1},注意到Ω关于yOz面对称,而Ω1关于三个坐标面都是对称的,所以∭Ω(x+z)2dV=∭Ωx2+2xz+z2()dV=∭Ωx2+z2()dV=12∭Ω1x2+z2()dV=13∭Ωx2+y2+z2()dV=13ʏ2π0dθʏπ0sinφdφʏ10r4dr=415π.三㊁对弧长的曲线积分的对称性及其应用定理㊀设L是平面上分段光滑的曲线,且P(x,y)在L上连续.1)若L关于x轴对称,则ʏLP(x,y)ds=0,P(x,-y)=-P(x,-y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(x,-y)=P(x,-y).其中L1是L在上半平面的部分.当L关于y轴对称时,也有类似结论.2)若L关于原点对称,则ʏLP(x,y)ds=0,P(-x,-y)=-P(x,y);ʏLP(x,y)ds=2ʏL1P(x,y)ds,P(-x,-y)=P(x,y).其中L1是L在右半平面或上半平面部分.例㊀计算ʏL3x2+2xy+4y2()ds,其中曲线L是椭圆x24+y23=1,其周长为a.解㊀由于L关于x轴对称且2xy是关于y的奇函数,故ʏL2xyds=0,则ʏL3x2+2xy+4y2()ds=ʏL3x2+4y2()ds+ʏL2xyds=ʏL3x2+4y2()ds=ʏL12ds=12ʏL1㊃ds=12a.四㊁对面积的曲面积分的对称性及其应用定理[2]㊀设有界光滑或分片光滑曲面 关于xOy平面对称,f(x,y,z)为曲面 上的连续函数,则∬ f(x,y,z)dS=0,f(x,y,-z)=-f(x,y,z);∬f(x,y,z)dS=2∬ 1f(x,y,z)dS,f(x,y,-z)=f(x,y,z).其中 1:z=z(x,y)ȡ0.㊀㊀㊀139㊀数学学习与研究㊀2022 17当 关于yOz面㊁zOx面对称时,也有类似结论.五㊁积分区域关于积分变量具有轮换对称性情况下的积分定义㊀设ΩɪR3,如果(x,y,z)ɪΩ时,都有(z,x,y),(y,z,x)ɪΩ,,则称区域Ω关于变量x,y,z具有轮换对称性.定理1[3]㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x,y,z)dV=∭Ωf(z,x,y)dV=∭Ωf(y,z,x)dV=13∭Ω[f(x,y,z)+f(z,x,y)+f(y,z,x)]dV.推论㊀设积分区域Ω关于变量x,y,z具有轮换对称性,则有∭Ωf(x)dV=∭Ωf(z)dV=∭Ωf(y)dV.定理2㊀设积分区域D关于变量x,y具有轮换对称性,则有∬Df(x,y)dσ=∬Df(y,x)dσ=12∬D[f(x,y)+f(y,x)]dσ.对于第一类曲线积分和曲面积分,同理可得到如下定理:定理3㊀设曲线Γ关于变量x,y,z具有轮换对称性,则有ʏΓf(x,y,z)ds=ʏΓf(z,x,y)ds=ʏΓf(y,z,x)ds=13ʏΓ[f(x,y,z)+f(z,x,y)+f(y,z,x)]ds.定理4㊀设曲面 关于变量x,y,z具有轮换对称性,则有∬f(x,y,z)dS=∬f(z,x,y)dS=∬f(y,z,x)dS=13∬[f(x,y,z)+f(z,x,y)+f(y,z,x)]dS.例1㊀计算二重积分∬Daf(x)+bf(y)f(x)+f(y)dσ,其中D={(x,y)x2+y2ɤ4,xȡ0,yȡ0},f(x)为D上的正值连续函数,a,b为常数.解㊀易知积分区域D关于变量x,y具有轮换对称性,由定理2,得∬Daf(x)+bf(y)f(x)+f(y)dσ=12∬Daf(x)+bf(y)f(x)+f(y)+af(y)+bf(x)f(y)+f(x)éëêêùûúúdσ=12(a+b)∬Ddσ=12(a+b)ˑ14πˑ22=(a+b)2π.例2㊀计算曲线积分ɥΓ(y2+z2)ds,其中Γ:x2+y2+z2=a2,x+y+z=0.{解㊀因为积分区域Γ关于变量x,y,z具有轮换对称性,由定理3,得ɥΓy2ds=ɥΓz2ds=13ɥΓ(x2+y2+z2)ds=13a2ɥΓds=13a2ˑ2πa=23πa3,所以,ɥΓ(y2+z2)ds=2ɥΓy2ds=43πa3.六㊁结束语本文通过实际例题有力地说明了对称性方法对计算效率的提高和优化是切实可行的.通过各类积分综合题的计算回顾了对称性的相关知识点,较好地说明了对称性在积分计算中的应用.与其他解题方法相比较,对称性由于其显著的优化作用和简单易用,在积分领域一骑绝尘,得到了广泛的应用,使读者在领略数学独特魅力的同时,还激发人们无尽的想象力,使对称性的应用充满无限的可能.ʌ参考文献ɔ[1]同济大学应用数学系.高等数学(第五版)[M].北京:高等教育出版社,2007:80-86.[2]胡纪华,王静先.对称性在曲线积分及曲面积分计算中的应用[J],江西科学,2012(1):1-4.[3]秦勇.轮换对称性在积分中的应用[J].常州工学院学报,2015(3):68-71.[4]张锴.对称性在物理问题中的应用[J].科技信息,2011(35):895-896.[5]刘洁,戴长城.对称性在积分计算中的应用[J].邵阳学院学报,2008(4):28-32.[6]曹斌,孙艳.对称性在积分计算中的应用[J].吉林师范大学学报,2012(3):130-133.[7]张东,张宁.对称性在物理学中的应用研究[J].北京联合大学学报,2006(1):21-24.[8]费时龙,张增林,李杰.多元函数中值定理的推广及应用[J].安庆师范学院学报,2011(1):88-89.。

积分的对称性问题

积分的对称性问题

例 1:求积分 ∫(∫ 2x + y)2dxdy x2 + y 2 ≤1
分析: ∫(∫ 2x + y)2dxdy = ∫∫ (4x2 + y2 + 4xy)dxdy = 4 ∫∫ x2 + ∫∫ y2 + 4 ∫∫ xy 。
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y2 ≤1
43
L
分析:xy 关于 x 为奇函数,曲线 L 关于 Oyz 面对称。
∫ ∫ ∫ ∴ 2xyds = 0 ,原积分 = 12 ( x2 + y2 )ds = 12 ds = 12a。
L
L4 3
L
上面的结论还可推广到第二型曲面积分,但第二型曲面积分的奇偶对称性定理与第一型积分及重积分的奇偶对称性定理
相反。
D1UD2
D3UD4
D
∫∫ 而在 D3∪D4 上, f (x, y) = sin ye−x2 −y2 是关于 y 的奇函数,所以 sin ye−x2−y2dxdy = 0 。
D3UD4
∫∫ ∫∫ 在 D1∪D2 上, f (x, y) = sin ye−x2 −y2 是关于 x 的偶函数,所以 sin ye−x2−y2 dxdy = 2 sin ye−x2−y2dxdy 。因此选 A。
x2+ y2≤1
x2 + y2≤1
(-1,1)
y
∫∫ ∫∫ ∫ ∫ 所以:原积分 = 5 y2dσ = 5 (x2 + y2)dσ = 5 2π dθ 1r3dr = 5π 。
D
2D
20
0
4

