陕西省中考数学复习针对性训练:一次函数的应用十八(针对陕西中考第22题)

合集下载

聚焦中考陕西地区中考数学总复习专题九一次函数的应用课件0204144

聚焦中考陕西地区中考数学总复习专题九一次函数的应用课件0204144
第四页,共20页。
[对应训练] 1.(2016·福建)小李是某服装厂的一名工人,负责加工 A,B 两种型号 服装,他每月的工作时间为 22 天,月收入由底薪和计件工资两部分组 成,其中底薪 900 元,加工 A 型服装 1 件可得 20 元,加工 B 型服装 1 件可得 12 元.已知小李每天可加工 A 型服装 4 件或 B 型服装 8 件,设 他每月加工 A 型服装的时间为 x 天,月收入为 y 元. (1)求 y 与 x 的函数关系式; (2)根据服装厂要求,小李每月加工 A 型服装数量应不少于 B 型服装数 量的35,那么他的月收入最高能达到多少元?
第五页,共20页。
解:(1)由题意得 y=20×4x+12×8×(22-x)+900,即 y=-16x+3012 (2) 依题意得 4x≥35×8×(22-x),∴x≥12.在 y=-16x+3012 中,∵-16<0, ∴y 随 x 的增大而减小.∴当 x=12 时,y 取最大值,此时 y=-16×12 +3012=2820.答:当小李每月加工 A 型服装 12 天时,月收入最高,可 达 2820 元
第十二页,共20页。
4.(导学号 30042116)(2016·南充)小明和爸爸从家步行去公园,爸爸先出发一直匀 速前行,小明后出发.家到公园的距离为2500 m,如图是小明和爸爸所走的路程s(m) 与小明的步行时间t(min)的函数图象. (1)直接写出小明所走路程s与时间t的函数关系式; (2)小明出发多少时间与爸爸第三次相遇(xiānɡ yù)? (3)在速度都不变的情况下,小明希望比爸爸早20 min到达公园,则小明在步行过程 中停留的时间需作怎样的调整?
第十八页,共20页。
6.(导学号 30042117)(2016·咸阳模拟)为了节约资源,科学指导居民改善

陕西十年中考一次函数考题集锦

陕西十年中考一次函数考题集锦

陕西历年中考一次函数考题集锦1.(2018陕西本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣为x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.2.(2017年)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.、3.(2016陕西本题满分7分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛创新大赛,赛后,他当天按原路返回,如图是小明昨天出行的过程中,他去西安的距离y(千米)与他离家的时间x(时)之间的函数图像根据图像回答下列问题:(1)求线段AB所表示的函数关系式(2)已知,昨天下午3点时,小明距西安112千米,求他何时到家?4.(2015年陕西本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费。

陕西省中考数学复习针对性训练:一次函数的应用十七(针对陕西中考第22题)

陕西省中考数学复习针对性训练:一次函数的应用十七(针对陕西中考第22题)

一次函数的应用十七(针对陕西中考第22题)1.(2015·榆林模拟)甲、乙二人分别从相距21千米的A ,B 两地同时出发相向而行.如图,l 1,l 2分别表示甲、乙两人距A 地的距离y(千米)与时间t(小时)之间的关系.(1)求l 2的函数表达式;(2)甲行AB 段比乙行BA 段少用多少小时?解:(1)l 2的函数表达式为y =-6t +21 (2)甲行AB 段比乙行BA 段少用2.1小时2.某公司准备与汽车租赁公司签订租车合同.以每月用车路程x(km )计算,甲汽车租赁公司的月租费是y 1元,乙汽车租赁公司的月租费是y 2元.如果y 1,y 2与x 之间的关系如图所示.(1)求y 1,y 2与x 之间的函数关系;(2)每月用车路程在什么范围内,租用甲汽车租赁公司的车所需费用较少?解:(1)设y 2=kx ,把(2000,2000)代入可得2000=2000k ,解得k =1,所以y 2=x ,设y 1=k ′x +1000,把(2000,2000)代入可得2000=2000k ′+1000,解得k ′=12,所以y 1=12x +1000 (2)由图象可得,每月用车路程大于2000 km 时,租用甲汽车租赁公司的车所需费用较少3.做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A ,B 两种款式的服装合计30件,并且每售出一件A 款式和B 款式服装,甲店铺获利润分别为30元和35元,乙店铺获利润分别为26元和36元.某日,王老板进A 款式服装36件,B 款式服装24件,并将这批服装分配给两个店铺各30件.(1)怎样将这60件服装分配给两个店铺,能使两个店铺在销售完这批服装后所获利润相同?(2)怎样分配这60件服装能保证在甲店铺获利润不小于950元的前提下,王老板获利的总利润最大?最大的总利润是多少?解:(1)设A 款式服装分配到甲店铺为x 件,则分配到乙店铺为(36-x)件;B 款式分配到甲店铺为(30-x)件,分配到乙店铺为(x -6)件.根据题意得:30x +35×(30-x)=26×(36-x)+36(x -6),解得x =22,所以36-x =14(件),30-x =8(件),x -6=16(件),故A 款式服装分配到甲店铺为22件,则分配到乙店铺为14件;B 款式服装分配到甲店铺为8件,分配到乙店铺为16件,能使两个店铺在销售完这批服装后所获利润相同 (2)设总利润为w 元,根据题意得:30x +35×(30-x)≥950,解得x ≤20,∴6≤x ≤20.w =30x +35×(30-x)+26×(36-x)+36(x -6)=5x +1770,∵k =5>0,∴w 随x 的增大而增大,∴当x =20时,w 有最大值1870,∴A 款式服装分配给甲、乙两店铺分别为20件和16件,B 款式服装分配给甲、乙两店铺分别为10件和14件时,最大的总利润是1870元4.(2015·陕西模拟)花石镇组织10辆汽车装运完A ,B ,C 三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:(1)设装运A 种湘莲的车辆数为x ,装运B 种湘莲的车辆数为y ,求y 与x 之间的函数关系式;(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.解:(1)设装A ,由题意得:12x +10y +8(10-x -y)=100,∴y =10-2x (2)10-x -y =10-x -(10-2x)=x ,故装C 种车也为x 辆,∴⎩⎨⎧x ≥2,10-2x ≥2,解得2≤x ≤4,x 为整数,∴x =2,3,4,故车辆有3种安排方案,方案如下:方案一:装A 种2辆车,装B 种6辆车,装C 种2辆车;方案二:装A 种3辆车,装B 种4辆车,装C 种3辆车; 方案三:装A 种4辆车,装B 种2辆车,装C 种4辆车(3)设销售利润为W(万元),则W =3×12x +4×10×(10-2x)+2×8x =-28x +400,∴W 是x 的一次函数,且x 增大时,W 减少,∴x =2时,W 最大=400-28×2=344(万元)。

