中衡自控串联校正装置的【设计明细】
自动控制原理02常用串联校正装置及其特性
串联超前校正装置
R1
U A R2
C
(3)串联超前校正装置的有源网络实现
i1 i3
R3
i2
R0 R1 R3 R2 R3 R1 R2 R3 _ Cs 1 U U o ( s) R1 R2 R1 R2 i i 0 Uo U i ( s) R0 R3Cs 1 图6-10 有源超前网络
PI控制器--工程设计常用
1/T
_
( )
Ui
R0
Uo
图6-16 PI控制器
0 -450 -900
U o (s) Ts 1 传递函数: K U i ( s) Ts
R1 K R0
图6-17 PI控制器频率特性
说明:PI控制器给系统增加了一个积分 环节,改善了系统的稳态性能
T R1C
,R1、R2远远大于R3、R4, 式(6-31)可转化为(6-27)。
Tb
R4C2
6.2.3
串联滞后超前校正装置
C0
R1
PID控制器--工程设计常用
传递函数:
1 U o (s) C1s 1 U i (s) R0 C0 s 1 R0 C0 s R1 R1 ( R1C1s 1)(R0C0 s 1) R0 R1C1s
对数频率特性
L ( )
0 1/T
m
1/bT
20lgb
特点: 用其高频幅值衰减特
-20dB/dec
( )
0 -900
m
性,降低系统的开环
截止频率,提高系统 的相位裕度。
图6-13 串联滞后校正频率特性
6.2.2
串联校正系统设计
串联校正系统设计串联校正系统是一种通过对输入信号进行处理,使输出信号与期望值接近的自动控制系统。
它是由控制器、执行器和传感器组成的闭环控制系统。
控制器接收传感器采集到的实际值,并根据期望值和实际值的差异进行调节,以控制执行器的动作,从而实现对系统的校正。
1. 串联校正系统的目标串联校正系统的设计目标是实现对于被控对象的精确控制。
即使在外部环境变化或者被控对象参数变化的情况下,系统也能够快速响应并实现稳定的控制效果。
2. 串联校正系统的设计原则(1)稳定性原则:设计稳定的传感器和控制器,保障系统在外部环境变化时具有良好的稳定性。
(2)精度原则:保持系统的精度,要求传感器和控制器能够对于被控对象的参数进行准确测量和调节。
(3)快速响应原则:设计快速响应的控制器,使系统能够在外部环境变化时快速调整输出,实现对被控对象的快速校正。
(4)可靠性原则:确保系统具有良好的可靠性,降低控制系统发生故障的可能性。
1. 传感器的选择传感器是串联校正系统中的重要组成部分,它能够对被控对象的参数进行测量,并将实际值反馈给控制器。
传感器的选择应当根据被控对象的特性和要求来确定。
一般来说,需要考虑传感器的测量范围、测量精度、输出信号类型等因素。
2. 控制器的设计控制器是串联校正系统的核心部分,它根据传感器反馈的实际值和期望值之间的差异,调节执行器的动作,以实现对被控对象的校正。
在控制器的设计中,需要考虑控制算法的选择、控制器的响应速度、系统的稳定性等因素。
4. 串联校正系统的整体设计在进行串联校正系统的设计时,需要考虑传感器、控制器和执行器之间的匹配关系,确保它们能够协同工作,实现对被控对象的精确控制。
同时还需要考虑系统的稳定性、可靠性和安全性等方面。
五、串联校正系统的应用案例下面以某汽车制造厂生产线上的串联校正系统为例,介绍串联校正系统的具体应用。
某汽车制造厂生产线上的串联校正系统主要用于对汽车轮胎的气压进行校正。
传感器通过对轮胎气压进行测量,将实际值反馈给控制器。
自动控制原理03串联校正设计
1 ' 450 ,试分析系统 若要求校正后系统的静态速度误差系数 Kv 1000s ,
的性能,并进行串联校正。 解:第一步,根据系统稳态性能的要求,确定校正后系统的开环增益
1 因要求校正后系统的静态速度误差系数Kv 1000s ,所以
1000 则校正前系统的开环传递函数为: Go ( s) s(0.1s 1)(0.001s 1)
合理选择各电阻、电容的大小,就可将串联超前校正装置由数学模型转
化为具体电路。
说明:也可以选择无源校正网络,但要注意在其前级增加一个放大环节
,以补偿其增益衰减,同时还要考虑阻抗匹配问题。
6.3.1
串联超前校正设计
K s(0.1s 1)(0.001s 1)
Go ( s) 例6-2 设单位反馈控制系统的开环传递函数为:
由: m
1 T a
T 0.114 c ' ,可计算出 :
故串联超前校正装置的传递函数为: Gc ( s) 第四步,系统性能校验
1 0.456s 1 0.114s
校正后系统的开环传递函数为 : G( s) Gc ( s)Go ( s)
1 0.456s 10 1 0.114s s( s 1) ' 1800 arctan0.456 c '900 arctan0.114 c ' arctanc ' 49.70 450