对称性在积分中的应用

对称性在积分中的应用

华北水利水电学院数学实践报告华北水利水电学院对称性在积分中的应用学院:环境与市政工程学院专业:建筑环境与设备工程班级:2010108成员:王永辉 201010804朱虹光 201010810余维召 201010811对称性在积分中的应用积分的计算是积分运用中的一个难点.在某些积分的计算过程中,若能利用对称性,则可以简化积分的计算过程.本文介绍了几种常见的对称性在积分计算过程中的几个结论及其应用,并通过实例讨论了利用积分区域的对称性及被积函数的奇偶性简化重积分,曲线积分,曲面积分的计算方法.另外,对于曲面积分的计算,本文还给出了利用积分曲面关于变量的轮换对称性简化曲面积分的计算,是曲面积分的计算更加便捷.积分的对称性包括重积分,曲线积分,曲面积分的对称性.在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果.下面我将从积分相关的定理和结论,再结合相关的实例进行具体的探讨.本文结合积分域关于平行于坐标轴的直线,平行于坐标面的平面,平行于坐标轴对角线的直线的对称性定义,以及相应对称区域上定理中的函数约定在该区域都连续或偏导数连续定义1: 设平面区域为D ,若点),(y x ),2(y x a D -⇔∈,则D 关于直线a x =对称,对称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ⇔)2,(y b x -),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然当0=a ,0=b 对D 关于y ,x 轴对称)定义2: 设平面区域为D ,若点),(y x D ∈⇔),(a x a y --,则D 关于a x y +=对称,称点),(y x 与),(a x a y --是关于a x y +=的对称点.若点),(y x D ∈⇔),(x a y a --D ∈,则D 关于直线z y ±=对称) 1、 二重积分的对称性定理定理1:设有界闭区域12D D D =,1D 与2D 关于y 或x 轴对称.设函数),(y x f 在有界闭区域D 上连续,那么(ⅰ)若),(y x f 是关于y (或x )的奇函数,则(,)Dif x y d σ⎰⎰0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则Df(x,y)d σ⎰⎰=2(,)Dif x y d σ⎰⎰1(=i ,)2注释:设函数),(y x f 在有界闭区域D 上连续(ⅰ)若D 关于y 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD x y x f d y x f y x f d y x f !),(),(2),(,0),(为偶函数关于变量,如果关于变量为奇函数如果σσ其中1D 是D 的右半部分:1D =}0|),{(≥∈x D y x(ii )若D 关于x 轴对称,则⎰⎰⎰⎰⎪⎩⎪⎨⎧=DD y y x f d y x f y x f d y x f 2),(),(2),(,0),(为偶函数关于变量,如果关于变量为奇函数如果σσ其中2D 是D 的上半部分:2D =}0|),{(≥∈y D y x定理2:设有界闭区域D 关于x 轴和y 轴均对称,函数),(y x f 在D 上连续且),(y x f 关x 和y 均为偶函数,则⎰⎰⎰⎰=DD d y x f d y x f 3),(4),(σσ其中3D 是D 的第一象限的部分:3D =}0,0|),{(≥≥∈y x D y x 定理3:则设有界闭区域D 关于原点对称,函数),(y x f 在D 上连续,则⎰⎰⎰⎰⎰⎰⎪⎩⎪⎨⎧=--=-=--=DD D y x f y x f d y x f d y x f y x f y x f d y x f 12),(),(,),(2),(2),(),(,0),(如果如果σσσ其中1D =}0|),{(≥∈x D y x ,2D =}0|),{(≥∈y D y x 例1:计算⎰⎰Dxydxdy ,其中D 由下列双纽线围成:(1) )(2)(22222y x y x -=+ (2)xy y x 2)(222=+解:(1)由于)(2)(22222y x y x -=+围成的区域关于x 轴y 轴均对称,而被积函数xy 关于x (或y 轴)为奇函数则有⎰⎰Dxydxdy 0=(2)由)(2)(22222y x y x -=+围成的区域对称于原点,而被积函数xy 是关于x ,y 的偶函数则有⎰⎰Dxydxdy =2⎰⎰1D xydxdy由极坐标知θθsin ,cos r y r x ==,代入xy y x 2)(222=+得θ2sin =r 且由xy 0>,知02sin 212>θr则20πθ≤≤于是⎰⎰Dxydxdy 61cos 2sin 220sin 03=⎰⎰dr r d θθθπθ定理4:设有界闭区域D 关于x y =对称, 函数),(y x f 在D 上连续,则Df(x,y)d σ⎰⎰=(,)Df y x d σ⎰⎰例2:设函数f(x)在]1,0[上的正值连续函数 证明:()()1()()()2Daf x bf y dxdy a b f x f y +=++⎰⎰,其中b a,为常数,1}y x,0|y){(x,D ≤≤=证明:∵积分区域D 关于x y =对称∴(,)(,)DDf x y d f y x d σσ=⎰⎰⎰⎰设()()()()Daf x bf y I dxdy f x f y +=+⎰⎰由函数关于两个变量()()()()Daf x bf y I dxdy f x f y +=+⎰⎰,以上两式相,得2()DI a b dxdy a b =+=+⎰⎰,从而1()2I a b =+一般地,有以下定理:定理5:设有界闭区域12D D D =,1D 与2D 关于直线0:=++c by ax L 对称, 函数),(y x f 在D 上连续,那么:(ⅰ)若),(y x f 是关于直线L 的奇函数,则(,)Df x y d σ⎰⎰0=(ⅱ)若),(y x f 是关于直线L 的偶函数,则(,)Df x y d σ=⎰⎰2(,)Dif x y d σ⎰⎰1(=i ,)22、三重积分的对称性定理定理6:设空间有界闭区域12Ω=ΩΩ,1Ω与2Ω关于xoy 坐标面对称,函数),,(z y x f 在Ω上连续,那么:(ⅰ)若),,(z y x f 是关于z 的奇函数,则(,,)f x y z dv Ω⎰⎰⎰=0(ⅱ)若),,(z y x f 是关于z 的偶函数,则:(,,)f x y z dv Ω⎰⎰⎰=2⎰⎰⎰Ω1),,(dv z y x f同时,若Ω关于yox 坐标面对称,),,(z y x f 关于奇函数或偶函数;或者若Ω关于xoz 坐标面对称),,(z y x f 关于y 为奇函数或偶函数,同样也有类似结论.