陕西中考21题 一次函数实际应用

陕西中考21题 一次函数实际应用

、两种竹编工艺品1. (2012 四川省眉山市) 青神竹编,工艺精美,受到人们的喜爱,有一客商到青神采购A B、两种竹编工艺品共60件,所需总费用为回去销售,其进价和回去的售价如右表所示,若该客商计划采购A By元,其中A型工艺品x件.(1)请写出y与x之间的函数关系式;(不求出x的取值范围)(2)若该客商采购的B型工艺品不少于14件,且所获总利润要求不低于2500元,那么他有几种采购方案?写出每种采购方案,并求出最大利润.2. (2013 内蒙古包头市) 某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天所获利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天所获利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?3. (2013 浙江省宁波市) 某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进这两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.(毛利润=(售价-进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.4. (2013 湖北省十堰市) 某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如下表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?答案 一、应用题1. 解:(1)()1508060y x x =+-704800x =+3分 (2)由题意得:()()()601420015010080602500x x x -⎧⎪⎨-+--⎪⎩≥≥5分解之得:130463x ≤≤ ∵x 为正整数 ∴44x =或45或46 6分∴有如下三种方案:方案一:购买A 型工艺品44件,B 型工艺品16件; 总利润为:445016202520⨯+⨯=(元) 方案二:购买A 型工艺品45件,B 型工艺品15件; 总利润为:455015202550⨯+⨯=(元) 方案三:购买A 型工艺品46件,B 型工艺品14件; 总利润为:465014202580⨯+⨯=(元)综上所述第三种方案所获利润最大,最大利润为2580元9分2. 解:(1)根据题意可得,()121001010180y x x =⨯+-⨯,60018000y x ∴=-+.(3分)(2)当14400y =时,有1440060018000x =-+, 解得,6x =,∴要派6名工人去生产甲种产品.(5分)(3)根据题意可得,15600y =,即:6001800015600x -+≥, 解得4x ≤.(8分)∴106x -≥.∴至少要派6名工人去生产乙种产品才合适.(10分)3.解:(1)设商场计划购进甲种手机x 部,乙种手机y 部,由题意得:0.40.2515.50.030.05 2.1x y x y +=⎧⎨+=⎩,.(3分)························· 解得:2030x y =⎧⎨=⎩,.(5分)············· 答:该商场计划购进甲种手机20部,乙种手机30部. (2)设甲种手机减少数量为a 部, 则乙种手机增加数量为2a 部,由题意得: 0.4(20-a )+0.25(30+2a )≤16,(7分) 解得:5a ≤.(8分)设全部销售后获得的毛利润为W 万元, 则0.03(20)0.05(302)0.07 2.1Wa a a =-++=+.(9分)W 随着a 的增大而增大,∴当5a =时,W 有最大值,此时0.075 2.1 2.45W =⨯+=.(10分)答:当该商场购进甲种手机15部,乙种手机40部时,全部销售后获利最大,最大毛利润是2.45万元.(12分)4. 解:设商场应购进A 型台灯x 盏,则B 型台灯为(100)x -盏,(1)根据题意得:3050(100)3500x x +-=. 解得:75x =,10025x ∴-=.答:应购进A 型台灯75盏,B 型台灯25盏. (2)设商场销售完这批台灯可获利y 元,则(4530)(7050)(100)y x x =-+-- 1520(100)x x =+-52000x =-+.由题意得:1003x x -≤,解得:x ≥25 50k =-< ,y ∴随x 的增大而减小,∴当25x =时,y 取得最大值:52520001875-⨯+=答:商场购进A 型台灯25盏,B 型台灯75盏,销售完这批台灯获利最多,此时利润为1875元.。