串联超前校正设计
方法二 按照给定的相位裕度 ' 计算 (6-36) (6-37)
{
:校正前系统的相位裕度
:一个正的补偿角
第四步:验算校正后系统的性能指标是否满足要求。 第五步:串联超前校正装置的物理实现 例6-1 设单位反馈控制系统的开环传递函数为:Go ( s )
串联校正实验报告(3篇)
第1篇一、实验目的1. 了解串联校正的基本原理和设计方法。
2. 掌握利用串联校正装置改善系统性能的方法。
3. 通过实验验证串联校正对系统动态性能的影响。
二、实验原理串联校正是一种常用的控制系统设计方法,通过在系统的输入端或输出端添加校正装置,来改善系统的动态性能和稳态性能。
本实验主要研究串联校正对系统相位裕度和增益裕度的影响。
三、实验器材1. 控制系统实验平台2. 信号发生器3. 示波器4. 信号调理器5. 校正装置(如PID控制器、滤波器等)6. 计算机及仿真软件四、实验步骤1. 搭建实验系统:根据实验要求搭建控制系统实验平台,包括被控对象、校正装置和测量装置。
2. 设置实验参数:设置被控对象和校正装置的参数,如PID参数、滤波器参数等。
3. 进行开环实验:通过信号发生器向系统输入不同频率的正弦信号,利用示波器观察系统的输出响应,记录系统的相位裕度和增益裕度。
4. 进行闭环实验:将系统切换到闭环状态,再次输入正弦信号,观察系统的输出响应,记录系统的相位裕度和增益裕度。
5. 分析实验结果:比较开环和闭环实验结果,分析串联校正对系统性能的影响。
五、实验结果与分析1. 开环实验结果:通过开环实验,可以得到系统的相位裕度和增益裕度,以及系统的频率响应曲线。
2. 闭环实验结果:通过闭环实验,可以得到系统的相位裕度和增益裕度,以及系统的频率响应曲线。
3. 分析结果:- 当校正装置的参数设置合理时,系统的相位裕度和增益裕度会得到改善,从而提高系统的稳定性。
- 串联校正可以有效地抑制系统的振荡和超调,提高系统的响应速度。
- 串联校正对系统的稳态误差也有一定的影响,需要根据实际需求进行调整。
六、实验结论1. 串联校正是一种有效的控制系统设计方法,可以改善系统的动态性能和稳态性能。
2. 通过合理设置校正装置的参数,可以有效地提高系统的稳定性、响应速度和稳态精度。
3. 在实际应用中,需要根据被控对象和系统的具体要求,选择合适的校正装置和参数。
串联校正装置设计的一般方法及步骤
串联校正装置设计的一般方法及步骤串联校正装置在控制系统设计中扮演着至关重要的角色,它可以改善系统的性能,增强系统的稳定性和鲁棒性。
下面将介绍串联校正装置设计的一般方法及步骤:一、明确系统性能需求首先,需要明确控制系统需要满足的性能需求,包括系统的稳定性、快速性、准确性等。
这些性能需求将直接决定串联校正装置的类型和参数。
二、分析系统稳定性在明确了系统性能需求后,需要对控制系统进行稳定性分析。
通过计算系统的极点和零点,判断系统是否稳定。
如果系统不稳定,需要设计相应的串联校正装置来改善系统的稳定性。
三、选择合适的串联校正装置根据系统性能需求和稳定性分析结果,选择合适的串联校正装置。
常用的串联校正装置包括:超前校正、滞后校正、滞后-超前校正等。
不同的串联校正装置具有不同的频率特性,可以用来改善系统的不同性能指标。
四、设计串联校正装置参数在选择了合适的串联校正装置后,需要设计其参数。
参数设计需要根据系统性能需求、稳定性分析结果以及串联校正装置的特性进行。
通常,可以通过调整超前、滞后环节的增益和时间常数等参数来优化系统的性能。
五、实验验证与调整在完成串联校正装置的设计后,需要进行实验验证,以确认设计是否满足系统性能需求。
在实验过程中,需要对系统进行测试和调整,以确保系统的稳定性和性能达到预期要求。
如果实验结果不满足要求,需要对串联校正装置的参数进行调整,直到达到满意的结果。
六、集成到控制系统最后,将设计的串联校正装置集成到控制系统中。
在集成过程中,需要注意与原有系统的匹配问题,避免出现不必要的干扰和波动。
同时,还需要对控制系统进行实际的运行测试,以确保整个系统能够正常运行并满足性能需求。
综上所述,串联校正装置设计的一般方法及步骤包括明确系统性能需求、分析系统稳定性、选择合适的串联校正装置、设计串联校正装置参数、实验验证与调整以及集成到控制系统中。
这些步骤需要按照顺序逐步进行,以确保设计的串联校正装置能够有效地改善控制系统的性能。
几种常用的串联校正装置及校正方法
几种常用的串联校正装置及校正方法一、相位超前校正装置1.电路二、校正原理用频率法对系统进行超前校正的基本原理,是利用超前校正网络的相位超前特性来增大系统的相位裕量,以达到改善系统瞬态响应的目的。
为此,要求校正网络最大的相位超前角岀现在系统的截止频率(剪切频率)处。
