有理数的混合运算2教案

合集下载

有理数的加减混合运算教案

有理数的加减混合运算教案

有理数的加减混合运算教案有理数的加减混合运算教案第二课时教学目标(一)教学知识点灵活运用有理数运算法则进行加减混合运算.(二)能力训练要求1.熟练掌握有理数的加减混合运算及其运算顺序.2.能根据具体问题,适当运用运算律简化运算.(三)情感与价值观要求利用游戏来训练有理数的加减混合运算,以增加学习的趣味性.教学重点利用加法运算律简化运算.教学难点利用加法运算律简化运算教学方法分组讨论法.教具准备学生每人准备白卡片、红卡片各10张,并且在卡片上写上有理数(一张卡片上写一个).投影片一张例2(记作§2.6.2 A)教学过程Ⅰ.创设情景问题,引入课题[师]上节课,我们共同研究了有理数的加减混合运算,知道运用有理数减法的法则可将有理数的加减混合运算转化为加法运算,然后再化成省略加号及括号的和的形式,最后进行计算.下面我们做一游戏来进一步熟练有理数的加减混合运算,大家把准备好的卡片都拿出来.游戏规则如下:(1)四人一组,每组选一学生当代表,在同组的80张卡片(每人20张)中,抽取4张,如果抽到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.(2)每组四人都计算,然后讨论结果的正确与否,再看一看谁用的计算方法最简便,然后让其交流经验.游戏规则知道了吗?[生]知道了.[师]好,那我们现在进行游戏.(学生抽卡片,计算、讨论,互相交流经验,然后再进行两次)[师]好,游戏做完了吗?[生]做完了.Ⅱ.讲授新课[师]好,大家都能踊跃参加,表现真棒.下面我们共同总结进行有理数加减混合运算中所获得的经验.[生甲]所有的减法运算都可以转化为加法运算.[师]对.但有理数的加法法则、减法法则一定要掌握理解了.还有吗?[生乙]减法变成加法后,就可以利用运算律来简化运算.[师]对,减法变为加法后,算式就成为几个正数或负数的和的形式,计算时就可以用加法的交换律和结合律,进行简便运算.加法运算还可以写成省略括号及前面加号的形式.那这时利用运算律简化运算时应注意什么?[生]应注意在交换加数的位置时,要连同相应加数前的符号一起交换.[师]对,在利用交换律时,一定要注意连同数的符号一起交换位置.如:-13+7-2可以写成-13-2+7,则不能写成-13+2-7.下面,我们主要通过例题训练来熟悉运算律在有理数加减混合运算中的作用.[例1]计算:-9.2-(-7.4)+951+(-652)+(-4)+|-3| 分析:本题根据有理数加减互为逆运算的关系把减法统一成加法,省略加号后,运用加法运算律,简化运算,求出结果.其中互为相反数的两数先结合;能凑成整数的各数先结合.另外,同号各数先结合;同分母或易通分的各数先结合.解:-9.2-(-7.4)+951+(-652)+(-4)+|-3|=-9.2+7.4+951+(-652)+(-4)+|-3|(这步也可省略) =-9.2+7.4+951-652-4+3 =(-9.5+951)+(7.4-652)-4+3 =0+1-4+3=0[师]这个例题理解了吧!下面看例2,大家能不能自己动手做一做?(出示投影片§2.6.1 A)(三个学生上黑板板书)(纠正学生错误)说明:(1)为使运算简便,可适当运用加法的结合律与交换律.在交换加数的位置时,要连同前面的符号一起交换. (2)注意同分母分数相加,互为相反数相加,凑成整数的数相加,这样计算简便. (3)当一个算式中既有小数又有分数时,一般要统一,具体是统一成分数还是小数,要看哪一种计算简便.(4)注意:(-1432+1232)+(11152-11152)不能写成(-1432+1232)(11152-11152),两个小括号之间的“+”不能省略或丢掉. Ⅲ.课堂练习课本P 61随堂练习及习题2.8 31.计算: (1)1+71-(-73); (2)2.5-4+(-21) (3)-31+21+41 (4)21+(-32)-(-54)+(-21) 解:(1)原式=1+7117417371==+; (2)2.5-4+(-21) =2.5+(-21)-4 =2-4=-2 (3)-31+21+41 =1254161=+ (4)原式=[21+(-21)]+(-32)+54=0-32+54=1523.一辆货车从超市出发,向东走了3千米到达小彬家,继续走了1.5千米到达了小颖家,然后向西走了9.5千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?解:(1)如图(2)小明家距小彬家的距离为:|-5|+|+3|=5+3=8(千米)(3)|3|+|1.5|+|-9.5|+|5|=3+1.5+9.5+5=19(千米)因此,货车一共行驶了19千米.Ⅳ.课时小结(1)通过本节课的研究讨论,我们进一步学习了有理数的加减混合运算,并能根据具体问题适当运用加法交换律和结合律简化运算.(2)在运用交换律交换加数的位置时,一定要把加数前面的符号一起进行交换.Ⅴ.课后作业(一)课本P61习题2.8 1、2(二)1.预习内容:P62~632.预习提纲:(1)查阅资料了解最高水位、最低水位、平均水位、警戒水位都代表什么?(2)水位如何变化.Ⅵ.活动与探究1.移卡片1×2的硬纸卡片,上面写有数字和文字,像图A那样,把它们排在一个5×7的长方框内,其中有3个1×1的空格,怎样利用空格移动卡片,使其成为图B的形式.过程:让学生认真看图,他仔细分析,手、脑并用,来培养学生的观察能力,动手能力.结果:摆放成功.2.计算:11+192+1993+19994+199995+1999996+19999997+199999998.过程:让学生观察、比较、探讨,找出规律后,再进行计算.原式=(20-9)+(200-8)+(2000-7)+(20000-6)+(200000-5)+(2000000-4)+(20000000-3)+(200000000-2)=222222220-(9+8+7+6+5+4+3+2)=222222220-44=222222176结果:222222176例1 把(-20)+(+3)-(+5)-(-7)写成省略括号的和的形式,并把它读出来.课堂练习(1)把下面各式写成省略括号的和的形式:①10+(+4)+(-6)-(-5);②(-8)-(+4)+(-7)-(+9).(2)说出式子8-7+4-6两种读法.2.加法运算律的运用既然是代数和,当然可以运用有理数加法运算律:a+b=b+a,(a+b)+c=a+(b+c).例2 计算-20+3-5+7.解:-20+3-5+7=-20-5+3+7=-25+10=-15.注意这里既交换又结合,交换时应连同数字前的符号一起交换.课堂练习(1)计算:①-1+2-3-4+5;②(-8)-(+4)+(-6)-(-1).(2)用较为简便的方法计算下列各题:(三)、小结1.有理数的加减法可统一成加法.2.因为有理数加减法可统一成加法,所以在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换.2.例1:把()()()()7++--写成省略括号的和的形式,并把它读出来,并计算.20-35-+解:()()()()7+++---3520-=()()()7+++--3520+=-20+3-5+7=-20-5+3+7=-25+10=-15(一)创设情境,复习引入师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:(-20)+(+3);(-5)-(+7)师:(1)读出这两个算式.(2)“+、-”读作什么?是哪种符号?“+、-”又读作什么?是什么符号?学生活动:口答教师提出的问题.师继续提问:(1)这两个题目运算结果是多少?(2)(-5)-(+7)这题你根据什么运算法则计算的?学生活动:口答以上两题(教师订正).师小结:减法往往通过转化成加法后来运算.【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.师:把两个算式(-20)+(+3)与((-5)-(+7)之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算.(板书课题:有理数的加减混合运算教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成.(二)探索新知,讲授新课1.讲评(-20)+(+3)-(-5)-(+7)(1)省略括号和的形式师:看到这个题你想怎样做?学生活动:自己在练习本上计算.教师针对学生所做的方法区别优劣.【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算……这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法.师:我们对此类题目经常采用先把减法转化为加法,这时就成了-20,+3,+5,-7的和,加号通常可以省略,括号也可以省略,即:原式=(-20)+(+3)+(+5)+(-7)=-20+3+5-7.提出问题:虽然加号、括号省略了,但-20+3+5-7仍表示-20,+3,+5,-7的和,所以这个算式可以读成……学生活动:先自己练习尝试用两种读法读,口答(教师纠正).【教法说明】教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力.。

《有理数的混合运算》教案(15篇)

《有理数的混合运算》教案(15篇)

《有理数的混合运算》教案《有理数的混合运算》教案(15篇)作为一名老师,就有可能用到教案,借助教案可以有效提升自己的教学能力。

那么教案应该怎么写才合适呢?下面是小编精心整理的《有理数的混合运算》教案,欢迎阅读与收藏。

《有理数的混合运算》教案1教学目标1.进一步掌握有理数的运算法则和运算律;2.使学生能够熟练地按有理数运算顺序进行混合运算;3.注意培养学生的运算能力.教学重点和难点重点:有理数的混合运算.难点:准确地掌握有理数的运算顺序和运算中的符号问题.课堂教学过程设计一、从学生原有认知结构提出问题1.计算(五分钟练习):(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;(13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;(24)3.4×104÷(-5).2.说一说我们学过的有理数的运算律:加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c);乘法交换律:ab=ba;乘法结合律:(ab)c=a(bc);乘法分配律:a(b+c)=ab+ac.二、讲授新课前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.审题:(1)运算顺序如何?(2)符号如何?说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同.《有理数的混合运算》教案2【学习目标】1.掌握有理数的混合运算法则,并能熟练地进行有理数的加、减、乘、除、乘方的混合运算;2.通过计算过程的反思,获得解决问题的经验,体会在解决问题的过程中与他人合作的重要性;【学习方法】自主探究与合作交流相结合。

最新版初中数学教案《有理数的加减混合运算2》精品教案(2022年创作)

最新版初中数学教案《有理数的加减混合运算2》精品教案(2022年创作)