例7:求下列曲面所界的均匀物体的重心坐标222x y z a b c++,c z =解: 若令cos ,sin ,x ar y br z z θθ===,则质量为203zcc abcM ab dz d rdr ππθ==⎰⎰⎰设重心坐标为0x ,0y ,o z 由对称性知000==y x ,而o z =22033..44z cc abc cdz d rdr abc ππθπ=⎰⎰⎰于是,重心为点(0,0,34c ) ※曲线积分的对称性1、第一型曲线积分的对称性定理定理7:设平面内光滑曲线12L L L =+,1L 与2L 关于x (或y )轴对称,函数),(y x f 在L 上连续,那么:(ⅰ)若),(y x f 是关于y (或x )的奇函数,则(,)f x y ds ⎰0=(ⅱ)若),(y x f 是关于y (或x )的偶函数,则(,)f x y ds ⎰=2(,)if x y ds ⎰1(i =,)2注:设平面分段光滑曲线L 关于y 轴对称,则10,(,)(,)(,),(,)LL f x y f x y ds f x y ds f x y x ⎧⎪=⎨⎪⎩⎰⎰如果关于变量x 为奇函数2如果关于变量为偶函数其中1L 是L 的右半段:1L =}0|),{(≥∈x D y x定理8:设平面内光滑曲线12L L L =+,1L 与2L 关于x 轴对称且方向相反,函数),(y x p 在L 上连续,那么:(ⅰ)若),(y x p 是关于x 的偶函数,则(,)p x y dx ⎰0=(ⅱ)若),(y x p 是关于y 的奇函数,则(,)2(,)ip x y dx p x y dx =⎰⎰1(i =,)2例4:求曲线积分[]22()cos(2)sin(2)xy ce xy dx xy dy -++⎰,其中c 是单位圆周221x y +=,方向为逆时针方向解: ∵曲线积分c 可分为上,下两个对称的部分,在对称点),(y x 与),(y x -上, 函数22()cos(2)xy e xy dx -+大小相同,但投影元素dx 在上半圆为负,下半圆为正∴22()cos(2)xy e xy dx -+在对称的两个半圆上大小相等,符号相反故22()cos(2)xy ce xy dx -+⎰0=类似可知22()sin(2)xy ce xy dy -+⎰0=因此[]22()cos(2)sin(2)xy ce xy dx xy dy -++⎰0=定理9:设L 是xoy 平面上关于直线a x =对称的一条曲线弧 (ⅰ)若),(y x f =),2(y x a f --,则(,)Lf x y ds ⎰0=(ⅱ)若),(y x f =),2(y x a f -,则(,)Lf x y ds ⎰=21(,)L f x y ds ⎰})|),{((1a x L y x L ≤∈=例5:计算3(2)LI y y x ds =+-⎰,其中L 是曲线22(2)4x y -+=所围成的回路解: ∵L 关于轴及直线2=x 对称∴3(2)(2)2LLLI y y ds x ds ds =+--+⎰⎰⎰设),(y x f =32y y + 则),(y x f =),(y x f -设 ),(y x g =2-x则),2(y x f --=2-x =),(y x f 即200I ++=lds ⎰=8π2、第二类曲线积分的对称性定理定理1:对于第二类曲线积分还需考虑投影元素的符号.当积分方向与坐标正方向之间的夹角小于2π时,投影元素为正,否则为负.就(,)p x y dx ⎰而言,考察(,)p x y dx 在对称点上的符号定理2:若积分曲线T 关于x ,y ,z 具轮换对称性,则(,,)(,,)(,,)tttp x y z dz p y z x dy p z x y dx ==⎰⎰⎰=13 (,,)(,,)(,,)tp x y z dz p y z x dy p z x y dx ++⎰ 定理3:设L 是xoy 平面上关于a x =对称的一条光滑曲线弧,12L L L =+,任意),(y x ∈L ,有),2(y x a -∈2L ,且1L ,2L 在y 轴投影方向相反,则(ⅰ)若θ),(y x =-θ),2(y x a -,则(,)Lx y dy θ⎰0=(ⅱ)若θ),(y x =θ),2(y x a -,则(,)L x y dy θ⎰=2(,)Lx y dy θ⎰定理3中,若1L ,2L 在x 轴投影方向相同,其他条件不变,则有 (ⅰ)若p ),(y x =-p ),2(y x a -,则(,)Lp x y dx ⎰0=(ⅱ)若θ),(y x =θ),2(y x a -,则(,)Lp x y dx ⎰=21(,)L p x y dx ⎰例:计算I =|2|(2)(1)LLx x y dx -+--⎰⎰,其中抛物线2(2)x -上从)1,1(A 到)1,3(B 的一段弧解:I =|2|(2)(1)LLx x y dx -+--⎰⎰=12I I +因为关于2=x 对称θ),4(y x =|2|-x θ),(y x由定理3有)1)(2(),4(---=-y x y x p =),(y x p -所以2I =0,即12I I I =+0=※曲面积分的对称性定义1:若∀)(),,(321N n R D x x x x p n n n ∈⊂∈⋅⋅⋅⋅⋅有),,(1211111-+⋯⋯i x x x x x x p n)2,1(n i D n ⋯=∈成立,则称n D 关于),,(321n x x x x p ⋅⋅⋅⋅⋅具有轮换对称性.定义2:若函数),,(321n x x x x F ⋅⋅⋅⋅⋅),,(321n x x x x F ⋅⋅⋅⋅⋅≡)2,1(n i X ⋅⋅⋅⋅⋅⋅=,则称函数),,(321n x x x x F ⋅⋅⋅⋅⋅关于函数n x x x x ⋅⋅⋅⋅⋅321,,具有轮换对称性. 