北师大版2017初中二年级(下册)数学 小专题突破一 三角形的证明(PPT课件)
北师大版八年级数学下册《直角三角形》三角形的证明PPT(第1课时)
获取新知
知识点二:直角三角形的边的关系
B
勾股定理 直角三角形两条直角边的平方
和等于斜边的平方.
A
C
关于勾股定理的证明,可以欣赏“16页的读一读”, 并可以上网搜索,诸如美国第二十任总统的证法、赵 爽弦图法等
勾股定理反过来,怎么叙述呢?
如果一个三角形两边的平方和等于第三边的平方,那 么这个三角形是直角三角形.
一项指标.现测得AB=4 cm,BC=3 cm,AD=13 cm,CD=12 cm, ∠ABC=90°,根据这些条件,能否得出∠ACD等于90°?请说明理由.
解:能.理由:在Rt△ABC中,
∵AB=4 cm,BC=3 cm,∠ABC=90°,
∴AC=
=5(cm).
在△ACD中,∵AD=13 cm,CD=12 cm,AC=5 cm,
你来给出完整的 证明过程吧,试 一试
例题讲解 例1 如图,在△ABC中,∠C=70°,∠B=30°,AD⊥BC 于点D,AE为∠BAC的平分线,求∠DAE的度数. 解:由题意可知, ∠BAC=180°-∠B-∠C=80°. ∵AE为∠BAC的平分线, ∴∠CAE=∠BAE= ∠BAC=40°. ∵AD⊥BC,∴∠ADC=90°. ∴∠CAD=90°-∠C=90°-70°=20°. ∴∠DAE=∠CAE-∠CAD=40°-20°=20°.
原命题都存在逆命题 ,
但是互逆命题的真假 无法保证
如果一个定理的逆命题也是定理,那么这两个定理叫 做互逆定理,其中的一个定理叫做另一个定理的逆定理.
注意1:逆命题、互逆命题不一定是真命题, 但逆定理、互逆定理,一定是真命题.
注意2:不是所有的定理都有逆定理.
定理
“两直线平行,内错角相等”
最新北师大版初二数学下册第一章 三角形的证明 全单元课件
2、想一想:
(1)把剪出的等腰△ABC沿折痕对折,除两腰重合外 还有没有重合的部分?并指出重合的部分是什么? (2)由这些重合的部分,你能发现等腰三角形的性 质吗?说一说你的猜想。
你发现了什么?
结论:等腰三角形的两底角相等
性质1、等腰三角形的两个底角相等。
(等边对等角)
已知: △ABC 中,AB=AC
A
性
质
两腰相等
C
B
等边对等角 三线合一
轴对称图形
情景导入
一.情景导入,初步认知
问题:在等腰三角形中作出一些线段(如角
平分线、中线、高等),你能发现其中一些相等
的线段吗?
获取新知
二.思考探究,获取新知
探究 1.在等腰三角形中自主作出一些线段(如
角平分线、中线、高等),观察其中有哪些相等的
线段,并尝试给出证明.
求证:∠B=∠C。 证明:作底边BC边上的中线AD。
A
在△ABD与△ACD中:
B
AB=AC(已知) BD=DC(作图) AD=AD(公共边)
∴△ABD≌△ACD(SSS)
D
C
∴∠B=∠C(全等三角形对应角相等)
方法二:作顶角∠BAC的平分线AD。 ∵AD平分∠BAC ∴∠1=∠2 在△ABD与△ACD中 12
A
2.△ABC中,AB=AC,D是BC边上的中点,
DF⊥AC于F DE ⊥ AB 于E .求证:DE=DF。
证明: ∵DE⊥AB,DF⊥AC ∴∠BED=∠CFD
B
E
D
F
C
在△DBE与△DCF中
∠DEB=∠DFC(已证)
∠B=∠C(已证)
又∵D是BC中点(已知)
北师大版八年级数学下册《直角三角形》三角形的证明PPT课件(第1课时)
∴ = ’’
∴∆ ≅ ∆’’’()
∴∠ = ∠’ = 90°(全等三角形的对应角相等).
∴∆ 是直角三角形.
实践探究,交流新知
议一议:观察上面第一个定理和第二个定理,它们的条件和结论之间有怎样
的关系?
第三个和第四个定理呢?与同伴交流.
再观察下面三组命题:
已知:如图,在∆中, + = .
求证:∆是直角三角形.
证明:如图,作∆’’’,使∠’ = 90°,’’ = ,’’ =
,则’’2 + ’’2 = ’’2 .