有理数的减法第2课时有理数的加减混合运算一、导学1.课题导入:前面我们学习了有理数的加法和减法运算,本节课我们来学习有理数的加减混合运算.2.三维目标:〔1〕知识与技能使学生理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.〔2〕过程与方法通过加减法的相互转化,培养学生的应变能力,口头表达能力及计算能力.〔3〕情感态度敢于面对数学活动中的困难,并获得独立克服困难和运用知识解决问题的成功体验.3.学习重、难点:重点:加减法统一成加法.难点:有理数加法的省略写法和读法.4.自学指导:〔1〕自学内容:教材第23页至24页内容.〔2〕自学时间:6分钟.〔3〕自学要求:认真阅读课本,然后在组内交流讨论有理数加减法的运算步骤及本卷须知.〔4〕自学参考提纲:①例5中,根据有理数减法法那么,把原算式统一为加法运算.②例5的计算过程中,使用了哪些运算律?加法交换律,加法结合律.③引入相反数后,加减混合运算可以统一为加法运算,用字母表示是a+b-c=a+b+(-c).④有理数的加法运算可以省略算式中的括号和加号,你会做吗?简化后的算式你会读吗?会计算吗?用下面算式检验一下:计算:(-8)+(-5)+(+3)+(+6)原式=-8-5+3+6=-4⑤完成课本上的探究,可得结论:数轴上两点A、B的距离AB与这两点所对应的数a、b的关系为:AB=a-b.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:〔1〕明了学情:深入学生之中,了解学生学习情况,特别是探究的结果是否正确,存在哪些问题.〔2〕差异指导:对学习困难的学生予以帮助.2.生助生:学生通过相互交流探讨解决一些自学中的疑难问题.四、强化1.解题要领:〔1〕引入相反数后,加减运算可以统一成加法运算.〔2〕遇到一个式子既有加法,又有减法,第一步应该先把减法转化为加法,然后再运用加法法那么运算,并要注意运用运算律进行简便运算.2.数轴上两点之间的距离等于这两个点所对应的数的差的绝对值.3.练习:〔1〕1-4+3-0.5;〔2〕-2.4+3.5-4.6+3.5;〔3〕〔-7〕-〔+5〕+〔-4〕-〔-10〕;〔4〕34-72+〔-16〕-〔-23〕-1答案:〔1〕-0.5;〔2〕0;〔3〕-6;〔4〕-134.五、评价1.学生的自我评价〔围绕三维目标〕:对自己的自学、交流的收获和缺乏进行自我评价.2.教师对学生的评价:〔1〕表现性评价:对本节课同学们自主学习和合作交流的积极表现和缺乏之处进行总结.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本课时主要通过学生习题的训练,稳固有理数加法、减法及加减混合运算的法那么与技能,教师要认真归纳学生在进行有理数加法、减法运算时常犯的错误,以便在本节课教学时针对性指导.训练以学生自主解答为主,教师根据学生所做的解法,及时指出最具代表性的方法给学生指明解题方向.一、根底稳固〔70分〕1.〔20分〕把18-〔+33〕+〔-21〕-〔-42〕写成省略括号的和是〔B〕A.18+(-33)+(-21)+42B.18-33-21+42D.18+33-21-422.〔20分〕算式-3-5不能读作〔C〕B.-3与-5的和3.〔30分〕计算.〔1〕-4.2+5.7-8.4+10 〔2〕-14+56+23-12〔3〕12-(-18)+(-7)-15 〔4〕4.7-(-8.9)-7.5+(-6) (6)-23+0-516+-456+-913解:〔1〕3.1;(2)34;(3)8;(4)0.1;(5)-634;(6)0.二、综合应用〔20分〕4.〔10分〕计算:-1+2-3+4-5+6-7+8-9+…+ 2021-2021.解:原式=(-1+2)+(-3+4)+…+(-2021+2021)-2021=1+1+…+1-2021=-1014.5.〔10分〕一天早晨的气温是-7 ℃,中午上升了11 ℃,半夜又下降了9 ℃,半夜的气温是多少摄氏度?解:半夜的气温为-7+11-9=-5(℃).三、拓展延伸〔10分〕6.〔10分〕一种股票第一天的最高价比开盘价高0.3元,最低价比开盘价低0.2元;第二天的最高价比开盘价高0.2元,最低价比开盘价低0.1元;第三天的最高价等于开盘价,最低价比开盘价低0.13元,计算每天的最高价与最低价的差,以及这些差的平均值.平均值:〔0.5+0.3+0.13〕÷答:第一天最高价与最低价的差为0.5元,第二天最高价与最低价的差为0.3元,第三天最高价与最低价的差为0.13元;差的平均值是0.31元.第1课时教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.重点、难点重点:1.对三角形有关概念的了解,能用符号语言表示三条形.2.能从图中识别三角形.3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学过程一、看一看1.投影:图形见章前P1图.教师表达: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形〞这个课题来源于实际生活之中.学生活动:(1)交流在日常生活中所看到的三角形.(2)选派代表说明三角形的存在于我们的生活之中.2.板书:在黑板上老师画出以下几个图形.(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)(2)观察发现,以上的图,哪些是三角形?(3)描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形〞.教师提问:上述对三角形的描述中你认为有几个局部要引起重视.学生答复:一直线上的三条线段.b.首尾顺次相接.二、读一读指导学生阅读课本P2,第一局部至思考,一段课文,并答复以下问题:(1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点?(3)三角形ABC用符号表示________.(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三、做一做画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?同学们在画图计算的过程中,展开议论,并指定答复以上问题:(1)小虫从B出发沿三角形的边爬到C有如下几条路线.a.从B→Cb.从B→A→C(2)从B沿边BC到C的路线长为BC的长.从B沿边BA到A,从A沿边C到C的路线长为BA+AC.经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的.四、议一议1.在同一个三角形中,任意两边之和与第三边有什么关系?2.在同一个三角形中,任意两边之差与第三边有什么关系?3.三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?三角形的任意两边之和大于第三边;任意两边之差小于第三边.五、想一想三角形按边分可以,分成几类?六、练一练有三根木棒长分别为3cm、6cm和2cm,用这些木棒能否围成一个三角形?分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和9cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.错导:∵3cm+6cm>2cm∴用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以答复这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.七、忆一忆今天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.通过实践了解三角形的三边不等关系.八、作业课本P8习题11.2第1、2、6、7题.。

《有理数的混合运算》教案 (公开课)2022年 (2)

《有理数的混合运算》教案 (公开课)2022年 (2)

2.11有理数的混合运算教学目标(一)教学知识点1.有理数的混合运算.2.在运算中合理使用运算律简化运算.(二)能力训练要求1.掌握有理数混合运算的法那么,并能熟练地进行有理数加、减、乘、除、乘方的混合运算(以三步为主).2.在运算过程中能合理使用运算律简化运算.(三)情感与价值观要求1.通过学生做题,来提高学生的灵活解题的能力.2.通过师生共同的活动,来培养学生的应用意识,训练学生的思维.教学重点如何按有理数的运算顺序,正确而合理地进行有理数混合运算.教学难点如何按有理数的运算顺序,正确而合理地进行有理数混合运算.教学方法引导法引导学生按有理数的运算顺序进行有理数的混合运算,从而提高学生灵活解题的能力.教具准备投影片四张第一张:运算顺序(记作§2.11 A)第二张:例1、例2(记作§2.11 B)第三张:练习(记作§2.11 C)第四张:做一做(记作§2.11 D)教学过程Ⅰ.复习回忆,引入课题[师]前面我们学习了有理数的加、减、乘、除、乘方的意义及其运算.现在我们来回忆:有理数的加法运算法那么是什么?减法运算法那么是什么?它们的结果各叫什么?[生]有理数的加法法那么是:同号两数相加,取相同的符号,并把绝对值相加.异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.一个数同0相加,仍得这个数.有理数加法运算的结果叫和.有理数减法法那么是:减去一个数等于加上这个数的相反数.有理数减法运算的结果叫差.[师]很好,大家来一起背一下这两个运算法那么.(学生齐声背)[师]好.我们再来回忆有理数的乘法运算法那么是什么?有理数的除法运算法那么是什么?它们的结果各叫什么?[生]有理数的乘法法那么是:两数相乘,同号得正、异号得负,绝对值相乘.任何数与0相乘,积仍为0.有理数乘法的运算结果叫积.有理数除法法那么是:法那么1:两个有理数相除,同号得正,异号得负,并把绝对值相除.0除以任何非0的数都得0.法那么2:除以一个数等于乘以这个数的倒数.有理数除法运算的结果叫商.[师]很好.除法有两个法那么,在运算时要灵活运用.根据减法法那么,减法可以转化为加法,以便利用运算律来简化运算.同样,在一些除法运算中,也可以利用除法法那么二把除法运算转化为乘法运算,这样就可以利用运算律简化运算.好,下面我们一起来背一下有理数的乘法法那么和除法法那么. (学生背)[师]我们除学习了有理数的加、减、乘、除运算外,还学习了有理数的第五种运算:乘方.那什么叫乘方?用示意图能表示幂、底数、指数等概念和关系吗?[生]求n 个相同因数a 的积的运算叫做乘方.可以用示意图表示幂、底数、指数等概念和关系.示意图如下:[师]很好.在进行有理数运算时,有时利用运算律可以简化运算,那有理数的运算律有哪些?用式子如何表示?[生]有理数的运算律有:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律.用式子表示是: a +b =b +a ; (a +b )+c =a +(b +c ) a ·b =b ·a ; (a ·b )·c =a ·(b ·c ) a ·(b +c )=a ·b +a ·c .[师]答复得很好.在进行计算时适当运用这些运算律可以简化运算. 在小学我们学过四那么运算,那四那么运算顺序是什么? [生]先算乘除,后算加减;假设有括号,应先算括号内的. [师]很好,下面我们看一算式:3+22×(-51)=_____.在这个算式中,有加、有乘,还有乘方,那该如何计算呢?这节课我们就来研究有理数的混合运算.Ⅱ.讲授新课[师]在小学,已学过了加、减、乘、除四那么混合运算的运算顺序.同样,有理数的混合运算也有顺序问题.它与小学类似.有理数的混合运算顺序是:(出示投影片§2.11 A)[师生共析]有理数的混合运算顺序包括两层意思:如果有括号,应先算小括号内的,再算中括号,最后算大括号.如果没有括号,那么先算乘方,再算乘除,最后算加减,即加和减是第一级运算,乘和除是第二级运算,乘方是第三级运算.运算顺序的规定应是先算高级运算,再算低一级运算,同级运算在一起,按从左到右的运算顺序.好,知道了运算顺序后,我们看刚刚的那道题:3+22×(-51)这个题中,有乘方运算,那么应先算乘方,再算乘法,最后算加法.即:3+22×(-51)=3+4×(-51)=3+(-54)=511下面我们通过例题来熟悉有理数的混合运算的法那么:(出示投影片§2.11 B)分析:此题是含有乘、除和减法的混合运算,根据算式中的关系,运算时,第一步应先算除法,第二步算乘法,第三步算减法,最后得出结果.解:18-6÷(-2)×(-31)=18-(-3)×(-31)=18-1=17下面我们再看一题.(出示投影片§2.11 B)[师]大家能不能独立完成呢? [生]能.[师]好.现在开始计算.(由两位学生上黑板计算)[师]好,大家演算得都不错,在黑板上做题的这两位同学做得挺好.甲同学说说你的计算方法.[生甲]这个题是含有乘方、乘、加的混合运算,并且带有括号.根据算式的关系,第一步先算乘方和括号内的加法运算.第二步再算乘法,得出结果.解:(-3)2×[-32+(-95)]=9×(-911)=-11 [师]很好,有没有其他方法呢?乙同学说说吧.[生乙]这个题是含有乘方、乘法和加法的混合运算,根据算式关系,可将算式分为两段,“×〞号前边的局部为第一段,“×〞后边的局部为第二段.第一段是乘方,它的结果正好是第二段括号内两个分数的分母的最小公倍数,因此,我就想到运用乘法对加法的分配律进行计算,这样简化了运算.解:(-3)2×[-32+(-95)]=9×(-32)+9×(-95)=-6+(-5)=-11 [师]很好.大家来讨论一下,看看这个题的这两种方法,哪种较简便一些. [生]第二种方法较简便,因为第一种方法中要先计算分数的加法,这时需要通分,而第二种方法,在运用了分配律后,只需要计算整数的加法.[师]对,在运算时,有时可以利用运算律简化运算.所以,大家拿到一个题后,不要急于动笔计算.先考虑、分析题的类型,然后根据题型来选择适宜的计算方法.提高运算速度及准确性.下面我们通过做练习来进一步熟悉有理数混合运算的法那么.(出示投影片§2.11 C)(课本P 66随堂练习)解:(1)8+(-3)2×(-2)=8+9×(-2)=8+(-18)=-10 (2)100÷(-2)2-(-2)÷(-32)=100÷4-(-2)×(-23)=25-3=22.[师]从练习知道大家根本掌握了有理数的混合运算的法那么.接下来,我们做一做:玩个游戏,看规那么(出示投影片§2.11 D)[师]大家讨论讨论,看看谁最先凑成24.[生甲]黑桃7,黑桃3,红桃3,梅花7可以这样凑成24:7×[3-(-3)÷7]=24.[生乙]由黑桃7,黑桃3,红桃7,红桃3,可以这样凑成24.7×[3+(-3)÷(-7)]=24.[师]很好,那第2小题呢?[生丙]由黑桃Q,红桃Q,梅花3,方块a可以由以下算式凑成24.12×3-(-12)×(-1)=24.[生丁]也可以这样凑成24.(-12)×[(-1)12-3]=24.[生戊]由黑桃a,方块2,黑桃2,黑桃3可以这样凑成24:(-2-3)2-1=24.[师]每位同学表现得都挺好.并且大家讨论的结果都很正确.老师真为有你们这样的学生而自豪.下面大家拿出准备好的扑克牌,与同伴来玩“24〞点游戏.Ⅲ.课堂练习课本P67习题2.152.与你的同伴玩“24〞点游戏.Ⅳ.课时小结本节主要学习了有理数加、减、乘、除、乘方的混合运算.进行有理数混合运算的关键是熟练掌握加、减、乘、除、乘方的运算法那么运算律及运算顺序.本节还通过玩游戏进一步加深理解了有理数混合运算的法那么,积累了运算技巧,提高了运算速度.Ⅴ.课后作业(一) 课本P67习题2.16 1.(二)1.预习内容:P80~822.预习提纲:(1)了解计算器的功能.(2)如何运用计算器进行有理数的加、减、乘、除、乘方的运算.3.每人准备一个计算器.Ⅵ.活动与探究1.用符号>、<、=填空:42+32_____2×4×3(-3)2+12_____2×(-3)×1(-2)2+(-2)2_____2×(-2)×(-2)通过观察、归纳,试猜想其一般结论.过程:先让学生计算、填空,然后通过观察、归纳、猜想、验证得出一般结论.结论:42+32>2×4×3(-3)2+12>2×(-3)×1(-2)2+(-2)2=2×(-2)×(-2)当a、b表示任一有理数时,a2+b2≥2×a×b2.十边形有多少条对角线?假设将十边形的对角线全部画出比较麻烦,我们可以通过边数较少的多边形的对角线寻找规律.观察下表:你发现规律了吗?过程:让学生充分观察表,从表可以看出对角线随多边形边数增加的规律:四边形的对角线是2条五边形的对角线是5条,即5=2+3六边形的对角线是9条,即9=2+3+4七边形的对角线是14条,即14=2+3+4+5八边形的对角线是20条,即20=2+3+4+5+6九边形的对角线是27条,即27=2+3+4+5+6+7十边形的对角线是35条,即35=2+3+4+5+6+7+8……n边形的对角线是:2+3+4+5+6+…+(n-2)=2)3(-nn(条).结果:十边形有35条对角线.n边形有:2+3+4+5+6+…+(n-2)=2)3(-nn)〗条对角线.平行四边形的性质总体说明〔1〕本节的主要内容包含平行四边形的性质。