中考数学复习专项二解答题专项七一次函数的实际应用课件

中考数学复习专项二解答题专项七一次函数的实际应用课件

解答题专 项
(1)求每天蔬菜精加工后再出售所获得的利润y(元)与x (名)的函数表达式。 (2)如何安排精加工人数才能使一天所获得的利润最大,最 大利润是多少?
【解】(1)y=3×32x=96x。 (2)设每天全部售出后获利w元,则w=96x+[48(100-x)-32x] ×1=16x+4 800。 由题意知,48(100-x)≥32x,解得x≤60。 ∵w=16x+4 800,k=16>0,∴w的值随x的值的增大而增大, ∴当x=60时,w有最大值,w最大=16×60+4 800=5 760(元)。 ∴安排60名工人进行蔬菜精加工,40名工人采摘蔬菜,一天所获得的利 润最大,最大利润为5 760元。
三、课后“静思2分钟”大有学问
我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的课 后复习30分钟。
专项二 解答题专项
七、 一次函数的实际应用 (针对陕西中考第21题)
解答题专项
中考解读:一次函数的实际应用为陕西中考解答题的必考题,题位为第21题, 分值为7分或8分。涉及一次函数表达式的确定、解方程组、分析图表信息、方 案设计、一次函数的增减性、解不等式组等。主要考查的类型为(1)文字型; (2)图像型;(3)表格型。
2019/5/27
精选最新中小学教学课件
thank
you!
2019/5/27
精选最新中小学教学课件
注:客量指的是每辆客车最多可载该团体的人数。
解答题专 项

陕西中考数学一次函数应用题类型

陕西中考数学一次函数应用题类型

一次函数应用题,即解答第21题回归传统。

(1)纯文字形式(2012陕西)21.(本题满分8分)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2 000米的地方,空气含氧量约为235克/立方米.(1)求出y 与x 的函数表达式;(2)已知某山的海拔高度为1 200米,请你求出该山山顶处的空气含氧量约为多少?(2)图象形式(2012•上海)某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y (万元/吨)与生产数量x (吨)的函数关系式如图所示.(1)求y 关于x 的函数解析式,(并写出它的定义域);(2)当生产这种产品的总成本为280万元时,求该产品的生产数量. (注:总成本=每吨的成本×生产数量) 答案:(1)11110y x =-+; (2)121(11)280,40,70.10x x x x -+=== 1050,40.x x ≤≤∴=(3)表格形式(24)(2012天津市8分)某通讯公司推出了移动电话的两种计费方式(详情见下表).月使用费/元主叫限定时间/分 主叫超时费/(元/分) 被叫方式一 58 150 0.25 免费 方式二883500.19免费设一个月内使用移动电话主叫的时间为t 分(t 为正整数),请根据表中提供的信息回答下列问题: (Ⅰ)用含有t 的式子填写下表:温馨提示:若选用方式一,每月固定交费58元,当主动打出电话月累计时间不超过150分,不再额外交费;当超过150分,超过部分每分加收0.25元.t≤150150<t<350 t=350 t>350 方式一计费/元58 108方式二计费/元88 88 88(Ⅱ)当t为何值时,两种计费方式的费用相等;(Ⅲ)当330<t<360时,你认为选用哪种计费方式省钱(直接写出结果即可).解:(Ⅰ)填表如下:t≤150150<t<350 t=350 t>350 方式一计费/元58 0.25t+20.5 108 0.25t+20.5方式二计费/元88 88 88 0.19t+21.5 (Ⅱ)∵当t>350时,(0.25t+20.5)-(0.19t+21.5)=0.06t-1>0,∴当两种计费方式的费用相等时,t的值在150<t<350取得.∴列方程0.25t+20.5=88,解得t=270。

中考一次函数的应用专题

中考一次函数的应用专题

中考一次函数的应用专题
一次函数是中考数学中的重要知识点,它既能使学生熟悉函数及它们之间的关系,又
能让学生掌握重要的数学概念,例如线性函数、平均函数、指数函数、对数函数等等。

因此,一次函数的应用在中考中显得尤为重要。

一、图形的解析
1、根据一次函数的图形,可以判断函数的性质,如函数的单调性、奇偶性、最大值、最小值、极值点、拐点等;
2、通过判断图形的斜率,可以求出函数的导数;
3、通过求出函数的导数,可以解决曲线图形的斜率变化趋势问题;
4、根据图形求出函数的表达式,并能够根据表达式求出函数的属性。

二、应用题
1、通过一次函数求两点之间的距离;
2、使用函数求某一时间内物体的位移;
3、根据函数的图像,求出函数的最大值、最小值等;
4、求函数的极限值;
5、根据函数的图像,判断函数的单调性、奇偶性;
6、求函数的导数,判断函数的斜率变化趋势;
7、求函数的拐点;
8、求函数的表达式。