由于RC组成的超前网络具有衰减特性,因此,应采用带放大器的无源网络电路,或采用运算放大器组成的有源网络。
一般要求校正后系统的开环频率特性具有如下特点:①低频段的增益充分大,满足稳态精度的要求;②中频段的幅频特性的斜率为-20dB/dec,并具有较宽的频带,这一要求是为了系统具有满意的动态性能;③高频段要求幅值迅速衰减,以较少噪声的影响。
三、校正方法方法多种,常采用试探法。
总体来说,试探法步骤可归纳为:1.根据稳态误差的要求,确定开环增益K2.传递函数3.频率特性G(J)=a心+1+1 T^R{C由 P133 页,式(6-5)L _ 1十sin 忆1 + 38°位 1一血忆 1 - sill 382.根据所确定的开环增益 K ,画岀未校正系统的博特图,量岀 (或计算)未校正系统的相位裕度。
若不满足要求,转第3.由给定的相位裕度值,计算超前校正装置应提供的相位超前量 (适当增加一余量值)。
4.选择校正装置的最大超前角频率等于要求的系统截止频率,计算超前网络参数a 和T ;若有截止频率的要求,则依该频率计算 超3步。
3步。
设计一个超前校正装置,使校正后系统的静态速度误差系数 解:根据对静态速度误差系数的要求,确定系统的开环增益Kv = 20s -1,相位裕度为 丫》50° K 。
K v-^―=2X = 2Q出卫2)绘制未校正系统的伯特图,如图中的蓝线所示。
由该图可知未校正系统的相位裕度为 Y= 17°根据相位裕度的要求确定超前校正网络的相位超前角+^ = 50<,-17c,-F5° = 38fl超前校正装置在 W m 处的幅值为101g<i = L01g42 = 6,2rfB在为校正系统的开环对数幅值为 -6.2dB 对应的频率,这一频率就作为是校正后系统的截止频率。
自控实验报告-连续系统串联校正
实验二连续系统串联校正一、实验目的观察串联超前、滞后、滞后超前校正对改善系统性能的作用;学习串联校正的基本设计方法;观测超前、滞后、滞后超前三种校正方式的作用。
二、实验内容(1) 已知系统开环传递函数:()100(0.11)(0.011)o G s s s s =++模拟线路图如图1所示,图1 不加校正时的模拟电路图原系统的截止频率满足210010.1c ω=,解得31.62/c rad s ω=,其bode 图如图2图2 不加校正时的系统bode 图(2) 要求原系统经过超前校正后满足100v K =,40c rad ω≥,35%σ≤。
因为原系统已经能够满足速度误差系数100v K =,设超前校正的传递函数11lead Ts G Ts α+=+。
要求截止角频率40c rad ω≥,不妨取45/c rad s ω=,原系统在c ω处产生的相角arg(j )191.70c ω=- ,为了使系统有至少30°的相角裕量。
取arg((j )(j ))50lead c o c G G ωω= 又(j )(j )1lead c o c G G ωω=解得0.033,0.0027T T α==即0.03310.00271lead s G s +=+。
本次实验采用的超前系统传递函数为:0.041()0.0041c s G s s +=+图3超前校正部分自身的bode图其模拟线路图如图4所示:图4超前校正的电路图经过校正后的电路bode 图为:图5加入超前校正后电路的bode 图(3) 原系统经过滞后校正后100v K =,5c rad ω≥,40%σ≤。
设滞后校正装置的传递函数为:11lag Ts G Ts β+=+取截至角频率7/c rad s ω= 则有()()1lag c o c G j G j ωω= 不妨取10.2 1.4/c rad s Tω== 可以解得:=12.01T β即系统的滞后校正的传递函数可以取0.714112.011lag s G s +=+本次实验给出的滞后装置的传递函数为:0.51()8.51c s G s s +=+滞后部分的伯德图图6滞后校正部分自身的bode 图其模拟线路图如图7所示:图7加滞后校正的电路图电路的bode 图如图所示:图8加入滞后校正后的电路bode 图(4)原系统经过滞后超前校正后100v K =,20c rad ω≥,10%σ≤。
第5章自动控制系统的校正
20 s(0.5s 1)
第5章 自动控制系统的校正
40
L() / dB
20 0 - 20 - 40 0°
Lc()
c
c L()
L0()
c()
- 90° - 18 0°0()
12
()
4 6 8 10 20 / (rad/ s)
4060 100 80
图5 - 7 例1 系统的伯德图
() / °
第5章 自动控制系统的校正
第5章 自动控制系统的校正
(4) 由式(5 - 6)求得
1 sinm 1 sinm