1.12 有理数的混合运算 华师大版数学七年级上册教案

1.12 有理数的混合运算 华师大版数学七年级上册教案

第2章 有理数2.13 有理数的混合运算教学目标教学反思1.掌握有理数混合运算的法则及运算顺序,能够熟练地进行有理数的加、减、乘、除、乘方的混合运算.2.能灵活地应用运算顺序和运算律准确地进行计算.教学重难点重点:按有理数混合运算的运算顺序,正确地进行有理数的混合运算.难点:准确地掌握有理数的运算顺序及灵活地运用运算律进行混合运算.教学过程复习回顾1.有理数的运算方法我们学过哪几种?加、减、乘、除、乘方2.我们学过的这五种运算顺序是什么?从左到右的顺序有括号先算括号里面的,没有括号先算乘方,再算乘除,最后算加减.导入新课多媒体展示24点游戏的画面.游戏规则:从一副扑克牌(去掉大小王)中任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次),使得运算结果为24或-24.其中红色代表负数,黑色代表正数,J,Q,K分别表示11,12,13.问题1:怎样运用我们学习的有理数运算得到24呢?问题2:在游戏中需要运用有理数的加、减、乘、除、乘方等运算,若在一个算式里,将这些运算的两种或两种以上混合在一起,你想在游戏中尽快地胜出又该怎样准确地计算呢?这就是本节课我们要学习的内容.探究新知问题:下面的算式里有几种运算?引导学生思考回答(含有加、减、乘、除、乘方多种运算,称为有理数的混合运算).教师活动:引导学生总结有理数混合运算的法则.有理数的混合运算,按以下运算顺序进行:1.先算乘方,再算乘除,最后算加减.2.同级运算,按照从左到右的顺序进行.(也就是说在只有加减或只有乘除的同一级运算中,按式子的顺序从左到右依次计算)3.如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的.试一试:指出下列各题的运算顺序(1);(2);(3);(4);(5); (6);(7)-1-[1-(1-0.5×43)].以上各题中分别有哪些运算,应该先算什么?再算什么?最后算什么?(1)先算除法,再算乘法;(2)先算乘法,再算除法;(3)先除法,再乘法;(4)先除法、乘法,再加减;(5)先平方,再乘除,再减法;(6)先减法,再乘除;(7)先算立方,再乘法,再减法.思考:(1)与有什么不同?前者有括号先算括号里面的,后者先算乘除(2)与有什么不同?前者先算括号里的,后者按顺序运算例1 计算:分析:分清运算顺序,先算小括号内的减法,然后是同级运算,应从左到右顺序进行,分数的乘除运算,一般要把带分数化为假分数,除法转化为乘法.解:原式【注意】进行分数的运算时,一般要把带分数化为假分数,把除法化为乘法,把小数化为分数.教学反思例2计算:.解:原式…………(先算小括号内的减法)…………………………………(除法转化为乘法,并先确定符号).例3计算:.分析:本题中含有加、减、乘、除、乘方,应先算乘方,后算乘除,最后算加减.解:原式 ………………………(先算乘方)………………………(化除为乘)…………………………(确定积的符号)……………………………………(再做乘法).……………………………………………(最后算加减)例4 计算:.解法1:原式 ………(先算小括号内的乘、乘方)…………………………(先算小括号).解法2:原式.解法2是先去小括号,可以用相反数的意义讲,也可以说是运用了分配律,教学反思本题可以看作.例5 计算:.分析:先算括号内的加减,再算乘除,最后相加.或者把除法转化为乘法然后进行计算.解法1:原式.解法2:原式.解法2运用乘法的分配律,不必通分,计算简便.课堂练习1.下列计算错误的是( )A.[3×(-4)]2=122B.(-8)5=-85C.(-125)÷(-5)=(-5)2D.-9×10=-9102.计算(-8)×3÷(-2)2的结果是( )A.-6B.6C.-12D.123.计算:(-2)2+3×(-2)=____.4.计算下列各题:(1)(-1)100×5+(-2)4÷4;(2)|-4|+23+3×(-5);(3)××÷;(4)(-10)3+[(-4)2- (1-32)×2];教学反思教学反思(5)( -2)3+(-3)×[(-4)2+2]- (-3)2÷(-2).参考答案1.D 2.A 3.4.解:(1)原式=1×5+16÷4=5+4=9.(2)原式=4+8+(-15)=12+(-15)=-3.(3)原式=×=.(4)原式=-1000+[16-(1-9)×2]=-1000+(16+16)=-1000+32=-968.(5)原式=-8+(-3)×(16+2)-9÷(-2)=-8+(-3)×18-(-4.5)=-8-54+4.5=-57.5.课堂小结如何进行有理数的混合运算1.按照有理数混合运算的正确顺序进行:先算乘方,再算乘除,最后算加减;有括号,先算括号里面的数;同级运算,从左到右进行;2.准确利用有理数运算的法则和运算律简化计算.布置作业教材63页 练习 第1,2,3题教材65页 练习 第1,2题板书设计第2章 有理数2.13 有理数的混合运算有理数混合运算的顺序:1.先乘方,再乘除,最后加减.2.同级运算按从左到右的顺序运算.3.若有括号,先小括号,再中括号,最后大括号,依次计算.【注意】(1)带分数化为假分数(2)除法化为乘法例1例3例2 例4例5。

有理数的混合运算 优秀教案

有理数的混合运算 优秀教案

有理数的混合运算【教学目标】1.复习、巩固有理数的加、减、乘、除、乘方运算。

2.回忆以前所学的混合运算的顺序,对比有理数的混合运算顺序。

【教学重难点】重点:有理数的运算顺序及符号的确定。

难点:有理数的运算顺序及符号的确定。

【教学过程】一、知识回顾1.有理数的加、减运算可以统一为加法;有理数的除法可以转化为乘法,有理数的乘方是特殊的乘法运算。

所以有理数的加、减、乘、除、乘方运算的实质是有理数的加法与乘法运算。

2.在算式382(4)(75)?-+-⨯-+=中,有几种运算? 生:在上面的算式中,含有有理数的加、减、乘、除、乘方等多种运算。

3.小学数学中,怎样进行数的混合运算的?小学里,我们在进行含有加、减、乘、除的混合运算时,要按“先乘除,后加减”的顺序运算,算式中有括号时,先进行括号内的运算。

二、新知教学有理数的混合运算的运算顺序。

也就是说,在进行含有加、减、乘、除的混合运算时,应按照运算级别从高到低进行,因为乘方是比乘除高一级的运算,所以像这样的有理数的混合运算,有以下运算顺序:先乘方,再乘除,最后加减。