以上就是中考一次函数的应用专题,通过一次函数的应用,学生可以更加深入地理解
函数的性质及其应用,从而提高中考数学的考试成绩。

一次函数的应用二十二 针对陕西中考特制

一次函数的应用二十二  针对陕西中考特制

一次函数的应用二十二(针对陕西中考第21题)1.(2015·甘南州)某酒厂每天生产A ,B 两种品牌的白酒共600瓶,A ,B 两种品牌的白酒每瓶的成本和利润如下表:设每天生产A (1)请写出y 关于x 的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?解:(1)A 种品牌白酒x 瓶,则B 种品牌白酒(600-x )瓶,依题意,得y =20x +15(600-x )=5x +9000 (2)A 种品牌白酒x 瓶,则B 种品牌白酒(600-x )瓶,依题意,得50x +35(600-x )≥26400,解得x ≥360,∴每天至少获利y =5x +9000=108002.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y 关于x 的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱? 解:(1)方案一:y =0.95x ;方案二:y =0.9x +300 (2)当x =5880时, 方案一:y =0.95x =5586(元), 方案二:y =0.9x +300=5592(元),∵5586<5592,∴所以选择方案一更省钱3.(导学号 30042277)甲、乙两人同时从相距90千米的A 地前往B 地,甲乘汽车,乙骑摩托车,甲到达B 地停留半小时后返回A 地.如图是他们离A 地的距离y(千米)与时间x(小时)之间的函数关系图象.(1)求甲从B 地返回A 地的过程中,y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若乙出发后2小时和甲相遇,求乙从A 地到B 地用了多长时间?解:(1)设甲从B 地返回A 地的过程中,y 与x 之间的函数关系式为y =kx +b ,根据题意得:⎩⎨⎧3k +b =0,1.5k +b =90,解得⎩⎨⎧k =-60,b =180.∴y =-60x +180(1.5≤x ≤3) (2)当x =2时,y =-60×2+180=60.∴骑摩托车的速度为60÷2=30(千米/时),∴乙从A 地到B 地用时为90÷30=3(小时)4.(导学号30042278)(2016·陕西模拟)服装店准备购进甲、乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?解:(1)设购进甲种服装x件,由题意可知:80x+60(100-x)≤7500,解得:x≤75,答:甲种服装最多购进75件(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75,w=(40-a)x+30(100-x)=(10-a)x+3000.方案1:当0<a<10时,10-a>0,w随x的增大而增大,所以当x =75时,w有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:10<a<20时,10-a<0,w随x的增大而减小,所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件第七章自我测试图形与变换一、选择题1.(2016·龙东)下列图形中,既是轴对称图形又是中心对称图形的是( D )2.(2016·鄂州)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( B )3.(2016·衢州)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是( C )4.(2016·长春)如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A在边B′C上,则∠B′的大小为( A ) A.42°B.48°C.52°D.58°5.(2015·南昌)如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( C )6.如图,有一个正方体纸巾盒,它的平面展开图是( B )7.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( B )A .8B .9C .10D .118.(导学号 30042220)如图,在矩形ABCD 中,AB =5,BC =7,点E 为BC 上一动点,把△ABE 沿AE 折叠,当点B 的对应点B′落在∠ADC 的角平分线上时,则点B′到BC 的距离为( A )A .1或2B .2或3C .3或4D .4或5,第8题图) ,第9题图)9.(导学号 30042221)如图,在△ABC 中,CA =CB ,∠ACB =90°,以AB 的中点D 为圆心,作圆心角为90°的扇形DEF ,点C 恰在EF 上,设∠BDF =α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积( C )A .由小到大B .由大到小C .不变D .先由小到大,后由大到小点拨:作DM ⊥AC 于点M ,DN ⊥BC 于点N ,连接DC ,∵CA =CB ,∠ACB =90°,∴∠A =∠B =45°,DM =22AD =24AB ,DN =22BD =24AB ,∴DM =DN ,∴四边形DMCN 是正方形,∴∠MDN =90°,∴∠MDG =90°-∠GDN ,∵∠EDF =90°,∴∠NDH =90°-∠GDN ,∴∠MDG =∠NDH ,在△DMG 和△DNH 中,⎩⎨⎧∠MDG =∠NDH ,∠DMG =∠DNH ,DM =DH ,∴△DMG ≌△DNH (AAS ),∴四边形DGCH 的面积=正方形DMCN 的面积,∵正方形DMCN 的面积=DM 2=18AB 2,∴四边形DGCH 的面积=18AB 2,∵扇形FDE 的面积=90·π·CD 2360=πAB 216,∴阴影部分的面积=扇形面积-四边形DGCH 的面积=(π-2)AB 216(定值)二、填空题10.如图,在Rt △ABC ,∠C =90°,BC =3厘米,AC =4厘米.将△ABC 沿BC 方向平移1厘米,得到△A ′B ′C ′,则四边形ABC′A′的面积为__10__平方厘米.,第10题图) ,第11题图)11.如图,已知正方形的边长为4 cm ,则图中阴影部分的面积为__8__cm 2. 12.如图是由若干个小立方块搭成的一个几何体的三视图,那么这个几何体中小立方块共有__6__个.13.(导学号 30042222)(2016·宁夏)如图,在矩形ABCD 中,AB =3,BC =5,在CD 上任取一点E ,连接BE ,将△BCE 沿BE 折叠,使点C 恰好落在AD 边上的点F 处,则CE 的长为__53__.三、解答题 14.(2016·聊城)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(-3,-1).(1)将△ABC 沿y 轴正方向平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1坐标;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.解:(1)B 1(-2,-1),图略 (2)C 2(1,1),图略15.(2016·巴中)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC.(顶点是网格线的交点)(1)先将△ABC 竖直向上平移6个单位,再水平向右平移3个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)将△A 1B 1C 1绕B 1点顺时针旋转90°,得△A 2B 1C 2,请画出△A 2B 1C 2;(3)线段B 1C 1变换到B 1C 2的过程中扫过区域的面积是多少?解:(1)(2)图略 (3)∵BC =3,∴线段B 1C 1变换到B 1C 2的过程中扫过区域的面积为90π×32360=94π16.(导学号 30042223)在△ABC 中,AB =BC =2,∠ABC =120°,将△ABC 绕点B 顺时针旋转角α(0<α<120°),得△A 1BC 1,A 1B 交AC 于点E ,A 1C 1分别交AC ,BC 于D ,F 两点.(1)如图①,观察并猜想,在旋转过程中,线段EA 1与FC 有怎样的数量关系?并证明你的结论;(2)如图②,当α=30°时,试判断四边形BC 1DA 的形状,并说明理由; (3)在(2)的情况下,求ED 的长.解:(1)EA 1=FC.理由如下:∵AB =BC ,∴∠A =∠C ,∵△ABC 绕点B 顺时针旋转角α得△A 1BC 1,∴∠ABE =∠C 1BF ,AB =BC =A 1B =BC 1,∴△ABE ≌△C 1BF (ASA ),∴BE =BF ,∴A 1B -BE =BC -BF ,即EA 1=FC(2)四边形BC 1DA 是菱形.理由如下:∵旋转角α=30°,∠ABC =120°,∴∠ABC 1=∠ABC +α=120°+30°=150°,∵∠ABC =120°,AB =BC ,∴∠A =∠C =12(180°-120°)=30°,∴∠ABC 1+∠C 1=150°+30°=180°,∠ABC 1+∠A =150°+30°=180°,∴AB ∥C 1D ,AD ∥BC 1,∴四边形BC 1DA 是平行四边形,又∵AB =BC 1,∴四边形BC 1DA 是菱形 (3)过点E 作EG ⊥AB ,∵∠A =∠ABA 1=30°,∴AG =BG =12AB =1,在Rt △AEG 中,AE =AG cosA =1cos30°=233,由(2)知AD =AB =2,∴DE =AD -AE =6-233。