1 sin 38 1 sin 38
4.2
(5) 超前校正装置在ωm处的对数幅频值为 Lc(ωm)=10 lgα=10 lg4.2=6.2 dB
在原系统对数幅频特性曲线上找到-6.2 dB处, 选 定对应的频率ω=9 rad/s为ωm, 即ω′c。
第5章 自动控制系统的校正
(4) 根据所确定的φm, 按式(5 - 6)计算出α值。 (5) 在原系统对数幅频特性曲线L0(ω)上找到幅频 值为-10 lgα的点, 选定对应的频率为超前校正装置的 ωm, 也就是校正后系统的穿越频率ω′c。 这样做的道理是: 由图5 - 3知, 超前校正装置在 ωm处的对数幅频值为
综上所述, 超前校正有如下特点: (1) 超前校正主要针对系统频率特性的中频段进行 校正, 使校正后对数幅频特性曲线的中频段斜率为-20 dB/dec, 并有足够的相位裕量。 (2) 超前校正会使系统的穿越频率增加, 这表明校 正后系统的频带变宽, 动态响应速度变快, 但系统抗 高频干扰的能力也变差。
其中:
Gc
(s)
1 Ts
1 Ts
R2 1,
计算机控制课程设计--串联校正控制器设计
计算机控制课程设计--串联校正控制器设计《计算机控制》课程设计报告题目: 串联校正控制器设计姓名:学号:42013年12月2日《计算机控制》课程设计任务书学号班级学生指导教师题目串联校正控制器设计设计时间2013年 11 月 25 日至 2013 年12 月 2 日共 1 周设计要求设计任务:(按照所选题目内容填写)设单位反馈系统的开环传递函数为()(1)(4)KG ss s s=++,用根轨迹法设计串联校正控制器,并采用模拟法设计数字控制器,使校正后的系统满足:系统阻尼比为0.5,无阻尼自然振荡频率2rad/s。
方案设计:1.完成控制系统的分析、设计;2.选择元器件,完成电路设计,控制器采用MCS-51系列单片机(传感器、功率接口以及人机接口等可以暂不涉及),使用Protel绘制原理图;3.编程实现单片机上的控制算法。
报告内容:1.控制系统仿真和设计步骤,应包含性能曲线、采样周期的选择、数字控制器的脉冲传递函数和差分方程;2.元器件选型,电路设计,以及绘制的Protel原理图;3.软件流程图,以及含有详细注释的源程序;4.设计工作总结及心得体会;5.列出所查阅的参考资料。
指导教师签字:系(教研室)主任签字:213年11月25日1、 模拟控制器的设计原系统的开环传递函数为(1)(4)Ks s s ++,单位负反馈。
根据题目要求,系统阻尼比为0.5,无阻尼自然振荡频率2rad/s 。
因此期望主导极点为2113d n s j =-ξω±ω-ξ=-±用Matlab 绘制其根轨迹如下图所示:----R eal A xi s (seconds -1)I ma g i n a r y A x i s (s e c o n d s -1)图 1 校正前系统的根轨迹由上图可知,期望闭环极点位于根轨迹左侧,可以采用相位超前校正,使根轨迹左移。
由图可见,开环几点之一,1s =-正好位于期望闭环极点d s 垂线下的负实轴上,如果令校正装置的零点设在紧靠1s =-这个开环极点的左侧,另 1.2c z =-,这样做往往能增大d s 成为闭环主导极点的可能性。
自控串联校正装置设计资料
学号000000自动控制原理A课程设计说明书串联校正装置的设计起止日期:2013 年12 月30 日至2014 年1 月3 日学生姓名00班级2011级成绩指导教师(签字)控制与机械工程学院2014年1 月3 日000 课程设计任务书2013 —2014 学年第 1 学期控制与机械工程 学院 电气工程及其自动化 专业 电气2011级 2班 课程设计名称: 自动控制原理A 课程设计 设计题目: 串联校正装置的设计完成期限:自 2013 年12 月 30 日至 2014 年 1 月 3 日共 1 周 设计依据、要求及主要内容:已知单位反馈系统的开环传递函数为:)40)(2()(++=s s s Ks G要求校正后系统的速度误差系数120-≥s k v ,相角裕度 40≥γ,试设计串联校正装置。
基本要求:1、对原系统进行分析,绘制原系统的单位阶跃响应曲线,2、绘制原系统的Bode 图,确定原系统的幅值裕度和相角裕度。
3、绘制原系统的Nyquist 曲线。
4、绘制原系统的根轨迹。
5、设计校正装置,绘制校正装置的Bode 图。
6、绘制校正后系统的Bode 图、确定校正后系统的幅值裕度和相角裕度。
7、绘制校正后系统的单位阶跃响应曲线。
8、绘制校正后系统的Nyquist 曲线。
9、绘制校正后系统的根轨迹。