如果有括号,先进行括号内的运算。

对于同一级运算,应按顺序依次运算。

你会根据有理数的运算顺序计算上面的算式吗?解答:8-23÷(-4)×(-7+5)=8-23÷(-4)×(-2)=8-8÷(-4)×(-2)=8-(-2)×(-2)=8-4=4三、例题讲解例1 判断下列计算是否正确。

(1)3-3×110 =0×110 =0;(2)-120÷20×12 =-120÷10=-12;(3)9-4×(12)3=9-23=1; (4)(-3)²-4×(-2)=9+8=17. 解答:(1)错误,3-3×110 =3-310 =2710 ;(2)错误,-120÷20×12 =-6×12 =-3;(3)错误,9-4×(12 )3=9-4×18 =812 ;(4)正确。

《2.6有理数的加减混合运算》第二课时(教案)北师大版数学七年级上册

《2.6有理数的加减混合运算》第二课时(教案)北师大版数学七年级上册

第二章有理数及其运算··第二课时教案班级:课时:课型:一、学情分析在对本章的学习过程中,学生已经具备了一定的探究能力,能主动发现、探究一些数学活动.在上一课时学生已经掌握简单的加减混合运算,能应用加减混合运算解决一些简单问题,这为本课学习奠定了基础.二、教学目标1. 能将有理数的加减混合运算统一成加法.2. 能将加法运算写成省略括号及前面加号的形式.3. 能根据具体问题,适当运用运算律简化运算.三、重点难点【教学重点】将有理数的加减混合运算统一成加法及省略加号和括号.【教学难点】能根据具体情况,适当运用运算律简化运算.四、教学过程设计第一环节【复习旧知引入新课】1.有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)异号两数相加,绝对值相等时和为0 ;绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.(3)一个数同0 相加,仍得这个数.2.有理数的减法法则:减去一个数,等于加上这个数的相反数.3.计算:(1)(-12)+25 = 13 ;(2)17+(-21)= -4 ;(3)(-4)-16 = -20 ;(4)33-(-27)= 60 ;(5)(-37)-(-12)+(-13)+28 = -10 ;(6)(-12)+(-8)+(-6)+5 = -21 .设计意图:有理数的加减法法则是有理数加减混合运算的依据,本环节通过帮学生复习回顾,巩固学生基础,减小新课学习难度.第二环节【合作交流探索新知】一架飞机进行特技表演,起飞后的高度变化如下表:此时飞机比起飞点高了多少千米?教师提问:对于题中的“高度变化”,你是怎么理解的?你能通过列式计算此时飞机的高度吗?学生踊跃发言.教师展示PPT.关于这个问题,国国和粒粒有着不同的解法.国国的解法:粒粒的解法:-- 4.5+(-)+1.1+(-)-= 1.3+1.1+(-)--= 1(km). = 1(km).师:比较以上两种算法,你发现了什么?教师引导学生发现:4.5+(-)+1.1+(-)=--当左边省略加号和括号变成了右边的式子,因此--可以看作4.5、-3.2、1.1、-1.4 这 4 个数的和.师:有理数的加减混合运算可以统一成加法运算.如何将有理数加减法统一成加法呢?例如:(-13)-(-7)+(-8)-(+5)=(-13)+(+7)+(-8)+(-5)在和式中,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.即(-13)-(-7)+(-8)-(+5)= -13+7-8-5.师:有理数加减法统一成加法的依据是什么呢?学生思考后回答:有理数减法法则.师:-13+7-8-5按不同的意义有不同的读法.①按这个式子表示的意义来读:可读作“负13、正7、负8、负 5 的和”;②按算式来读:可读作“负13 加7 减8 减5”.--1.4 可以读作?选取一名学生代表回答:“正 4.5、负 3.2、正1.1、负1.4 的和”或“4.5 减3.2 加1.1 减1.4”.师:4.5+(-)+1.1+(-)还有其他计算方法吗?学生猜测是否可以用加法运算律进行简化运算?师生共同进行运算.4.5+(-)+1.1+(-)= 4.5+1.1+[(-)+(-)]= 5.6+(-)= 1.设计意图:本环节主要引导学生思考,通过对两种算法的比较,让学生体会到加减混合运算课统一成加法,理解利用运算律可以简化运算,为进一步学习有理数的加减混合运算做铺垫.第三环节【应用迁移巩固提高】例1.将下列式子写成省略括号和加号的形式,并用两种读法将它读出来.(1)(-12)-(+8)+(-6)-(-5);(2)(-13)-(-7)+(-21)-(+9)+(+32).例2.计算:(1)(-8)-(-15)+(-9)-(-12);(2)5.8432143++⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-; (3)()5.273165.12743--⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-; (4)⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛-341531; (5)()()10785612--+⎪⎭⎫ ⎝⎛---; (6)⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-813414215874.例3.下表是某年某市汽油价格的调整情况:注:正号表示比前一次上涨,负号表示比前一次下降.与上一年年底相比,11 月 9 日汽油价格是上升了还是下降了?变化了多少元?设计意图:通过例题教学使学生巩固解决有理数加减混合运算的方法,掌握有理数加减混合运算统一成加法的方法,进一步提高学生的运算能力.【答案】例1.解:(1)(-12)-(+8)+(-6)-(-5)=(-12)+(-8)+(-6)+(+5)= -12-8-6+5;读作负 12 减 8 减 6 加 5 或负 12,负 8,负 6,正 5 的和.(2)(-13)-(-7)+(-21)-(+9)+(+32)=(-13)+(+7) +(-21)+(-9)+(+32)= -13+7-21-9+32.读作负13 加 7 减 21 减 9 加 32 或负 13,正 7,负 21,负 9,正 32 的和.例2.解:(1)原式 =(-8)+15+(-9)+12= 15 +12+[(-8)+(-9)] = 27+(-17)= 10;(2)原式 =5.8432143+++⎪⎭⎫ ⎝⎛- =⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-5.8214343 =0+9=9;(3)原式 =5.273165.12743+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛- =()5.25.127316743++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛- =-20+15=-5;(4)原式 =()⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛-341531 =()153431-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛- =()1535-+⎪⎭⎫ ⎝⎛- =3216-;(5)原式 =10785612--+- =⎪⎭⎫ ⎝⎛-+--10756812 =2120+- =239-;(6)原式 =813414215874--+⎪⎭⎫ ⎝⎛- =813414215874----++--=()⎪⎭⎫ ⎝⎛--+-+--+-814121873454 =436-- =436-.例3.解:由题意得:-140+290+400+600-220+300-190+480 = 1520,所以与上一年年底相比,11 月 9 日汽油价格上升了,上升了 1520 元/吨.第四环节 【随堂练习 巩固新知】1.(2022秋•新乐市期末)把算式:(-5)-(-4)+(-7)-(+2)写成省略括号的形式,结果正确的是( )A .-5-4+7-2B .5+4-7-2C .-5+4-7-2D .-5+4+7-22.(2022秋•桥西区校级期中)下列式子可读作:“负 1,负 3,正 6,负 8的和”的是( )A .-1+(-3)+(+6)-(-8)B .-1-3+6-8C .-1-(-3)-(-6)-(-8)D .-1-(-3)-6-(-8)3.(2022秋•福田区校级月考)计算:()⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-++85443125.0=( ) A .415 B .4 C .853-D .-44.(2022秋•当涂县期末)8-(+11)-(-20)+(-19)写成省略加号的和的形式是 .5.(2022秋•潍城区期中)一只蜗牛从地面开始爬高为 6 米的墙,向上爬 3 米,然后向下滑 1 米,接着又向上爬 3 米,然后又向下滑1 米,则此时蜗牛离地面的距离为 米.设计意图:本环节为基础练习,让学生能熟练的进行加减混合运算统一成加法的写法,加强学生的运算技能.【答案】2.B3.B4.8-11+20-19.5.4.第五环节 【当堂检测 及时反馈】-32-23 中把省略的“+”号填上应得到( )A .1.17+32+23B .-1.17+(-32)+(-23)C .1.17+(-32)+(-23)-(+32)-(+23)2.(2022秋•点军区期中)a ,b ,c 为三个有理数,下列各式可写成a -b +c 的是( )A .a -(-b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )3.(2022秋•沙河市期末)为计算简便,把(-)-(-)-()+()+(-)写成省略加号的和的形式,并按要求交换加数的位置正确的是( )A .---3.5B .--3.5C .----3.5D .---0.5+3.54.(2022秋•金堂县校级月考)计算1+(-2)+3+(-4)+5+(-6)+…+19+(-20)得( )A .10B .-10C .20D .-20a = 41-,b = -2,c = 432-,那么|a |+|b |-|c |等于( )A .21-B .211C .21D .211-6.(2022秋•淅川县期中)某件商品原价 18 元,后来又跌 1.5 元,下午又涨价 0.3 元,则这一商品最终价格是( )A .0.3 元B .16.2 元C .16.8 元D .18 元7.(2022秋•海曙区期中)和式431121132+--中第 3 个加数是 ,该和式的运算结果是 .8.数学活动课上,王老师给同学们出了一道题,规定一种新运算“☆”,对于任意有理数a 和b ,有a ☆b = a -b +1,则[2☆(-3)]☆(-2)的值为 .9.计算:--|-2.32|+(-);(2)⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-+-21775.24335.0;(3)2134317329655-+--.10.(2022秋•槐荫区期中)上海世博会第一天(5 月 1 日)的进园人数为 20.3 万人,以后的 6 天里每天的进园数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数,(单位:万人)①5 月 2 日的进园人数是多少?② 5 月 1 日- 5 月 7 日这 7 天内的进园人数最多的是哪天?最少的是哪天?它们相差多少?③求出这 7 天进园的总人数.设计意图:通过本环节练习,巩固学生对新知识的掌握,同时进一步培养学生分析问题、解决问题的能力.【答案】1. C2.B3.A4.A5.7.311-,611. 8.9.---=(-)-()= 10-20= -10;(2)原式=21743243321++--=⎪⎭⎫⎝⎛--⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-43243321721=7-1=6;(3)原式 =2134317329655--++----=()⎪⎭⎫⎝⎛-+--+-+--2143326531795 =450- =45-.(万人),则 5 月 2 日进园人数为 21.5 万人;②根据题意得:这 7 天的人数分别为:20.3,21.5,13.1,14.5,8.2,10.9,14.8,则 5 月 2 日人数最多,5 日人数最少,-(万人);(万人),则这7 天进园总人数为103.3 万人.第六环节【拓展延伸能力提升】1.若|a|= 3,|b|= 1,|c|= 5,且|a+b|= a+b,|a+c|= -(a+c),求a-b+c的值.2.(1)有1,2,3,…,11,12 共12 个数字,请在每两个数字之间添上“+”或“-”,使它们的和为0;(2)若有1,2,3,…,2007,2008 共2008 个数字,请在每两个数字之间添上“+”或“-”,使它们的和为0;(3)根据(1)(2)的规律,试判断能否在1,2,3,…,2022,2022,共2022 个数字的每两个数字之间添上“+”或“-”,使它们的和为0?若能,请说明添法;若不能,请说明理由.设计意图:本环节为拔高练习,拓展学生的知识面,展现有梯度的教学理念.【答案】1.解:因为|a|= 3,|b|= 1,|c|= 5,且|a+b|= a+b,|a+c|= -(a+c),所以a = 3,b = ±1,c = -5,当a = 3,b = 1,c = -5 时,a-b+c = 3-1+(-5)= -3;当a = 3,b = -1,c = -5 时,a-b+c = 3-(-1)+(-5)= -1;综上所述,a-b+c的值为-3 或-1.2.解:(1)1-2+3-4+5-6-7+8-9+10-11+12 = 0;(2)1-2+3-4+...+1003-1004-1005+1006+ (2007)2008 = 0;(3)不能.因为 1 到2022 的总个数为奇数,每两个数字之间添上“+”或“-”,不能使它们的为和0.第七环节【总结反思知识内化】课堂小结:1.将有理数的加减混合运算统一成加法运算,依据是:有理数的减法法则.2.在把有理数的加减混合运算统一成加法运算的算式中,通常把各个加数的括号和它前面的加号省略不写,从而写成省略加号的和的形式.3. 运用加法交换律和结合律简化运算:(1)同号结合法;(2)凑整法;(3)相反数结合法;(4)同分母结合法;(5)同形结合法;(6)拆项法.设计意图:通过小结,使学生梳理本节课所学内容,把握本节课的核心——有理数的加减混合运算. 第八环节【布置作业夯实基础】。