【新人教版中考数学复习针对性训练系列全套 22份】复习针对性训练:一次函数的应用十八第22题)

【新人教版中考数学复习针对性训练系列全套 22份】复习针对性训练:一次函数的应用十八第22题)

一次函数的应用十八(针对陕西中考第22题)1.(2012·陕西副题)我省一户一表居民用电实行阶梯电价,其方案如下:每户每月用电量不超过150度的部分,每度电价为基础电价0.4983元/度;超过150度,不超过240度的部分,每度在基础电价上增加0.05元;超过240度的部分,每度在基础电价上增加0.3元.设一用户某月用电量为x(度),这个月应支付的电费为y(元).(1)当x >240时,求出y 与x 的函数表达式;(2)假设小张家7月份的用电量为300度,请根据方案,求小张家这个月应支付的电费. 解:(1)y =0.7983x -67.5 (x >240) (2)小张家这个月应支付电费171.99元2.(2015·珠海)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y 关于x 的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱? 解:(1)方案一:y =0.95x ;方案二:y =0.9x +300 (2)当x =5880时, 方案一:y =0.95x =5586(元), 方案二:y =0.9x +300=5592(元),∵5586<5592,∴所以选择方案一更省钱3.(2015·陕西模拟)某工程队承担了一项2100米的排水管道铺设任务.在施工过程中,前30天是按原计划进行施工的,后期提高了工效.铺设排水管道的长度y(米)与施工时间x(天)之间的关系如图所示.(1)求原计划多少天完成任务;(2)求提高工效后,y 与x 之间的函数表达式;(3)实际完成这项任务比原计划提前了多少天?解:(1)∵750÷30=25,∴2100÷25=84,故原计划需要84天完成任务 (2)设提高工效后,y 与x 之间的表达式为y =kx +b.∵其图象过点(33,750),(60,1560),∴⎩⎨⎧33k +b =750,60k +b =1560,解得⎩⎨⎧k =30,b =-240,∴y 与x 之间的表达式为y =30x -240.(33≤x ≤78) (3)2100-750=1350(米),1350÷30=45(天),实际完成这项任务需要的天数:45+30+3=78,∴84-78=6,∴实际完成这项任务比原计划提前了6天4.(2015·河池)花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.(1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数解析式;(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?解:(1)太阳花的付款金额y(元)关于购买量x(盆)的函数解析式是:y =6x ;①一次购买的绣球花不超过20盆时,付款金额y(元)关于购买量x(盆)的函数解析式是:y =10x(x ≤20) ②一次购买的绣球花超过20盆时,付款金额y(元)关于购买量x(盆)的函数解析式是:y =10×20+10×0.8×(x -20)=8x +40,综上,可得绣球花的付款金额y(元)关于购买量x(盆)的函数解析式是:y =⎩⎪⎨⎪⎧10x (x ≤20)8x +40(x >20) (2)根据题意,可得太阳花数量不超过:90×13=30(盆),所以绣球花的数量不少于:90-30=60(盆),设太阳花的数量是z 盆,则绣球花的数量是90-z 盆,购买两种花的总费用是w 元,z ≤30,则w =6z +[8(90-z)+40]=760-2z ,因为z ≤30,所以当z =30时,w 最小=760-2×30=700(元),即太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。