指导教师(签字): 系主任(签字): 批准日期:2013年12月8日目录一、绪论 (2)二、原系统分析 (2)2.1 原系统的单位阶跃响应曲线 (2)2.2 原系统的Bode图 (3)2.3 原系统的Nyquist曲线 (4)2.4 原系统的根轨迹 (4)三、校正装置的设计 (5)3.1 校正方案的确定 (5)3.2校正装置参数的确定 (5)3.3 校正装置的Bode图 (6)四、校正后系统的分析 (6)4.1校正后系统的单位阶跃响应曲线 (6)4.2 校正后系统的Bode图 (7)4.3 校正后系统的Nyquist曲线 (8)4.4 校正后系统的根轨迹 (8)4.5校正后系统的Simulink仿真框图 (9)五、总结 (10)六、参考文献 (11)一、绪论自动控制作为一种重要的技术手段,在工程技术和科学研究中起着极为重要的作用。
自动控制实验报告五-连续系统串联校正
实验五连续系统串联校正一、实验目的1. 加深理解串联校正装置对系统动态性能的校正作用。
2. 对给定系统进行串联校正设计,并通过模拟实验检验设计的正确性。
二、实验仪器1.EL-AT-III型自动控制系统实验箱一台2.计算机一台三、实验内容1.串联超前校正(1)系统模拟电路图如图5-1,图中开关S断开对应未校情况,接通对应超前校正。
图5-1 超前校正电路图图5-1 超前校正电路图(2)系统结构图如图5-2图5-2 超前校正系统结构图图中Gc1(s)=22(0.055s+1)Gc2(s)=0.005s+12.串联滞后校正(1)模拟电路图如图5-3,开关s断开对应未校状态,接通对应滞后校正。
图5-3 滞后校正模拟电路图(2)系统结构图示如图5-4图5-4 滞后系统结构图图中Gc1(s)=1010(s+1)Gc2(s)=11s+13.串联超前—滞后校正(1)模拟电路图如图5-5,双刀开关断开对应未校状态,接通对应超前—滞后校正。
图5-5 超前—滞后校正模拟电路图(2)系统结构图示如图5-6。
图5-6超前—滞后校正系统结构图图中 Gc1(s)=66(1.2s+1)(0.15s+1)Gc2(s)=(6s+1)(0.05s+1)四、实验步骤1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2.测试计算机与实验箱的通信是否正常,通信正常继续。
如通信不正常查找原因使通信正常后才可以继续进行实验。
超前校正:3.连接被测量典型环节的模拟电路(图5-1)。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将将纯积分电容两端连在模拟开关上。
检查无误后接通电源。
4.开关s放在断开位置。
-5.在实验项目的下拉列表中选择实验五[五、连续系统串联校正]。
鼠标单击按钮,弹出实验课题参数设置对话框。
在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果,并记录超调量 p和调节时间ts。
串联校正系统设计
串联校正系统设计引言:串联校正系统(Cascade Control System)是一种常用的控制系统结构,通过将多个控制环路串联在一起,实现更高级别的控制和优化。
本文将介绍串联校正系统的设计原则和步骤。
一、设计原则:1. 目标一致性:各个控制环路的目标必须要一致,以确保系统能够整体协调运作。
2. 层次化:将系统分为多个层次,每个层次对应一个控制环路,上层环路控制下层环路的设定值,下层环路控制具体的执行。
3. 校正器选择:选择合适的校正器,使得系统的动态响应满足要求,同时保持稳定性。
二、设计步骤:1. 确定系统层次:根据实际需求和系统结构设计,确定系统的层次结构。
2. 确定各个环路:根据系统的层次结构,确定每个层次对应的控制环路,包括上层环路和下层环路。
3. 设定目标:对于每个环路,设定合适的目标,如温度、压力等。
4. 设定环路连接方式:根据系统的工作原理和目标要求,确定各个环路之间的连接方式,可采用级联、串联等方式。
5. 设计校正器:根据系统的特点和要求,选择合适的校正器,如PID控制器、模型预测控制器等。
6. 参数调整:对于每个环路的校正器参数进行调整,使得系统的动态响应满足要求,同时保持稳定性。
7. 系统测试:对整个系统进行测试,验证设计的可行性和有效性,并进行必要的调整和优化。
三、示例:以温度控制系统为例,设计一个串联校正系统。
系统包含三个环路,分别是室内温度环路、供水温度环路和供水流量环路。
1. 确定系统层次:系统的层次结构为:室内温度环路(上层环路)→供水温度环路(中层环路)→供水流量环路(下层环路)。
3. 设定目标:室内温度环路的目标设定为25摄氏度,供水温度环路的目标设定为60摄氏度,供水流量环路的目标设定为10L/min。
4. 设定环路连接方式:采用级联连接方式,上层环路控制下层环路的设定值。
5. 设计校正器:对于每个环路,选择合适的校正器。