有理数的加减混合运算(2)教案

有理数的加减混合运算(2)教案

北师大版数学七年级2.6有理数的加减混合运算(2)教学设计高度变化记作上升4.5千米+4.5千米下降3.2千米-3.2千米上升1.1千米+1.1千米下降1.4千米-1.4千米对于题中的“高度变化”,你是怎么理解的?你能通过列式计算此时飞机的高度吗?4.5 - 3.2 + 1.1 - 1.4 =?教师引导学生思考得出今天学生内容有理数的加减混合运算。

而引入有理数的加减混合运算。

为载体,继续学习有理数的加减混合运算,调动学生的积极性,成功引入了新课讲授新课2、出示课件想一想:教师引导学生观看课件4.5 - 3.2 + 1.1 - 1.4 =?方法一:4.5+(-3.2)+1.1+(-1.4)=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)方法二:4.5-3.2+1.1-1.4=4.5 + ( -3.2 ) + 1.1 + ( -1.4 )=1.3+1.1-1.4=2.4-1.4=1(千米)教师引导学生比较以上两种算法,你发现了什么?找出不同点和相同点。

相同点:都是从左向右计算;不同点:方法二是先把减法统一成加法,然后再从左向右计算。

教师引导学生进一步总结加减混合运算法则:有理数的加减混合运算可以统一成加法运算:议一议:4.5 + ( -3.2 ) + 1.1 + ( -1.4 )=4.5 + 1.1 + [ ( -3.2 ) + ( -1.4 ) ]学生自主观察、分析、对比、思考、总结,用通过两种方法解决有理数的混合运算得出有理数的混合运算法则,分组交流、汇报,然后教师加以矫正主要为了鼓励学生主动思考问题.通过通过对两种算法的比较,学生将体会加减法混合运算可以统一成加法,学生在学会混合运算运算顺序的前提下,理解利用运算律可以改变运算顺序,从而达到简化计算的目的.为进一步学习有理数的加减法混合运算做好铺垫。

通过例题教学使学生巩固解(加法的交换律和结合律)= 5.6 + ( -4.6 )= 1.教师追问学生你发现了什么?加减混合运算时可运用加法交换律和结合律简化运算(2)加减混合运算时可运用加法交换律和结合律简化运算.做一做:教师引导学生学习例题教师追问学生还有别的解法吗?进行有理数的加减混合运算可以省略到加数的括号和前面的加号进行运算。

七年级上册数学教案设计1.4.2第2课时有理数的加减乘除混合运算2

七年级上册数学教案设计1.4.2第2课时有理数的加减乘除混合运算2

1.4.2 有理数的除法第4课时有理数的加、减、乘、除混合运算教学目标:掌握有理数加、减、乘、除运算的法则及运算顺序,能够熟练运算.教学重难点:如何按有理数的运算顺序,正确而合理地进行计算.教与学互动设计:(一)创设情境,导入新课观察式子×(-)×÷里有哪种运算,应该按什么运算顺序来计算较简便?(二)合作交流,解读探究引导首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.另外带分数进行乘除运算时,必须化成假分数.注意有理数混合运算的步骤:先乘除,后加减,有括号先算括号里面的.(三)应用迁移,巩固提高【例1】(1)-3÷2÷(-2);(2)-×(-1)÷(-2);(3)-÷×(-)÷(-);(4)20÷(-4)×5+5×(-3)÷15-7.【例2】某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?(四)总结反思,拓展升华引导学生一起小结:①有理数的运算顺序:先乘除,后加减,有括号的先算括号里面的;②要注意认真审题,根据题目意思正确选择途径,仔细运算,注意检查,使结果无误.(五)课堂跟踪反馈夯实基础1.选择题(1)下列各数中互为倒数的是( )A.4和-B.-0.75和-C.-1和1D.-5和(2)若a<b<0,那么下列式子成立的是( )A.<B.ab<1C.>1D.<12.若a、b互为倒数,c、d互为相反数,m为最大的负整数,则+ab+= .提升能力3.计算题(1)(-4)÷(-2)÷(-1);(2)(-5)÷(-1)××(-2)÷7;(3)1÷(-1)+0÷(-5.6)-(-4.2)×(-1);(4)÷(+-).4.已知a、b互为相反数,c、d互为倒数,x的绝对值为1,求3x-(a+b+cd)-x.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.小华在小凡的南偏东30°方位,则小凡在小华的( )方位A .南偏东60° B.北偏西30° C.南偏东30° D.北偏西60°2.如图,C 岛在A 岛的北偏东50°方向,C 岛在B 岛的北偏西40°方向,则从C 岛看A ,B 两岛的视角∠ACB 等于( )A.90° B .80° C.70° D.60°3.王涵同学在某月的日历上圈出了三个数a ,b ,c ,并求出了它们的和为45,则这三个数在日历中的排位位置不可能的是( )A. B. C. D.4.若方程3x -5=1与方程2102a x --=有相同的解,则a 的值为( ) A.2 B.0 C.32 D.12- 5.下面运算中,结果正确的是( ) A.()235a a = B.325a a a += C.236a a a ⋅= D.331(0)a a a ÷=≠6.运用等式性质的变形,正确的是( )A.如果 a=b ,那么 a+c=b ﹣cB.如果a b c c =,那么 a=bC.如果 a=b ,那么a b c c =D.如果 a=3,那么 a 2=3a 27.观察下列等式:第一层 1+2=3第二层 4+5+6=7+8第三层 9+10+11+12=13+14+15第四层 16+17+18+19+20=21+22+23+24……在上述的数字宝塔中,从上往下数,2018在( )A .第42层B .第43层C .第44层D .第45层8.把正方形按如图所示的规律拼图案,其中第①个图案中有1个正方形,第②个图案中有5个正方形,第③个图案中有9个正方形…按此规律排列下去,则第⑧个图案中正方形的个数为( )A .25B .29C .33D .379.下列四个选项中,所画数轴正确的是( )A.AB.BC.CD.D10.已知a 是有理数,则下列结论正确的是( )A .a≥0B .|a|>0C .﹣a <0 D .|a|≥011.|-3|的相反数是( )A.-3B.-13C.13D.312.如图是一个正方体的表面展开图,则这个正方体是( )A. B. C. D.二、填空题13.如图,将三个同样的正方形的一个顶点重合放置,如果∠l=50°,∠3=25°时,那么∠2的度数是_______.14.43°29′7″+36°30′53″=__________.15.小明在黑板上写有若干个有理数.若他第一次擦去m 个,从第二次起,每次都比前一次多擦去2个,则5次刚好擦完;若他每次都擦去m 个,则10次刚好擦完.则小明在黑板上共写了________个有理数.16.我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:“跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?”若慢马和快马从同一地点出发,设快马x 天可以追上慢马,则可以列方程为______.17.写出一个与单项式22xy 是同类项的单项式__________.18.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正八边形“扩展”而来的多边形的边数为______.19.计算 ()234⨯+- 的结果为________________.20.计算:(﹣1)1+(﹣1)2+(﹣1)3+…+(﹣1)2016=________三、解答题21.如图所示,∠AOB=90°,点C 、D 分别在射线OA 、OB 上,点E 在∠AOB 内部.(1)根据语句画图形:①画直线CE ;②画射线OE ;③画线段DE.(2)结合图形,完成下面的填空:①与∠ODE 互补的角是 ;②若∠BOE =∠AOE ,则∠BOE 的大小是 .22.直线AB 、CD 相交于点O ,OE ⊥AB 于O ,且∠DOB =2∠COE ,求∠AOD 的度数.23.解下列方程(1)2x+5=3(x ﹣1)(2).24.用一根绳子环绕一棵大树.若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子又少3尺.这根绳子有多长?环绕大树一周要多少尺?25.先化简,再求值:4a 2b+ab 2-4(ab 2+a 2b ),其中|a+1|+(b-2)2=026.已知a =﹣(﹣2)2×3,b =|﹣9|+7,c =111553⎛⎫-⨯ ⎪⎝⎭. (1)求3[a ﹣(b+c )]﹣2[b ﹣(a ﹣2c )]的值.(2)若A =2212119272⎛⎫⎛⎫⎛⎫-÷-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭×(1﹣3)2,B =|a|﹣b+c ,试比较A 和B 的大小. (3)如图,已知点D 是线段AC 的中点,点B 是线段DC 上的一点,且CB :BD =2:3,若AB =ab 12c cm ,求BC 的长.27.计算:(1)|-3|-5×(-35)+(-4); (2)(-2)2-4÷(-23)+(-1)2017. 28.计算 (1)(-1)2×5+(-2)3÷4; (2)52-83()×24+14÷31-2()+|-22|. (3)-2(ab -3a 2)-[2b 2-(5ab +a 2)+2ab].【参考答案】***一、选择题1.B2.A3.C4.A5.D6.B7.C8.B9.D10.D11.A12.C二、填空题13.15°14.80°15.4016.240x-150x=150×1217. SKIPIF 1 < 0 解析:2a -18.7219.220.0三、解答题21.(1)答案见解析;(2)①∠BDE;②30°. 22.120°23.(1)x=8;(2)x=424.这根绳子有25尺长,环绕大树一周要7尺.25.26.(1)﹣126;(2)A>B,理由见解析;(3)BC=2cm 27.(1)2;(2)9.28.(1)3;(2)19;(3)7a2-2b2+ab.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.下列关于角的说法正确的个数是:( )①由两条射线组成的图形一定是角 ②角的边长,角越大 ③在角的一边的延长线取一点D ④角可以看作由一条射线绕着它的端点旋转而成的图形A .1B .2C .3D .42.下列各图中,经过折叠能围成一个正方体的是( )A .B .C .D .3.如图,平行河岸两侧各有一城镇P ,Q ,根据发展规划,要修建一条公路连接P ,Q 两镇,已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案( )A .B .C .D .4.如果方程2x+1=3和203a x --=的解相同,则a 的值为( ) A.7 B.5 C.3 D.05.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则还多出2个座位.有下列四个等式:①4010432m m +=-;②1024043n n +-=;③1024043n n -+=;④4010432m m -=+.其中正确的是( ).A.①②②B.②④C.①③D.③④ 6.下列计算正确的是( )A .3x 2﹣x 2=3B .﹣3a 2﹣2a 2=﹣a 2C .3(a ﹣1)=3a ﹣1D .﹣2(x+1)=﹣2x ﹣27.下列计算正确的是( )A .a 5+a 2=a 7B .2a 2﹣a 2=2C .a 3•a 2=a 6D .(a 2)3=a 6 8.当x=4时,式子5(x +b)-10与bx +4的值相等,则b 的值为( ).A.-7B.-6C.6D.79.若-2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是( )A.0B.1-C.1D.210.-(–5)的绝对值是( )A.5B.-5C.15D.15- 11.若a≠0,则a a +1的值为( ) A .2 B .0 C .±1 D .0或212.有理数a 、b 在数轴上对应的点的位置如图所示,下列各式正确的是( )A.0a b +<B.0a b +>C.0ab >D.a b>0 二、填空题13.如图是一个正方体的展开图,它的六个面上分别写有“构建和谐社会”六个字,将其围成正方体后,与“社”在相对面上的字是_____.14.如图,在Rt ABC ∆中,90︒∠=C ,30A ︒∠=,9BC =,若点P 是边AB 上的一个动点,以每秒3个单位的速度按照从A B A →→运动,同时点Q 从B C →以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。