1、第一类曲面积分对称性定理定理1:若积分曲面S 可以分成对称的两部分12S S S =+,在对称点上被积函数的绝对值相等{即光滑曲面S 关于xoy (或yoz ,或zox )坐标面对称},则有(ⅰ)(,,)sf x y z ds ⎰⎰0=,在对称点上),,(z y x f 取相反的符号{即),,(z y x f 关于z(或x ,或y )的奇函数}(ⅱ)(,,)sf x y z ds ⎰⎰=2(,,)sf x y z ds ⎰⎰,在对称点上),,(z y x f 取相同的符号{即),,(z y x f 为关于z (或x ,或y )的偶函数}推论1:若光滑曲面S 可以分成对称的两部分12S S S =+,且关于原点对称, 则(ⅰ)(,,)sf x y z ds ⎰⎰0=,为关于z (或x ,或y )的奇函数(ⅱ)(,,)sf x y z ds ⎰⎰=81(,,)s f x y z ds ⎰⎰,),,(z y x f 为关于z (或x ,或y )的偶函数例1:计算下列面积的曲面积分,()x y z ds ∑++⎰⎰,其中∑为球面2222x y z a ++=上z h ≥)0(a h <<的部分解: 利用对称性知xds yds ∑∑=⎰⎰⎰⎰0=设xy D ={|),(y x 2222x y a h +≤-} 则()x y z ds ∑++⎰⎰=zds ∑⎰⎰=⎰⎰=aDxydxdy ⎰⎰=22()a a h π-例2:计算曲面积分x ∑⎰⎰,其中2222:x y z a ∑++=解: 令22221:x y z a ∑++=,0,0,0x a y a z a ≤≤≤≤≤≤ 则 2221:,0,0D x y a x a y a +≤≤≤≤≤ds ==∑关于原点对称,解被积函数),,(z y x f =x 为关于),,(z y x 的偶函数由推论1.1x ∑⎰⎰=8x ∑⎰⎰=a881D x dsdy ⎰⎰⎰⎰=189cos 8D d r a θθdr r d a a⎰⎰=209cos 8πθθ=a810117!!7.108!!264a a ππ= 定理2:若积分曲面∑关于x ,y ,z 具有轮换对称性,则:(,,)(,,)(,,)f x y z ds f y z x ds f z x y ds ∑∑∑==⎰⎰⎰⎰⎰⎰1(,,)(,,)(,,)3f x y z ds f y z x ds f z x y ds ∑∑∑=++⎰⎰⎰⎰⎰⎰ 例3:计算曲面积分2z ds ∑⎰⎰,其中s 是球面2222x y z a ++=解:如果按照常规方法来解,计算量比较大,如果利用对称函数的特性,非常简捷∵球面2222x y z a ++=关于x ,y ,z 具有对称性∴222x ds y ds z ds ∑∑∑==⎰⎰⎰⎰⎰⎰∴2z ds ∑⎰⎰=2221()3x y z ds ∑++⎰⎰ =21133a ds ds ∑∑=⎰⎰⎰⎰ 22214.433a a a ππ== 2、第二类曲面积分的对称性定理利用对称性计算第二类曲面积分同样需要注意投影元素的符号.现以曲面积分(,,)sf x y z ds ⎰⎰为例来讨论.当曲面指定侧上动点的法线方向与z 轴正向成锐角时,面积元素ds 在xoy 面上的投影dxdy 为正减钝角时为负.一般地,有如下定理:定理1:若积分曲面S 可以分成对称的两部分12S S S =+,在对称点上|f|的值相等,则有(ⅰ)1(,,)s f x y z dxdy ⎰⎰0=,在对称点上fdxdy 取相反的符号(ⅱ)1(,,)s f x y z dxdy ⎰⎰=21(,,)s f x y z dxdy ⎰⎰,在对称点上fdxdy 的符号相同,对于积分1(,,)s f x y z dydz ⎰⎰,1(,,)s f x y z dzdx ⎰⎰也有类似的结论定理2:若积分曲面∑关于x ,y ,z 具有轮换对称性,则:(,,)(,,)(,,)p x y z dydz p y z x dzdx p z x y dxdy ∑∑∑==⎰⎰⎰⎰⎰⎰=1(,,)(,,)(,,)3p x y z dydz p y z x dzdx p z x y dxdy ∑++⎰⎰ 例3:计算sxdydz ydxdy zdxdy ++⎰⎰,其中S 是球面2222x y z R ++=的外侧解: ∵球面2222x y z R ++=关于x ,y ,z 具有对称性∴sssxdydz ydxdz zdxdy ==⎰⎰⎰⎰⎰⎰先计算sxdydz ⎰⎰为此应分别考虑前半球面(记为1S )及后半球面(记为2S )上的曲面部分1S的方程为x =它在oyz 平面上的投影域y D 为圆域222y z R +≤,因此,若用1w S 表示前半球面的外侧则有:1S w Dyxdydz σ=⎰⎰=230023R d r R πθπ=⎰⎰ 对于在后半球面2S 上的曲面积分,由于2S的方程为:x =后外侧,故关于后半球面外侧(记为2w S )的曲面积分为:2S w xdydz =⎰⎰Dy σ=323R π 因此S xdydz =⎰⎰31243S w S wxdyxz xdydz R π+=⎰⎰⎰⎰ 3S Sxdydz ydxdz zdxdy xdyxz ++=⎰⎰⎰⎰ 334343R R ππ=⋅= ※小结应用对称性计算积分时应注意以下几点:1.必须兼顾被积函数和积分区域两个方面,只有当两个方面面都具有某种对称性是才能利用,如果只有积分区域具有某种对称性,这时根据具体情况,我们可以把被积函数经过恒等变形使之具有某种对称性,在考虑利用上述结论2.对第二类曲线积分和第二类曲面积分,在利用对称性时,尚需考虑积分路 线的方向和曲面的侧,确定投影元素的符号,需慎重3.有些问题利用轮换对称性可得到简便的解答对于重积分,曲线积分,曲面积分等定理的研究,是积分学运用的一个难点.本 文在探讨相关定理的同时,特别是巧妙的运用其对称性的特点,通过具体实例对积分运用的几个重要的定理进行了一些列研究,发现积分区域与被积函数二者均具对称性时,运用上述对称性定理可以极大地简化计算过程,尤其对于第二类曲线积分和第二类曲面积分来说,应用此方法能够 方向和曲面侧的讨论,简化了计算的过程,给积分的运算带来了便捷,.在以后的学习中,只要我们能把对称性这个重要的特点结合在实际中,相信一定会达到了事倍功半的效果.。