陕西省中考数学考点题对题题一次函数的实际应用题

陕西省中考数学考点题对题题一次函数的实际应用题

2018年陕西省中考数学考点题对题-第21一次函数及实际应用题【中考目标】1.会求一次函数表达式,能根据题意列出一元次方程或一元一次不等式并求解;2.能明确图象中点、线的具体意义,能从图象的变化中获取有用信息;3.能根据一次函数的性质解决最值问题. 【精讲精练】 类型一 文字型1. 张强要去外省旅游,特申请使用了某电信公司的手机漫游来电畅听业务,这个公司的漫游来电畅听业务规定:用户每月交月租费16元,可免费接听来电,而打出电话每分钟收费元 .设张强月手机的通话费(包括月租费和打出电话的费用)为y 元,打出电话时间为x 分钟.(1)求出y 与x 之间的函数关系式;(2)如果张强在外省旅游的当月的通话费(包括月租费和打出电话的费用)为42元,请你求出张强这个月打出电话时间为多少分钟2. (2016三明10分)小李是某服装厂的一名工人,负责加工A ,B 两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A 型服装1件可得20元,加工B 型服装1件可得12元.已知小李每天可加工A 型服装4件或B 型服装8件,设他每月加工A 型服装的时间为x 天,月收入为y 元. (1)求y 与x 的函数关系式;(2)根据服装厂要求,小李每月加工A 型服装数量应不少于B 型服装数量的35,那么他的月收入最高能达到多少元3. (2016攀枝花8分)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元4. (2017原创)电话手表上市以来,深受家长和孩子的青睐.经销商王某从市场获得如下信息:A品牌电话手表:进价700元/块,售价900元/块;B品牌电话手表:进价100元/块,售价160元/块.他计划用4万元资金一次性购进这两种电话手表共100块. (1)设王某购进A品牌电话手表x块,这两种品牌电话手表全部销售完后获得利润为w元,试写出w与x之间的函数关系式,并求出自变量x的取值范围;(2)王某计划全部销售完后获得的利润不少于万元,该经销商有哪几种进货方案选择哪种进货方案,可获利最大最大利润是多少类型二图象型1. (2016义乌8分)根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完,游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间排水孔的排水速度是多少(2)当2≤t≤时,求Q关于t的函数表达式.2. (2017原创)某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶的路程s(千米)与时间t(分)之间的函数关系.(1)学校离他家多远从出发到学校,用了多少时间(2)求王老师吃完早餐到学校这一过程中行驶路程s(千米) 与时间t(分)之间的函数表达式;(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快最快时速度达到多少3. 某道路建筑公司承包修筑一条公路,建筑队开始修筑一段时间后,由于公司另外一个项目着急交工,因此将该建筑队抽调了一部分人员去支援另外一个项目,已知该工程队修筑这条公路所用的时间x(天)与修筑公路的里程y(千米)之间的关系如图所示.(1)求出该工程队修筑公路的里程y(千米)与所用时间x(天)之间的函数关系式;(2)完成公路修筑后,该建筑公司发现,如果一直按开始的速度修筑此公路,可提前20天完成,求此公路的长度.4. (2016 南京8分)下图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120).已知线段BC表示的函数关系中,该汽车的速度每增加1 km/h,耗油量增加 L/m.(1)当速度为50 km/h、100 km/h时,该汽车的耗油量分别为________L/km、________L/km;(2)求线段AB所表示的y与x之间的函数表达式;(3)速度是多少时,该汽车的耗油量最低最低是多少5. (2015牡丹江8分)甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地,甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.(1)直接写出a的值,并求甲车的速度;(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;(3)乙车出发多少小时与甲车相距15千米直接写出答案.类型三表格型1. 某欢乐谷为回馈广大游客,准备在五一期间推出学生个人门票优惠价,各票价如下:某中学欲购买三种类型的票共80张奖励品学兼优的学生,其中购买的B种票数是A种票数的2倍还多5张,设购买A种票x张,总费用为y元.(1)求y与x之间的函数关系式;(2)为方便学生游玩,计划购买节假日通票45张,求该学校购买三种类型的票的总费用.2. “十三五”时期国家扶贫开发工作的重点是:贵在精准,重在精准.为了贯彻“精准扶贫”精神,某校特制定了一系列关于帮扶A,B两贫困村的计划.现决定从某地运送152箱鱼苗到A,B两村养殖,若用大货车8辆、小货车7辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A,B两村(1)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A,B两村总费用为y元,试求出y与x的函数解析式;(2)在(1)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.3. (2015陕师大附中模拟)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20 m3时,按2元/m3计费;月用水量超过20 m3时,其中的20 m3仍按2元/m3,超过部分按元/m3计费.设每户家庭用水量为x m3时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x的函数表达式;(2)小明家第二季度交纳水费的情况如表:小明家这个季度共用水多少m34. (2016漳州10分)某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如下表所示:(教师按成人票价购买,学生按学生票价购买)(1)参加活动的教师有________人,学生有________人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人5. (2016 十堰8分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg.经销一段时间后得(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大最大利润是多少附:2017年中考典型试题1.(2017年贵州省毕节地区第11题)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A. y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+22.(2017年湖北省十堰市第10题)如图,直线y= x﹣6分别交x轴,y轴于A,B,M 是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,ACBD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣63.(2017年山东省潍坊市第8题)一次函数与反比例函数,其中,为常数,它们在同一坐标系中的图象可以是().A. B. C. D.4.(2017年辽宁省沈阳市第9题)在平面直角坐标系中,一次函数的图象是()A. B. C. D.5.(2017年贵州省毕节地区第18题)如图,已知一次函数y=kx﹣3(k≠0)的图象与x 轴,y轴分别交于A,B两点,与反比例函数y=(x>0)交于C点,且AB=AC,则k的值为.6.(2017年山东省日照市第8题)反比例函数y=的图象如图所示,则一次函数y=kx+b(k ≠0)的图象的图象大致是()A. B. C. D.7.(2017年内蒙古通辽市第17题)如图,直线与轴分别交于,与反比例函数的图象在第二象限交于点.过点作轴的垂线交该反比例函数图象于点.若,则点的坐标为 .8. (2017年四川省成都市第13题)如图,正比例函数和一次函数的图像相交于点.当时, .(填“>”或“<”)9.(2017年湖北省荆州市第24题)(本题满分10分)荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量与时间t的函数关系式(2)哪一天的日销售利润最大最大利润是多少(3)该养殖户有多少天日销售利润不低于2400元(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间的增大而增大,求m的取值范围.10(2017年湖北省宜昌市第19题)“和谐号”火车从车站出发,在行驶过程中速度 (单位:)与时间 (单位:)的关系如图所示,其中线段轴.(1)当,求关于的函数解析式;(2)求点的坐标.11.(2017年四川省内江市第21题)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b 和反比例函数图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式的解集.12.(2017年四川省成都市第19题)如图,在平面直角坐标系中,已知正比例函数的图象与反比例函数的图象交于两点.(1)求反比例函数的表达式和点的坐标;(2)是第一象限内反比例函数图像上一点,过点作轴的平行线,交直线于点,连接,若的面积为3,求点的坐标.。