的有理数的混合运算教案3篇

的有理数的混合运算教案3篇

的有理数的混合运算教案3篇有理数的混合运算教案篇1教学目标:1、知识与技能了解有理数的混合运算顺次,在运算过程中能合理运用运算律简化运算。

2、过程与方法通过适量的有理数的混合运算,掌控混合运算的顺次,获得运用运算律简化运算的阅历。

重点、难点1、重点:有理数的混合运算。

2、难点:有理数混合运算中的符号确定以及运算中的顺次问题。

教学过程:一、创设情景,导入新课已学过的有理数的运算有哪些?你能分别说出有理数的加、减、乘、除、乘方的运算法那么吗?观测:(1) (2)-3-[-5+(1-0.6)]你能说出这个算式里有哪几种运算?二、合作沟通,解读探究1、上面算式中,含有有理数的加、减、乘、除、乘方多种运算,我们称为有理数的混合运算。

那有理数混合运算的顺次是什么?组织同学争论:在学校里所学的'混合运算顺次是什么?这些运算顺次在有理数的混合运算中是否适用?归纳有理数的混合运算顺次:先算乘方,再算乘除,最末算加减;假如有括号,就先算括号里的三、应用迁移,巩固提高1、同学活动,计算以下各题:(1) (2) -3-[-5+(1-0.6)]老师活动:鼓舞同学独立完成,指定两名同学到黑板演示,完成后,评析,强调运算顺次。

解:(1)原式=17-8÷(-2)×3 (先乘方)=17-(-12) (再乘除)=17+12 (后加减)=29(2)原式=-3-[-5×0.4] (先算小括号里面的)=-3-(-2) (再算中括号里面的)=-1留意:在运算过程中,注明运算顺次,目的是使同学明确运算顺次。

2、同学练习并与同伴沟通:计算:老师活动:鼓舞同学独立完成然后沟通各自的计算方法,选三位同学上黑板演示,比较不同的解法。

解法一:原式= (先算括号里的)= (后算乘方)=-11 (再算乘除)解法二:原式= (运用安排律)= (先算乘方)=-6+(-5) (后算乘除)=-11 (最末算加减)引导同学比较两种不同的解法,体会运用运算律可以简化运算。

2.11《有理数的混合运算》教案

2.11《有理数的混合运算》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和计算练习的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数混合运算在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
此外,从学生的反馈来看,他们在总结回顾环节对有理数混合运算的知识点掌握得较好。但我也意识到,要想让学生真正熟练掌握这一知识点,还需要在课后布置一些针对性的练习,以便他们在实际操作中进一步巩固所学。
3.培养学生的数学应用意识:通过解决生活中的实际问题,让学生体会数学与生活的联系,增强数学在实际生活中的应用价值认识,提高学生运用数学知识解决实际问题的能力。
三、教学难点与重点
1.教学重点
-有理数混合运算的顺序:乘方→乘除→加减,以及括号内优先运算的原则。
-有理数乘法、除法、加法、减法和乘方的基本运算法则。
-运用混合运算解决实际问题时,如何设置运算步骤,确保运算正确。
-引导学生通过具体例题,总结和掌握有理数混合运算的规律和技巧。
举例:讲解混合运算例题“3 - 2 × (1 + 4) ÷ 2”时,强调先计算括号内,再进行乘除,最后执行加减的运算顺序。
2.教学难点
-理解和掌握负数的乘方运算,特别是负数的偶数次幂等于正数,奇数次幂等于负数。
2.11《有理数的混合运算》教案
一、教学内容
本节课选自七年级数学教材第二章《有理数》的第11课时,《有理数的混合运算》。教学内容主要包括下两个方面:
1.掌握有理数的混合运算顺序:先进行乘方运算,再进行乘除运算,最后进行加减运算。

《1.5.1 第2课时 有理数的混合运算》教案、同步练习(附导学案)

《1.5.1 第2课时 有理数的混合运算》教案、同步练习(附导学案)

1.5.1 乘方《第2课时有理数的混合运算》教案【教学目标】:1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.【教学重点】:根据有理数的混合运算顺序,正确地进行有理数的混合运算.【教学难点】:有理数的混合运算.【教学过程】:一、有理数的混合运算顺序:1.先乘方,再乘除,最后加减.2.同级运算,从左到右进行.3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【例1】计算:(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);(2)1-×[3×(-)2-(-1)4]+÷(-)3.强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值.【例2】观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.二、课堂练习 1.计算:(1)|-|2+(-1)101-×(0.5-)÷; (2)1÷(1)×(-)÷(-12); (3)(-2)3+3×(-1)2-(-1)4; (4)[2-(-)3]-(-)+(-)×(-1)2; (5)5÷[-(2-2)]×6. 2.若|x+2|+(y-3)2=0,求的值.3.已知A=a+a 2+a 3+…+a 2004,若a=1,则A 等于多少?若a=-1,则A 等于多少? 三、课时小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.2.在运算中要注意像-72与(-7)2等这类式子的区别.1.5.1 乘方《第2课时 有理数的混合运算》同步练习1.填空题(1)求几个相同因数的积的运算,叫做_______,即n n a a a a •⋅⋅⋅•=个=a n 在a n 中,a 叫做_______,n 叫做______,a n 叫做_______;(2)正数的任何次幂都是______;负数的奇次幂是_______,负数的偶次幂是________;(3)乘方(-2)5的意义是____________________,结果为________; (4)-25的意义是____________________,结果为________;(5)在(-2)4中,-2是______,4是______,(-2)4读作_______或读作_______.思路解析:按照乘方定义及幂的结构解题. 答案:(1)乘方 底数 指数 幂(2)正数负数正数(3)5个-2的积 -32(4)5个2的积的相反数 -32(5)底数指数负二的四次幂负二的四次方2.把下列各式写成幂的形式,并指出底数是什么?指数是什么?(1)(-113)(-113)(-113)(-113);(2)(-0.1)×(-0.1)×(-0.1). 思路解析:根据幂的意义写出.答案:(1)(-113)4,底数是-113,指数是4;(2)(-0.1)3,底数是-0.1,指数是3.1.把下列各式写成幂的形式,并指出底数、指数各是什么?(1)(-1.2)×(-1.2)×(-1.2)×(-1.2)×(-1.2);(2)12×12×12×12×12×12;(3)2nb b b b ••⋅⋅⋅个.思路解析:底数是负数或分数时,要用括号将底数括起来,在括号外边写上指数,如(-1.2)5不能写成-1.25,(12)6不能写成612.答案: (1) (-1.2)5,其中底数是-1.2,指数是5;(2) (12)6,其中底数是12,指数是6;(3)222nn nb b b b b b••⋅⋅⋅==个,底数是b,指数是2n.2.判断题:(1)-52中底数是-5,指数是2;()(2)一个有理数的平方总是大于0;()(3)(-1)2 001+(-1)2 002=0;()(4)2×(-3)2=(-6)2=36; ()(5)223=49. ()思路解析:区别底的符号与幂结果的符号,注意底数是负数和分数时要把该底数用小括号括起来.答案:(1)×(2)×(3)×(4)×(5)×3.计算:(1)(-6)4;(2)-64;(3)(-23)4;(4)-423.思路解析:本题中(-6)4表示4个-6相乘,-64表示64的相反数,切不可看成同样的,且结果互为相反数.(-23)4表示4个-23相乘,而-423表24除以3的商的相反数.要注意区别.答案:(1)1 296; (2)-1 296; (3)1681; (4)-163.4.计算:(1)(-1)100;(2)(-1)101;(3)(-0.2)3;(4)(+25)3;(5)(-12)4;(6)(+0.02)2.思路解析:根据乘方的定义进行计算.答案:(1)1; (2)-1; (3)-0.008; (4)8125; (5)116; (6)0.000 4.5.计算下列各题:(1)(-3)2-(-2)3÷(-23)3;(2)(-1)·(-1)2·(-1)3……(-1)99·(-1)100.思路解析:由乘方的符号法则,易知对于一个有理数a,有(-a)2n=a2n,(-a)2n+1=-a2n+1(n为整数).本例应依此先确定幂的符号,再进行乘方运算.答案:(1)-18; (2)-1.(巩固类训练)1.6a2-2ab-2(3a2+12ab)的结果是()A.-3abB.-abC.3a2D.9a2答案:A2.填空:(1)若x<0且x2=49,则x=_______;(2)若|x+2|+(y+1)2=0,则x=______,y=______,x3y2 002=_______;(3)平方小于10的整数有_______个,其和为_______,积为________. 答案:(1)-7 (2)-2 -1 -8 (3)7 0 03.计算:(1)(-5)4; (2)-54; (3)-(-27)3;(4)[-(-27)]3; (5)-245; (6)(-45)2.思路解析:本题意在考查对(-a)n与-a n的意义的理解,要注意二者的区别与联系.解:(1)原式=(-5)×(-5)×(-5)×(-5)=625;(2)原式=-5×5×5×5=-625;(3)原式=-(-27)(-27)(-27)=8343;(4)原式=(27)3=27×27×27=8343;(5)原式=-445=-165;(6)原式=(-45)(-45)=1625.4.计算:(1)-(14)2×(-4)2÷(-18)2;(2)(-33)×(-1527)÷(-42)×(-1)25.思路解析:本题是乘、除、乘方混合运算运算时一要注意运算顺序:先乘方、后乘除,二要注意每一步运算中符号的确定.解:(1)原式=-116×16÷164=-64;(2)原式=(-27)×(-3227)÷(-16)×(-1)=27×3227×116=2.5.已知a、b为有理数,且(a+12)2+(2b-4)2=0,求-a2+b2的值.解:因为任意有理数的平方非负,可得:(a+12)2≥0,(2b -4)2≥0.又因为(a+12)2+(2b -4)2=0,得a+12=0,a=-12,2b -4=0,b=2,把a=-12, b=2代入a 2+b 2,得334.6.若n 为自然数,求(-1)2n -(-1)2n+1+(-2)3的值.思路解析:因为n 为自然数,所以2n 为偶数,2n+1为奇数.由负数的奇次幂是负数,负数的偶次幂是正数可知: (-1)2n =1,(-1)2n+1=-1.答案:-6.7.x 2=64,x 是几?x 3=64,x 是几?思路解析:由于任何数的偶次幂都是正数或0,平方也是偶次幂,所以平方是64的数有可能是正数,也有可能是负数,这两个数互为相反数.先求出正数,再求出其相反数.立方是正数(64)的数只能是正数,因为负数的奇次幂为负数,所以立方是64的数只能有一个.解:x=±8时,x 2=64;x=4时,x 3=64. 8.求(1-212)×(1-213)×(1-214)…(1-219)×(1-2110)的值. 思路解析:由于每一项都可以改写成两项积的形式,因此可利用分解相约的方法.答案:1120. 9.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?思路解析:此题的关键是找出每次截完后,剩下的小棒占整根棒的比例与所截次数之间的关系.现将它们的关系列表如下:答案:128米.1.5.1 乘方《第2课时 有理数的混合运算》导学案【学习目标】:1、熟练进行有理数的混合运算2、及时纠正运算中的错误,进一步培养学生正确迅速的运算能力,培养学生严谨的学习态度【重难点】:有理数的四则混合运算 【学习过程】 一、自主学习: (一)复习回顾:1、有理数的加、减、乘、除及乘方的运算法则2、加入乘方后,有理数的混合运算的顺序如何? (二)导学:有理数的混合运算顺序:(1)先 ,再 ,最后 ;(2)同级运算,从左到右进行;(3)如有括号,先做 的运算,按小括号、中括号、大括号依次进行。