积分区域对称的二重积分

积分区域对称的二重积分

积分区域对称的二重积分在数学中,积分是一种重要的工具,用于计算曲线、曲面、体积等几何量。

其中,二重积分是一种常见的积分形式,用于计算平面区域内的某个函数在该区域上的积分值。

而积分区域对称性是二重积分中一个重要的性质,它可以大大简化计算过程。

具体来说,如果一个积分区域在某个对称变换下不变,那么该区域的积分值也具有对称性。

例如,如果一个平面区域关于x轴对称,那么该区域的积分值在x轴上也具有对称性。

这意味着,如果我们将该区域沿着x轴对称,那么积分值不会改变。

对于一个积分区域对称的二重积分,我们可以利用对称性来简化计算。

具体来说,我们可以将该区域分成若干个对称部分,然后只计算其中一个部分的积分值,最后将其乘以对称部分的个数即可得到整个区域的积分值。

例如,考虑一个关于y轴对称的平面区域,其边界由y=x^2和y=4组成。

我们可以将该区域分成两个对称部分,即左侧和右侧。

由于该区域关于y轴对称,因此左侧和右侧的积分值相等。

因此,我们只需要计算左侧部分的积分值,然后将其乘以2即可得到整个区域的积分值。

具体来说,我们可以将左侧部分表示为{(x,y)|-2≤x≤0,0≤y≤x^2},然后计算其积分值。

根据二重积分的定义,该积分值可以表示为∬Df(x,y)dxdy,其中D表示积分区域,f(x,y)表示被积函数。

在本例中,f(x,y)=y,因此我们可以将积分值表示为∫-2^0∫0^x^2ydydx。

通过计算,我们可以得到该积分值为-32/15。

最后,我们将该积分值乘以2,即可得到整个区域的积分值为-64/15。

由于该区域对称,因此我们可以通过这种方法简化计算,从而更加高效地求解二重积分。

重积分利用对称性和换元法简化计算归纳

重积分利用对称性和换元法简化计算归纳
3
{(������, ������) ∈ ������: ������ ≥ 0},即������3 为������在上半平面的那一部分区域.
四、 设������关于������ = ������ 对称:
1. 若������(������, ������) = −������(������, ������),则������ = 0. 2. 若������(������, ������) = ������(������, ������),则������ = 2 ∬ ������(������, ������)������������,其中������4 = {(������, ������) ∈ ������: ������ ≥ ������},即������4 为 ������
1
{(x, y) ∈ D: x ≥ 0},即D1 为������中位于������轴右边的那一部分区域. 3. 若������ 关于������没有奇偶性,则������ = ∬������ [������(������, ������) + ������(−������, ������)]������������,其中������1 = {(������, ������) ∈
������������ ������������ ������������ | ������������ ������������
(2) 在������′上雅可比行列式������(������, ������) = ������(������,������) = |������������ ������������
1
������: ������ ≥ 0},即D1 为������中位于y轴右边的那一部分区域.(这是因为任意一个函数������(������)都 可以表示成“奇函数+偶函数”的形式,即������(������) =

积分对称性定理

积分对称性定理

关于积分对称性定理1、定积分:设 f ( x) 在 a,a 上连续,则2、 二重积分:若函数f(x,y)在平面闭区域D 上连续,则(1) 如果积分区域D 关于x 轴对称,f(x,y)为y 的奇(或偶)函数, 即 f(x, y) f(x, y)(或 f(x, y) f (x, y)),则二重积分0,f x,y 为y 的奇函数f x, y dxdy2 f x, y dxdy, f x,y 为y 的偶函数DD 1其中:D i 为D 满足y 0上半平面区域。

(2) 如果积分区域D 关于y 轴对称,f(x,y)为x 的奇(或偶)函数, 即 f x, y f x, y (或 f x, y f x, y ),则二重积分0, f x, y 为x 的奇函数,fx,ydxdy 2 f x,ydxdy, f x, y 为)的偶函数.DD 2其中:D 2为D 满足x 0的右半平面区域。

(3) 如果积分区域D 关于原点对称,f(x,y)为x,y 的奇(或偶)函a -ax dx0,a2 f x dx,0 x 为X 的奇函数, X 为X 的偶数,即卩f ( x, y) f (x,y)(或 f ( x, y) f(x,y))则二重积分0, f x,y为x,y的奇函数f x,ydx:y2 f xydxy,f x,y 为Xy的偶函数DD2其中:D1为D在y 0上半平面的部分区域。

(4)如果积分区域D关于直线y x对称,则二重积分f x, ydxdy f y,x dxdy .(二重积分的轮换对称性)D D(5)如果积分区域D关于直线y x对称,则有0, 当f( y, x) f(x,y)时f(x,y)dxdy 2 f(x,y)dxdy 当仁y, x) f(x,y)时D D利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D对称及被积函数fx,y具有奇偶性两个特性。

3、三重积分:(1)若f X, y,z为闭区域上的连续函数,空间有界闭区域关于xoy坐标面对称,1为位于xoy坐标面上侧z 0的部分区域,贝卩有0, f x, y, z为z的奇函数f儿y,zcXdydz 2 f x,y,zdxdydz, f x,y,z 为z的偶函数1注:f (x, y,z)是z的奇函数:f(x, y z) f (x,y,z)f (x, y,z)是z的偶函数:f(x,y z) f(x, y,z)同样,对于空间闭区域关于xoz, yoz坐标面对称也有类似的性质。

三重积分的对称性总结

三重积分的对称性总结

三重积分的对称性总结三重积分是多元函数积分的一种,它在数学和物理领域中有着广泛的应用。

在进行三重积分的计算时,我们经常会遇到对称性的问题。

对称性在数学中起着非常重要的作用,它可以帮助我们简化计算过程,提高计算效率。

因此,对于三重积分的对称性,我们需要进行总结和归纳,以便在实际问题中更好地应用。

首先,我们来看三重积分的轮换对称性。

对于三元函数f(x, y, z),如果它在变量x、y、z之间是对称的,即f(x, y, z) = f(y, z, x) = f(z, x, y),那么在计算三重积分时,我们可以利用轮换对称性来简化计算。

例如,当我们计算∫∫∫f(x, y,z)dxdydz时,可以先对x进行积分,然后对y和z进行轮换积分的顺序,这样可以减少计算的复杂度。

其次,三重积分的球面对称性也是非常重要的。

当我们在三维空间中进行积分时,如果函数f(x, y, z)在球面上是对称的,即f(x, y, z) = f(-x, -y, -z),那么我们可以利用球面对称性来简化计算。

在球面坐标系下,球面对称性可以帮助我们将积分区域进行简化,从而减少计算的复杂度。

另外,三重积分的柱面对称性也是我们需要考虑的问题。

当函数f(x, y, z)在柱面上是对称的,即f(x, y, z) = f(x, -y, -z),我们可以利用柱面对称性来简化计算。

在柱面坐标系下,柱面对称性可以帮助我们将积分区域进行简化,从而减少计算的复杂度。

总的来说,三重积分的对称性是我们在实际计算中需要重点考虑的问题。

通过对对称性的总结和归纳,我们可以更好地应用对称性来简化计算,提高计算效率。

在实际问题中,我们需要根据具体的情况来判断何种对称性可以应用,从而更好地解决问题。

综上所述,三重积分的对称性是一个非常重要的问题,它在实际计算中起着至关重要的作用。

通过对对称性的总结和归纳,我们可以更好地应用对称性来简化计算,提高计算效率。

希望本文对读者能有所帮助,谢谢!。

关于重积分对称性的结论

关于重积分对称性的结论

关于重积分对称性的结论重积分是数学中的重要分支之一,主要用于描述空间中的各种物理量和现象。

对于重积分来说,对称性是一个非常重要的概念,可以帮助我们更好地理解重积分的性质和应用。

下面我们将从不同角度探讨重积分对称性的结论。

一、平面对称性对于平面上的图形,如果它对某一条直线对称,那么它的任何一条平行线上的函数值相等,即函数在这一条平行线上的积分相等。

具体地说,如果图形关于直线x=a对称,那么就有如下性质:$$\int_{y=a}f(x,y)\text{d}y=\int_{y=a}f(x,-y)\text{d}y$$这个式子表明,对于平面上的函数f(x,y),如果它关于直线x=a对称,那么它在直线y=a处的积分值相等。