陕西中考题一次函数应用题所有类型题详细分析

陕西中考题一次函数应用题所有类型题详细分析

一次函数应用题表格题出题类型:设置两问,第一问根据题意与表格写出函数表达式,第二问与不等式和一次函数性质结合求最值。

中考题解析:1.(本题满分8分)某厂准备购买A、B、C三种配件共1000件,要求购买时C配件的件数是A配件件数的4倍,B配件不超过400件,且每种配件必须买.三种配件的价格如下表:配件 A B C价格(元/件)30 50 80现在假设购买A配件x(件),买全部配件所需的总费用为y(元).(1)求y 与x之间的函数关系式;(2)要使买全部配件所需的总费用最少,三种配件应各买多少件?所需的总费用最少多少元?1. (2014年黑龙江龙东地区10分)我市为改善农村生活条件,满足居民清洁能源的需求,计划为万宝村400户居民修建A、B两种型号的沼气池共24个.政府出资36万元,其余资金从各户筹集.两种沼气池的型号、修建费用、可供使用户数、占地面积如下表:池共需费用y万元.(1)求y与x之间函数关系式.(2)试问有哪几种满足上述要求的修建方案.(3)要想完成这项工程,每户居民平均至少应筹集多少钱?2. (2014年湖北天门学业10分)某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,则每天可售出300千克.小强:如果每千克的利润为3元,则每天可售出250千克.小红:如果以13元/千克的价格销售,则每天可获取利润750元.【利润=(销售价-进价) 销售量】(1)请根据他们的对话填写下表:(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?3. (2014年湖南湘西12分)湘西盛产椪柑,春节期间,一外地运销客户安排15辆汽车装运A、B、C三种不同品质的椪柑120吨到外地销售,按计划15辆汽车都要装满且每辆汽车只能装同一种品质的椪柑,每种椪柑所用车辆部不少于3辆.(1)设装运A种椪柑的车辆数为x辆,装运B种椪柑车辆数为y辆,根据下表提供的信息,求出y与x之间的函数关系式;椪柑品种 A B C每辆汽车运载量10 8 6每吨椪柑获利(元)800 1200 1000(2)在(1)条件下,求出该函数自变量x的取值范围,车辆的安排方案共有几种?请写出每种安排方案;(3)为了减少椪柑积压,湘西州制定出台了促进椪柑销售的优惠政策,在外地运销客户原有获利不变的情况下,政府对外地运销客户,按每吨50元的标准实行运费补贴.若要使该外地运销客户所获利润W(元)最大,应采用哪种车辆安排方案?并求出利润W(元)的最大值?4. (2012青海西宁10分)2012年6月9日召开的青海省居民阶梯电价听证会,征求了消费者、经营者和有关方面的意见,对青海省居民阶梯电价发、方案的必要性、可行性进行了论证.阶梯电价方案规定:若每月用电量为130度以下,收费标准为0.38元/度;若每月用电量为131度~230度,收费标准由两部分组成:①其中130度,按0.38元/度收费,②超出130度的部分按0.42元/度收费.现提供一居民某月电费发票的部分信息如下表所示:根据以上提供的信息解答下列问题:(1)如果月用电量用x(度)来表示,实付金额用y(元)来表示,请你写出这两种情况实付金额y 与月用电量x 之间的函数关系式;(2)请你根据表中本月实付金额计算这个家庭本月的实际用电量;(3)若小芳和小华家一个月的实际用电量分别为80度和150度,则实付金额分别为多少元?青海省居民电费专用发票计费期限:一个月用电量(度)单价(元/度)阶梯一:1300.38 阶梯二:131~230(超出部分) 0.42本月实付金额:78.8(元) (大写)柒拾捌元捌角第二 联图像题出题类型:设置两到三问,学会看懂图表并与题意结合,与一次函数解析式的求解与图像之间交点问题考察较多。