∵2 + 2 = 2 ,’’ = ,’’ =
(2)在一个三角形中,当两边的平方和等于第三边的平方时,它是直角三角形吗
?
勾股定理:直角三角形两条直角边的平方和等于斜边的平方.
已知在△ABC中,∠ACB=90°,Leabharlann BAC,∠ABC,∠ACB的对边长
分别为 ,, .求证:2 + 2 = 2 .
解:整个图形可以看作是边长为 的正方形,它的面积为 2 .
北师大版 八年级下册
第一章 三角形的证明
直角三角形(第1课时
)
前 言
学习目标
1.会证明直角三角形的性质定理和判定定理,并能应用性质进行计算和证明.
2.能写出一个命题的逆命题,并会判断其真假,会识别两个互逆命题.
3.通过勾股定理及其逆定理的证明,体会同一个定理可以从不同角度,用不同方法加以证
明,激发学生的探索热情,并在小组合作中体会交流与合作的重要性.
命题,其中一个命题称为另一个命题的逆命题,相对于逆命题来说,另一个就为原命题.
(2)互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一
北师大版八年级数学下册第一章三角形的证明章末复习课件(共70张)
章末复习
相关题2-1 [宜昌中考]如图1-Z-4, 在 △ ABC 中 , AB = A C , ∠A=30°, 以B为圆心, BC的长为半径 的圆弧交AC于点D, 连接BD, 则∠ABD的度数为
( B ). A.30° C.60°
B.45° D.90°
章末复习
相关题2-2 在△ABC中, AB=AC, 且过△ABC的某一顶点的直 线可将△ABC分成两个等腰三角形, 试求△ABC各内角的度数.
【要点指点】全等三角形的性质为证明线段(角)相等提供了根据. 一 般三角形全等的判定方法有四种:“SSS”“SAS”“ASA”和“AAS”. 直角 三角形是一种特殊的三角形, 它的判定方法除了上述四种之外, 还有 “HL”. 在具体问题中, 一般只直接给出一个或两个条件(有的甚至一个 条件也不直接给出), 其余条件常隐含于条件或图形中, 而找出这些隐 含条件是解答问题的关键.
章末复习
(ⅱ)如图④,过点 B 的直线交 AC 于点 G,且 BG=AG,CB=CG.
设∠A=β°,则∠ABG=β°,∠CBG=∠CGB=(2β)°,∠C=∠ABC=
直角 三角 形
角平 分线
三角形的证明
性 线段垂直平分线 质 上的点到这条线
段两个端点的距 离相等
判 到一条线段两个 定 端点距离相等的
点, 在这条线段 的垂直平分线上
性 质
角平分线上的点 到这个角的两边 的距离相等
在一个角的内部,
判 定
到角的两边距离 相等的点在这个 角的平分线上
章末复习
归纳整合
专题一 与全等三角形有关的计算与证明题
章末复习
例2 如图1-Z-3, 在△ABC中, AB=AC, ∠ABC, ∠ACB的平分线相交于点O, 过点O作EF∥BC, 分别交AB, AC于点E, F. 图中有几个等腰三角形? 请说明EF与BE, CF之间的关系.
北师大版数学八年级下册《三角形的证明》课件(共22张)
∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E)
∵∠A=∠D,∠B=∠E(已知)
∴∠C=∠F(等量代换)
∵BC=EF(已知)
∴△ABC≌△DEF(ASA)
(1)还记得我们探索过的等腰三角形的性质吗?尽可能回忆出来. (2)你能利用已有的公理和定理证明这些结论吗?
如图,先自己折纸视察探索并写出等腰三角形的性质, 然后再小组交流,互相补偿不足.
作图视察,我们可以发现:等腰三角形两底角的平分 线相等;两腰上的高、中线也分别相等.
我们知道,视察或度量是不够的,感觉不可靠.这 就需要以公理和已证明的定理为基础去证明它,让人们 坚定不移地去承认它,相信它.
下面我们就来证明上面提到的线段中的一种:等腰 三角形两底角的平分线相等.
用心想一想,马到功成
∴△BDC≌△CEB(ASA).
∴BD=CE(全等三角形的对应边相等).
用心想一想,马到功成
例1. 证明: 等腰三角形两底角的平分线相等. A
已知:如图,在△ABC中, AB=AC,
BD、CE是△ABC的角平分线.
E
D
求证:BD=CE.
3
4
B
C
证明:∵AB=AC,∴∠ABC=∠ACB.
∵∠3=2 1∠ABC,∠4= 21∠ACB, ∴∠3=∠4.
又∵∠A+∠B+∠C=180°(三角形内角和定理)
∴∠A=∠B=∠C=60°.