《有理数的混合运算》教案

《有理数的混合运算》教案

《有理数的混合运算》教案《有理数的混合运算》教案「篇一」教材分析:为体现新课标的要求,减少运算的繁琐,增加学生探究创新能力的培养,混合计算的步骤锐减,增加学生喜闻乐见的“二十四”点游戏。

教学目标;[知识与技能]1、掌握有理数混合运算法则,并能进行有理数的混合运算的计算。

2、经历“二十四”点游戏,培养学生的探究能力教学重点:有理数混合运算法则。

教学难点:培养探索思维方式。

教学流程:运算法则→混合运算→探索思维。

教学活动过程设计:一、生活应用引入:[师]我们已学过哪种运算?[生]乘方、乘、除、加、减五种。

[师]这五种运算顺序怎样呢?请看实例:一圆形花坛的半径为3m,中间雕塑的底面是边长为1.2m的正方形。

你能用算式表示该花坛的关际种花面积吗?这个算式有哪几种运算?应怎样计算?这个花坛的实际种化面积是多少?[生]列出算式3.14×32-1.22包括:乘方、乘、减三种运算[师]原式=3.14×9-1.44=28.26-1.44=26.82(m2)[师]请同学们说说有理数的混合运算的法则(生相互补充、师归纳)一般地,有理数混合运算的法则是:先算乘方,再算乘除,最后算加减。

如有括号,先进行括号里的运算。

二、混合运算举例。

1.(生口答)下列计算错在哪里?应如何改正?(1)74-22÷70=70÷70=1(2)(-1)2-23=1-6=-4(3)23-6÷3×=6-6÷1=02、例1计算:(1)(-6)2×(-)-23;(2)÷-×(-6)2+32解:(1)(-6)2×(-)-23=36×-8=6-8=-2。

(2)÷-×(-6)2+32=×-×36+9。

=-12+9=-3、课内练习计算:(1)1.5-2×(-3);(2)-×(-2)÷(3)8-8×()2;(4)÷(-)+(-)2×214、例2:半径是10cm,高为30cm的圆柱形水桶中装满了水,小明先将桶中的水倒满2个底面半径为3cm,高为6cm的圆柱形杯子,再把剩下的水倒入长、宽、高分别为50cm,30cm和20cm的长方体容器内,长方体容器内水的高度大约是多少cm(π取3,容器的厚度不计)?分析:解:水桶内水的体积为π×102×30cm3,倒满2个杯子后,剩下的水的体积为(π×102×30-2×π×32×6)cm3(π×102×30-2×π×32×6)÷(50×30)=(9000-324)÷1500=8676÷1500≈6(cm)答:容器内水的高度大约为6cm。

北师大版七年级上册(新)第二章《2.11有理数的混合运算》教案

北师大版七年级上册(新)第二章《2.11有理数的混合运算》教案
3.重点难点解析:在讲授过程中,我会特别强调运算顺序和运算律这两个重点。对于难点部分,比如负数的混合运算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数混合运算相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的计算练习。这个练习将演示有理数混合运算的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和计算过程。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数混合运算在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.熟练运用加法、减法、乘法和除法的运算律,简化有理数的混合运算;
3.能够解决一些实际问题,列式并运用有理数的混合运算。
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,使学生在实际问题中能够正确运用有理数的混合运算,提高学生的数学应用素养;
2.培养学生逻辑思维和推理能力,通过有理数混合运算的顺序和运算律,让学生理解数学运算的规律,提高学生的数学逻辑素养;
其次,在分组讨论环节,同学们的参与度很高,大家积极讨论,提出了许多有见解的问题。但我也注意到,有些小组在讨论过程中,个别同学过于依赖他人,缺乏独立思考。针对这个问题,我计划在今后的教学中,多鼓励同学们发表自己的观点,培养他们的独立思考能力。
此外,实践活动中的计算练习,同学们整体表现较好,但仍有部分同学在负数运算上出错。我想在接下来的课程中,可以增加一些关于负数运算的练习,帮助同学们更好地掌握这部分知识。

有理数的混合运算教案

有理数的混合运算教案

有理数的混合运算教案一、教学目标知识与技能:1. 理解和掌握有理数的加法、减法、乘法、除法运算规则。

2. 能够正确进行有理数的混合运算,并熟练运用运算定律进行简化和变形。

过程与方法:1. 通过实例分析和练习,培养学生的运算能力和逻辑思维能力。

2. 学会运用运算定律进行有理数的混合运算,提高解决问题的能力。

情感态度价值观:1. 培养学生的耐心和细心,养成认真审题、仔细计算的良好习惯。

2. 激发学生对数学的兴趣,培养积极的学习态度。

二、教学内容1. 有理数的加法运算:同号相加,异号相减。

2. 有理数的减法运算:减去一个数等于加上这个数的相反数。

3. 有理数的乘法运算:两数相乘,同号得正,异号得负。

4. 有理数的除法运算:除以一个不等于零的数等于乘这个数的倒数。

5. 有理数的混合运算:加减乘除的组合,注意运算顺序和运算法则。

三、教学重点与难点重点:1. 掌握有理数的加法、减法、乘法、除法运算规则。

2. 学会运用运算定律进行有理数的混合运算。

难点:1. 运算定律在混合运算中的应用。

2. 解决实际问题时的运算准确性。

四、教学方法1. 采用直观演示法,通过例题和练习题,让学生直观地理解和掌握有理数的混合运算。

2. 运用练习法,通过大量练习,提高学生的运算能力和逻辑思维能力。

3. 采用分组合作法,让学生相互讨论和交流,共同解决问题,培养学生的合作意识。

五、教学过程1. 导入新课:通过复习有理数的加法、减法、乘法、除法运算规则,引出有理数的混合运算。

2. 讲解与演示:讲解有理数的混合运算规则,通过例题演示运算过程,让学生理解和掌握。

3. 练习与交流:布置练习题,让学生独立完成,并进行交流和讨论,解决疑难问题。

5. 拓展与应用:通过解决实际问题,让学生运用有理数的混合运算知识,培养学生的应用能力。

六、教学评估1. 课堂练习:在学习过程中,穿插多个练习题,及时检测学生对有理数混合运算的掌握情况。

2. 课后作业:布置适量的课后作业,巩固学生对有理数混合运算的知识。

【教案】2.7有理数的混合运算(2)

【教案】2.7有理数的混合运算(2)

2.7 有理数的混合运算(2)【学习目标】熟练地进行有理数的混合运算;能正确运用运算律简化运算。

【学习重点】熟练地进行有理数的混合运算。

【学习重点】提高学生的运算能力,使学生学会观察,培养其一题多解的能力。

【学习过程】『问题情境』你能说出有理数的混合运算顺序是什么吗?我们学过的有理数的运算律有哪些呢? 计算:1、541)3()211()2(324÷-+-⨯- 2、81)4(2033--÷- 3、75)21(212)75(75211⨯-+⨯--⨯『探究归纳』你发现第3小题有什么特点吗?可以简便运算吗?请同学们展开讨论。

在运算过程中运用了什么运算律?总结:在混合运算过程中,同学们要注意观察算式的特征,学会简便运算;同时也要在运算中正确处理符号。

『例题讲评』例1、计算:)38()87()12787431(-+-÷--反思:还有别的运算方法吗?比较一下几种算法,哪种更简便?例2、计算:[]2)3(2)315.01(1--⨯⎥⎦⎤⎢⎣⎡⨯--反思:有理数的混合运算顺序是什么?同时在运算中应注意什么?2.7 有理数的混合运算(2)——随堂练习评价_______________1.下列计算中正确的是( )A .()()11134=-⨯-B .()623-=--C .931313=⎪⎭⎫ ⎝⎛-÷D .9313=⎪⎭⎫ ⎝⎛-÷- 2.计算()⎪⎭⎫ ⎝⎛-⨯--÷-21221623结果是( ) A .0 B . —4 C .—3 D .4 3.①________23=--;②()_________1232=--⨯;③()_________2814=-÷--;④()________4323=-÷-。

4.—3、12、7三个数和的绝对值比这三个数的积大 。

5.计算:()1012121134--⎪⎭⎫ ⎝⎛÷+- 6.计算:()()[]3222153⎪⎭⎫ ⎝⎛-⨯---7.计算:852225124-⎪⎭⎫ ⎝⎛-⨯÷+-8.计算:()()()[]23323115.01--⨯⎪⎭⎫⎝⎛-⨯---。