2024陕西中考数学二轮专题训练 题型十 一次函数实际应用题 (含答案)

2024陕西中考数学二轮专题训练 题型十 一次函数实际应用题 (含答案)

2024陕西中考数学二轮专题训练题型十一次函数实际应用题
类型一文字型
【类型解读】文字型函数实际应用题近10年考查4次,分值为7或8分.考查形式:气温随高度变化情况(2020)、阶梯收费问题(2次)、空气含氧量问题(2020),设问均为两问.考查特点:求一次函数表达式(必考)、解一元一次方程(3考).
1.[跨学科知识]科学家研究发现,声音在空气中传播的速度y(m/s)(简称:音速)与气温x(℃)有关,当气温每升高5℃时,音速提高3m/s,已知当气温为0℃时,音速为331m/s.
(1)求y与x之间的函数关系式;
(2)2021年6月17日,小明在电视机前观看神舟十二号载人飞船发射(由A摄影机拍摄),他发现从火箭点火到听到火箭升空声音经过了5s,已知火箭发射时的气温约为22℃,求A 摄影机距离发射架的距离约为多少?(忽略电视传输信号等时间)
2.李叔叔承包了一片土地种植某种经济作物,为了提高产量,通常会采用喷施药物的方法控制其高度.已知该种经济作物的平均高度y(m)与每公顷所喷施药物的质量x(kg)之间的关系近似地满足一次函数关系.已知当每公顷喷施药物5kg时,该种经济作物的平均高度为1.8m,当每公顷喷施药物10kg时,该种经济作物的平均高度为0.6m.
(1)求出y与x之间的函数关系式,并写出x的取值范围;
(2)根据李叔叔的经验,该种经济作物平均高度在1.5m左右时,它的产量最高,此时每公顷应喷施多少药物?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的应用十八(针对陕西中考第22题)
1.(2012·陕西副题)我省一户一表居民用电实行阶梯电价,其方案如下:每户每月用电量不超过150度的部分,每度电价为基础电价0.4983元/度;超过150度,不超过240度的部分,每度在基础电价上增加0.05元;超过240度的部分,每度在基础电价上增加0.3元.设一用户某月用电量为x(度),这个月应支付的电费为y(元).
(1)当x >240时,求出y 与x 的函数表达式;
(2)假设小张家7月份的用电量为300度,请根据方案,求小张家这个月应支付的电费. 解:(1)y =0.7983x -67.5 (x >240) (2)小张家这个月应支付电费171.99元
2.(2015·珠海)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.
(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y 关于x 的函数解析式;
(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱? 解:(1)方案一:y =0.95x ;方案二:y =0.9x +300 (2)当x =5880时, 方案一:y =0.95x =5586(元), 方案二:y =0.9x +300=5592(元),∵5586<5592,∴所以选择方案一更省钱
3.(2015·陕西模拟)某工程队承担了一项2100米的排水管道铺设任务.在施工过程中,前30天是按原计划进行施工的,后期提高了工效.铺设排水管道的长度y(米)与施工时间x(天)之间的关系如图所示.
(1)求原计划多少天完成任务;
(2)求提高工效后,y 与x 之间的函数表达式;
(3)实际完成这项任务比原计划提前了多少天?
解:(1)∵750÷30=25,∴2100÷25=84,故原计划需要84天完成任务 (2)设提高工效
后,y 与x 之间的表达式为y =kx +b.∵其图象过点(33,750),(60,1560),∴⎩⎨⎧33k +b =750,60k +b =1560,
解得⎩⎨⎧k =30,b =-240,
∴y 与x 之间的表达式为y =30x -240.(33≤x ≤78) (3)2100-750=1350(米),1350÷30=45(天),实际完成这项任务需要的天数:45+30+3=78,∴84-78=6,∴实际完成这项任务比原计划提前了6天
4.(2015·河池)花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若一次
购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.
(1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数解析式;
(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?
解:(1)太阳花的付款金额y(元)关于购买量x(盆)的函数解析式是:y =6x ;①一次购买的绣球花不超过20盆时,付款金额y(元)关于购买量x(盆)的函数解析式是:y =10x(x ≤20) ②一次购买的绣球花超过20盆时,付款金额y(元)关于购买量x(盆)的函数解析式是:y =10×20+10×0.8×(x -20)=8x +40,综上,可得绣球花的付款金额y(元)关于购买量x(盆)
的函数解析式是:y =⎩
⎪⎨⎪⎧10x (x ≤20)8x +40(x >20) (2)根据题意,可得太阳花数量不超过:90×13=30(盆),所以绣球花的数量不少于:90-30=60(盆),设太阳花的数量是z 盆,则绣球花的数量是90-z 盆,购买两种花的总费用是w 元,z ≤30,则w =6z +[8(90-z)+40]=760-2z ,因为z ≤30,所以当z =30时,w 最小=760-2×30=700(元),即太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元。

相关文档
最新文档