随堂练习 及时巩固
如图,已知△ABC和△BDE都是等边三角形,
求证:AE=CD
A
B EC D
证明: ∵ △ABC和△BDE都是等边三角形
∴AB=BC,∠ABC=∠DBE=60°,BE=BD ∴ △ABE≌△CBD
北师大版八年级数学下册 (直角三角形)三角形的证明课件(第2课时)
(1)教材第16页随堂练习第1,2,3题. (2)教材第17~18页习题1.5第1,2,3题.
同学们, 下课!
①每个命题都有逆命题; ②真命题的逆命题是真命题; ③假命题的逆命题是真命题; ④每个定理都有逆定理; ⑤每个定理一定有逆命题; ⑥命题“若a=b,那么a3=b3”的逆命题是假命题. A.1 B.2 C.3 D.4
开放训练,体现应用
变式训练2 如图,在四边形ABCD中,AD∥BC,AB=10,BC=6, AC=AD=8.(1)求∠ACB的度数;(2)求CD的长.
如果两个角相等,那么它们是对顶角. (2)如果小明患了肺炎,那么他一定会发烧;
如果小明发烧了,那么他一定患了肺炎. (3)一个三角形中相等的边所对的角相等;
一个三角形中相等的角所对的边相等. 上面每组中两个命题的条件和结论也有类似的关系吗?与同伴交流.
实践探究,交流新知
互逆命题:在两个命题中,如果一个命题条件和结论分别是另一个命题的结论和条件,那 么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题,相对于逆命题来说, 另一个就为原命题.
课堂检测,巩固新知 B
52°
课堂小结,整体感知
1.课堂小结:请同学们回顾本节课所学的内容,有哪些收获?
一、与直角三角形有关的定理 (1)定理1:直角三角形的两个锐角互余. (2)定理2:有两个角互余的三角形是直角三角形. (3)勾股定理:直角三角形两条直角边的平方和等于斜边的平方. (4)勾股定理逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. 二、互逆命题和互逆定理 (1)互逆命题:在两个命题中,如果一个命题条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互 逆命题,其中一个命题称为另一个命题的逆命题,相对于逆命题来说,另一个就为原命题. (2)互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中 一个定理称另一个定理的逆定理.
北师大版初二下册第一章、三角形证明讲义1-1(可编辑修改word版)
第一章、三角形的证明知识归纳1.三角形全等的判定方法SSS,SAS,ASA,AAS,证直角三角形全等除上述外还有HL (全等三角形的性质是对应边相等,对应角相等)2.等腰三角形的性质性质(1):等腰三角形的两个底角.性质(2):等腰三角形顶角的、底边上的、底边上的高互相重合.3.等边三角形的性质等边三角形的三个内角都相等,并且每个角都等于60°4.等腰三角形的判定(1)定义:有两条边的三角形是等腰三角形.(2)等角对等边:有两个角的三角形是等腰三角形.5.用反证法证明的一般步骤(1)假设命题的结论不成立;(2)从这个假设出发,应用正确的推理方法,得出与定义、公理、已证定理或已知条件相矛盾的结果;(3)由矛盾的结果判定假设不正确,从而肯定命题的结论正确.6.等边三角形的判定(1)有一个角等于60°的三角形是等边三角形;(2)三边相等的三角形叫做等边三角形;(3)三个角相等的三角形是等边三角形;(4)有两个角等于60°的三角形是等边三角形.7.直角三角形的性质及判定性质(1):在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的;性质(2):直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.8.勾股定理及其逆定理勾股定理:直角三角形两条直角边的平方和等于斜边的.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是三角形.9.线段的垂直平分线的性质定理及判定定理性质定理:线段的垂直平分线上的点到这条线段两个端点的距离.判定定理:到一条线段两个端点距离相等的点在这条线段的上.[点拨] 线段的垂直平分线可以看作和线段两个端点距离相等的所有点的集合.10.三线共点三角形三条边的垂直平分线相交于,并且这一点到三角形三个顶点的距离.11.角平分线的性质定理及判定定理性质定理:角平分线上的点到这个角两边的距离.判定定理:在一个角的内部,且到角的两边相等的点在这个角的平分线上.[注意] 角的平分线是在角的内部的一条射线,所以它的逆定理必须加上“在角的内部”这个条件.12.三角形三条角平分线的性质三角形的三条角平分线相交于一点,并且这一点到三条边的距离.典例精讲例1、如图1,5,△ABC 中,AB=AC,E 是CA 延长线上的点,EG⊥BC 于G,交AB 于F,求证:△AEF 是等腰三角形。