如室内温度环路可以使用PID控制器,供水温度环路可以使用模型预测控制器。
用频率法设计串联校正装置
4.根据相位裕度γ"要求,选择已校正系统的截止频率wc";考虑到滞后网络在新的截止频率wc"处,会产生一定的相角滞后 ,因此,下列等式成立:
根据上式的计算结果,在曲线上可查出相应的值。
5.根据下述关系确定滞后网络参数b和T如下:
所以开环传递函数变为
校正前:
在MATLAB中编写如下程序:
S=tf(‘s’) 生成拉普拉斯变量s
G=30/(s*(s+1)*(0.25*s+1) 生成开环传递函数
[mag,phase,w]=bode(G)获取对数频率特性上每个频率w对应 的复制和相位角
Figure(1)
Margin(g:grid) 绘制校正前系统Bode图
3.设计任务与要求
已知单位负反馈系统的开环传递函数G(s)=K0/S(S+1)(0.25S+1),试用频率法设计串联校正装置,要求校正后系统的静态速度误差系数Kv≧5S-1,系统的相角裕度r≧45°校正后的剪切频率WC≧2rad/s
4.设计方法步骤
4.1校正前系统的分析
校正前系统的开环传递函数为:
由静态速度误差系数Kv≧5S-1可选取 =30rad/s
[mag1,phase1,w1]=bode(G1)获取经滞后校正系统的每个频率w1对应的幅值和相位角
figure(2)
margin(G1);grid绘制经过滞后校正后的系统bode图
wc2=4.5根据对滞后校正后的bode图分析,选取校正后的剪切频率,改参数可调
[Gm1,Pm2,wg1,wc1]=margin(G1)获取经过滞后校正后的频域指标
几种常用的串联校正装置及校正方法
2.几种常用的串联校正装置及校正方法一、相位超前校正装置1.电路2.传递函数3.频率特性二、校正原理用频率法对系统进行超前校正的基本原理,是利用超前校正网络的相位超前特性来增大系统的相位裕量,以达到改善系统瞬态响应的目的。
为此,要求校正网络最大的相位超前角出现在系统的截止频率(剪切频率)(幅值穿越频率)处。
由于RC组成的超前网络具有衰减特性,因此,应采用带放大器的无源网络电路,或采用运算放大器组成的有源网络。
一般要求校正后系统的开环频率特性具有如下特点:①低频段的增益充分大,满足稳态精度的要求;②中频段的幅频特性的斜率为-20dB/dec,并具有较宽的频带,这一要求是为了系统具有满意的动态性能;③高频段要求幅值迅速衰减,以较少噪声的影响。
三、校正方法方法多种,常采用试探法。
总体来说,试探法步骤可归纳为:1.根据稳态误差的要求,确定开环增益K。
2.根据所确定的开环增益K,画出未校正系统的博特图,量出(或计算)未校正系统的相位裕度。
若不满足要求,转第3步。
3.由给定的相位裕度值,计算超前校正装置应提供的相位超前量(适当增加一余量值)。
4.选择校正装置的最大超前角频率等于要求的系统截止频率,计算超前网络参数a和T;若有截止频率的要求,则依该频率计算超前网络参数a和T。
5.验证已校正系统的相位裕度;若不满足要求,再回转第3步。
例某单位反馈系统的开环传递函数如下设计一个超前校正装置,使校正后系统的静态速度误差系数Kv=20s-1,相位裕度为γ≥50°。
解:根据对静态速度误差系数的要求,确定系统的开环增益K。
绘制未校正系统的伯特图,如图中的蓝线所示。
由该图可知未校正系统的相位裕度为γ=17°根据相位裕度的要求确定超前校正网络的相位超前角由P133页,式(6-5)超前校正装置在w m处的幅值为在为校正系统的开环对数幅值为-6.2dB 对应的频率,这一频率就作为是校正后系统的截止频率。
计算超前校正网络的转折频率,由P133,式(6-4)为了补偿因超前校正网络的引入而造成系统开环增益的衰减,必须使附加放大器的放大倍数为4.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津城建大学课程设计任务书2013 —2014 学年第 1 学期控制与机械工程 学院 电气工程及其自动化 专业课程设计名称: 自动控制原理A 课程设计设计题目: 串联校正装置的设计13设计依据、要求及主要内容: 已知单位反馈系统的开环传递函数为:)1()(+=s s K s G 要求校正后系统的速度误差系数112-≥s k v ,相角裕度 45≥γ,截止频率s rad c /5.7≥ω,试设计串联校正装置。
基本要求:1、对原系统进行分析,绘制原系统的单位阶跃响应曲线,2、绘制原系统的Bode 图,确定原系统的幅值裕度和相角裕度。
3、绘制原系统的Nyquist 曲线。
4、绘制原系统的根轨迹。
5、设计校正装置,绘制校正装置的Bode 图。
6、绘制校正后系统的Bode 图、确定校正后系统的幅值裕度和相角裕度。
7、绘制校正后系统的单位阶跃响应曲线。