有理数混合运算教案

有理数混合运算教案

有理数混合运算教案一、教学目标1. 知识与技能:(1)理解有理数混合运算的概念;(2)掌握有理数加、减、乘、除运算的法则;(3)能够熟练地进行有理数混合运算。

2. 过程与方法:(1)通过实例演示,让学生感受有理数混合运算的过程;(2)运用归纳总结的方法,引导学生掌握有理数混合运算的法则;(3)运用练习法,提高学生有理数混合运算的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和信心;(2)培养学生严谨、细致的思维习惯;(3)培养学生合作、交流的学习态度。

二、教学重点与难点1. 教学重点:(1)有理数混合运算的概念;(2)有理数混合运算的法则。

2. 教学难点:(1)有理数混合运算的顺序;(2)有理数混合运算的技巧。

三、教学准备1. 教师准备:(1)熟练掌握有理数混合运算的知识;(2)准备相关实例和练习题。

2. 学生准备:(1)掌握有理数的基本概念;(2)掌握有理数的加、减、乘、除运算。

四、教学过程1. 导入新课:(1)复习有理数的加、减、乘、除运算;(2)提问:如果有理数进行加减乘除混合运算,我们应该如何计算呢?2. 自主探究:(1)让学生独立完成实例运算,体会有理数混合运算的过程;(2)引导学生总结有理数混合运算的法则。

3. 课堂讲解:(1)讲解有理数混合运算的概念;(2)讲解有理数混合运算的法则;(3)讲解有理数混合运算的顺序和技巧。

4. 练习巩固:(1)让学生独立完成练习题,巩固所学知识;(2)教师点评,解答学生疑问。

五、课后作业1. 请学生总结有理数混合运算的法则,并写一篇心得体会;2. 完成课后练习题,提高有理数混合运算的能力。

六、教学拓展1. 引导学生思考:有理数混合运算在实际生活中的应用;2. 通过实例,展示有理数混合运算在实际问题中的解决方法;3. 引导学生尝试解决更复杂的有理数混合运算问题。

七、课堂小结1. 回顾本节课所学内容,让学生总结有理数混合运算的法则和技巧;2. 强调有理数混合运算在数学中的重要性;3. 激发学生对有理数混合运算的兴趣,培养学生的自信心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科:数学教学内容:有理数的混合运算重点难点提示本单元主要内容是有理数的加法,减法、乘法和除及乘方的意义,重点是混合运算和发散型思维的培养。

有理数的混合运算顺序是:先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的,在同级运算中,即加与减在一起,或者乘与除在一起时,按从左到右的顺序进行,有时为了简化计算,可运用运算律变更常规的运算顺序。

例题分析例1 计算下列各题:(1))9(812414-⨯÷-; (2))05.0(43143211-÷⨯÷-;(3)53132|25.0|-⨯⎪⎭⎫⎝⎛-÷-。

点评:本例的3道题目都是乘除混合运算。

做此类题应先将除法转化为乘法,把小数转化为分数(便于约分),带分数化成假分数或整数与真分数的和;然后确定积的符号;最后求出结果。

(3)中含有绝对值符号,要先去掉绝对值符号,再转化。

解:(1))9(817417-⨯÷-=原式 .189178417)9(178417=⨯⨯=-⨯⨯-= (2)⎪⎭⎫ ⎝⎛-÷⨯÷-=201474323原式 .7020473423)20(473423=⨯⨯⨯=-⨯⨯⨯-=(3)5313225.0⨯⎪⎭⎫ ⎝⎛-÷=原式 582341583241⨯⎪⎭⎫ ⎝⎛-⨯=⨯⎪⎭⎫ ⎝⎛-÷=.53582341-=⨯⨯-=例2 计算106)85()145()712(÷-⨯-÷-解:35)85()514()715(⨯-⨯-⨯-=原式.4164253585514715-=-=⨯⨯⨯-= 点拨:①乘除混合运算,先统一将除法化为乘法,再利用约分求简化计算。

②只有化除为乘,方可利用运算性质进行约分,不能将题中“106)85(÷-⨯”的部分8与6进行约分,5与10进行约分。

例3 已知0|2||15|=-+-x y x ,求y x 54-的值。

点评:∵ |2||15|x y x -=-。

∴ |15|-x 与|2|x y -互为相反数,而0|15|≥-x ,0|2|≥-x y 即它们不可能是负数,∴|15|-x 和|2|x y -都只能是0。

解:由已知可得0|15|=-x 和0|2|=-x y , ∴ x-15=0,2y-x=0,解之得:x=15,215=y 。

∴ 5.22215515454=⨯-⨯=-y x 。

点拨:此类题是常见易考题型,几个有理数的绝对值之和等于零,则这几个有理数均等于零。

(非负数原理)例4 计算222)31()6()3(27-÷---⨯+-。

解:91)6(9249÷--⨯+-=原式 .23541849)54(1849=++-=--+-=例5 若0)5()2(2=-++b a ,求ba 与aaba b -的值。

解: ∵0)2(2≥+a ,0|5|≥-b 且0|5|)2(2=-++b a , ∴ a+2=0,b-5=0。

∴ a=-2,b=5。

∴ 3222222)2(5-=⨯⨯⨯⨯-=-=ba 。

1125)2(32=-⨯---=-a ab a b 。

点拨:对于非负数na2和|a|的性质的运用在解题中的重要作用必须重视。

错误提示例1 两个有理数的和为负数,那么这两个数一定 ( ) (A )都是负数 (B )至少有一个负数 (C )有一个是0 (D )绝对值不相等常见错误:由于对加法的结果为负时,符号取决于哪个数,及其情况不了解,而误选为(A ),正确答案选(B )例2 一个有理数与它的相反数的积 ( ) (A )一定是正数 (B )一定是负数 (C )一定不大于0 (D )一定大于0解:用排除法4)2(2-=-⨯,排除(A )、(D )。

0×0=0,排除(B ) 故选(C )。

常见错误:遗漏0的情况而误选为(B )【同步达纲练习1】一、选择题1.下列说法正确的是 ( )(A )两个负数相加,绝对值相减(B )正数加正数,和为正数;正数加负数,和为零 (C )正数加零,和为正数;负数加负数,和为负数 (D )两个有理数相加,等于把它们的绝对值相加2.已知甲、乙两个数都是有理数,那么甲数减去乙数所得的差与甲数比较,必为( ) (A )差一定小于甲数 (B )差一定大于甲数 (C )差不能大于甲数(D )大小关系取决于乙是什么样的数3.若|x|=3,|y|=2,且x>y ,则x+y 的值为 ( ) (A )1或-5 (B )1或5 (C )-1或5 (D )-1或-54.若|a|+a=0,则 ( )(A )a>0 (B )a<0 (C )0≥a (D )0≤a 5.已知x+y=0,|x|=5。

那么样子||y x -等于 ( ) (A )0 (B )10(C )20 (D )以上答案都不对 6.83-与721的倒数和的相反数是 ( ) (A )正整数 (B )正分数 (C )负整数 (D )负分数 7.下列各式中,没有意义的式是 ( )(A )0-2 (B )0÷2 (C )2÷0 (D )0×2 8.已知||b a b a ⋅<⋅,则有(A )0<⋅b a (B )0<<b a (C )a>0,b<0 (D )a<0<b 9.若0=ab,则一定有 ( ) (A )a=0 (B )b=0且a ≠0 (C )a=b=0 (D )a=0或b=010.如果一个数除以这个数的绝对值的商为-1,那么这个数一定是 ( ) (A )正数 (B )负数(C )+1或-1 (D )除零外的有理数 11.=+++++++8888888888888888 ( ) (A )864 (B )648 (C )98 (D )649 12.两个数之和为负,积为正,则这两个数位应是 ( ) (A )同为负数 (B )同为正数 (C )是一正一负 (D )有一个是0 13.若a 是负有理数,则3a -是 ( )(A )正有理数 (B )负有理数 (C )非正有理数 (D )非负有理数二、填空题 14.已知32=a ,43-=b ,21-=c ,则代数式=--+-)()(c b a ___________。

15.=+---+--+-|1028||)8()3(||20|____________。

16.=⨯⎪⎭⎫⎝⎛-⨯÷⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-0315)35.7(1748831159_____________。

17.=⎪⎭⎫⎝⎛+-÷-21311434______________。

18.=÷⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-411212.0313325.0__________________。

19.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值为2,则代数式=++-÷+x cd b a x b a )()(______________________。

20.用简便方法计算=÷⎪⎭⎫⎝⎛-57570_______________。

21.计算=-xx x x ||||_________________。

22.用“>”号或“<”号填空。

(1)若m>0,n>0,则m+n________________0,n m ⋅___________0。

(2)若m<0,n<0,则m+n_______0,n m ⋅___________0。

(3)若m>0,n<0,是|m|>|n|,则m+n________0,n m ⋅___________0。

(4)m<0,n>0,是|m|>|n|,则m+n________0,n m ⋅___________0。

23.-2.5的倒数是_________,53的倒数相反数是___________。

24.0|2|)4(2=-+-b a ,则=ba ____________,=-+ba ba 2_____________。

三、计算下列各题 25.⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+411411711764131145437。

26.0-(-5)-(-12)-(+19)。

27.⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-411212411211。

28.⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛------32143421313。

四、计算下列各题 29.)60(1252151+⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+。

30.9181799⨯-。

31.)16(94412)81(-÷⨯÷-。

32.611411321743⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-。

五、计算下列各题 33.4125.0411********÷-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯÷⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-。

34.5366112119711÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫⎝⎛+--。

35.|9||)6(5|31)49(|5|---÷-⎪⎭⎫⎝⎛--+--。

36.347531)13(72343213⨯-⨯-+⨯--⨯-。

37.已知a 、b 互为相反数,c 、d 互为倒数,且a 不等于零,求20032002)(100d c a b a b a ⨯-⎪⎭⎫⎝⎛+⨯+的值。

38.已知:9252=m ,273-=n ,求nm n m -+的值。

39.已知a 、b 互为相反数,c 、d 互为负倒数,|m|=3。

求20032)(242cd b m a -+-的值。

【同步达纲练习2】1.有理数混合运算的顺序是:先算_____________,再算__________,最后算__________;如果有_____________,就先算____________里面的。

2._____|12|2=--;__________)2(4=--;_______)3(03=--。

3.(1)若ab<0,a>b ,则b_______0; (2)若0<cab,ac<0,则b________0; (3)若02>-ab ,则a_________0; (4)若0>a b ,0<cb,则ac__________0.4.计算:()⎪⎭⎫ ⎝⎛---+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛---+-115292.0115252)08.0()6.0(。

5.计算:⎪⎭⎫⎝⎛+⨯-÷313)75.3(751。

相关文档
最新文档