同样地,如果f(x,y)关于直线y=b对称,那么它在直线x=b处的积分值也相等。

显然,这个结论对于重积分的计算具有一定的帮助,可以减少计算量,提高计算效率。

二、空间对称性这个结论表明,对于空间区域f(x,y,z),如果它关于平面z=a对称,那么它在平面z=-a处对应的积分值相等。

这个结论对于许多物理问题具有重要的意义,例如电场、磁场、重力场等。

三、轮换对称性除了平面对称性和空间对称性之外,还存在轮换对称性。

轮换对称性是指对于n维空间中的一个图形或者物体,如果它可以通过n维空间中的某些旋转操作而得到自身,那么就具有轮换对称性。

常见的轮换对称性包括正方形的旋转对称性、圆球的球面对称性等等。

对于具有轮换对称性的图形,它们在不同位置的积分值具有相同的性质,因此可以大大简化积分的计算。

四、柯西定理柯西定理是重积分对称性的一个重要推论,它是高等数学中非常著名的一个公式,可以用于计算复变函数的积分。

基本思想是利用重积分的对称性,将一个区域沿一条或者多条封闭曲线分成若干部分,通过对各个部分的积分求和得到整个区域的积分值。

总之,重积分对称性是重要的数学概念,能够帮助我们更好地理解重积分的性质和应用。

在求解具体问题时,我们可以根据题目中给出的对称性来选择合适的求解方法,提高计算的效率和准确性。

二重积分的对称性

二重积分的对称性


dx
2a 0 dx
b
0.
二重积分的轮换对称性:
积分区域 D 关于 x 轴对称,D1 是 D 中对应于 y ≥0 的部分,则:
(1) 若被积函数 f ( x , y ) 关于 y y 是偶函数 是偶函数,即
f ( x , y ) f ( x , y ).

f ( x , y ) d
e e 1 .
因此,
xy d 2 xy d 20 dy 0
D D1
2
2
2
xy 2dx

2 2 y (4 0
y 2 )dy
64 . 15
103 页 2(3)
y
y 1 x
( 3)

x y e d , D : x y 1. D
1
y 1 x
e
D
x y
D
bห้องสมุดไป่ตู้
y2 ( x )
f ( x , y )dy
证 (2)积分区域如图:
y
a x b, D: y1 ( x ) y y2 ( x ).
由积分区域 D 关于 x 轴对称性
y y2 ( x )
a
o
D1
bx
y y1 ( x )
y1 ( x ) y2 ( x ).
f ( x , y ) d a dx y1 ( x )
d
×
2 e
D1
x y
d
1
y x 1
o D1 1
1
x
y x 1
103 页 2(3)
y
y 1 x
( 3)

关于重积分对称性的结论

关于重积分对称性的结论

考虑如何正确利用二重积分中的被积函数的奇偶性和积分区域的对称性来简化二重积分的计算,主要结论如下:一般设函数(,)f x y 在闭区域D 上连续,则(,)DI f x y d σ=⎰⎰存在。

1.若D 关于y 轴对称,而对任意的(,)x y D ∈,那么(1)当(,)f x y 在D 上为x 的奇函数,即(,)(,)f x y f x y -=-时,有0I =;(2)当(,)f x y 在D 上为x 的偶函数,即(,)(,)f x y f x y -=时,则有12(,)D I f x y d σ=⎰⎰,其中1{()|(),0}D x,y x,y D x =∈≥或者1{()|0}D D x,y x =≥。

2. 若D 关于x 轴对称,而对任意的(,)x y D ∈,那么(1)当(,)f x y 在D 上为y 的奇函数,即(,)(,)f x y f x y -=-时,有0I =;(2)当(,)f x y 在D 上为y 的偶函数,即(,)(,)f x y f x y -=时,则有22(,)D I f x y d σ=⎰⎰,其中2{()|(),0}D x,y x,y D y =∈≥或者2{()|0}D D x,y y =≥。

3. 若D 关于原点对称,而对任意的(,)x y D ∈,那么(1)当(,)f x y 在D 上为关于x 和y 的奇函数,即(,)(,)f x y f x y --=-时,有0I =;(2)当(,)f x y 在D 上为关于x 和y 的偶函数,即(,)(,)f x y f x y --=时,则我们就有122(,)2(,)D D I f x y d f x y d σσ==⎰⎰⎰⎰,其中1D 、2D 同上述1与2中所述。

4. 若D 关于直线y x =对称,那么我们有(,)()D Df x y d f y,x d σσ=⎰⎰⎰⎰,称此特性为积分区域D 关于积分变量具有对称性。

考虑如何利用对称性简化三重积分的计算,直接给出相应的主要结论如下:设函数(,,)f x y z 在空间闭区域Ω上连续,则(,,)I f x y z dv Ω=⎰⎰⎰存在。

二重积分的对称性计算

二重积分的对称性计算

f ( x, y)d 0.
D
(5)若D对称于原点,且f ( x, y) f ( x, y)则
f ( x, y)d 2 f ( x, y)d .
D
D1
其中D1是D位于y轴右侧(或左侧)的部分。
(6)若D对称于原点,且f ( x, y) f ( x, y)则
f ( x, y)d 0.
D
(7)若D对称于直线y x,则 f ( x, y)d f ( y, x)d .
D1
D2
(或 f ( x, y)d f ( y, x)d ). 对称于直线y x
D
D
的两部分区域记为D1和D2.
这种情况常称为积分区域D具有关于积分变量的对称性 或称为二重积分的轮换对称性(即若积分区域或被积函 数的表达式中,将其变量x, y互换,其表达式不变)。利用对称 Nhomakorabea简化计算
在利用对称性计算重积分时,不仅积分区域 对称,而且被积函数也要对称(即对x(或y)是 奇或偶函数),两者缺一都不能使用。
(1)若D对称于x轴,且f ( x, y) f ( x, y)则
f ( x, y)d 2 f ( x, y)d .
D
D1
其中D1是D位于x轴上方的部分。
(2)若D对称于x轴,且f ( x, y) f ( x, y)则
f ( x, y)d 0.
D
(3)若D对称于y轴,且f ( x, y) f ( x, y)则
f ( x, y)d 2 f ( x, y)d .
D
D1
其中D1是D位于y轴右侧的部分。
(4)若D对称于y轴,且f ( x, y) f ( x, y)则

二重积分■f(x,y)dxdy的对称性计算技巧

二重积分■f(x,y)dxdy的对称性计算技巧

二重积分■f(x,y)dxdy的对称性计算技巧
二重积分是数学中一个重要的概念,它是指在一个二维平面上,将一个函数分解为两个独立的变量,通过不断积分来计算出函数的定义域。

在计算二重积分时,有一种特殊的技巧,即对称性计算技巧。

对称性计算技巧是指,当二重积分的定义域是对称的,即它的边界是对称的,我们可以利用它的对称性来提高计算效率。

例如,假设f(x,y)dxdy的定义域是以原点为中心,垂直于x轴和y轴的正方形,此时,我们可以利用它的对称性,将它分解为四个独立的定义域,分别是以原点为中心,垂直于x轴和y轴的两个半正方形,然后将它们的积分值相加,就可以得到f(x,y)dxdy的积分值。