8、绘制校正后系统的Nyquist 曲线。
9、绘制校正后系统的根轨迹。
指导教师(签字):系主任(签字):批准日期:2013年12月8日目录一、绪论 (1)二、原系统分析.................................... 错误!未定义书签。
2.1 原系统的单位阶跃响应曲线.................... 错误!未定义书签。
2.2 原系统的Bode图 ............................ 错误!未定义书签。
2.3 原系统的Nyquist曲线........................ 错误!未定义书签。
2.4 原系统的根轨迹.............................. 错误!未定义书签。
三、校正装置设计................................... 错误!未定义书签。
3.1 校正方案的确定.............................. 错误!未定义书签。
3.2 校正装置参数的确定.......................... 错误!未定义书签。
3.3 校正装置的Bode图 .......................... 错误!未定义书签。
四、校正后系统的分析............................... 错误!未定义书签。
4.1校正后系统的单位阶跃响应曲线................ 错误!未定义书签。
4.2 校正后系统的Bode图 ........................ 错误!未定义书签。
4.3 校正后系统的Nyquist曲线.................... 错误!未定义书签。
4.4 校正后系统的根轨迹.......................... 错误!未定义书签。
4.5校正后系统的仿真框图........................ 错误!未定义书签。
五、总结........................................... 错误!未定义书签。
六、参考文献....................................... 错误!未定义书签。
一、绪论按照校正装置在系统中的连接方式,控制系统校正方式可分为串联校正、反馈校正、前馈校正和复合校正四种。
串联校正又称顺馈校正,实在系统主反馈回路之外采用的校正方式。
前馈校正装置接在系统给定值之后及主反馈作用点之前的前向通路上,这种校正装置的作用相当于给定信号进行整形或滤波后,再送入反馈系统,因此又称为前置滤波器;另一种前馈校正装置接在系统可测扰动作用点与误差测量点之间,对扰动信号进行直接或间接测量,并经变换后接入系统,形成一条附加的对扰动影响进行补偿的通道。
前馈校正可以单独作用于开环控制系统,也可以作为反馈控制系统的附加校正而符合控制系统。
串联超前校正是利用超前网络或PD 控制器进行串联校正的基本原理,是利用超前网络或PD 控制器的相角超前特性实现的,是开环系统戒指平率增大,从而闭环系统带宽也增大,使响应速度加快。
串联滞后校正是利用滞后网络或PI 控制器进行串联校正的基本原理,利用其具有负相移和负幅值的特斜率的特点,幅值的压缩使得有可能调大开环增益,从而提高稳定精度,也可能提高系统的稳定裕度。
在系统响应速度要求不高而抑制噪声电平性能要求较高的情况下,可以考虑采用串联滞后校正。
此外,如果带校正系统已具备满意的动态性能,仅稳态性能不能满足指标要求,也可以采用串联滞后校正以提高系统的稳态精度,同时保持其动态性能仍然满足性能指标要求。
概述超前或滞后校正的优缺点和适用范围串联超前校正的优点:保证低频段满足稳态误差,改善中频段,使截止频率增大,相角裕度变大,动态性能提高,高频段提高使其抗噪声干扰能力降低。
有些情况下采用串联超前校正是无效的,它受到以下两个因素的限制:1. 闭环宽带要求。
若待校正系统不稳定的话,为了得到规定的相角裕度,需要超前网络提供很大的相角超前量。
这样的话,超前网络的a 值必须选取的很大,从而造成已校正系统带宽过大,使得通过系统的高频噪声电平很高,很可能使系统失控。
2. 在截至频率附近相角迅速减小的待校正系统,一般不宜采用串联超前校正。
因为随着截止频率的增大,待校正系统相角迅速减小,使已校正系统的相角裕度改善不大,很难得到足够的相角超前量,在一般情况下,产生这种相角迅速减小的原因是,在待校正系统的截止频率附近,或有交接频率彼此靠近的惯性环节;或由两个交接频率彼此相等的惯性环节;或有一个震荡环节。
二、原系统分析已知单位反馈系统的开环传递函数为:)1()(+=s s K s G要求校正后系统的速度误差系数112-≥s k v ,相角裕度 45≥γ,截止频率s rad c /5.7≥ω,设计串联校正装置。