因此,对称性计算技巧是一种有效的技巧,可以帮助我们提高计算效率,节省时间。

然而,我们也必须注意,这种技巧只适用于定义域是对称的情况,如果定义域不是对称的,我们就不能使用这种技巧。

因此,在使用对称性计算技巧时,我们需要仔细分析定义域,以确保它是对称的。

重积分积分区域的对称性

重积分积分区域的对称性

重积分积分区域的对称性公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-情形一:积分区域D 关于坐标轴对称定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则 1)当(,)(,)f x y f x y -=-(即(,)f x y 是关于y 的奇函数)时,有 (,)0Df x y dxdy =⎰⎰ .2)当(,)(,)f x y f x y -=(即(,)f x y 是关于y 的偶函数)时,有1(,)2(,)DD f x y dxdy f x y dxdy =⎰⎰⎰⎰ .其中1D 是由x 轴分割D 所得到的一半区域。

例5 计算3()DI xy y dxdy =+⎰⎰,其中D 为由22y x =与2x =围成的区域。

解:如图所示,积分区域D 关于x 轴对称,且3(,)()(,)f x y xy y f x y -=-+=- 有即(,)f x y 是关于y 的奇函数,由定理13()0Df xy y dxdy +=⎰⎰.类似地,有:定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则 其中2D 是由y 轴分割D 所得到的一半区域。

例6 计算2,DI x ydxdy =⎰⎰其中D 为由22;-220y x y x y =+=+=及所围。

解:如图所示,D 关于y 轴对称,并且2(,)(,)f x y x y f x y -==,即被积分函数是关于x 轴的偶函数,由对称性定理结论有:11222220022215x DD I x ydxdy x ydxdy dx x ydxdy -+====⎰⎰⎰⎰⎰⎰.定理6 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴和y 轴都对称,则 (1)当(,)(,)f x y f x y -=-或(,)(,)f x y f x y -=-时,有(,)0Df x y dxdy =⎰⎰.(2)当(,)(,)(,)f x y f x y f x y -=-=时,有 其中1D 为由x 轴和y 轴分割D 所的到的1/4区域。

积分的对称性

积分的对称性

积分的对称性在数学中,积分的对称性是一个重要的概念。

它指的是积分的值在某些变换下不变。

这些变换可以是几何变换,如旋转、平移、反射等,也可以是数学变换,如代数变换和微积分操作。

积分的对称性不仅有理论价值,而且在实际应用中也具有广泛的意义。

一、平移对称性平移对称性是指在平移变换下,积分的值不变。

具体地说,设$f(x)$是一个定义在实数轴上的函数,$a$是任意实数,则有:$$\int_{-\infty}^{\infty}f(x)dx=\int_{-\infty}^{\infty}f(x+a)dx$$这个结论表明,在积分中,我们可以通过平移变换来改变积分的区间,而不影响积分的值。

这在积分的计算中经常会用到。

二、旋转对称性旋转对称性是指在旋转变换下,积分的值不变。

具体地说,设$f(x,y)$是一个定义在平面上的函数,$a\in[0,2\pi]$是任意实数,则有:$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)dxdy=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x'\cos a-y'\sin a,x'\sin a+y'\cos a)dxdy$$这个结论表明,在积分中,我们可以通过旋转变换来改变积分的求和顺序,而不改变积分的值。

这在二重积分和三重积分中经常会用到。

三、对称函数的积分为零对称函数的积分为零是指对于一个偶函数或奇函数,其积分在对称轴之间的区间上等于零。

例如,对于一个偶函数$f(x)$,其对称轴是$y$轴,则有:$$\int_{-a}^af(x)dx=2\int_0^af(x)dx=0$$同样地,对于一个奇函数$f(x)$,其对称轴是原点,则有:$$\int_{-a}^af(x)dx=0$$这个结论表明,在计算偶函数和奇函数的积分时,我们可以将积分区间缩小到对称轴的一侧,从而简化计算。

重积分的对称性与轮换对称性

重积分的对称性与轮换对称性

Dxy
1
3 xdx
1-( x 1-x-y) dy=1
0
0
8
•xd其 y中 d z是 由 抛 物
面 zx2y2和 球 面 x2y2z22所 围 成 的 空 间 闭 区 域 .
(xyz)2
x 2 y 2 z 2 2 (x y z)x
其 中 x y 是 y 关 于 z y 的 奇 函 数 ,
且 关 于 z面 o 对 称 x , (x yy)d z v0 ,
积分区域D关于坐标区域内任意直线对称
的计算,我们总是将其化为二次定积分来完成的,而在定积分的计算中,若遇到对称区间,则有下面非常简洁的结论:
的计算,我们总是将其化为二次定积分来完成的,而在定积分的计算中,若遇到对称区间,则有下面非常简洁的结论:
解:因为积分曲面D关于x,y,z具有轮换对称性,所以
被积函数
x' (uvtan)cos
uav 1a2
y' (uvtan)sinvsec
auv
1a2
解:由于积分区域D关于直线x=1对称,
当f(x)在区间上为连续的奇函数时,
积分区域D关于坐标区域内任意直线对称
这个结论,常可简化计算奇、偶函数在对称于原点的区间上的定积分.
积分区域D关于坐标区域内任意直线对称
其次,将坐标系x'o'y'沿逆时针方向旋转,旋转角为 (tan =a)使x'轴与直线y=ax+b重合.得新坐标系uo'v 解:由于积分区域D关于直线x=1对称, 解:由于积分区域D关于直线x=1对称, 其中D是平面x=0,y=0,z=0,x+y+z=1所围成的空间区域的整个边界曲面的外侧 当f(x)在区间上为连续的奇函数时,

积分对称性定理

积分对称性定理

曲面 1取前侧,在 yoz后半空间的部分曲面 2 取后侧,则
P x, y, z dxdy
0,
P x, y, z 关于x是偶函数,
2 P x, y, z dydz, P x, y, z 关于x是奇函数.
1
(3)设分片光滑的曲面 关于 xoz 坐标面对称,且 在 xoz 右半空间的部分 曲面 1取右侧,在 xoz 左半空间的部分曲面 2 取左侧,则
f x, y ds
L
0,
f x, y 为x的奇函数,
2 f x, y ds, f x, y 为x的偶函数. L1
(2)若分段光滑平面曲线 L 关于 x 轴对称,且 f x, y 在 L 上为连续函
数, L1 为 L 位于 x 轴上侧的弧段,则
欢迎下载
3

f x, y ds
L
0,
f x, y 为y的奇函数,
4

位于 xoy上侧 z 0的部分曲面,则
f x, y, z dS
0,
f x, y, z 为z的奇函数,
2 f x, y, z dS, f x, y, z 为z的偶函数.
1
曲面关于 yoz, xoz坐标平面对称也有类似的性质。
7、第二类曲面积分的对称性
设函数 P( x, y, z) , Q (x, y, z) , R( x, y, z) 在分片光滑的曲面 上连续,

f x, y dxdy
D
0,
f x, y 为x的奇函数 ,
2 f x, y dxdy, f x, y 为x的偶函数 .
D2
其中: D2 为 D 满足 x 0 的右半平面区域。 (3) 如果积分区域 D 关于原点对称, f ( x, y) 为 x, y 的奇(或偶)函