2.1 原系统的单位阶跃响应曲线由开环传函得闭环传函为:1212)(2++=Φs s s (K=12) 用如下语句得原系统单位阶跃响应曲线如下图所示: sys=tf([12],[1 1 12]); %高阶系统建模step(sys); %计算单位阶跃响应05101500.20.40.60.811.21.41.61.8Step ResponseTime (sec)A m p l i t u d e2.2 原系统的Bode 图M a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramGm = Inf dB (at Inf rad/sec) , P m = 16.4 deg (at 3.39 rad/sec)Frequency (rad/sec)原系统波特图的程序为:G=tf([12],[1 1 0]);figure(2)margin(G);由图可知:截止频率Wc=3.39 rad/s相角裕度γ=16.4 deg幅值裕度h=lnf dB因为γ>0,所以原系统稳定。
2.3 原系统的Nyquist 曲线-200-150-100-50050100150200Nyquist DiagramReal Axis I m a g i n a r y A x i s原系统奈奎斯曲线程序:G=tf([12],[1 1 0]);figure(3)nyquist(G);axis equal2.4 原系统的根轨迹-1-0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.10Root LocusReal Axis I m a g i n a r y A x i s原系统的根轨迹程序:G=tf([12],[1 1 0]);figure(4)rlocus(G);三、校正装置设计3.1 校正方案的确定根据原系统的波德图分析知,由于原系统的相角裕度低于指标要求且中频段位于-40dB/dec 的折线上。
基于上述两点原因,故采用串联超前校正装置。
3.2 校正装置的参数确定①根据设计要求校正后的相角裕度 45≥γ,确定需要对系统增加的相位超前量m ϕ。
再由公式求得α: ②应用公式求''γ: m cωγγ+=)"(";c "arctan -90ωγ︒=; ③根据求得的a,T从而获得超前校正的网络的传递函数为:因此,(校正后8.77"=γ, 6.8"c =ω。
计算得a=38,T=0.02)根据上述步骤可求得原系统的校正装置的传递函数为: 1s 02.01s 76.0)(38++=s G 11sin 1m a a ϕ--=+'''''()10lg 0,c m L a ωωω+===1();1c aT aG s TS +=-故校正后系统的的传递函数为:)102.0)(1()176.0(12)()(+++=s s s s s G s G c 3.3 校正装置的Bode 图010203040M a g n i t u d e (d B )1010101010100306090P h a s e (d e g )Bode DiagramGm = Inf , P m = -180 deg (at 0 rad/sec)Frequency (rad/sec)G=tf([0.76 1],[0.02 1]);figure(1)margin(G);四、校正后系统的分析4.1校正后系统的单位阶跃响应曲线00.51 1.52 2.53 3.54 4.55 5.500.10.20.30.40.50.60.70.80.9Step ResponseTime (sec)A m p l i t u d e校正后系统的单位阶跃响应曲线程序:num=[12];den=[1 1 12];sys1=tf(num,den);num1=[0.76 1]den1=[0.02 1]sys2=tf(num1,den1);sys3=sys1*sys2;sys4=feedback(sys3 ,1);t=0:0.01:3.5;step(sys4,t)4.2 校正后系统的Bode 图-100-50050M a g n i t u d e (d B )10-1100101102103-180-135-90P h a s e (d e g )Bode DiagramGm = Inf dB (at Inf rad/sec) , P m = 77.8 deg (at 9.02 rad/sec)Frequency (rad/sec)校正后系统的波德图程序:G=tf([9.12 12],[0.02 1.02 1 0]);figure(1)margin(G);为由图可知,校正后系统的相角裕度γ=77.8deg>45deg,符合设计要求。