二重积分的对称性定理

二重积分的对称性定理

1 / 1下载文档可编辑 能用此性质。

的奇偶性两者兼得时才的对称性与被积函数注意:仅当积分域对称,则关于直线如果轴的上半平面部分。

在为其中,为偶函数,即关于,为奇函数,即关于,分
的奇偶函数,则二重积同时为关于原点对称,如果积分域轴的右半平面部分。

在为其中,为偶函数,即关于,为奇函数,即关于,分
的奇偶函数,则二重积为轴对称,关于如果积分域轴的上半平面部分。

在为其中,为偶函数,即关于,为奇函数,即关于,分
的奇偶函数,则二重积为轴对称,关于如果积分域二重积分的对称性定理
),(),(),(.4),(),(,),(2),(),(,0),(,),(.3),(),(),(2),(),(0),(),(.2),(),(),(2),(),(0),(),(.1112211y x f D d x y f d y x f x y D x D D y x f y x f y x f d y x f y x f y x f y x f d y x f y x y x f D y D D y x f y x f x f d y x f y x f y x f x f d y x f x y x f y D x D D y x f y x f y f d y x f y x f y x f y f d y x f y y x f x D D D
D D D D D D ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰===--⎪⎩
⎪⎨⎧-=--==-⎪⎩
⎪⎨⎧-=-==-⎪⎩
⎪⎨⎧-=-=***σ
σσσσσσσ
(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)。

二重积分和三重积分的对称性及奇偶性

二重积分和三重积分的对称性及奇偶性

三、小结
柱面坐标 三重积分换元法 球面坐标
(1) 柱面坐标的体积元素
dxdydz = rdrdθdz
(2) 球面坐标的体积元素 dxdydz = r 2 sin ϕdrdθdϕ (3) 对称性简化运算
思考题
若Ω为R 3中关于 xy面对称的有界闭区域, f ( x , y , z )为 Ω上的连续函数 , 则
0, f ( x , − y ) = − f ( x , y ) = 2 f ( x , y )dxdy , f ( x ,− y ) = f ( x , y ), ∫∫ D2 其中 D2 = {( x , y ) | ( x , y ) ∈ D, y ≥ 0}).
(3) 如果 D 关于原点对称, 则
∫∫ f ( x , y )dxdy
D
0, f ( x , − y ) = − f ( x , y ) = 2 f ( x , y )dxdy , f ( x ,− y ) = f ( x , y ), ∫∫ D3 其中D3 是 D 被过原点的直线切割的一半.
0, f ( x , − y ) = − f ( x , y ) = 2 f ( x , y )dxdy , f ( x ,− y ) = f ( x , y ), ∫∫ D3 其中D3 是 D 被过原点的直线切割的一半.
0, f ( x , − y ) = − f ( x , y ) = 2 f ( x , y )dxdy , f ( x ,− y ) = f ( x , y ), ∫∫ D3 其中D3 是 D 被过原点的直线切割的一半. (4) 如果 D 关于 y = x 对称,则
∫∫ f ( x , y )dxdy = ∫∫ f ( y, x )dxdy.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考虑如何正确利用二重积分中的被积函数的奇偶性和积分区域的对称性来简化二重积分的计 算,主要结论如下: 一般设函数 f ( x, y ) 在闭区域 D 上连续,则 I
f ( x, y)d 存在。
D
1.若 D 关于 y 轴对称,而对任意的 ( x, y) D ,那么 (1)当 f ( x, y ) 在 D 上为 x 的奇函数,即 f ( x, y) f ( x, y) 时,有 I 0 ; (2)当 f ( x, y ) 在 D 上为 x 的偶函数,即 f ( x, y) f ( x, y) 时,则有 I 2
f ( x, y )d ,其中
D2
D2 {( x, y ) | ( x, y ) D, y 0} 或者 D2 D {( x, y ) | y 0} 。
3. 若 D 关于原点对称,而对任意的 ( x, y) D ,那么 (1)当 f ( x, y ) 在 D 上为关于 x 和 y 的奇函数,即 f ( x, y) f ( x, y) 时,有 I 0 ; (2)当 f ( x, y ) 在 D 上为关于 x 和 y 的偶函数,即 f ( x, y) f ( x, y) 时,则我们就有
D D
考虑如何利用对称性简化三重积分的计算,直接给出相应的主要结论如下: 设函数 f ( x, y, z) 在空间闭区域 上连续,则 I
f ( x, y, z)dv 存在。

1.(1)若 f ( x, y, z) 在 上是关于变量 x 的奇函数,且 关于 yoz 面对称,则有 I 0 ; (2)若 f ( x, y, z) 在 上是关于变量 x 的偶函数,且 关于 yoz 面对称,则有:
I 2 f ( x, y )d 2 f ( x, y )d ,其中 D1 、 D2 同上述 1 与 2 中所述。
D1 D2
4. 若 D 关于直线 y x 对称,那么我们有 关于积分变量具有对称性。
f ( x, y)d f ( y,x)d ,称此特性为积分区域 D
f ( x, y )d ,其中
D1
D1 {( x, y ) | ( x, y ) D, x 0} 或者 D1 D {( x, y ) | x 0} 。
2. 若 D 关于 x 轴对称,而对任意的 ( x, y) D ,那么 (1)当 f ( x, y ) 在 D 上为 y 的奇函数,即 f ( x, y) f ( x, y) 时,有 I 0 ; (2)当 f ( x, y ) 在 D 上为 y 的偶函数,即 f ( x, y) f ( x, y) 时,则有 I 2
I 2 yoz 面前方或后方的部分。
1
注意:在上述结论中,将 x 换成 y 或 z ,相应的坐标面换成 zox 或 xoy ,结论均成立。 2. 若 关于 z 轴对称,则有:
, 在上f 为关于x和y 的奇函数,即f (- x,- y , z )= f ( x, y , z ) ; 0 f ( x, y , z )dv 2 f ( x, y , z )dv,在上f 为关于x和y 的偶函数,即f (- x,- y , z )=f ( x, y , z ) , 2 其中 2 为 在平面 x y 或 x y 一侧部分的区域。
注意:上述结论中 z 轴换为 x 轴或 y 轴亦有相似的结论。 3. 若 关于原点对称,则有:
, 在上f 为关于x, y, z 的奇函数,即f (- x,- y,- z )= f ( x, y, z ) ; 0 f ( x, y , z )dv 2 f ( x, y , z )dv,在上f 为关于x, y, z 的偶函数,即f (- x,- y,- z )=f ( x, y, z ) 3 其中 3 是 中关于原点对称的两部分区域中的任意一部分。
相关文档
最新文档